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BDDC ALGORITHMS WITH DELUXE SCALING

AND ADAPTIVE SELECTION OF PRIMAL CONSTRAINTS

FOR RAVIART-THOMAS VECTOR FIELDS

DUK-SOON OH, OLOF B. WIDLUND, STEFANO ZAMPINI, AND CLARK R. DOHRMANN

Abstract. A BDDC domain decomposition preconditioner is defined by a
coarse component, expressed in terms of primal constraints, a weighted average
across the interface between the subdomains, and local components given in
terms of solvers of local subdomain problems. BDDC methods for vector field
problems discretized with Raviart-Thomas finite elements are introduced. The
methods are based on a deluxe type of weighted average and an adaptive
selection of primal constraints developed to deal with coefficients with high
contrast even inside individual subdomains. For problems with very many
subdomains, a third level of the preconditioner is introduced.

Under the assumption that the subdomains are all built from elements of a
coarse triangulation of the given domain, that the meshes of each subdomain
are quasi uniform and that the material parameters are constant in each sub-
domain, a bound is obtained for the condition number of the preconditioned
linear system which is independent of the values and the jumps of these pa-
rameters across the interface between the subdomains as well as the number
of subdomains. Numerical experiments, using the PETSc library, are also pre-
sented which support the theory and show the effectiveness of the algorithms
even for problems not covered by the theory. Included are also experiments
with Brezzi-Douglas-Marini finite element approximations.

1. Introduction

Let Ω be a bounded Lipschitz domain in R
3. We will work with the Hilbert

space H(div; Ω), which is the subspace of vector valued functions u ∈ (L2(Ω))3

with divu ∈ L2(Ω). The space H0(div; Ω) is the subspace of H(div; Ω) with a
vanishing normal component on the boundary ∂Ω.

We will consider the following problem: Find u ∈ H0(div; Ω) such that

(1.1) a(u,v) :=

∫
Ω

(α divu divv + β u · v)dx =

∫
Ω

f · v dx, ∀v ∈ H0(div; Ω).

We will assume that the coefficient α is a bounded, nonnegative function, that β is
a strictly positive, bounded function, and that the right-hand side f ∈ (L2(Ω))3.
We note that the norm of u ∈ H(div; Ω) for a domain with a unit diameter is given

by (a(u,u))1/2 with α = 1 and β = 1.
The bilinear form (1.1) arises from the boundary value problem:

(1.2)
Lu := −grad (α divu) + β u = f in Ω,

u · n = 0 on ∂Ω.
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Here, n is the outward unit normal vector of ∂Ω. The boundary value problem (1.2)
is equivalent to a mixed formulation of a first order system least-squares problem
as in [17]. There are also other applications related to the H(div) space, e.g.,
in iterative solvers for the Reissner-Mindlin plate, the sequential regularization
method for the Navier-Stokes equations, and, possibly most importantly, mixed
formulations of flow in porous media or Brinkman equations. For more details, see
[6, 7, 51, 82].

Domain decomposition methods of iterative substructuring type for solving large
linear algebraic systems originating from elliptic partial differential equations have
been studied extensively; see [75]. Among these methods, the balancing Neumann-
Neumann (BNN) and the finite element tearing and interconnecting (FETI) al-
gorithms have proven quite successful; see, e.g., [28, 30, 31, 46, 54]. The balancing
domain decomposition by constraints (BDDC) methods, introduced in [21], are
modified BNN methods with a global component of the preconditioner determined
by a set of primal continuity constraints between the subdomains. For a pioneering
analysis for scalar elliptic problems, see [55, 56].

The BDDC methods are closely related to the dual-primal FETI (FETI-DP)
methods [29, 59] as are the earlier BNN methods to the one-level FETI methods;
see [32]. Thus, the spectra relevant to the performance of a BDDC and a FETI-
DP algorithm will be the same, except possibly for eigenvalues of 0 and 1, for the
same set of primal constraints; see [15,50,56]. Hence, we can use results for BDDC
methods to obtain results for FETI-DP methods and vice versa.

The main purpose of this paper is to construct and analyze a BDDC precon-
ditioner for vector field problems discretized with Raviart-Thomas finite elements.
Iterative substructuring methods for Raviart-Thomas problems were first consid-
ered in [85] and we will use several auxiliary results from that study in the analysis
of our method. BNN, FETI, and FETI-DP methods for these problems were de-
veloped in [71, 73, 74]. Overlapping Schwarz methods have also been introduced
for vector field problems; see [7, 33, 62, 63, 72]. Other methods such as multigrid
methods have been applied successfully in [8, 36, 44]. A multilevel preconditioner
based on additive Schur complement approximations has been introduced in [45];
that paper is primarily focused on cases with very irregular coefficients.

BDDC methods have also been widely extended to other problems such as flow in
porous media in [76, 77], incompressible Stokes equations in [49], Reissner-Mindlin
plate models in [10, 47], advection-diffusion problems in [81], and Helmholtz equa-
tions in [48]. Multilevel BDDC methods were introduced in [21,70,78–80] and other
discretization methods, e.g., spectral element methods and discontinuous Galerkin
methods, have been considered in [27,65,66]. Recently, there has also been pioneer-
ing work on isogeometric element problems; see [11–13]. We will explore the use of
three-level BDDC, which was first successfully studied in [78–80] for other elliptic
problems. We note that the third author recently has written a series of papers on
solving very large problems using BDDC and contributing to the PETSc library;
cf. [86–90].

In the construction of a BDDC preconditioner, a set of primal constraints and a
weighted averaging technique have to be chosen and these choices will very directly
affect the rate of convergence. Effective primal constraints are very simple to find for
the Raviart-Thomas elements; we primarily need a no-net-flux condition across each
subdomain boundary. However, for problems with coefficients with large contrast,
additional primal constraints are sometimes very useful. We will adaptively select
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the primal constraints to deal with such coefficients as pioneered in [23, 67]. For
recent work in this field, see also [20,38–40,57,58]. A unified framework has recently
been developed in [68].

The choice of averaging proves to be intricate. We will use a recently developed
type of weighted averaging technique, called deluxe scaling, introduced in [25] for
three-dimensional H(curl) problems. The deluxe scaling technique allows us to
reduce the analysis to individual subdomains. Hence, a finite element extension
theorem, which is needed in the analysis of other averaging techniques as in [42], is
no longer needed.

In several previous studies on domain decomposition methods for vector field
problems, [71,73,74,85], the bound on the condition number of the preconditioned
linear system depends on the ratio of the coefficients α and βH2 where H is the di-
ameter of the subdomain. Such results have been developed for a BDDC algorithm
for three-dimensional problems in H(curl); see [25] as well as [73]. This limitation
has been removed in several recent studies. Among them is a paper on an iter-
ative substructuring method for two-dimensional problems posed in H(curl); see
[24]. In more recent work results have been obtained for BDDC deluxe and over-
lapping Schwarz algorithms, again for two-dimensional problems posed in H(curl);
see [18, 19]. An overlapping Schwarz method for three-dimensional H(div) prob-
lems has also been developed; see [63]. In that work, two sets of inequalities were
developed to handle the mass-dominated and the divergence-dominated cases, re-
spectively.

We know of no previous full analysis of BDDC or FETI-DP type methods for
three-dimensional H(div) problems; see [64] for an announcement of some of our re-
sults. We are able to provide BDDC methods with an upper bound on the condition
number, which is independent of the values and the jumps of the coefficients across
the interface and to obtain condition number bounds which are polylogarithmic in
the number of degrees of freedom of the individual subdomains or only depend on a
tolerance parameter used for an adaptive selection of primal constraints. While we
are developing and testing our algorithms for quite general subdomains and mate-
rial parameters, our proofs are restricted to subdomains which are convex and each
a union of a finite number of coarse elements, with material parameters constant
in each subdomain. When developing our theory, we also assume that the finite
element triangulation of each subdomain is quasi-uniform.

The rest of this paper is organized as follows. In section 2, we introduce some
standard Sobolev spaces, a finite element approximation based on Raviart-Thomas
elements, and decompositions of the interface spaces. We introduce our BDDC
algorithms for an interface problem and define various operators used to describe
the algorithms in section 3; in its last subsection, we introduce adaptive three-level
BDDC. We next provide some auxiliary results and a proof of our main result in
section 4. Finally, section 5 contains results of numerical experiments, which extend
our findings to irregular subdomains obtained by mesh partitioners and to higher
order Raviart-Thomas elements and Brezzi-Douglas-Marini (BDM) elements; cf.
[16].

2. Function and finite element spaces

2.1. Continuous spaces. We will use the Sobolev spaces H1(Ω) and its trace
space H1/2(∂Ω), equipped with their norms and semi-norms for bounded domains.
The domain Ω and the subdomains, into which it is partitioned, are assumed to be
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Lipschitz. Let H be the diameter of Ω. Then,

‖u‖21;Ω := |u|21;Ω +
1

H2
‖u‖20;Ω , ‖u‖21/2;∂Ω := |u|21/2;∂Ω +

1

H
‖u‖20;∂Ω ,

where the L2-norm ‖ · ‖0;Ω and the semi-norms | · |1;Ω and | · |1/2;∂Ω are defined by

‖u‖20;Ω :=
∫
Ω
|u|2 dx, |u|21;Ω :=

∫
Ω
|∇u|2 dx, and

|u|21/2;∂Ω :=

∫
∂Ω

∫
∂Ω

|u(x)− u(y)|2

|x− y|3
dxdy,

respectively. The weights for the L2−terms result from the standard definitions of
the norms for a domain of diameter 1 and a dilation. We can also easily extend
these definitions to vector-valued cases.

The space H(div ; Ω) is defined by

H(div ; Ω) := {u ∈ (L2(Ω))3 | divu ∈ L2(Ω)}

with the scaled graph norm:

‖u‖2div;Ω := ‖divu‖20;Ω +
1

H2
‖u‖20;Ω .

The normal component on the boundary ∂Ω of any u ∈ H(div; Ω) belongs to
H−1/2(∂Ω); see [16, 60]. The norm for the space H−1/2(∂Ω) is given by

‖u · n‖−1/2;∂Ω := sup
φ∈H1/2(∂Ω),φ �=0

〈u · n, φ〉
‖φ‖1/2;∂Ω

,

where the angle brackets stand for the duality product ofH−1/2(∂Ω) andH1/2(∂Ω).
We have the following trace theorem.

Lemma 2.1. There exists a constant C, which is independent of the diameter of
Ω, such that, for all u ∈ H(div; Ω),

‖u · n‖2−1/2;∂Ω ≤ C(H2 ‖divu‖20;Ω + ‖u‖20;Ω).

Proof. This follows directly from Green’s formula on a domain of unit diameter and
by applying a dilation; see [85, Lemma 2.1]. �

In developing our theory, we also need to work with theH(curl ; Ω) space defined
by

H(curl ; Ω) := {u ∈ (L2(Ω))3 | curlu ∈ (L2(Ω))3}

with the scaled graph norm:

‖u‖2curl;Ω := ‖curlu‖20;Ω +
1

H2
‖u‖20;Ω .

We finally introduce H1
0 (Ω), H0(div ; Ω), and H0(curl ; Ω) as the subspaces of

H1(Ω), H(div ; Ω), and H(curl ; Ω) with a vanishing boundary value, a vanishing
normal component, and a vanishing tangential component on ∂Ω, respectively.
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2.2. Finite element spaces. In this paper, we will develop our theory for tetrahe-
dral elements but we note that our results are equally valid for hexahedral elements.
We remark that there are many useful tools, developed for hexahedral elements in
[85], that can easily be modified for tetrahedral elements.

We first introduce a triangulation Th of Ω into tetrahedral elements. We then
decompose the domain Ω into N nonoverlapping subdomains Ωi of diameterHi. We
assume that each subdomain Ωi is a union of elements of the triangulation Th and
that each Ωi is simply connected and has a connected boundary. We also assume
that the triangulation Th is shape regular with nodes matching across the interface
between the subdomains and, when developing our theory, that the triangulation
is quasi-uniform on each subdomain. The smallest diameter of the elements of Ωi

is denoted by hi. In our estimates, we will use the fraction H/h to denote

H/h := max
1≤i≤N

{Hi/hi} .

We also define the interface Γ by

Γ :=

(
N⋃
i=0

∂Ωi

)
\∂Ω

and the local interfaces Γi by

Γi := Γ ∩ ∂Ωi.

For our analysis, we will consider the lowest order Raviart-Thomas elements
on the mesh Th; see [16, Chapter 3] and [61]. The Raviart-Thomas elements are
conforming in H(div ; Ω) and those of lowest order are defined by

W (Ω) := {u | u|K ∈ RT (K),K ∈ Th and u ∈ H(div ; Ω)},

where the shape function RT (K) is given by four scalar parameters

RT (K) :=

⎛⎝ a1
a2
a3

⎞⎠+ b

⎛⎝ x
y
z

⎞⎠
for a tetrahedral element. The degrees of freedom for an element K in Th are given
by

λf (u) :=
1

|f |

∫
f

u · n ds, f ⊂ ∂K,

i.e., the average values of the normal components over the faces of the element.
These four values determine a1, a2, a3, and b. A basis function of the lowest or-
der Raviart-Thomas element space is supported in two elements of Th, with the
value of the normal component on a face equal to 1 for one of the elements and
−1 for the other, while vanishing on all other faces. While our analysis will be
limited to the lowest order Raviart-Thomas elements, we will consider higher order
Raviart-Thomas elements and BDM elements in our experiments; such elements
have additional degrees of freedom corresponding to moments of the normal com-
ponent over element faces as well as degrees of freedom related with moments over
element volume. For details, see [16].

The l2−norm of the vector of the coefficients λf (u) can be used to estimate the
L2−norm of u and of its divergence; the proof of the following lemma is elementary
and a simple modification of [69, Proposition 6.3.1]. See also [85, Lemma 3.1].
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Lemma 2.2. Let K ∈ Th. Then, there exist strictly positive constants, c and C,
depending only on the aspect ratio of K, such that for all u ∈ W,

c
∑

f⊂∂K

h3
fλf (u)

2 ≤ ‖u‖20;K ≤ C
∑

f⊂∂K

h3
fλf (u)

2

and

‖divu‖20;K ≤ C
∑

f⊂∂K

hfλf (u)
2
,

where hf is the diameter of f .

The following lemma follows directly from Lemma 2.2.

Lemma 2.3 (Inverse inequality). Let K ∈ Th. Then, there exists a constant C,
depending only on the aspect ratio of K, such that for all u ∈ W,

(2.1) hK ‖divu‖0;K ≤ C ‖u‖0;K ,

where hK is the diameter of K.

We also need Ŵ0, a finite element subspace of H0(div ; Ω):

Ŵ0(Ω) := W (Ω) ∩H0(div ; Ω).

We will now consider the variational problem (1.1). We obtain the stiffness

matrix A by restricting this problem to Ŵ0; A is symmetric and positive definite.
When developing our theory, we will need several additional spaces. Let S be

the space of continuous, piecewise linear functions on the tetrahedral elements, and
let S0 be the subspace of elements of S which vanish on ∂Ω. Let Q be the space
of piecewise constant functions on the same elements. Finally, let X be the space
of the lowest order Nédélec elements. We recall that the Lagrange P1, Raviart-
Thomas, and Nédélec spaces are conforming finite element spaces in H1, H(div),
and H(curl), respectively.

Let Vh and Fh be the set of vertices and faces of Th, respectively. The interpola-
tion operators Ih, and ρRT

h for sufficiently smooth functions u ∈ H1 and v ∈ H(div)
onto S and W , respectively, are defined as follows:

Ihu :=
∑
p∈Vh

u(p)φP
p and ρRT

h v :=
∑
f∈Fh

λf (v)φ
RT
f ,

where φP
p and φRT

f are the basis functions of the P1 and Raviart-Thomas spaces
associated with the node p and the element face f , respectively. We also denote by
Πh the L2−projection operator onto Q.

We finally recall the following error estimate for the Raviart-Thomas interpola-
tion operator and a commuting property.

Lemma 2.4. For any u ∈ (H1(Ωi))
3, we have∥∥u− ρRT

h u
∥∥
0;Ωi

≤ Chi |u|1;Ωi
.

Proof. See [14, Lemma 5.5]. �

Lemma 2.5. For any u ∈ (S(Ωi))
3, we have∥∥ρRT

h u
∥∥
0;Ωi

≤ C ‖u‖0;Ωi
.
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Proof. By using the triangle inequality, Lemma 2.4, and an inverse estimate for P1

functions, we obtain

(2.2)

∥∥ρRT
h (u)

∥∥2
0;Ωi

≤ 2 ‖u‖20;Ωi
+ 2

∥∥u− ρRT
h u

∥∥2
0;Ωi

≤ 2 ‖u‖20;Ωi
+ Ch2

i |u|
2
1;Ωi

≤ C ‖u‖20;Ωi
.

�

Lemma 2.6. Let u be sufficiently regular. Then, the following commuting property
holds:

(2.3) div
(
ρRT
h u

)
= Πh (divu) .

Proof. See [14, Property 5.3]. �

We note that property (2.3) is a part of the discrete de Rham diagram described,
e.g., in [60, section 5.7].

3. The BDDC methods

3.1. The discrete problem. The description of the BDDC algorithm and its
analysis require the introduction of several spaces. Let W (i) be the space of the
lowest order Raviart-Thomas finite elements on Ωi with a zero normal component

on ∂Ω ∩ ∂Ωi. We will decompose W (i) into two subspaces, an interior space W
(i)
I

and an interface space W
(i)
Γ . The interface space W

(i)
Γ will then be decomposed

into a primal space W
(i)
Π and a dual space W

(i)
Δ . Hence, we will have the following

decompositions:

W (i) := W
(i)
I ⊕W

(i)
Γ := W

(i)
I ⊕W

(i)
Δ ⊕W

(i)
Π .

We will also use the following product spaces:

W0 :=

N∏
i=1

W (i), WI :=

N∏
i=1

W
(i)
I , WΓ :=

N∏
i=1

W
(i)
Γ

and

WΔ :=
N∏
i=1

W
(i)
Δ , WΠ :=

N∏
i=1

W
(i)
Π .

We then have
W0 = WI ⊕WΓ = WI ⊕WΔ ⊕WΠ.

The functions in WΓ can have discontinuous normal components across the in-
terface while those of the finite element solutions are continuous; the subspace with

continuous normal components will be denoted by ŴΓ. We also consider a space W̃Γ

of functions in the primal subspace having continuous normal components across
the interface while those in the dual subspace potentially are discontinuous. We can

then decompose ŴΓ and W̃Γ into ŴΔ⊕ŴΠ and WΔ⊕ŴΠ, respectively, where ŴΔ

is the continuous dual variable subspace and ŴΠ is the continuous primal variable
subspace.

We can now obtain the local stiffness matrix A(i) by restricting the bilinear form
to Ωi, i.e.,

(3.1) ai(u,v) :=

∫
Ωi

(α divu divv + β u · v)dx,
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and replacing H(div; Ωi) by the finite element space W (i). It is convenient to
make a change of variables by introducing a basis for the primal degrees of freedom

and a complementary basis for the dual subspace W
(i)
Δ since the presentation of

the algorithms and the theoretical results are considerably simplified using the
new basis. Here we can follow the recipes of [50, subsection 3.3] closely. We
note that there is also some evidence that such a change of variables enhances
the numerical stability of BDDC and FETI-DP algorithms; see [41]. However, the
change of variables can come with a loss of sparsity and there are alternative ways
of implementing these algorithms; cf. [21].

After this change of variables, we find that the contributions from the subdomain
Ωi to the stiffness matrix and to the load vector can be written as⎡⎢⎣ A

(i)
II A

(i)
IΔ A

(i)
IΠ

A
(i)T
IΔ A

(i)
ΔΔ A

(i)
ΔΠ

A
(i)T
IΠ A

(i)T
ΔΠ A

(i)
ΠΠ

⎤⎥⎦ and

⎡⎢⎣ f
(i)
I

f
(i)
Δ

f
(i)
Π

⎤⎥⎦ .

We then obtain the global linear system of algebraic equations by sub-assembling
these local contributions:

(3.2) A

⎡⎣ uI

uΔ

uΠ

⎤⎦ =

⎡⎣ AII AIΔ AIΠ

AT
IΔ AΔΔ AΔΠ

AT
IΠ AT

ΔΠ AΠΠ

⎤⎦⎡⎣ uI

uΔ

uΠ

⎤⎦ =

⎡⎣ fI

fΔ

fΠ

⎤⎦ ,

where uI ∈ WI , uΔ ∈ ŴΔ , and uΠ ∈ ŴΠ.

3.2. Some useful operators. We will now define several operators, most of which
were introduced in [50], which perform restrictions, extensions, scalings, averaging,
or imbeddings between different spaces. We first consider the restriction operators.

R
(i)
Γ maps the space ŴΓ to the subdomain subspace W

(i)
Γ . Similarly, we can define

R
(i)

Γ : W̃Γ → W
(i)
Γ . Moreover, R

(i)
Δ : WΔ → W

(i)
Δ and R

(i)
Π : ŴΠ → W

(i)
Π map global

interface vectors defined on Γ to their components on Γi. R̃ΓΔ and R̃ΓΠ are the

restriction operators from the intermediate space W̃Γ to WΔ and ŴΠ, respectively.

Similarly, we can define the restriction operator R
(i)
ΓΔ from W

(i)
Γ to W

(i)
Δ . RΓ and

RΓ are the direct sums of all the R
(i)
Γ and R

(i)

Γ , respectively. Furthermore, the

imbedding R̃Γ : ŴΓ → W̃Γ is the direct sum of R̂Π and all the R̂
(i)
Δ , where R̂Π

represents the restriction from ŴΓ to ŴΠ and R̂
(i)
Δ maps the space ŴΓ into W

(i)
Δ .

We next introduce scaling matrices, D(i), acting on the degrees of freedom as-
sociated with the Γi. They are combined into a block diagonal matrix and should
provide a discrete partition of unity, i.e.,

(3.3) RT
Γ

⎡⎢⎢⎢⎣
D(1)

D(2)

. . .

D(N)

⎤⎥⎥⎥⎦RΓ = I.

A specific deluxe scaling will be introduced in subsection 3.6.

We can now define scaled operators R
(i)
D,Γ := D(i)R

(i)
Γ by pre-multiplying R

(i)
Γ

by the scaling matrices D(i). Other locally scaled operators R̃
(i)
D,Δ are defined by
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R̃
(i)
D,Δ := R

(i)
ΓΔR

(i)
D,Γ. We next consider a globally scaled operator R̃D,Γ defined by

the direct sum of R̂Π and all the R̃
(i)
D,Δ. We note that

R̃T
Γ R̃D,Γ = R̃T

D,ΓR̃Γ = I.

This identity shows that the averaging operator ED : W̃Γ → ŴΓ given by

(3.4) ED := R̃ΓR̃
T
D,Γ

is a projection. ED provides a weighted average of the subdomain interface values
across the interface Γ. We will provide details on our choice of scaling matrices in
subsection 3.6.

3.3. A block factorization. The following block factorization of the inverse of the
stiffness matrix is associated with the elimination of the interior degrees of freedom
of all subdomains:

(3.5) A−1 =

[
I −A−1

II AIΓ

0 I

] [
A−1

II 0

0 Ŝ−1
Γ

] [
I 0

−AT
IΓA

−1
II I

]
.

Here AIΓ := (AIΔ AIΠ). The Schur complement ŜΓ, with respect to the interior
unknowns, is positive definite and it can be obtained by sub-assembly

(3.6) ŜΓ := RT
ΓSΓRΓ =

N∑
i=1

R
(i)T
Γ S

(i)
Γ R

(i)
Γ ,

where SΓ is the direct sum of the local Schur complements defined by

S
(i)
Γ := A

(i)
ΓΓ −A

(i)T
IΓ A

(i)−1
II A

(i)
IΓ,

and where

A
(i)
ΓΓ :=

[
A

(i)
ΔΔ A

(i)
ΔΠ

A
(i)T
ΔΠ A

(i)
ΠΠ

]
.

For the model problem (1.2), the local Schur complements S
(i)
Γ are always positive

definite. A preconditioner for (3.2) is then defined by using (3.5), after replac-

ing the inverse of the Schur complement ŜΓ by the action of a suitable interface
preconditioner.

3.4. The BDDC algorithm. In order to describe the BDDC algorithm, we need

to define a partially assembled Schur complement, defined on W̃Γ, by

S̃Γ := R
T

ΓSΓRΓ.

After eliminating the components of the right-hand side corresponding to the inte-
rior unknowns, we obtain

Ã

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

u
(1)
I

u
(1)
Δ
...

u
(N)
I

u
(N)
Δ

uΠ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

R
(1)
Δ R̃ΓΔS̃ΓuΓ

...
0

R
(N)
Δ R̃ΓΔS̃ΓuΓ

R̃ΓΠS̃ΓuΓ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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where Ã is the partially assembled stiffness matrix on WI ⊕W̃Γ. We note that solv-
ing this linear system is much less expensive than working with the fully assembled
linear system since the number of primal variables is much smaller than the total
number of interface variables. We also note that the fully assembled Schur comple-

ment ŜΓ can be obtained by an additional sub-assembly step, i.e., ŜΓ = R̃T
Γ S̃ΓR̃Γ.

The BDDC preconditioner has the following form:

M−1 := R̃T
D,ΓS̃

−1
Γ R̃D,Γ.

Here, S̃−1
Γ can be obtained by using a block Cholesky factorization of Ã as in

[50, section 4]:
(3.7)

S̃−1
Γ = R̃T

ΓΔ

⎛⎝ N∑
i=1

[
0 R

(i)T
Δ

] [ A
(i)
II A

(i)
IΔ

A
(i)T
IΔ A

(i)
ΔΔ

]−1 [
0

R
(i)
Δ

]⎞⎠ R̃ΓΔ +ΦS−1
ΠΠΦ

T

with

Φ := R̃T
ΓΠ − R̃T

ΓΔ

N∑
i=1

[
0 R

(i)T
Δ

] [ A
(i)
II A

(i)
IΔ

A
(i)T
IΔ A

(i)
ΔΔ

]−1 [
A

(i)
IΠ

A
(i)
ΔΠ

]
R

(i)
Π

and where

(3.8)

SΠΠ :=

N∑
i=1

R
(i)T
Π S

(i)
ΠΠR

(i)
Π ,

S
(i)
ΠΠ := A

(i)
ΠΠ −

[
A

(i)T
IΠ A

(i)T
ΔΠ

] [ A
(i)
II A

(i)
IΔ

A
(i)T
IΔ A

(i)
ΔΔ

]−1 [
A

(i)
IΠ

A
(i)
ΔΠ

]
.

The first term of (3.7) consists of uncoupled subdomain corrections realized by
means of local Neumann solves, with solutions constrained to vanish at the primal
degrees of freedom; the second term is the coarse-level part of the preconditioner
associated with the primal space and provides the global exchange of informa-
tion which is needed to obtain a scalable preconditioner for the conjugate gradient
method. In subsection 3.8, we will also explore the option of approximating the
inverse of SΠΠ by invoking the BDDC algorithm once more, thus introducing a
three-level BDDC algorithm.

3.5. Interface equivalence classes. Equivalence classes of degrees of freedom re-
lated to the interface between the subdomains play an important role in the design,
analysis, and parallel implementation of domain decomposition algorithms such as
BDDC. In the case of H(div)−conforming Raviart-Thomas and BDM elements, the
situation is very simple since each interface degree of freedom is associated with
an element face common to only two elements. Thus, any equivalence class will be
given by the subset of the degrees of freedom on the intersection of the boundaries
of two neighboring subdomains. We will refer to such an interface class as a subdo-
main face. In order to avoid disconnected subdomain faces in our experiments, we
will consider two degrees of freedom connected and belonging to the same subdo-
main face only if there exists a path between their element faces which passes from
element to element of the subdomain face crossing edges between element faces.
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3.6. Deluxe scaling. In order to complete the description of the algorithm, we
need to define the weighted averaging operators D(i). Conventional weighted av-
eraging techniques, known as stiffness and ρ scalings, are described in [21, 56]. We
will show, in section 5, that there are cases for which these conventional techniques
perform poorly for (1.2), since these methods are designed for constant coefficients
or for one variable coefficient. For more than one variable coefficient, as for the
problem considered here, we need a different approach and we will use the deluxe
scaling, introduced in [25] for H(curl) problems and further considered in [26]. A
survey of other studies using deluxe scaling is given in [83].

We will work with the principal minors, associated with the subdomain faces F ,
of the subdomain stiffness matrices. Two local stiffness matrices associated with F
are given by principal minors of the subdomain stiffness matrices[

A
(k)
II A

(k)
IF

A
(k)T
IF A

(k)
FF

]
, k = i, j,

and the two Schur complements associated with F by

S
(k)
FF := A

(k)
FF −A

(k)T
IF A

(k)
II

−1
A

(k)
IF , k = i, j.

We will use the scaling matrices D
(i)
F :=

(
S
(i)
FF + S

(j)
FF

)−1

S
(i)
FF . The deluxe scaling

operator D(i) is then given by

(3.9) D(i) :=

⎡⎢⎢⎢⎢⎣
D

(i)
F1

D
(i)
F2

. . .

D
(i)
Fk

⎤⎥⎥⎥⎥⎦ ,

where F1, . . . , Fk are the subdomain faces of Γi.
We remark that there are two scaling matrices for each subdomain face, and that

it is easy to show that the partition of unity condition (3.3) is satisfied, i.e., that

N∑
i=1

R
(i)
Γ

T
D(i)R

(i)
Γ = I.

Thus, a face component of the averaging operator ED is defined by

w̄F := (EDw)F := (S
(i)
FF + S

(j)
FF )

−1(S
(i)
FFw

(i)
F + S

(j)
FFw

(j)
F ).

Here w
(i)
F (resp. w

(j)
F ) is the restriction of w(i) ∈ W

(i)
Γ (w(j) ∈ W

(j)
Γ ) to the face F .

The action of (S
(i)
FF +S

(j)
FF )

−1 can be implemented by solving a Dirichlet problem
on Ωi ∪ F ∪ Ωj , where F is the face between the two subdomains. This can add
significantly to the cost. In the economic variant of deluxe scaling (e-deluxe), we
replace this large domain by a thin domain built from one or a few layers of elements
next to the face and this often results in very similar performance; see, e.g., [26] and
section 5. Instead of solving such a Dirichlet problem, in our experiments, we exploit
the Schur complement feature of the numerical factorization package MUMPS [2],

which explicitly provides the local Schur complement matrix S
(i)
Γ when factoring

the subdomain problem. Our approach has the further advantage that the Dirichlet
solver can be reused in the static condensation step in (3.5), and that the Schur
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complement solver can be reused when computing the subdomain correction in
(3.7). Therefore, a single factorization step suffices to set up the preconditioner.

Differently from [26], in our experiments with the e-deluxe variant, we consider
the principal minors of the Schur complement obtained by eliminating all the inte-
rior degrees of freedom in a layer of elements next to all of the subdomain interface
Γi. However, when using e-deluxe, the Dirichlet and Schur complement solvers
cannot be reused, and additional factorizations are needed to set up the precon-
ditioner. We note that our implementation of e-deluxe is quite similar to the one
analyzed in [40].

3.7. Basic BDDC deluxe estimates. As we have previously noted, the Raviart–
Thomas discretization only has equivalence classes with two elements. Therefore,
the analysis will be quite similar to that for finite element problems for standard
elliptic problems in two dimensions; see e.g., [40] or [68].

The core of any estimate for a BDDC algorithm is an estimate of the norm of
the averaging operator ED. By an algebraic argument, known for FETI–DP since
2002, we have

κ(M−1ŜΓ) ≤ ‖ED‖
˜SΓ
;

see [43] or [50]. The analysis of any BDDC deluxe algorithm can be reduced to
bounds for individual subdomains. Arbitrary jumps in the coefficients across Γ can
then be accommodated.

Instead of developing an estimate for ED, we will work with PD := I − ED. As
shown in [68, Appendix A] these two operators, in fact, have the same norm. Thus,

we will estimate the S
(i)
Γ −norm of RT

F (w
(i)
F − w̄F ), instead of (RT

F w̄F )
TS

(i)
Γ RT

F w̄F .
Here RF denotes the restriction to the face F. By elementary algebra, we find that

w
(i)
F − w̄F = (S

(i)
FF + S

(j)
FF )

−1S
(j)
FF (w

(i)
F −w

(j)
F ).

More algebra gives, by using that S
(i)
FF := RFS

(i)
Γ RT

F ,

(RT
F (w

(i)
F − w̄F ))

TS
(i)
Γ (RT

F (w
(i)
F − w̄F ))

= (w
(i)
F −w

(j)
F )TS

(j)
FF (S

(i)
FF + S

(j)
FF )

−1S
(i)
FF (S

(i)
FF + S

(j)
FF )

−1S
(j)
FF (w

(i)
F −w

(j)
F ).

Adding a similar contribution from Ωj , we obtain, following Pechstein and Dohrmann
[67], that the relevant expression of the energy is

(w
(i)
F −w

(j)
F )T (S

(i)−1

FF + S
(j)−1

FF )−1(w
(i)
F −w

(j)
F ).

The matrix of this quadratic form is a parallel sum, and we will use the notation

A : B := (A−1 +B−1)−1;

cf. [5].
We now use the following result; see [4, Theorem 9], see also [68, Corollary 5.11]:

Lemma 3.1. Let A and B be two symmetric positive semi-definite matrices of the
same order. Then, zTA : Bz = infz=x+y(x

TAx+ yTBy).

By using x = w
(i)
F −wΠ and y = −w

(j)
F +wΠ, where wΠ is an arbitrary element

of the primal space, we find that

(w
(i)
F −w

(j)
F )T (S

(i)
FF : S

(j)
FF )(w

(i)
F −w

(j)
F )

≤ (w
(i)
F −wΠ)

TS
(i)
FF (w

(i)
F −wΠ) + (w

(j)
F −wΠ)

TS
(j)
FF (w

(j)
F −wΠ).
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We note that each of these terms is local to only one subdomain.

In Lemma 4.8, we will establish a bound for (w
(i)
F − wΠ)

TS
(i)
FF (w

(i)
F − wΠ) by

the energy ai(w
(i),w(i)) attributable to Ωi, for a primal space element wΠ chosen

to satisfy the no-net-flux condition∫
F

(w
(i)
F −wΠ) · n ds = 0,

for each subdomain face.
When developing this bound, we have to make sure that they hold for any

extension of the values of w
(i)
F to the rest of Γi. This will be done by considering

the energy-minimizing extension of any finite element function defined on F.

The relevant matrix is S̆
(i)
FF , defined by

(3.10) S̆
(i)
FF := S

(i)
FF − S

(i)T
F ′F S

(i)−1
F ′F ′ S

(i)
F ′F ,

where S
(i)
F ′F ′ is the principal minor of S

(i)
Γ with respect to Γi \ F and S

(i)
F ′F an off-

diagonal block of S
(i)
Γ . Thus, w

(i)T
F S̆

(i)
FFw

(i)
F provides a lower bound for ai(w,w).

In standard BDDC theory, as in section 4, the required estimate is obtained by
using a face lemma, cf. [75, subsection 4.6.3], where such a result is established
for constant coefficients in each subdomain, polyhedral subdomains, and scalar
elliptic problems. For an adaptive algorithm, this result is replaced by the use of a
generalized eigenvalue problem. For BDDC deluxe, we first generate elements for
the primal space for a face by solving a generalized eigenvalue problem

(3.11) S
(i)
FF : S

(j)
FFψ = νS̆

(i)
FF : S̆

(j)
FFψ.

The primal spaces are then generated by the eigenvectors for one or a few of the

largest eigenvalues of (3.11) and making (S̆
(i)
FF : S̆

(j)
FF )(w

(i)
F − w

(j)
F ) orthogonal to

these eigenvectors. The complementary dual space is then spanned by the remaining
eigenvectors which are then orthogonal to the primal space with respect to the

matrix S̆
(i)
FF : S̆

(j)
FF .

We note that since w
(i)
F −w

(j)
F belongs to the dual space

(w
(i)
F −w

(j)
F )T (S

(i)
FF : S

(j)
FF )(w

(i)
F −w

(j)
F ) ≤ νFtol(w

(i)
F −w

(j)
F )T (S̆

(i)
FF : S̆

(j)
FF )(w

(i)
F −w

(j)
F ),

where νFtol is the largest eigenvalue not used in the selection of primal constraints.

Using Lemma 3.1, once more, choosing x = w
(i)
F and y = −w(j), we have established

the following result.

Lemma 3.2. If νFtol is the largest eigenvalue not used in the selection of primal
constraints, we have

‖(PDw)|F ‖2
˜SΓ

≤ νFtol(ai(w,w) + aj(w,w)),

where ai(·, ·) is given by (3.1).

We now note that we can write PDw as the sum of contributions (PDw)|F
from the faces of Γ. An estimate of the square of the norm of the sum related to
one subdomain Ωi introduces a factor NF , the maximum number of faces of any
subdomain. Counting the number of contributions of the form ai(w,w), we then
obtain the following result:

Theorem 3.3. κ(M−1ŜΓ) ≤ ‖PD‖
˜SΓ

≤ νtolN
2
F , where νtol := maxF νFtol and NF

equals the maximum number of faces of any subdomain.
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We note that this bound is often pessimistic, because of the factor N2
F ; when

using a tolerance in our computations, we therefore have chosen to disregard this
factor.

We also note that there is evidence that adaptive primal spaces for deluxe BDDC
methods are smaller than those generated using conventional point-wise scalings
[38, 40, 90]. See also the discussion in [68, Lemma 5.24].

3.8. Three-level BDDC. Coarse problem solvers in BDDC methods, as in all
other two-level Domain Decomposition methods, can create a bottleneck for the
algorithm when there is a large number of subdomains and/or many coarse degrees
of freedom per subdomain, as could be the case when an adaptive BDDC algorithm
is used. A multilevel extension of the BDDC algorithm is readily available given
the unassembled nature of the coarse problem (3.8); for a pioneering analysis see
[78, 79].

In a three-level BDDC algorithm, the solution of the coarse problem is replaced
by the application of a BDDC preconditioner at a coarser level, where a fine sub-

domain is considered an element of a coarser mesh, with S
(i)
ΠΠ the coarse element

stiffness matrices. Coarse subdomains are then obtained by partitioning the connec-
tivity graph of the coarse mesh, where two coarse elements are considered connected
if they share at least one fine subdomain face. We note that we can iterate this
procedure to construct BDDC algorithms with an arbitrary number of levels.

Such multilevel extensions lead to highly scalable, memory efficient BDDC pre-
conditioners, provided a suitable coarse space for the coarser level is found. In
fact, the use of approximate coarse solvers contributes multiplicatively to the con-
dition number of the BDDC algorithm, and can increase the number of iterations
of the Krylov solver, since the following upper bound for the condition number of
a three-level BDDC method holds, cf. [22, Theorem 1],

κ(M−1
3levelŜΓ) ≤ κ(M−1

ΠΠSΠΠ)κ(M
−1ŜΓ),

where M−1
ΠΠ is the BDDC preconditioner for SΠΠ. We note that this result of

Dohrmann contains a factor
α2 max(1, β2)

α1 min(1, β1)
.

A closer examination shows that in our case α1 = α2 = 1, that β1 = 1, that β2 ≥ 1,
and that κ(M−1

ΠΠSΠΠ) = β2/β1.
Differently from earlier work, we will construct an adaptive coarse problem for

SΠΠ and will then be able to control κ(M−1
ΠΠSΠΠ) and construct highly scalable,

memory efficient three-level BDDC preconditioners. We note that the design of
effective primal spaces for coarser levels of H(div) problems could be a subject of
future development of theory.

4. Technical tools and the main theoretical result

When we turn to the development of our theory, we need to impose additional
conditions on the geometry of the subdomains and the values of the two material
parameters α and β. Thus, each subdomain Ωi will be assumed to be convex and
a union of a finite number of shape-regular tetrahedral elements of a coarse trian-
gulation TH . The mesh of each subdomain will be quasi-uniform. We also assume
that α and β are constant in each subdomain while we allow arbitrarily large coef-
ficient jumps across the interface. We will denote by αi and βi the values of these
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coefficients taken on subdomain Ωi. We note that similar assumptions have been
used in the development of theory for many domain decomposition algorithms of
the iterative substructuring family; see, e.g., [75, Chapters 4–6].

Our primal variables will be defined by the common average of the normal com-
ponent of the solution over the subdomain faces. This means that a no-net-flux
condition ∫

F

w
(i)
Δ · n ds = 0

is imposed for each subdomain face.
In our proofs, we also need some standard tools for the space S(Ωi), which we

can borrow from [75, subsection 4.6]. These results are related to the subdomain
faces and their boundaries. We note that the proof of [75, Lemma 4.16] is not
satisfactory but that a correct proof is now available in [26, Section 3.].

Lemma 4.1. There are functions ϑ∂F ∈ S(Ωi) and ϑF ∈ S(Ωi) such that for all
nodes on the closure of F

0 ≤ ϑ∂F , ϑF ≤ 1, ϑ∂F + ϑF = 1,

ϑF = 0 on ∂Ωi\F , and ϑ∂F = 0 at all nodes of ∂Ωi except those on ∂F. Moreover,
for any u ∈ S(Ωi), there exists a constant independent of hi and Hi, such that

|Ih (ϑ∂Fu)|21;Ωi
≤ C (1 + logHi/hi) ‖u‖21;Ωi

and
|Ih (ϑFu)|21;Ωi

≤ C (1 + logHi/hi)
2 ‖u‖21;Ωi

.

In addition, the following estimates hold:

‖u‖20;∂F ≤ C (1 + logHi/hi) ‖u‖21;Ωi

and
‖Ih (ϑFu) ‖0,Ωi

≤ ‖u‖0,Ωi
.

We note that an explicit construction of ϑF , a nonnegative function bounded
from above by 1, is given in [75, Subsection 4.6.3] for a tetrahedron. This construc-
tion can easily be extended to the union of several coarse elements.

We next introduce a stable operator, which provides a divergence-free extension.

Lemma 4.2 (Divergence-free extension). There exists an extension operator H̃i

from the normal trace space of W
(i)
Δ to W (i), such that, for all u ∈ W

(i)
Δ ,(

H̃iμ
)
· n = μ, div H̃iμ = 0,

where μ := u · n. Moreover,∥∥∥H̃iμ
∥∥∥
0;Ωi

≤ C ‖μ‖−1/2;∂Ωi
.

Proof. A proof of this result is provided for the lowest order Raviart-Thomas el-
ement defined on hexahedral meshes in [85, Lemma 4.3] and [84, Lemma 2.6]. A
proof for the case of tetrahedral elements can be obtained using exactly the same
arguments. �

We then have the following estimate for the discrete harmonic extension, i.e.,
the extension of a given normal trace with the minimal energy. For more details,
see [75, section 10.2] and [63, section 3.1].
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Corollary 4.3 (Discrete harmonic extension). Let Hi be the energy minimizing

discrete harmonic extension. For all u ∈ W
(i)
Δ , we have

(Hiμ) · n = μ := u · n.
Furthermore,

αi ‖divHiμ‖20;Ωi
+ βi ‖Hiμ‖20;Ωi

≤ Cβi ‖μ‖2−1/2;∂Ωi
.

Proof. Hi is the minimal-energy extension operator for a given subdomain interface.
Therefore, we have

αi ‖divHiμ‖20;Ωi
+ βi ‖Hiμ‖20;Ωi

≤ αi

∥∥∥div H̃iμ
∥∥∥2
0;Ωi

+ βi

∥∥∥H̃iμ
∥∥∥2
0;Ωi

.

Since div H̃iμ = 0, we have, by using Lemma 4.2,

αi ‖divHiμ‖20;Ωi
+ βi ‖Hiμ‖20;Ωi

≤ Cβi ‖μ‖2−1/2;∂Ωi
.

�

We next consider a coarse interpolation operator ρRT
H onto the Raviart-Thomas

space on the coarse mesh TH .

Lemma 4.4 (Stability of the coarse interpolant). Let K ∈ TH . For all u ∈ W , we
have the following estimates:∥∥div (

ρRT
H u

)∥∥2
0;K

≤ ‖divu‖20;K
and ∥∥ρRT

H u
∥∥2
0;K

≤ C
(
(1 + logH/h) ‖u‖20;K +H2

K ‖divu‖20;K
)
,

where HK is the diameter of K. Here, the constant C depends only on the aspect
ratio of K and the elements of Th.

Proof. Full proofs of this result are given in [84, Lemma 2.4] and [85, Lemma 4.1]
for hexahedral meshes. These proofs can be translated line by line to also hold for
tetrahedral meshes. �

We then have the following.

Lemma 4.5. Let uF ∈ W (i) with λf (uF ) = 0, ∀f ⊂ ∂Ωi\F . Furthermore, let
uH
F := Hi

(
ρRT
H uF · n

)
and assume that αi ≤ βiH

2
i . We then have for the bilinear

form (3.1)

(4.1) ai
(
uH
F ,uH

F

)
≤ Cai (uF ,uF ) ,

where C is independent of Hi, hi, αi, and βi.

Proof. We will modify the proof of [63, Lemma 5.6]. We first assume that F consists

of only one face of a coarse element K ∈ TH ⊂ Ωi. Let Ωdi

i,F ⊂ Ωi be the set of all
points which are within a distance di of F . Let χF be a piecewise linear, scalar,
nonnegative cut-off function, which has the value 1 on F and vanishes in Ωi\Ωdi

i,F

for some hi ≤ di ≤ Hi. Moreover, ‖χF ‖∞ ≤ 1 and ‖∇χF ‖∞ ≤ C/di.
We next consider a coarse basis function related to a discrete harmonic exten-

sion. This basis function φ̃RT
F is obtained from the standard basis function φRT

F

and is given by φ̃RT
F := Hi

(
χFφ

RT
F · n

)
. We note that

∥∥φRT
F

∥∥2
0;Ωi

≤ CH3
i and∥∥divφRT

F

∥∥2
0;Ωi

≤ CHi.
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We then define the function ũH
F as follows:

(4.2) ũH
F := λF (uF ) φ̃

RT
F .

In order to estimate the energy of ũH
F , we will estimate the coefficient λF (uF ) and

the energy of φ̃RT
F , separately.

We first estimate the coefficient. By the divergence theorem, and the fact that
(χFuF ) · n vanishes on ∂Ωdi

i,F \F ,

|F |λF (uF ) = |F |λF (χFuF ) =

∫
F

(χFuF ) · n ds

=

∫
Ω

di
i,F

div (χFuF ) dx−
∫
∂Ω

di
i,F \F

(χFuF ) · n ds

=

∫
Ω

di
i,F

div (χFuF ) dx.

By using the Cauchy-Schwarz inequality and the shape-regularity of the elements
of TH , we obtain

|λF (uF )|2 ≤ C
di
H2

i

‖div (χFuF )‖20;Ωdi
i,F

≤ C
di
H2

i

(
‖χF ‖2∞ ‖divuF ‖20;Ωi

+ ‖∇χF ‖2∞ ‖uF ‖20;Ωi

)
≤ C

di
H2

i

‖divuF ‖20;Ωi
+ C

1

H2
i di

‖uF ‖20;Ωi
.

We are now ready to obtain our estimate of the basis function. From the minimal
energy property, we find

αi

∥∥∥div φ̃RT
F

∥∥∥2
0;Ωi

+ βi

∥∥∥φ̃RT
F

∥∥∥2
0;Ωi

≤ αi

∥∥div (ρRT
h

(
χFφ

RT
F

))∥∥2
0;Ωi

+ βi

∥∥(ρRT
h

(
χFφ

RT
F

))∥∥2
0;Ωi

≤ Cαi

(
di +H2

i /di
)
+ CβiH

2
i di ≤ CαiH

2
i /di + CβiH

2
i di.

Hence, we have

(4.3)
ai
(
ũH
F , ũH

F

)
= αi

∥∥∥λF (uF )
(
div φ̃RT

F

)∥∥∥2
0;Ωi

+ βi

∥∥∥λF (uF )
(
φ̃RT

F

)∥∥∥2
0;Ωi

≤ C
(
αi + βid

2
i

)
‖divuF ‖20;Ωi

+ C
(
αi/d

2
i + βi

)
‖uF ‖20;Ωi

.

Let di = max{
√
αi/βi, hi} and recall that hi ≤ di ≤ Hi. By using (4.3) and

Lemma 2.3, we obtain

ai
(
uH
F ,uH

F

)
≤ ai

(
ũH
F , ũH

F

)
≤ Cai (uF ,uF ) .

If F is the union of faces of several elements of TH , we should replace the basis
function in formula (4.2) by a sum of such functions associated with the relevant
faces of the coarse elements. �

We next introduce a partition of unity associated with the faces of an individual
subdomain Ωi as in [75, Chapter 10.2.1],∑

F⊂∂Ωi

ζF = 1, a.e. on ∂Ωi\∂Ω,
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where

(4.4) ζF (x) :=

{
1, x ∈ F,
0, x ∈ ∂Ωi\F.

We then have the following estimates for the subdomain face components; we recall

that for ui ∈ W
(i)
Δ ,

∫
F
ui · n ds = 0 for each subdomain face F ⊂ ∂Ωi.

Lemma 4.6. For any ui ∈ W
(i)
Δ and for any uH

i ∈ W
(i)
Π , let μi := ui · n, μF :=

ζFμi, and μH
i := uH

i · n. Then, the following estimate holds:

‖μF ‖2−1/2;∂Ωi

≤ C (1 + logHi/hi)
(
(1 + logHi/hi)

∥∥μi + μH
i

∥∥2
−1/2;∂Ωi

+ ‖μi‖2−1/2;∂Ωi

)
,

where C is independent of μH
i , Hi, and hi.

Proof. This result is closely related to [85, Lemma 4.4] and [84, Lemma 2.7], which
are results for hexahedral meshes. Carefully checking all the arguments, we find
that the same results are also valid for tetrahedral meshes. �

Unlike for the gradient operator, it is quite complicated to classify the kernel and
the range of the curl and divergence operators. The discrete regular decompositions
given in [35] provide useful tools to analyze problems posed in H(curl) and H(div).
We can then apply techniques developed for H1-functions by using the following
result.

Lemma 4.7 (Hiptmair-Xu decomposition). Let D ⊂ Ω be a convex polyhedron.
Then, for all vh ∈ W (D), there exist Ψh ∈ S(D), qh ∈ X(D), and ṽh ∈ W (D)
such that

vh = ṽh + ρRT
h (Ψh) + curlqh,

and ∥∥h−1
i ṽh

∥∥2
0;D + ‖Ψh‖21;D ≤ C ‖div vh‖20;D ,(4.5)

‖curl qh‖20;D + ‖Ψh‖20;D ≤ C ‖vh‖20;D .(4.6)

Proof. See [35, Lemmas 5.1 and 5.2]. �

We note that this important paper, [35], was preceded by [34], which concerns
another application of the same decomposition.

We are now ready to prove a face lemma for Raviart–Thomas finite elements,
which according to our results in subsection 3.7 will allow us to complete the proof
of our main theoretical result.

Lemma 4.8. For any ui ∈ W (i), there exist vi,F ∈ W (i) and vH
i,F ∈ W

(i)
Π such

that

(4.7)

{
λf (vi,F ) = λf (ui) if f ⊂ F ,
λf (vi,F ) = 0 if f ⊂ ∂Ωi\F ,

and {
λf

(
vH
i,F

)
= λf

(
ρRT
H ui

)
if f ⊂ F ,

λf

(
vH
i,F

)
= 0 if f ⊂ ∂Ωi\F .

(4.8)
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Furthermore,

(4.9) ai
(
vi,F − vH

i,F ,vi,F − vH
i,F

)
≤ C (1 + logHi/hi)

2
ai (ui,ui) ,

where C is independent of αi, βi, Hi, and hi.

Proof. We will only consider the case where αi ≤ βiH
2
i since for βiH

2
i ≤ αi, the

proof is straightforward by using Corollary 4.3 and Lemmas 4.6, 2.1, and 4.4; for
more details, see [85, Section 5].

By using Lemma 4.7, we can find ũi, Ψi, and qi such that

(4.10) ui = ũi + ρRT
h (Ψi) + curl qi = u1

i + u2
i + u3

i .

We note that div (curlqi) = 0 and that (4.5) and (4.6) provide bounds for the
different terms. Based on the decomposition, we will explicitly construct vi,F and
vH
i,F in the following form:

(4.11)
vi,F = ũi,F +

(
ρRT
h (Ψi,F ) +Ψi,∂F

)
+
(
rHi,F + ri,F

)
= v1

i,F + v2
i,F + v3

i,F ,

vH
i,F = ũH

i,F +
(
ΨH

i,F +ΨH
i,∂F

)
+ rHi,F = v1,H

i,F + v2,H
i,F + v3,H

i,F ,

with the conditions

(4.12)

⎧⎨⎩ λf

(
vj
i,F

)
= λf

(
uj
i

)
, λf

(
vj,H
i,F

)
= λf

(
ρRT
H uj

i

)
if f ⊂ F ,

λf

(
vj
i,F

)
= 0, λf

(
vj,H
i,F

)
= 0 if f ⊂ ∂Ωi\F ,

and

(4.13) ai

(
vj
i,F − vj,H

i,F ,vj
i,F − vj,H

i,F

)
≤ C (1 + logHi/hi)

2 ai (ui,ui)

for j = 1, 2, 3. Here, rHi := ρRT
H (curlqi), ri := (curlqi) · n, and rHi := rHi · n and

that rHi,F := Hi

(
ζF r

H
i

)
and ri,F := Hi

(
ζF

(
ri − rHi

))
.

If such vi,F and vH
i,F are available, we can easily prove that the functions satisfy

conditions (4.7), (4.8), and (4.9).
Term ũi : We first consider ũi. We define ũi,F :=

∑
f⊂F λf (ũi)φ

RT
f , where

φRT
f is the Raviart-Thomas basis function associated with the face f . By using

Lemmas 2.2, 2.3, and 4.7, we have
(4.14)

‖ũi,F ‖20;Ωi
≤ C

∑
f⊂F

h3
fλf (ũi)

2 ≤ C ‖ũi‖20;Ωi
≤ Ch2

i ‖divui‖20;Ωi
≤ C ‖ui‖20;Ωi

and

(4.15) ‖div ũi,F ‖20;Ωi
≤ C

∑
f⊂F

hfλf (ũi)
2 ≤ C

∥∥h−1
i ũi

∥∥2
0;Ωi

≤ C ‖divui‖20;Ωi
.

Hence, from (4.14) and (4.15),

ai (ũi,F , ũi,F ) ≤ Cai (ui,ui) .(4.16)

We also define ũH
i,F := Hi

(
ρRT
H ũi,F · n

)
. By using Lemma 4.5 and (4.16), we

obtain

ai
(
ũH
i,F , ũ

H
i,F

)
≤ Cai(ũi,F , ũi,F ) ≤ Cai (ui,ui) .(4.17)
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We note that by construction, ũi,F − ũH
i,F satisfies the no-net-flux condition.

We have similarly constructed pairs of functions originating from the other terms
of the right-hand side of (4.10) such that their differences satisfy the no-net-flux
condition. We only have to note that these three differences all belong to the range
of the operator I − ρRT

H .
Term ρRT

h (Ψi) : We next consider the second term ρRT
h (Ψi) of (4.10). Let

Ψi,F := Ih (ϑFΨi). By using Lemma 2.5 and Lemma 2.6, we obtain

(4.18)
∥∥ρRT

h (Ψi,F )
∥∥2
0;Ωi

≤ C ‖Ψi,F ‖20;Ωi

and

(4.19)
∥∥div ρRT

h (Ψi,F )
∥∥2
0;Ωi

= ‖Πh (divΨi,F )‖20;Ωi
≤ ‖divΨi,F ‖20;Ωi

.

Moreover, by using Lemmas 4.1 and 4.7, we obtain

(4.20) ‖Ψi,F ‖20;Ωi
≤ C ‖Ψi‖20;Ωi

≤ C ‖ui‖20;Ωi

and

(4.21)
‖divΨi,F ‖20;Ωi

≤ C |Ψi,F |21;Ωi
≤ C (1 + logHi/hi)

2 ‖Ψi‖21;Ωi

≤ C (1 + logHi/hi)
2 ‖divui‖20;Ωi

.

Therefore, from (4.18), (4.19), (4.20) and (4.21), we have

(4.22)
∥∥ρRT

h (Ψi,F )
∥∥2
0;Ωi

≤ C ‖ui‖20;Ωi

and

(4.23)
∥∥div ρRT

h (Ψi,F )
∥∥2
0;Ωi

≤ C (1 + logHi/hi)
2 ‖divui‖20;Ωi

.

Hence, from (4.22) and (4.23), we obtain

(4.24) ai
(
ρRT
h (Ψi,F ) , ρ

RT
h (Ψi,F )

)
≤ C (1 + logHi/hi)

2 ai (ui,ui) .

Let ΨH
i,F := Hi

(
ρRT
H

(
ρRT
h Ψi,F

)
· n

)
. By using Lemma 4.5 and (4.24), we have

(4.25)
ai
(
ΨH

i,F ,Ψ
H
i,F

)
≤ Cai

(
ρRT
h (Ψi,F ) , ρ

RT
h (Ψi,F )

)
≤ C (1 + logHi/hi)

2 ai (ui,ui) .

Let gi,∂F := ρRT
h (Ih (ϑ∂FΨi)) and Ψi,∂F :=

∑
f⊂F λf (gi,∂F )φ

RT
f . By using

Lemmas 2.2, 2.5, 4.1, and 4.7, and an estimate for the P1 basis functions of S(Ωi),
we obtain

(4.26)

‖Ψi,∂F ‖20;Ωi
≤ C

∑
f⊂F

h3
fλf (gi,∂F )

2 ≤ C ‖gi,∂F ‖20;Ωi

≤ C ‖Ih (ϑ∂FΨi)‖20;Ωi
≤ C ‖Ψi‖20;Ωi

≤ C ‖ui‖20;Ωi

and
(4.27)

‖divΨi,∂F ‖20;Ωi
≤ C

∑
f⊂F

hfλf (gi,∂F )
2 ≤ C

1

h2
i

‖gi,∂F ‖20;Ωi
≤ C

1

h2
i

‖Ih (ϑ∂FΨi)‖20;Ωi

≤ C ‖Ψi‖20;∂F ≤ C (1 + logHi/hi) ‖Ψi‖21;Ωi

≤ C (1 + logHi/hi) ‖divui‖20;Ωi
.
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Hence, combining (4.26) and (4.27), we obtain

(4.28) ai (Ψi,∂F ,Ψi,∂F ) ≤ C (1 + logHi/hi) ai (ui,ui) .

Let ΨH
i,∂F := Hi

(
ρRT
H Ψi,∂F · n

)
. From Lemma 4.5 and (4.28), we obtain

ai
(
ΨH

i,∂F ,Ψ
H
i,∂F

)
≤ Cai (Ψi,∂F ,Ψi,∂F )

≤ C (1 + logHi/hi) ai (ui,ui) .
(4.29)

Term curlqi : We finally consider the curlqi term of (4.10). Recall that
rHi := ρRT

H (curl qi), ri := (curl qi)·n, and rHi := rHi ·n and that rHi,F := Hi

(
ζF r

H
i

)
and ri,F := Hi

(
ζF

(
ri − rHi

))
.

From Corollary 4.3 and Lemma 4.6, we obtain

(4.30)

ai (ri,F , ri,F )

≤ Cβi

∥∥ζF (ri − rHi
)∥∥2

−1/2;∂Ωi

≤ Cβi (1 + logHi/hi)
(
(1 + logHi/hi) ‖ri‖2−1/2;∂Ωi

+
∥∥ri − rHi

∥∥2
−1/2;∂Ωi

)
≤ Cβi (1 + logHi/hi)

(
(1 + logHi/hi) ‖ri‖2−1/2;∂Ωi

+
∥∥rHi ∥∥2−1/2;∂Ωi

)
= Cβi (1 + logHi/hi)

2 ‖ri‖2−1/2;∂Ωi
+ Cβi (1 + logHi/hi)

∥∥rHi ∥∥2−1/2;∂Ωi
.

We note that
∥∥div rHi ∥∥0;Ωi

≤ ‖div (curlqi)‖0;Ωi
= 0 from Lemma 4.4. Hence, by

using Lemmas 2.1 and 4.4, we obtain

(4.31)

∥∥rHi ∥∥2−1/2;∂Ωi
≤ C

(
H2

i

∥∥div rHi ∥∥20;Ωi
+
∥∥rHi ∥∥20;Ωi

)
= C

∥∥rHi ∥∥20;Ωi

≤ C
(
(1 + logHi/hi) ‖curlqi‖20;Ωi

+H2
i ‖div (curl qi)‖

2
0;Ωi

)
= C (1 + logHi/hi) ‖curlqi‖20;Ωi

and

‖ri‖2−1/2;∂Ωi
≤ C

(
H2

i ‖div (curl qi)‖
2
0;Ωi

+ ‖curlqi‖20;Ωi

)
= C ‖curlqi‖20;Ωi

.
(4.32)

Therefore, by combining (4.30), (4.31), (4.32), and Lemma 4.7, we obtain

(4.33)

ai (ri,F , ri,F ) ≤ C (1 + logHi/hi)
2 βi ‖curlqi‖20;Ωi

≤ C (1 + logHi/hi)
2
βi ‖ui‖20;Ωi

≤ C (1 + logHi/hi)
2
ai (ui,ui) .

Then, vi,F and vH
i,F satisfy the conditions (4.7) and (4.8), respectively. Further-

more, we obtain the following estimate by using (4.16), (4.17), (4.24), (4.25), (4.28),
(4.29), and (4.33):

ai
(
vi,F − vH

i,F ,vi,F − vH
i,F

)
≤ C (1 + logHi/hi)

2 ai (ui,ui) . �
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By using Lemma 4.8, we have now arrived at our main theoretical result.

Theorem 4.9 (Condition number estimate). Let each subdomain be convex and a
union of a finite number of coarse elements, let the triangulation of each subdomain
be quasi-uniform and assume that material parameters are constant in each subdo-

main. Then, the condition number of the preconditioned operator M−1ŜΓ satisfies

(4.34) κ
(
M−1ŜΓ

)
≤ C (1 + logH/h)2 ,

where C is independent of α, β, h, and H.

5. Numerical results

All results in this section, except when otherwise stated, are for problems on the
domain Ω = [0, 1]3 and for a two-level BDDC algorithm. The triangulation of Ω
and the assembly of the subdomain matrices are performed using the C++ library
DOLFIN [53], which is part of the FEniCS project [52]. ParMETIS [37] is used to
decompose the meshes and always results in irregular subdomains.

The linear system (3.2) is solved using the Preconditioned Conjugate Gradient
(PCG) method as implemented in the Portable and Extensible Toolbox for Scientific
Computing (PETSc) [9] with the BDDC preconditioner implemented in PETSc by
the third author (see [89]) for which each subdomain is assigned to a different MPI
process. The right-hand sides are always chosen randomly, the initial guess as zero,
and a relative reduction of the Euclidean norm of the residual of 10−8 is used as a
stopping criterion.

The MUMPS [2] Cholesky factorizations are used for the subdomain solvers and
to compute the local Schur complements. The current PETSc implementation uses
dense linear algebra kernels (see [3]) for solving (3.11) for each subdomain face,

and the small dense blocks S
(i)
FF are inverted explicitly. Formula (3.10) is not used

in practice; instead, each S
(i)
Γ is first explicitly inverted, and the principal minors

S̆
(i)−1
FF are then extracted. We always ignore the overly pessimistic factor N2

F , as
given by Theorem 3.3, for the specification of the eigenvalue threshold of (3.11).
Our experience has shown that the condition number consistently will be close to
our choice of νtol.

Unless otherwise stated, we use the averages of the normal component over each
subdomain face as our primal constraints as provided by the no-net-flux condition.
The quadrature weights for these constraints can easily be obtained by using the
divergence theorem, i.e., ∫

Γi

u · n =

∫
Ωi

div u.

Our large scale numerical results have been obtained on the Cray XC40 Shaheen
of KAUST, ranked 10th in the Top500 list as of June 2016, and which features 6192
dual 16-core Haswell processors clocked at 2.3 Ghz and equipped with 128GB of
DRAM per node, for a total of 198,144 cores. For further details on the BDDC
implementation and for additional numerical results for our H(div) model problem,
see [89].

Of our examples, only the final one concerns three-level BDDC.
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Table 1. Condition numbers (κ2) and iteration counts (it) for the
lowest order Raviart-Thomas elements with different mesh sizes.
αi = αo = 1 for odd subdomains and αi = αe for even subdomains,
βi ≡ 1; there are 64 irregular subdomains.

H/h = 4.3 H/h = 7.3 H/h = 11.1 H/h = 13.5
κ2 it κ2 it κ2 it κ2 it

αe = 10−2 3.15 13 3.67 14 4.38 15 5.17 16
αe = 10−1 3.53 14 4.31 15 4.92 16 5.21 16
αe = 100 3.84 15 4.52 15 5.69 17 5.57 16
αe = 101 3.90 14 4.56 14 5.87 16 5.68 16
αe = 102 3.91 13 4.57 13 5.89 15 5.70 16

Table 2. Condition numbers (κ2) and iteration counts (it) for the
lowest order Raviart-Thomas elements with different mesh sizes.
βi = βo = 1 for odd subdomains and βi = βe for even subdomains,
αi ≡ 1; there are 64 irregular subdomains.

H/h = 4.3 H/h = 7.3 H/h = 11.1 H/h = 13.5
κ2 it κ2 it κ2 it κ2 it

βe = 10−2 4.77 14 5.10 15 6.05 17 6.66 17
βe = 10−1 4.62 14 4.91 15 5.74 16 5.96 17
βe = 100 3.84 15 4.52 15 5.69 17 5.57 16
βe = 101 4.67 15 5.09 15 5.29 17 5.02 16
βe = 102 5.02 15 5.68 16 5.96 18 5.56 17

5.1. Example 1 (Common average constraints). We decompose the unit cube
Ω into 64 irregular subdomains using ParMETIS and assume that the coefficients
α and β have jumps only across the interface between the subdomains. We have
conducted two different sets of experiments for the lowest order Raviart-Thomas
and BDM elements. For the first set of experiments, we report on the condition
numbers and the number of iterations for different values of H/h, with a constant
value of β while varying α between the subdomains. Here and in what follows,
H/h is defined as the maximum of the ratio of the diameter of a subdomain and
the smallest diameter of any of its elements. The subdomains are subdivided into
even and odd subdomains according to their MPI rank. In the second set of exper-
iments, the value of α is constant while β varies. As predicted by the theory, the
experimental results in Tables 1 and 2 confirm that the condition number of deluxe
BDDC is insensitive to the jumps of the coefficients for the lowest order Raviart-
Thomas elements. As indicated by the results in Tables 3 and 4, the no-net-flux
condition is also sufficient to obtain condition number independence for the lowest
order BDM elements.

5.2. Example 2 (The effect of using conventional averaging techniques).
In this subsection, we report on some numerical experiments comparing deluxe
BDDC and conventional scaling techniques. We have performed four different types
of experiments with the same set of coefficient distributions using the lowest order
Raviart-Thomas and BDM elements. The first set of experiments, named “deluxe”,
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Table 3. Condition numbers (κ2) and iteration counts (it) for the
lowest order BDM elements with different mesh sizes. αi = αo = 1
for odd subdomains and αi = αe for even subdomains, βi ≡ 1;
there are 64 irregular subdomains.

H/h = 4.3 H/h = 7.3 H/h = 11.1 H/h = 13.5
κ2 it κ2 it κ2 it κ2 it

αe = 10−2 5.04 17 6.38 19 6.59 19 7.91 20
αe = 10−1 5.99 19 6.84 20 7.59 21 7.97 21
αe = 100 6.49 20 7.18 20 8.69 21 8.44 21
αe = 101 6.59 19 7.24 19 8.96 21 8.59 20
αe = 102 6.60 18 7.25 18 9.00 19 8.62 19

Table 4. Condition numbers (κ2) and iteration counts (it) for the
lowest order BDM elements with different mesh sizes. βi = βo = 1
for odd subdomains and βi = βe for even subdomains, αi ≡ 1;
there are 64 irregular subdomains.

H/h = 4.3 H/h = 7.3 H/h = 11.1 H/h = 13.5
κ2 it κ2 it κ2 it κ2 it

βe = 10−2 7.99 19 8.61 20 10.25 22 11.80 23
βe = 10−1 7.39 20 7.75 19 9.04 21 9.11 22
βe = 100 6.49 20 7.18 20 8.69 21 8.44 21
βe = 101 6.96 21 7.85 20 8.13 22 8.26 21
βe = 102 8.51 21 8.87 22 9.45 24 10.32 23

is based on the weighted averaging techniques as described in (3.9). In the second,
the economic variant of the deluxe scaling (“e-deluxe”) is used with one layer of
elements next to Γ. The results in the third and fourth columns of Tables 5 and 6 are
obtained by using conventional methods as described in [21, 56]. In the “stiffness”
case, the scaling is based on the diagonal entries of the subdomain matrices, whereas
in the “card” case, we use the usual cardinality scaling, which for Raviart-Thomas
elements and BDM elements results in using 1/2 as the scaling factor for each
interface degree of freedom. For other general settings, we follow subsection 5.1.
As we see in Tables 5 and 6, our weighted averaging technique, even in its economic
version, works well for both Raviart-Thomas elements and BDM elements, while
the other scaling choices are sensitive to discontinuities across the interface.

5.3. Example 3 (Using higher order elements). In this subsection, we report
on the dependence of the rate of convergence of the deluxe BDDC algorithm on
the polynomial order of the finite element spaces. We recall that our theory does
not cover such cases. We consider a constant coefficient case, i.e., α = β = 1,
and fix the fine triangulation of Ω. We then increase the polynomial order for
the Raviart-Thomas elements and BDM elements; the order of the lowest order
elements is equal to 1. The experimental condition numbers for Raviart-Thomas
(continuous line) and for BDM (dashed line), as reported in Figure 1, indicate
a polylogarithmic bound in the polynomial order of the finite element spaces as
observed and theoretically justified for a spectral element case in [65].
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Table 5. Condition numbers (κ2) and iteration counts (it) for
the lowest order Raviart-Thomas elements with different scalings.
αi = αo = 1 and βi = βo = 1 for the odd subdomains and αi = αe

and βi = βe for even subdomains, 64 irregular subdomains, and
H/h = 7.3.

deluxe e-deluxe stiffness card
κ2 it κ2 it κ2 it κ2 it

αe = 10−2, βe = 102 4.71 15 4.67 15 1.8e2 97 5.1e1 57
αe = 10−1, βe = 101 4.05 15 4.02 15 7.3e1 63 2.2e1 35
αe = 100 , βe = 100 4.52 15 4.48 15 5.3e0 17 5.3e0 16
αe = 101 , βe = 10−1 4.52 14 4.24 14 1.1e2 64 3.4e1 36
αe = 102 , βe = 10−2 5.11 14 4.52 14 1.2e3 158 3.2e2 101

Table 6. Condition numbers (κ2) and iteration counts (it) for the
lowest order BDM elements with different scalings. αi = αo = 1
and βi = βo = 1 for the odd subdomains and αi = αe and βi = βe

for even subdomains, 64 irregular subdomains, and H/h = 7.3.

deluxe e-deluxe stiffness card
κ2 it κ2 it κ2 it κ2 it

αe = 10−2, βe = 102 8.66 21 8.30 21 2.1e2 119 1.6e2 95
αe = 10−1, βe = 101 6.89 20 6.60 20 1.1e2 81 3.8e1 48
αe = 100 , βe = 100 7.18 20 7.15 20 7.8e0 21 7.8e0 21
αe = 101 , βe = 10−1 7.41 20 6.85 20 1.6e2 83 5.1e1 47
αe = 102 , βe = 10−2 8.61 20 7.81 20 1.8e3 235 4.8e2 131

κ

Figure 1. Square root of condition numbers as a function of log-
arithm of the polynomial order for Raviart-Thomas (continuous
line) and BDM (dashed line) elements. α = β = 1, with 64 irreg-
ular subdomains and H/h = 4.3.

5.4. Example 4 (Adaptive BDDC deluxe). In this subsection, we report on
the efficiency of adaptive BDDC deluxe, and its economic variant, with randomly
distributed material coefficients α and β, using νtol = 10 for the eigenvalue problem
(3.11) ignoring the factor N2

F of Theorem 3.3. We consider different refinements
of Ω = [0, 1]3 which is always decomposed into 64 irregular subdomains. For the
material coefficient α (resp. β), we first draw a set of random real numbers xα ∈
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Table 7. Condition numbers (κ2), iteration counts (it), and rel-
ative size, in percent, of primal spaces (Π) for the lowest or-
der Raviart-Thomas elements with randomly chosen coefficients
α, β ∈ [10−q, 10q], with 64 irregular subdomains. Adaptive BDDC
with νtol = 10. Results given for deluxe and e-deluxe versions.

q = 1 q = 2 q = 3 q = 4
κ2 it Π κ2 it Π κ2 it Π κ2 it Π

H/h deluxe
8.1 10.9 22 6.1 8.1 20 11.9 10.6 21 14.9 10.5 20 15.0
16.2 11.2 23 1.6 9.2 21 4.9 12.1 21 7.3 11.6 20 7.9
22.4 11.3 23 0.8 11.5 21 3.3 9.9 19 5.2 10.9 19 5.9
30.5 11.1 23 0.5 11.9 21 2.4 11.5 20 3.8 13.1 20 4.4
34.9 10.5 22 0.3 11.6 20 1.9 13.9 20 3.2 11.8 18 3.7
40.8 11.7 22 0.2 10.0 19 1.6 12.4 21 2.6 11.2 18 3.1

H/h e-deluxe
8.1 10.9 22 6.2 8.2 20 11.9 10.6 21 15.0 10.5 20 15.1
16.2 11.2 23 1.7 9.2 21 5.0 12.1 21 7.3 11.7 20 8.0
22.4 11.3 23 0.9 11.3 21 3.4 9.7 19 5.3 10.9 19 6.0
30.5 11.1 20 0.6 11.7 20 2.5 11.3 20 3.9 13.1 20 4.5
34.9 9.5 21 0.4 9.7 19 2.0 13.5 20 3.3 11.5 18 3.8
40.8 11.6 22 0.3 9.8 19 1.7 12.1 20 2.7 11.1 18 3.2

[−q, q] (xβ ∈ [−q, q]) and then set α = 10xα (β = 10xβ ). Results for the lowest
order Raviart-Thomas discretization are given in Table 7; as the mesh is refined, the
number of degrees of freedom increases from 50 thousand (H/h = 8.1) to 10 million
(H/h = 40.8). Similar results for the lowest order BDM elements are provided in
Table 8; the number of degrees of freedom varies from 152 thousand (H/h = 8.1)
to 9 million (H/h = 30.5). Larger values of H/h for BDM discretization were
not possible because of memory issues related with the local factorizations. The
condition numbers, the number of iterations, and the size of the adaptive primal
spaces, given as a percentage of the number of degrees of freedom on the interface,
are provided. H/h is increased from top to bottom, whereas the contrast in the
coefficients is increased from left to right. We stress that the random distributions
considered for α and β are different.

Experimental condition numbers are very close to the adaptive threshold used
in all the deluxe and e-deluxe adaptive BDDC runs; the size of the adaptively
generated coarse problems are very similar, with the e-deluxe version always pro-
ducing slightly larger primal spaces. These numerical results, together with the
observation that the relative size of the primal spaces always decreases as H/h in-
creases, support our adaptive theory (see Theorem 3.3), and indicate that the large
eigenvalues of the preconditioned spectrum are only linked to the behavior of the
coefficients close to the interface. It is also interesting to note that the relative size
of the adaptively generated primal spaces for BDM discretization is smaller, being
roughly a third of those generated with Raviart-Thomas elements.

Figure 2 shows the timings for the setup and the application of the adaptive
BDDC preconditioner for the lowest order Raviart-Thomas elements. We compare
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Table 8. Condition numbers (κ2), iteration counts (it), and rela-
tive size, in percent, of primal spaces (Π) for the lowest order BDM
elements with randomly chosen coefficients α, β ∈ [10−q, 10q], with
64 irregular subdomains. Adaptive BDDC with νtol = 10. Results
given for deluxe and e-deluxe versions.

q = 1 q = 2 q = 3 q = 4
κ2 it Π κ2 it Π κ2 it Π κ2 it Π

H/h deluxe
8.1 9.0 23 2.3 7.1 20 4.3 11.2 21 4.4 10.3 21 5.3
16.2 10.9 23 0.7 9.3 21 1.8 13.0 22 1.8 9.3 19 2.5
22.4 10.6 22 0.4 11.4 20 1.2 10.8 20 1.2 9.7 19 1.8
30.5 10.4 22 0.2 10.5 21 0.9 11.4 21 0.9 11.9 20 1.3

H/h e-deluxe
8.1 9.1 23 2.3 7.1 20 4.3 11.1 21 4.4 10.3 21 5.3
16.2 10.9 23 0.7 9.3 21 1.8 13.0 22 1.8 9.3 19 2.6
22.4 10.5 22 0.4 11.2 20 1.2 10.7 20 1.2 9.7 19 1.8
30.5 9.8 21 0.3 10.4 21 0.9 11.4 20 0.9 11.7 20 1.3

Figure 2. Setup times (left) and times for the application of
the adaptive BDDC preconditioner (right) as a function of H/h.
Deluxe scaling compared against e-deluxe for different values of q,
with α and β randomly chosen in [10−q, 10q].

deluxe (continuous line) and e-deluxe (dashed line) for the cases q = 1 and q = 4.
Setup times are comparable for deluxe and e-deluxe, with the former being slightly
faster. On the other hand, e-deluxe is asymptotically faster than standard deluxe
for larger values of H/h with respect to the solve times.

In the e-deluxe case, the Dirichlet and Neumann solvers are factored separately.
These matrices are quite sparse with at most 7 nonzeros per row; in our experience
the factorization, and the backward and forward substitution steps are very fast.
Instead, in the deluxe case, one single factorization step with the Schur complement
computation is performed. This results in a different ordering of the unknowns
(provided by MUMPS) and a larger number of nonzeros in the sparse factors for
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Table 9. Condition numbers (κ2) and iteration counts (it) for
SPE10 test case for different number N of subdomains. Setup time
for adaptive BDDC and total time for Krylov solver are shown (in
seconds); in parenthesis, the speed-up in relation to the case of 128
subdomains.

N κ2 it setup solve ideal

128 12.6 20 26.51 ( 1.0) 6.51 ( 1.0) 1

256 13.1 21 8.91 ( 2.9) 2.92 ( 2.2) 2

512 14.0 22 3.83 ( 6.9) 1.27 ( 5.1) 4

1024 14.9 22 1.73 (15.3) 0.61 (10.7) 8

the Dirichlet solver. The local Neumann problems are instead solved with a dense
matrix-vector multiplication, reusing the Schur complement inverted during the
setup phase. Such a step has O(n2

Γ) complexity, where nΓ is the number of degrees
of freedom of the subdomain interface. A poor load balance of the unknowns of
the local interfaces impacts the timings of this application negatively; see also [89].
We have observed similar results for the lowest order BDM elements, with about
21 nonzeros per row (data not shown).

5.5. Example 5 (Strong scalability with an SPE10 test case). In this sub-
section, we report on the strong scaling for adaptive deluxe BDDC for a slightly
different variational problem given by

(5.1) a(u,v) :=

∫
Ω

(P divu div v + u K−1 v)dx,

where P is a nonnegative scalar and K a symmetric positive definite tensor. The
porosity and the tensor permeability coefficients are given by the second data set
of the well-known SPE10 benchmark; cf. [1]. The domain considered is 1200ft ×
2200ft × 170ft, regularly decomposed by a hexahedral grid of 60 × 220 × 85, with
each resulting hexahedron further subdivided into 6 tetrahedra. We use the lowest
order Raviart-Thomas elements, for a total of 15M degrees of freedom, and consider
the effect of increasing the number of subdomains N . We stress that the aspect
ratio of the elements is very high for the test case considered.

The porosity field is strongly correlated with the permeability coefficients, which
have very large variations (8 to 12 orders of magnitude). About 3% of the elements
have zero porosity. We note that we are not working with a discretization of the
original reservoir Darcy problem. Instead, we use this variational problem in order
to test our adaptive BDDC method on problems with highly irregular coefficients.
Adaptive deluxe BDDC is used with a threshold of 10 for the eigenvalues of (3.11);
the resulting coarse problem is solved using the parallel Cholesky solver provided by
the MUMPS library, [2]. Table 9 shows the results; experimental condition numbers
are very close to the eigenvalue threshold used, and the number of iterations is
scalable with an increasing number of subdomains. A super-linear speed-up can
be observed by inspecting the timings for the setup of the preconditioner (setup
column) and the total time for the Krylov solver, indicating that in the regimes
considered the computational times are dominated by the local Cholesky solvers
used for the sparse subdomain problems and for the dense Schur complement, while
the size of the coarse problem does not impact the scalability.
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5.6. Example 6 (Strong scalability test with adaptive three-level BDDC).
In this last subsection, we demonstrate the effectiveness of adaptive three-level
BDDC for the model problem (1.1) in a strong scaling setting. For weak scal-
ing results with up to 32,768 processes, see [89]. We consider a uniform mesh of
the unit cube which results in about 25 million degrees of freedom for the low-
est order Raviart-Thomas discretization, and increase the number of subdomains
N , from 1,024 to 16,384. The material parameters are randomly chosen in the
range [10−3, 103] and we set νtol = 10 for (3.11). Results in Figure 3 compare
setup times and Krylov solving times using adaptive BDDC deluxe with a parallel
Cholesky coarse solver (exact in the legend) against its three-level variants (CR64
and CR128), where the parallel Cholesky coarse solver is replaced by a second
step of adaptive BDDC deluxe. In the CR64 (resp. CR128) case, 64 (128) fine
subdomains are aggregated, using ParMETIS, into single coarse subdomains. The
threshold for the selection of the primal space at the coarser level is set to 5.

Compared with the SPE10 case studied in the previous subsection, the primal
spaces generated in this case are larger (data not shown); the costs for the setup
and the application of the parallel coarse solver are no longer negligible, and domi-
nate the simulations for large numbers of subdomains. On the other hand, adaptive
three-level BDDC algorithms are still scalable in the number of Krylov iterations,
requiring a few more iterations to converge than the standard two-levels BDDC;
setup and the solve times for the three-level results are scalable up to 16,384 sub-
domains.

Figure 3. Setup (left) and Krylov solver (right) times (in seconds)
as a function of N . Adaptive BDDC with eigenvalue threshold
νtol = 10; two-level BDDC with parallel direct coarse solver (ex-
act) compared against three-level BDDC algorithms (CR64 and
CR128), with the coarse eigenvalue threshold νtol = 5. Material
coefficients α and β randomly chosen in [10−3, 103].
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