Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

Request Permissions   Purchase Content 
 
 

 

BDDC Algorithms with deluxe scaling and adaptive selection of primal constraints for Raviart-Thomas vector fields


Authors: Duk-Soon Oh, Olof B. Widlund, Stefano Zampini and Clark R. Dohrmann
Journal: Math. Comp. 87 (2018), 659-692
MSC (2010): Primary 65F08, 65F10, 65N30, 65N55
DOI: https://doi.org/10.1090/mcom/3254
Published electronically: June 21, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A BDDC domain decomposition preconditioner is defined by a coarse component, expressed in terms of primal constraints, a weighted average across the interface between the subdomains, and local components given in terms of solvers of local subdomain problems. BDDC methods for vector field problems discretized with Raviart-Thomas finite elements are introduced. The methods are based on a deluxe type of weighted average and an adaptive selection of primal constraints developed to deal with coefficients with high contrast even inside individual subdomains. For problems with very many subdomains, a third level of the preconditioner is introduced.

Under the assumption that the subdomains are all built from elements of a coarse triangulation of the given domain, that the meshes of each subdomain are quasi uniform and that the material parameters are constant in each subdomain, a bound is obtained for the condition number of the preconditioned linear system which is independent of the values and the jumps of these parameters across the interface between the subdomains as well as the number of subdomains. Numerical experiments, using the PETSc library, are also presented which support the theory and show the effectiveness of the algorithms even for problems not covered by the theory. Included are also experiments with Brezzi-Douglas-Marini finite element approximations.


References [Enhancements On Off] (What's this?)

  • [1] SPE Comparative Solution Projects, http://www.spe.org/web/csp/datasets/set02.htm.
  • [2] Patrick R. Amestoy, Iain S. Duff, Jean-Yves L'Excellent, and Jacko Koster, A fully asynchronous multifrontal solver using distributed dynamic scheduling, SIAM J. Matrix Anal. Appl. 23 (2001), no. 1, 15-41. MR 1856597, https://doi.org/10.1137/S0895479899358194
  • [3] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK Users' Guide, third ed., Society for Industrial and Applied Mathematics, Philadelphia, PA, 1999.
  • [4] W. N. Anderson Jr. and G. E. Trapp, Shorted operators. II, SIAM J. Appl. Math. 28 (1975), 60-71. MR 0356949, https://doi.org/10.1137/0128007
  • [5] W. N. Anderson Jr. and R. J. Duffin, Series and parallel addition of matrices, J. Math. Anal. Appl. 26 (1969), 576-594. MR 0242573, https://doi.org/10.1016/0022-247X(69)90200-5
  • [6] Douglas N. Arnold, Richard S. Falk, and Ragnar Winther, Preconditioning discrete approximations of the Reissner-Mindlin plate model, RAIRO Modél. Math. Anal. Numér. 31 (1997), no. 4, 517-557 (English, with English and French summaries). MR 1457459
  • [7] Douglas N. Arnold, Richard S. Falk, and R. Winther, Preconditioning in $ H({\rm div})$ and applications, Math. Comp. 66 (1997), no. 219, 957-984. MR 1401938, https://doi.org/10.1090/S0025-5718-97-00826-0
  • [8] Douglas N. Arnold, Richard S. Falk, and Ragnar Winther, Multigrid in $ H({\rm div})$ and $ H({\rm curl})$, Numer. Math. 85 (2000), no. 2, 197-217. MR 1754719, https://doi.org/10.1007/PL00005386
  • [9] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin,
    V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, K. Rupp, B. F. Smith, S. Zampini, and H. Zhang, PETSc Web page, http://www.mcs.anl.gov/petsc, 2015.
  • [10] L. Beirão da Veiga, C. Chinosi, C. Lovadina, and L. F. Pavarino, Robust BDDC preconditioners for Reissner-Mindlin plate bending problems and MITC elements, SIAM J. Numer. Anal. 47 (2010), no. 6, 4214-4238. MR 2585185, https://doi.org/10.1137/080717729
  • [11] L. Beirão da Veiga, D. Cho, L. F. Pavarino, and S. Scacchi, BDDC preconditioners for isogeometric analysis, Math. Models Methods Appl. Sci. 23 (2013), no. 6, 1099-1142. MR 3037302, https://doi.org/10.1142/S0218202513500048
  • [12] L. Beirão da Veiga, L. F. Pavarino, S. Scacchi, O. B. Widlund, and S. Zampini, Isogeometric BDDC preconditioners with deluxe scaling, SIAM J. Sci. Comput. 36 (2014), no. 3, A1118-A1139. MR 3216651
  • [13] L. Beirão da Veiga, L. F. Pavarino, S. Scacchi, O. B. Widlund, and S. Zampini, Adaptive selection of primal constraints for isogeometric BDDC deluxe preconditioners, SIAM J. Sci. Comput. 39 (2017), no. 1, A281-A302. MR 3612901, https://doi.org/10.1137/15M1054675
  • [14] Dietrich Braess and Finite elements, 3rd ed., Cambridge University Press, Cambridge, 2007. Theory, fast solvers, and applications in elasticity theory; Translated from the German by Larry L. Schumaker. MR 2322235
  • [15] Susanne C. Brenner and Li-Yeng Sung, BDDC and FETI-DP without matrices or vectors, Comput. Methods Appl. Mech. Engrg. 196 (2007), no. 8, 1429-1435. MR 2277027, https://doi.org/10.1016/j.cma.2006.03.012
  • [16] Franco Brezzi and Michel Fortin, Mixed and Hybrid Finite Element Methods, Springer Series in Computational Mathematics, vol. 15, Springer-Verlag, New York, 1991. MR 1115205
  • [17] Z. Cai, R. Lazarov, T. A. Manteuffel, and S. F. McCormick, First-order system least squares for second-order partial differential equations. I, SIAM J. Numer. Anal. 31 (1994), no. 6, 1785-1799. MR 1302685, https://doi.org/10.1137/0731091
  • [18] J. G. Calvo, A two-level overlapping Schwarz method for $ H(\rm curl)$ in two dimensions with irregular subdomains, Electron. Trans. Numer. Anal. 44 (2015), 497-521. MR 3407231
  • [19] Juan G. Calvo, A BDDC algorithm with deluxe scaling for $ H({\rm curl})$ in two dimensions with irregular subdomains, Math. Comp. 85 (2016), no. 299, 1085-1111. MR 3454359, https://doi.org/10.1090/mcom/3028
  • [20] Juan G. Calvo and Olof B. Widlund, An adaptive choice of primal constraints for BDDC domain decomposition algorithms, Electron. Trans. Numer. Anal. 45 (2016), 524-544. MR 3582898
  • [21] Clark R. Dohrmann, A preconditioner for substructuring based on constrained energy minimization, SIAM J. Sci. Comput. 25 (2003), no. 1, 246-258. MR 2047204, https://doi.org/10.1137/S1064827502412887
  • [22] C. R. Dohrmann, An approximate BDDC preconditioner, Numer. Linear Algebra Appl. 14 (2007), no. 2, 149-168. MR 2292301, https://doi.org/10.1002/nla.514
  • [23] C. R. Dohrmann and C. Pechstein, Constraint and weight selection algorithms for BDDC, Slides for a talk by Dohrmann at DD21 in Rennes, France, June 2012. URL=http://www.numa.uni-linz.ac.at/ clemens/dohrmann-pechstein-dd21-talk.pdf.
  • [24] Clark R. Dohrmann and Olof B. Widlund, An iterative substructuring algorithm for two-dimensional problems in $ H({\rm curl})$, SIAM J. Numer. Anal. 50 (2012), no. 3, 1004-1028. MR 2970732, https://doi.org/10.1137/100818145
  • [25] C. R. Dohrmann and O. B. Widlund, Some recent tools and a BDDC algorithm for 3D problems in $ H({\rm curl})$, Domain decomposition methods in science and engineering XX, Lect. Notes Comput. Sci. Eng., vol. 91, Springer, Heidelberg, 2013, pp. 15-25. MR 3242973
  • [26] Clark R. Dohrmann and Olof B. Widlund, A BDDC algorithm with deluxe scaling for three-dimensional $ H({\bf curl})$ problems, Comm. Pure Appl. Math. 69 (2016), no. 4, 745-770. MR 3465088, https://doi.org/10.1002/cpa.21574
  • [27] Maksymilian Dryja, Juan Galvis, and Marcus Sarkis, BDDC methods for discontinuous Galerkin discretization of elliptic problems, J. Complexity 23 (2007), no. 4-6, 715-739. MR 2372024, https://doi.org/10.1016/j.jco.2007.02.003
  • [28] Maksymilian Dryja and Olof B. Widlund, Schwarz methods of Neumann-Neumann type for three-dimensional elliptic finite element problems, Comm. Pure Appl. Math. 48 (1995), no. 2, 121-155. MR 1319698, https://doi.org/10.1002/cpa.3160480203
  • [29] Charbel Farhat, Michel Lesoinne, Patrick LeTallec, Kendall Pierson, and Daniel Rixen, FETI-DP: a dual-primal unified FETI method. I. A faster alternative to the two-level FETI method, Internat. J. Numer. Methods Engrg. 50 (2001), no. 7, 1523-1544. MR 1813746, https://doi.org/10.1002/nme.76
  • [30] Charbel Farhat, Jan Mandel, and François-Xavier Roux, Optimal convergence properties of the FETI domain decomposition method, Comput. Methods Appl. Mech. Engrg. 115 (1994), no. 3-4, 365-385. MR 1285024, https://doi.org/10.1016/0045-7825(94)90068-X
  • [31] C. Farhat and F.-X. Roux, A method of finite element tearing and interconnecting its parallel solution algorithm, Internat. J. Numer. Methods Engrg. 32 (1991), 1205-1227. MR 1813746
  • [32] Y. Fragakis and M. Papadrakakis, The mosaic of high performance domain decomposition methods for structural mechanics: Formulation, interrelation and numerical efficiency of primal and dual methods, Comput. Methods Appl. Mech. Engrg 192 (2003), 3799-3830.
  • [33] Ralf Hiptmair and Andrea Toselli, Overlapping and multilevel Schwarz methods for vector valued elliptic problems in three dimensions, Parallel Solution of Partial Differential Equations (Minneapolis, MN, 1997) IMA Vol. Math. Appl., vol. 120, Springer, New York, 2000, pp. 181-208. MR 1838270, https://doi.org/10.1007/978-1-4612-1176-1_8
  • [34] R. Hiptmair, G. Widmer, and J. Zou, Auxiliary space preconditioning in $ H_0({\rm curl};\ \Omega )$, Numer. Math. 103 (2006), no. 3, 435-459. MR 2221057, https://doi.org/10.1007/s00211-006-0683-0
  • [35] Ralf Hiptmair and Jinchao Xu, Nodal auxiliary space preconditioning in $ {\bf H}({\bf curl})$ and $ {\bf H}({\rm div})$ spaces, SIAM J. Numer. Anal. 45 (2007), no. 6, 2483-2509. MR 2361899, https://doi.org/10.1137/060660588
  • [36] R. Hiptmair, Multigrid method for Maxwell's equations, SIAM J. Numer. Anal. 36 (1999), no. 1, 204-225. MR 1654571, https://doi.org/10.1137/S0036142997326203
  • [37] G. Karypis, METIS and ParMETIS, Encyclopedia of Parallel Computing (David Padua, ed.), Springer US, 2011, pp. 1117-1124 (English).
  • [38] Hyea Hyun Kim and Eric T. Chung, A BDDC algorithm with enriched coarse spaces for two-dimensional elliptic problems with oscillatory and high contrast coefficients, Multiscale Model. Simul. 13 (2015), no. 2, 571-593. MR 3350292, https://doi.org/10.1137/140970598
  • [39] H. H. Kim, E. T. Chung, and J. Wang, BDDC and FETI-DP algorithms with adaptive coarse spaces for three-dimensional elliptic problems with oscillatory and high contrast coefficients, http://arxiv.org/abs/1606.07560, August 2015.
  • [40] Axel Klawonn, Patrick Radtke, and Oliver Rheinbach, A comparison of adaptive coarse spaces for iterative substructuring in two dimensions, Electron. Trans. Numer. Anal. 45 (2016), 75-106. MR 3480118
  • [41] Axel Klawonn and Oliver Rheinbach, Robust FETI-DP methods for heterogeneous three dimensional elasticity problems, Comput. Methods Appl. Mech. Engrg. 196 (2007), no. 8, 1400-1414. MR 2277025, https://doi.org/10.1016/j.cma.2006.03.023
  • [42] Axel Klawonn, Oliver Rheinbach, and Olof B. Widlund, An analysis of a FETI-DP algorithm on irregular subdomains in the plane, SIAM J. Numer. Anal. 46 (2008), no. 5, 2484-2504. MR 2421044, https://doi.org/10.1137/070688675
  • [43] Axel Klawonn, Olof B. Widlund, and Maksymilian Dryja, Dual-primal FETI methods for three-dimensional elliptic problems with heterogeneous coefficients, SIAM J. Numer. Anal. 40 (2002), no. 1, 159-179. MR 1921914, https://doi.org/10.1137/S0036142901388081
  • [44] Tzanio V. Kolev and Panayot S. Vassilevski, Parallel auxiliary space AMG solver for $ H({\rm div})$ problems, SIAM J. Sci. Comput. 34 (2012), no. 6, A3079-A3098. MR 3029843, https://doi.org/10.1137/110859361
  • [45] Johannes Kraus, Raytcho Lazarov, Maria Lymbery, Svetozar Margenov, and Ludmil Zikatanov, Preconditioning heterogeneous $ H({\rm div})$ problems by additive Schur complement approximation and applications, SIAM J. Sci. Comput. 38 (2016), no. 2, A875-A898. MR 3474851, https://doi.org/10.1137/140974092
  • [46] Patrick Le Tallec, Domain decomposition methods in computational mechanics, Comput. Mech. Adv. 1 (1994), no. 2, 121-220. MR 1263805
  • [47] Jong Ho Lee, A balancing domain decomposition by constraints deluxe method for Reissner-Mindlin plates with Falk-Tu elements, SIAM J. Numer. Anal. 53 (2015), no. 1, 63-81. MR 3296615, https://doi.org/10.1137/130940669
  • [48] Jing Li and Xuemin Tu, Convergence analysis of a balancing domain decomposition method for solving a class of indefinite linear systems, Numer. Linear Algebra Appl. 16 (2009), no. 9, 745-773. MR 2554500, https://doi.org/10.1002/nla.639
  • [49] Jing Li and Olof Widlund, BDDC algorithms for incompressible Stokes equations, SIAM J. Numer. Anal. 44 (2006), no. 6, 2432-2455. MR 2272601, https://doi.org/10.1137/050628556
  • [50] Jing Li and Olof B. Widlund, FETI-DP, BDDC, and block Cholesky methods, Internat. J. Numer. Methods Engrg. 66 (2006), no. 2, 250-271. MR 2224479, https://doi.org/10.1002/nme.1553
  • [51] Ping Lin, A sequential regularization method for time-dependent incompressible Navier-Stokes equations, SIAM J. Numer. Anal. 34 (1997), no. 3, 1051-1071. MR 1451113, https://doi.org/10.1137/S0036142994270521
  • [52] Anders Logg, Kent-Andre Mardal, and Garth N. Wells (eds.), Automated Solution of Differential Equations by the Finite Element Method, Lecture Notes in Computational Science and Engineering, vol. 84, Springer, Heidelberg, 2012. The FEniCS book. MR 3075806
  • [53] Anders Logg and Garth N. Wells, DOLFIN: automated finite element computing, ACM Trans. Math. Software 37 (2010), no. 2, Art. 20, 28. MR 2738227, https://doi.org/10.1145/1731022.1731030
  • [54] Jan Mandel and Marian Brezina, Balancing domain decomposition for problems with large jumps in coefficients, Math. Comp. 65 (1996), no. 216, 1387-1401. MR 1351204, https://doi.org/10.1090/S0025-5718-96-00757-0
  • [55] Jan Mandel and Clark R. Dohrmann, Convergence of a balancing domain decomposition by constraints and energy minimization, Numer. Linear Algebra Appl. 10 (2003), no. 7, 639-659. Dedicated to the 70th birthday of Ivo Marek. MR 2030628, https://doi.org/10.1002/nla.341
  • [56] Jan Mandel, Clark R. Dohrmann, and Radek Tezaur, An algebraic theory for primal and dual substructuring methods by constraints, Appl. Numer. Math. 54 (2005), no. 2, 167-193. MR 2148040, https://doi.org/10.1016/j.apnum.2004.09.022
  • [57] Jan Mandel and Bedřich Sousedík, Adaptive selection of face coarse degrees of freedom in the BDDC and the FETI-DP iterative substructuring methods, Comput. Methods Appl. Mech. Engrg. 196 (2007), no. 8, 1389-1399. MR 2277024, https://doi.org/10.1016/j.cma.2006.03.010
  • [58] Jan Mandel, Bedřich Sousedík, and Jakub Šístek, Adaptive BDDC in three dimensions, Math. Comput. Simulation 82 (2012), no. 10, 1812-1831. MR 2967935, https://doi.org/10.1016/j.matcom.2011.03.014
  • [59] Jan Mandel and Radek Tezaur, On the convergence of a dual-primal substructuring method, Numer. Math. 88 (2001), no. 3, 543-558. MR 1835470, https://doi.org/10.1007/s211-001-8014-1
  • [60] Peter Monk, Finite Element Methods for Maxwell's Equations, Numerical Mathematics and Scientific Computation, Oxford University Press, New York, 2003. MR 2059447
  • [61] J.-C. Nédélec, Mixed finite elements in $ {\bf R}^{3}$, Numer. Math. 35 (1980), no. 3, 315-341. MR 592160, https://doi.org/10.1007/BF01396415
  • [62] Duk-Soon Oh, Domain Decomposition Methods for Raviart-Thomas Vector Fields, ProQuest LLC, Ann Arbor, MI, 2011. Thesis (Ph.D.)-New York University. MR 2982343
  • [63] Duk-Soon Oh, An overlapping Schwarz algorithm for Raviart-Thomas vector fields with discontinuous coefficients, SIAM J. Numer. Anal. 51 (2013), no. 1, 297-321. MR 3033012, https://doi.org/10.1137/110838868
  • [64] D.-S. Oh, A BDDC Preconditioner for Problems Posed in $ H(\rm div)$ with Deluxe Scaling, Domain decomposition methods in science and engineering XXII, Lect. Notes Comput. Sci. Eng., vol. 104, Springer, Heidelberg, 2016, pp. 355-361.
  • [65] Luca F. Pavarino, BDDC and FETI-DP preconditioners for spectral element discretizations, Comput. Methods Appl. Mech. Engrg. 196 (2007), no. 8, 1380-1388. MR 2277023, https://doi.org/10.1016/j.cma.2006.03.009
  • [66] Luca F. Pavarino, Olof B. Widlund, and Stefano Zampini, BDDC preconditioners for spectral element discretizations of almost incompressible elasticity in three dimensions, SIAM J. Sci. Comput. 32 (2010), no. 6, 3604-3626. MR 2763740, https://doi.org/10.1137/100791701
  • [67] C. Pechstein and C. R. Dohrmann, Modern domain decomposition methods, BDDC, deluxe scaling, and an algebraic approach., Talk by Pechstein in Linz, Austria. URL: http://people.ricam.oeaw.ac.at/c.pechstein/pechstein-bddc2013.pdf, 2013.
  • [68] C. Pechstein and C. R. Dohrmann, A Unified Framework for Adaptive BDDC, Tech. Report 2016-20, Johann Radon Institute for Computational and Applied Mathematics (RICAM), 2016, URL:http://www.ricam.oeaw.ac.at/files/reports/16/rep16-20.pdf.
  • [69] Alfio Quarteroni and Alberto Valli, Numerical Approximation of Partial Differential Equations, Springer Series in Computational Mathematics, vol. 23, Springer-Verlag, Berlin, 1994. MR 1299729
  • [70] Bedřich Sousedík, Nested BDDC for a saddle-point problem, Numer. Math. 125 (2013), no. 4, 761-783. MR 3127330, https://doi.org/10.1007/s00211-013-0548-2
  • [71] Andrea Toselli, Neumann-Neumann methods for vector field problems, Electron. Trans. Numer. Anal. 11 (2000), 1-24. MR 1749071
  • [72] Andrea Toselli, Overlapping Schwarz methods for Maxwell's equations in three dimensions, Numer. Math. 86 (2000), no. 4, 733-752. MR 1794350, https://doi.org/10.1007/PL00005417
  • [73] Andrea Toselli, Dual-primal FETI algorithms for edge finite-element approximations in 3D, IMA J. Numer. Anal. 26 (2006), no. 1, 96-130. MR 2193972, https://doi.org/10.1093/imanum/dri023
  • [74] Andrea Toselli and Axel Klawonn, A FETI domain decomposition method for edge element approximations in two dimensions with discontinuous coefficients, SIAM J. Numer. Anal. 39 (2001), no. 3, 932-956. MR 1860451, https://doi.org/10.1137/S0036142999361372
  • [75] Andrea Toselli and Olof Widlund, Domain Decomposition Methods--Algorithms and Theory, Springer Series in Computational Mathematics, vol. 34, Springer-Verlag, Berlin, 2005. MR 2104179
  • [76] Xuemin Tu, A BDDC algorithm for a mixed formulation of flow in porous media, Electron. Trans. Numer. Anal. 20 (2005), 164-179. MR 2175341
  • [77] Xuemin Tu, A BDDC algorithm for flow in porous media with a hybrid finite element discretization, Electron. Trans. Numer. Anal. 26 (2007), 146-160. MR 2366094
  • [78] Xuemin Tu, Three-level BDDC in three dimensions, SIAM J. Sci. Comput. 29 (2007), no. 4, 1759-1780. MR 2341811, https://doi.org/10.1137/050629902
  • [79] Xuemin Tu, Three-level BDDC in two dimensions, Internat. J. Numer. Methods Engrg. 69 (2007), no. 1, 33-59. MR 2282536, https://doi.org/10.1002/nme.1753
  • [80] Xuemin Tu, A three-level BDDC algorithm for a saddle point problem, Numer. Math. 119 (2011), no. 1, 189-217. MR 2824859, https://doi.org/10.1007/s00211-011-0375-2
  • [81] Xuemin Tu and Jing Li, A balancing domain decomposition method by constraints for advection-diffusion problems, Commun. Appl. Math. Comput. Sci. 3 (2008), 25-60. MR 2425545, https://doi.org/10.2140/camcos.2008.3.25
  • [82] Panayot S. Vassilevski and Umberto Villa, A mixed formulation for the Brinkman problem, SIAM J. Numer. Anal. 52 (2014), no. 1, 258-281. MR 3162407, https://doi.org/10.1137/120884109
  • [83] O. B. Widlund and C. R. Dohrmann, BDDC Deluxe Domain Decomposition, Domain decomposition methods in science and engineering XXII, Lect. Notes Comput. Sci. Eng., vol. 104, Springer, Heidelberg, 2016, pp. 93-103.
  • [84] Barbara I. Wohlmuth, Discretization Methods and Iterative Solvers Based on Domain Decomposition, Lecture Notes in Computational Science and Engineering, vol. 17, Springer-Verlag, Berlin, 2001. MR 1820470
  • [85] Barbara I. Wohlmuth, Andrea Toselli, and Olof B. Widlund, An iterative substructuring method for Raviart-Thomas vector fields in three dimensions, SIAM J. Numer. Anal. 37 (2000), no. 5, 1657-1676. MR 1759911, https://doi.org/10.1137/S0036142998347310
  • [86] S. Zampini and D. E. Keyes, On the Robustness and Prospects of Adaptive BDDC Methods for Finite Element Discretizations of Elliptic PDES with High-contrast Coefficients, Proceedings of the Platform for Advanced Scientific Computing Conference (New York, NY, USA), PASC '16, ACM, 2016, pp. 6:1-6:13.
  • [87] Stefano Zampini, Dual-primal methods for the cardiac bidomain model, Math. Models Methods Appl. Sci. 24 (2014), no. 4, 667-696. MR 3163396
  • [88] S. Zampini, Adaptive BDDC Deluxe Methods for H(curl), Proceedings of the 23rd International Conference on Domain Decomposition Methods, Lecture Notes in Computational Science and Engineering, vol. 116, Springer, 2017, pp. 285-292.
  • [89] Stefano Zampini, PCBDDC: a class of robust dual-primal methods in PETSc, SIAM J. Sci. Comput. 38 (2016), no. 5, S282-S306. MR 3565564, https://doi.org/10.1137/15M1025785
  • [90] S. Zampini and X. Tu, Adaptive Multilevel BDDC Deluxe Algorithms for Flow in Porous Media, Tech. report, 2016, submitted.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 65F08, 65F10, 65N30, 65N55

Retrieve articles in all journals with MSC (2010): 65F08, 65F10, 65N30, 65N55


Additional Information

Duk-Soon Oh
Affiliation: Department of Mathematics, Rutgers University, Piscataway, New Jersey 08854
Email: duksoon@math.rutgers.edu

Olof B. Widlund
Affiliation: Courant Institute of Mathematical Sciences, 251 Mercer Street, New York, New York 10012
Email: widlund@cims.nyu.edu

Stefano Zampini
Affiliation: Computer, Electrical and Mathematical Sciences and Engineering Division, Extreme Computing Research Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
Email: stefano.zampini@kaust.edu.sa

Clark R. Dohrmann
Affiliation: Computational Solid Mechanics and Structural Dynamics, Sandia National Laboratories, Albuquerque, New Mexico, 87185
Email: crdohrm@sandia.gov

DOI: https://doi.org/10.1090/mcom/3254
Keywords: Domain decomposition, BDDC preconditioner, Raviart-Thomas finite elements, multilevel preconditioners, adaptive selection of coarse spaces
Received by editor(s): January 18, 2016
Received by editor(s) in revised form: October 7, 2016
Published electronically: June 21, 2017

American Mathematical Society