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COMPUTATIONS OF THE MERTENS FUNCTION

AND IMPROVED BOUNDS

ON THE MERTENS CONJECTURE

GREG HURST

Abstract. The Mertens function is defined as M(x) =
∑

n≤x μ(n), where

μ(n) is the Möbius function. The Mertens conjecture states |M(x)/
√
x| < 1 for

x > 1, which was proven false in 1985 by showing lim inf M(x)/
√
x < −1.009

and lim supM(x)/
√
x > 1.06. The same techniques used were revisited here

with present day hardware and algorithms, giving improved lower and upper
bounds of −1.837625 and 1.826054. In addition, M(x) was computed for all
x ≤ 1016, recording all extrema, all zeros, and 108 values sampled at a regular
interval. Finally, an algorithm to compute M(x) in O(x2/3+ε) time was used
on all powers of two up to 273.

1. Introduction

The Möbius function μ(n) is an arithmetic function defined by

μ(n) =

{
(−1)ω(n) if n is a square-free integer,

0 otherwise,

where ω(n) is the number of prime factors of n. The Mertens function is the
summatory function of the Möbius function, i.e.,

M(x) =
∑
n≤x

μ(n).

This is a well-known function in number theory, appearing in many identities. Its
Mellin transform gives

1

ζ(s)
= s

∫ ∞

1

M(x)x−s−1dx for Re(s) > 1,

where ζ(s) is the Riemann zeta function. If M(x) = O(x1/2+ε), the integral would
converge for Re(s) > 1/2, implying that 1/ζ(s) has no poles in this region and that
the Riemann hypothesis is true. Conversely, if M(x) = Ω(xα) for some α > 1/2,
then the Riemann hypothesis is false.

Defining q(x) = M(x)/
√
x, a long standing conjecture of Mertens stated |q(x)| <

1 for x > 1. In 1985 this was shown to be false by Odlyzko and te Riele who showed
lim inf q(x) < −1.009 and lim sup q(x) > 1.06 [5]. However, no explicit counterex-
ample was found. Since then Best and Trudgian have improved these bounds
to lim inf q(x) < −1.6383 and lim sup q(x) > 1.6383 [4]. This paper describes
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techniques similar to those of Odlyzko and te Riele and establishes lim inf q(x) <
−1.837625 and lim sup q(x) > 1.826054.

To better understand M(x) and q(x), some have computed M(x) at every integer
up to a given bound. The most recent and extensive results are due to Kotnik and
van de Lune, who computed M(x) for all x ≤ 1014 [3]. In this paper, these results
are extended by computing M(x) for all x ≤ 1016. For x in this range:

• all extrema,
• all zeros of M(x) (366 567 325 in total),
• all values of M(x) for x a multiple of 108,

are reported.
Finally, an algorithm is discussed that was used to compute M(2n) for all positive

integers n ≤ 73, including

M(273) = −6524408924.

Section 2 describes the sieve used to compute M(n) for all n ≤ 1016 and used in
the main algorithm in the subsequent section. Section 3 derives a formula and in-
corporates it into an algorithm used to calculate M(x) at an isolated value. Section
4 discusses the machinery used to derive bounds on |q(x)|. This entails analytic
formulas relating to M(x) and a lattice basis reduction scheme. Section 5 discusses
all implementation details, which include low level tricks to speed up common cal-
culations and the choice of hardware specific parameters. Section 6 presents and
discusses the results of the computations. These include extrema of M(x), proper-
ties of the zeros of M(x), the values of M(x) at isolated values, and various bounds
on q(x). Finally, section 7 summarizes all results and considers possible extensions.

2. Sieving Algorithm

The functions μ(n) and M(n) can be computed naively for all n ≤ x as follows [2]:

Compute and store all primes p ≤
√
x

Initialize an array m of 1’s of length �x�
for each prime p ≤ √

x do
For all 1 ≤ n ≤ x divisible by p, set m[n] ← −p ·m[n]

For all 1 ≤ n ≤ x divisible by p2, set m[n] ← 0

for 1 ≤ n ≤ x do
If m[n] = 0, do nothing

If |m[n]| = n, set m[n] ← sign(m[n])

Otherwise, set m[n] ← −sign(m[n])

The array m now stores μ(n) at position n
Cumulatively add the values in m into another array. This array stores M(n)
at position n

The runtime complexity of this sieve is determined by the first loop and is

O

( ∑
p≤

√
x

(
x

p
+

x

p2

))
= O(x log log x).

There are two problems that render this algorithm impractical for large x. The
first is that it requires O(x log log x) multiplications, which can be costly. The
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second is that the array m must contain integers rather than bytes, which is less
cache friendly. The problem of cache misses is discussed in further detail in section 5.
To address these issues a variation of this algorithm, similar to the one described in
[1], is used. Define θ(x) as the unit step function and lsb(x) as the least significant
bit of x, and sieve as follows:

Create byte-arrays l of length �
√
x� and m of length �x�

for 1 ≤ j ≤
√
x do

l[j] ← �log2 pj�|1, where pj is the jth prime and | is bitwise OR

for 1 ≤ n ≤ x do
m[n] ← 0x80 (set the most significant bit to 1 and the rest to 0)

for 1 ≤ j ≤
√
x do

For all 1 ≤ n ≤ x divisible by pj , set m[n] ← l[j] + m[n]

For all 1 ≤ n ≤ x divisible by p2j , set m[n] ← 0

for 1 ≤ n ≤ x do
If the leading bit in m[n] is 0, set m[n] ← 0

If m[n] < �log2 n� − 5 − 2θ(n− 220), set m[n] ← 2lsb(m[n]) − 1

Otherwise, set m[n] ← 1 − 2lsb(m[n])

The idea of this algorithm is the same as the first one, except it works in log-
space. This allows multiplication to be replaced with addition and data to be stored
in byte-arrays. Though the time complexity remains the same, these changes reduce
implementation overhead.

After the third loop, the leading bit of each element m[n] indicates whether n is
divisible by a square. This leaves 7 bits in m[n] to add logarithms. Fortunately for
all n ≤ 1016, the maximum possible amount of logarithms that can be added will
not overflow to the eighth bit. In fact overflow will not occur until about n = 1030.
The least significant bit of each element m[n] counts the parity of the number of
prime factors encountered. If it is 0 there were an even amount and if it is 1 there
were an odd amount. This is achieved by setting the least significant bit in each
element of l to 1.

Finally, logarithms are summed to determine if n has a prime factor larger than√
n that was not accounted for in the sieve. For n ≤ 220, all primes will be

accounted for if and only if
∑

j�log2 pj�|1 < �log2 n� − 5, where all cases can be
verified exhaustively. The validity for larger n is shown by the following theorem.

Theorem 2.1. If 220 < n ≤ 1016, and n = p1 · · · pk is square-free, then

(1)

k∑
j=1

�log2 pj�|1 ≥ �log2 n� − 7

and

(2)

k−1∑
j=1

�log2 pj�|1 < �log2 n� − 7 when pk >
√
n.

Proof. To show that (1) is true, a value of n is sought that gives a sum which
deviates below log2 n as far as possible. This will happen when there are many
prime factors (allowing for more error), all �log2 pj� are odd (so the bitwise OR
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will not increment the sum), and each pj is just less than a power of 2 (making the
fractional part as large as possible). Under these constraints there are a manageable
number of cases to test manually. The largest deviation from �log2 n� is −7 and
first occurs at

n = 3 · 11 · 13 · 53 · 59 · 61 · 229 · 241 · 251 ≈ 1.13 · 1015.

Additionally, the first occurrence of −8 is at

n = 3 · 13 · 47 · 53 · 59 · 61 · 229 · 239 · 241 · 251 ≈ 1.16 · 1018,

which means this algorithm will need to be slightly modified to reach that value.
To show (2) is true, observe that

k−1∑
j=1

�log2 pj�|1 ≤
k−1∑
j=1

�log2 pj� + k − 1

≤ log2 n + k − 1 − log2 pk

≤ �log2 n� − 7 + (k + 6 − log2
√
n ).

Now

log2
√
n =

k∑
j=1

log2
√
pj ,

and log2
√
pj > 2 for j ≥ 7. This leaves only a finite number of cases where

k + 6 < log2
√
n might be false. Checking (2) manually on each of these cases

confirms its validity. �

Finally, this sieving algorithm can be segmented into blocks small enough for a
computer to store all generated data in RAM. Using a block size B that is a divisor
of x, compute μ(n) and M(n) for all (j − 1)x/B + 1 ≤ n ≤ jx/B and let j span

from 1 to B. For each block, only the primes up to
√
jx/B need to be considered.

3. Combinatorial algorithm

To compute M(x) at an isolated value, just as in [1] and [2], start with the
identity ∑

n≤x

M(�x/n�) = 1.

Observing �x/n� takes on roughly 2
√
x distinct values, let νx = �

√
x �, κx =

�x/(νx + 1)� and rewrite the identity as∑
n≤κx

M(x/n) = 1 −
∑
n≤νx

(⌊x
n

⌋
−
⌊

x

n + 1

⌋)
M(n)

= 1 + κxM(νx) −
∑
n≤νx

⌊x
n

⌋
μ(n).

From an implementation standpoint, the second line is more cache friendly since
the values of μ can be stored in an array of bytes. Moreover, when μ(n) = 0, the
quotient it is multiplied by does not need to be computed.

For any νx < u < x define

S(y, u) = 1 −
∑

y/u<n≤κy

M(y/n) + κyM(νy) −
∑
n≤νy

⌊ y
n

⌋
μ(n),
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which gives ∑
n≤x/u

M(x/n) = S(x, u).

Applying generalized Möbius inversion yields the following result.

Theorem 3.1.

M(x) =
∑

n≤x/u

μ(n)S(x/n, u).

Now notice when computing this summand for all n ≤ x/u, only the square-
free n needs to be considered, as μ(n) = 0 otherwise. This means that about
1 − 6/π2 ≈ 39% of summands need not be computed.

To find each sum within each S, a segmented sieve can be applied to compute
all required values of μ and M . The time complexity of this algorithm is thus the
time spent sieving plus the time computing each S(x/n, u). This gives a total time
complexity of

O

(
u1+ε +

∑
n≤x/u

νx/n

)
= O(u1+ε + x/

√
u ).

The choice of u = O(x2/3+ε) minimizes this runtime complexity at O(x2/3+ε).
When performing the sieve, a sieving block size of O(

√
u ) can be used to obtain

space complexity of O(x1/3+ε).

4. Analytic algorithm

The bounds on lim inf q(x) and lim sup q(x) can be extended using the approach
of Odlyzko and te Riele in [5], which begins with the following observation.

Theorem 4.1 (Tichmarsh [6]). Assuming the Riemann hypothesis and all zeros of
the zeta function are simple, then for x > 0,

M(x) =

∞∑
i=1

(
xρi

ρiζ ′(ρi)
+

xρi

ρiζ ′(ρi)

)
+ R(x) +

∞∑
n=1

(−1)n−1(2π/x)2n

(2n)!nζ(2n + 1)
.

Here R(x) = −2 for x 	∈ Z, R(x) = −2 + μ(x)/2 for x ∈ Z, and ρi is the ith
nontrivial zero of ζ with positive imaginary part.

Grouping terms in this formula gives

(3) q(x) = 2

∞∑
i=1

ai cos(γi log x + ψi) + O(x−1/2),

where ai = 1/|ρiζ ′(ρi)|, γi = Im(ρi), and ψi = arg(ρiζ
′(ρi)). Now defining f(t) =

(1 − t) cos(πt) + sin(πt)/π and

h(y,N) = 2
N∑
i=1

aif (γi/γN ) cos(γiy + ψi),

the following holds.
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Theorem 4.2 (Ingham [7]). For any real y and any positive integer N ,

lim inf q(x) ≤ h(y,N) ≤ lim sup q(x).

One should note that unlike Theorem 4.1, this theorem does not assume the
Riemann hypothesis. Additionally this is the main result that the analytic algo-
rithm depends on. Roughly speaking, a trick to bound q(x) is hence finding a y
and N such that |h(y,N)| is large. Moreover, since

∑
i ai diverges and f(t) > 0 for

0 < t < 1, if all γiy + ψi were close to multiples of 2π, then h(y,N) could be an
arbitrarily large positive number. Similarly if all γiy+ψi+π were close to multiples
of 2π, then h(y,N) could be an arbitrarily large negative number.

More explicitly, for any sequence of integers mi where γiy + ψi − 2πmi is suffi-
ciently small, h(y,N) can be approximated with

h(y,N) ≈ 2

N∑
i=1

ai cos(γiy + ψi)

= 2
N∑
i=1

ai cos(γiy + ψi − 2πmi)

≈ 2

N∑
i=1

ai −
N∑
i=1

(√
ai(γiy + ψi − 2πmi)

)2

.

This means if mi were found such that each
√
ai(γiy+ψi− 2πmi) is small, h(y,N)

should be large. This can be achieved via lattice reduction. Lattice reduction takes
in a basis of integer vectors and returns a new integer basis spanning the same
space, where each vector has a small Euclidean norm. Fixing N , the initial basis is

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−�√a1ψ12
ν�

−�√a2ψ22
ν�

...
−�√aNψN2ν�

2νN4

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�√a1γ12
ν−10�

�√a2γ22
ν−10�

...

�√aNγN2ν−10�
0

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�2π√a12
ν�

0

...

0

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

�2π√a22
ν�

...

0

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, . . . ,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

...
�2π√aN2ν�

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where ν is any integer satisfying 2N ≤ ν ≤ 4N .
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Since 2νN4 is much larger than every other element and no other vector has a
nonzero (N + 1)st component, there should be exactly one reduced vector with a
nonzero (N + 1)st term and it will equal ±2νN4. Call this vector v = (v1, v2, . . . ,
vN+2)

ᵀ and without loss of generality assume vN+1 = 2νN4.
For each 1 ≤ i ≤ N , this vector has components

vi = z�√aiγi2
ν−10� − �√aiψi2

ν� −mi�2π
√
ai2

ν�

for some integers z,m1,m2, . . . ,mN . Now because vN+1 is so large these terms
should be small, which means

√
ai(γiz/2

10 − ψi − 2πmi)

will also be small. Hence setting y = z/210 should give a value where h(y,N) is
large and positive, where the value z is known, as z = vN+2.

To find a y that makes h(y,N) large and negative, simply replace ψi with ψi +π
in the call to the lattice reduction algorithm.

Finally, to improve results, the zeros ρi can by sorted by ai, rather than sorted by
γi as was done above. This will ensure the largest ai’s will have their corresponding
cosines near ±1, making the sum even larger.

5. Implementation details

5.1. Sieve. When performing the sieve in section 2, the bottleneck is accounting
for multiples of small prime powers, i.e., 2, 3, 22, etc. To circumvent this, these
values can be presieved. This implementation is presieved with multiples of 2, 3,
22, 5, 7, 32, and 11. To do this the sieve was applied, only using these numbers, on
an array of length 2 · 2 · 3 · 3 · 5 · 7 · 11 = 13860. When the main sieve was called,
the array m was assembled by joining many copies of this precomputed array.

Because computing all 1016 values of M at once would have required storing an
array too large for RAM, the segmented version of the sieve was used. Computations
were done in blocks of length 8 728 473 600, and used roughly 46 GB of RAM. During
the main loop of the sieve, each block was further divided into smaller blocks to
allow m to fit in the L3 cache. However, once the size of the primes became
substantially larger than the length of m, too much time was spent iterating over
primes that were never used. To address this, the length of m was increased and
no longer fit in the L3 cache. After each block was computed, each value of M(n)
was recorded if it was an extremum, zero, or if n was a multiple of 108.

Finally, when identifying elements that correspond to a multiple of p or p2 in
the sieve, integer division is required and is very costly. A way around this is to
use methods described in [8], which turns integer division into one 128 bit multipli-
cation, one addition, and two bit shifts. This requires precomputing two constants
for each denominator used in the scheme.

5.2. Combinatorial. To compute M(x), the value u = �0.5x2/3� was chosen since
it gave the fastest results. This means that when computing M(273), each M(n)
for all n ≤ 3.5 · 1014 were computed through a segmented sieve. During this sieving
process a block size of roughly 96

√
2u was chosen, giving a total of about 0.0073

√
u

blocks to sieve through. Once a block of μ and M values were computed, they were
accounted for in each S(x/n, u). Therefore all S(x/n, u) were computed once the
sieve finished.
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Computing all S as stated in section 3 requires O(x2/3) integer divisions, and this
is extremely costly. Fortunately when computing a value of S, both sequences of
quotients that appear have the same numerator and each denominator successively
increments by 1. This means all successive quotients y/n with 3

√
2y ≤ n ≤ √

y can
be computed using a Bresenham style method. This scheme computes a quotient
based off the value of the previous quotient, and is described in detail in [9]. For
all denominators n < 3

√
2y, the same technique used in the sieve to turn a quotient

into a multiplication, addition, and bit shifts can be employed [8]. The precom-
puting of constants for this method requires exactly one quotient to be computed
per denominator. This reduces the number of integer divisions from O(x2/3) to
O(x/u) = O(x1/3).

5.3. Analytic. Computing bounds on q(x) requires many digits of ρi and ζ ′(ρi)
and a fast lattice reduction routine. Mathematica was used to compute ρi to 10 000
digits of precision for all i ≤ 14 400 and subsequently compute each ζ ′(ρi) to roughly
8151 digits of precision. The results were verified using PARI/GP.

The lattice reduction library chosen was fplll [10]. Its implementation has a run-
time complexity of O(N4+εν(N + ν)), which is faster than the original algorithm’s
runtime complexity of O(N6+εν3) [11]. For each call to fplll, the optional param-
eter values (δ, η) = (0.9999, 0.99985) were used. The choices of these parameters
were intended to speed up the runtime, with the tradeoff of a less optimal solution.

5.4. Hardware. The computations of ρi and ζ ′(ρi) were performed on a 360 core
cluster on the Wrangler system at the Texas Advanced Computing Center. All
other computations were run on a 2.7 GHz 12-core Intel Xeon E5 processor with a
32 MB L3 cache and 64 GB of RAM. The code was compiled with g++ and where
possible, routines were parallelized using OpenMP.

6. Results

6.1. Sieve. Computing M(n) for all n ≤ 1016 took roughly 7.5 months and was
heavily influenced by cache misses. The frequency of these misses increased with
n. For comparison, the first 1014 values took 1 day to compute, the next 1014

values took 1.35 days, and this gradually increased until the final 1014 values took
2.8 days. Results were periodically verified throughout the computation using the
algorithm described in [2] to compute M(n) and compare values. No discrepancies
were found.

1013 1014 1015 1016

−0.5

 −0.25

0

0.25

0.5
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The largest absolute values M(n) attain for n ≤ 1016 are −35 629 003 and
40 371 499, and the largest absolute values q(n) attain in this interval are −0.525
and 0.571. Below is a select list of extrema corresponding to prominent peaks of
M :

n M(n) q(n) n M(n) q(n)
6631245058 -31206 -0.383 5197159385733 -689688 -0.303

7766842813 50286 0.571 10236053505745 1451233 0.454
15578669387 -51116 -0.410 21035055623987 -1740201 -0.379
19890188718 60442 0.429 21036453134939 -1745524 -0.381
22867694771 -62880 -0.416 23431878209318 1903157 0.393
38066335279 -81220 -0.416 30501639884098 -1930205 -0.349
48638777062 76946 0.349 36161703948239 2727852 0.454
56808201767 -87995 -0.369 36213976311781 2783777 0.463

101246135617 -129332 -0.406 71578936427177 -4440015 -0.525
108924543546 170358 0.516 146734769129449 3733097 0.308
148491117087 -131461 -0.341 175688234263439 -5684793 -0.429
217309283735 -190936 -0.410 212132789199869 5491769 0.377
297193839495 207478 0.381 212137538048059 5505045 0.378
330508686218 -294816 -0.513 304648719069787 -5757490 -0.330
402027514338 271498 0.428 351246529829131 9699950 0.518
661066575037 331302 0.407 1050365365851491 -13728339 -0.424

1440355022306 -368527 -0.307 1211876202620741 16390637 0.471
1653435193541 546666 0.425 2458719908828794 -20362905 -0.411
2087416003490 -625681 -0.433 3295555617962269 18781262 0.327
2343412610499 594442 0.388 3664310064219561 -23089949 -0.381
3270926424607 -635558 -0.351 4892214197703689 24133331 0.345
4098484181477 780932 0.386 6287915599821430 -35629003 -0.449
5191164528277 -668864 -0.294 7332940231978758 40371499 0.471

All zeros of M(n) for n ≤ 1016 were recorded. A natural question to ask is for
any x, how many zeros are less than x? Defining V (x) to be the number of zeros
less than x, a theorem of Landau [12] states V (x) = Ω(log x). This, however, is
expected to be a weak lower bound.

Treating M(n) as a random walk with probability of staying stationary 1−6/π2

and with both probabilities of moving up and down 3/π2, it would follow that

V (x) =
√
πx/3 + o(

√
x ). In practice, however, M cannot be modeled as a random

walk because there is regularity, e.g., M(4n + 3) = M(4n + 4), etc. Nonetheless,
the data suggest V (x) = Θ(x1/2+ε). In fact 3.5

√
x or even

√
x log log x seem like

good approximations.

n V (10n) n V (10n)

1 1 9 141121
2 6 10 431822
3 92 11 1628048
4 406 12 4657633
5 1549 13 12917328
6 5361 14 40604969
7 12546 15 109205859
8 41908 16 366567325

108 1010 1012 1014 1016

105

106

107

108

109

A property these zeros can help investigate is whether M tends to have a bias
towards being positive or negative. Define M+(x) to be the percentage of M(n)
that are positive for n ≤ x, that is,

M+(x) =
1

x

∑
n≤x

M(n)>0

1.
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A direct consequence of work by Ng [13] is that under certain conjectures the average
value of M+(x) should be 1/2, i.e., no bias should exist. Computing μ at each zero
of M , the sign of M can be determined between consecutive zeros which can be used
to compute M+. For x ≤ 105 there is a clear negative bias, but for 105 ≤ x ≤ 1016

there is no longer any apparent bias. For 105 ≤ x ≤ 1016 the extreme values are
M+(53 961 131 760 658) ≈ 0.385 and M+(238 469 701 201 412) ≈ 0.601.
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Another characteristic of the zeros worth consideration is the gap between two
consecutive zeros. To examine these gaps, let Gm(g) be the number of gaps of
length g that occur for the first m zeros. For a fixed value of m, this function
can be plotted to show how the number of gaps of certain lengths vary. Letting
ω = V (1016) = 366 567 325, gives the following plot:
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As seen above, there are distinct bands present and each looks to roughly follow
a power law, all with the same exponent. Zooming in, it appears each band is
represented by all g congruent to 1 modulo a product of distinct primes squared.
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Defining bm(g) to be the baseline band (which can be approximated by a power
law) and Pg to be the set of all primes p where g ≡ 1 mod p2, it seems these bands
are expressed with the multiplier

Gm(g) =

⎛
⎝ ∑

S∈P(Pg)

∏
p∈S

1

p2 − 2

⎞
⎠ bm(g).

For example, if g0 ≡ 1 mod 4 and g0 	≡ 1 mod p2 for p 	= 2, then Pg0 = {2} and
Gm(g0) should be above bm(g0) by a multiplicative factor of 3/2.

6.2. Combinatorial. Calculating M(x) at powers of two scaled roughly as O(x2/3),
i.e., M(2x+1) was about 22/3 ≈ 1.59 times slower to compute than M(2x). How-
ever, as in the sieve above, cache misses became more frequent for larger x resulting
in scale factors around 1.63. The results are as follows:

n M(2n ) n M(2n) n M(2n) n M(2n) time (s)
0 1 19 -125 38 38729 57 51885062 236.02
1 0 20 257 39 -135944 58 -15415164 374.60
2 -1 21 -362 40 101597 59 -89014828 594.65
3 -2 22 228 41 15295 60 -48425659 943.63
4 -1 23 -10 42 -169338 61 220660381 1494.41
5 -4 24 211 43 259886 62 -248107163 2378.21
6 -1 25 -1042 44 -474483 63 580197744 3815.14
7 -2 26 329 45 1726370 64 -851764249 6263.46
8 -1 27 330 46 -3554573 65 809210153 10376.5
9 -4 28 -1703 47 -135443 66 -1220538763 17235.2

10 -4 29 6222 48 3282200 67 -925696220 28404.4
11 7 30 -10374 49 1958235 68 2092394726 46429.7
12 -19 31 9569 50 -1735147 69 -3748189801 75680.8
13 22 32 1814 51 6657834 70 9853266869 123189
14 -32 33 -10339 52 -13927672 71 -12658250658 200574
15 26 34 -3421 53 -11901414 72 9558471405 326068
16 14 35 8435 54 48662015 73 -6524408924 529127
17 -20 36 38176 55 -48361472
18 24 37 -28118 56 23952154
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The correctness of the implementation was verified in 3 ways:

• Tests on many already known values were run.
• When computing M(x), M(x/128) was simultaneously computed.
• Formula (3) was used to estimate the first couple digits of M(x) and its

order of magnitude.

All values were found to agree.

6.3. Analytic. The results of deriving bounds on q(x) can be summarized with
the following theorem.

Theorem 6.1. The function q(x) = M(x)/
√
x has bounds

lim inf q(x) < −1.837625

and

lim sup q(x) > 1.826054.

Proof. To derive these bounds, the lattice reduction algorithm covered in section 4
was run with inputs ν = 17 000 and N = 800. Both calls took roughly 35 days to
finish, giving y values

y- ≈ 1.50546 · 105096 and y+ ≈ −2.58842 · 105097,

where their exact values can be found in the appendix below. Evaluating h(y±, 14400)
gives the extreme values

h(y-, 14400) ≈ −1.837625 and h(y+, 14400) ≈ 1.826054. �

In addition, the lattice reduction algorithm was run on various choices of smaller
ν and N . These establish some weaker bounds:

ν N y h(y, 14400) time (d)

5000 400 −2.78367 · 101493 1.61230 0.53
12000 600 −5.19605 · 103594 −1.76011 7.32
12000 600 9.31709 · 103594 1.76382 7.33
15000 700 2.74696 · 104495 −1.81111 19.00
15000 700 9.69908 · 104495 1.81252 18.99
17000 800 1.50546 · 105096 −1.83762 35.07
17000 800 −2.58842 · 105097 1.82605 35.09

Finally, an approximate formula can be used to visualize what q(x) might look
like in the neighborhood of y±. Defining

q̃(x) = 2
14400∑
i=1

ai cos(γix + ψi)

and assuming q̃(x) ≈ q(ex) gives plots about these extreme values:
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The observation made in [14] that the width of the peaks of q(x) remain constant
with respect to log x seems to hold this far out. Moreover, as seen in the above
figures, these peaks appear to be anomalies, as most peaks in the vicinity of y± do
not exceed 0.5 in absolute value.

7. Extensions and concluding remarks

7.1. Sieve. Computing M(n) for all n ≤ 1016 took about 7.5 months and the
time was dominated by cache misses. To systematically compute M(n) for say
n ≤ 2 · 1016, the cache misses beyond 1016 would grow substantially more frequent,
causing a drastic slow down. To reduce the number of these misses, additional
measures can be taken.

First, rather than storing each value μ(n) in 1 byte, 4 values of μ(n) can be
encoded together since μ(n) only takes on 3 possible values, allowing it to be ex-
pressed with 2 bits. A similar approach can be taken for M(n) too, but not for
n > 1016. For computations on shorter intervals though, space can still be saved.
For example, M(n) can be stored as a signed 16 bit integer as long as |M(n)| < 215.
The first time this inequality is violated is at n = 7 613 644 886. Similarly, M(n)
can be stored as a signed 24 bit integer for all n < 348 330 855 359 510.

A more robust solution to prevent cache misses is to employ an additional data
structure. Recall that during the sieve the array built to store values of μ is seg-
mented into blocks small enough to fit into the L3 cache. However, once the primes
being iterated over become too large, much time is wasted iterating over primes
that are not used. Currently, this is mitigated by using larger blocks, but these
larger blocks no longer fit in the L3 cache. Instead, this problem could be resolved
by the following algorithm.
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Create a hashmap h that maps an integer to a vector of integers

for each prime p ≤
√
x do

Find the first block i with an index corresponding to a multiple of p

If h(i) is uninitialized, set h(i) ← {p}
Otherwise append p to the vector h(i)

for each block i do
for each p in h(i) do

Sieve block i with p as normal

Determine the next block j in which p will be used

If h(j) is uninitialized, set h(j) ← {p}
Otherwise append p to the vector h(j)

Clear h(i)

Under this approach, the block size can be set to always fit in the L3 cache
without having the overhead of iterating over primes that will never be used. Notice
here that each prime p will only be present in h at most once. Hence the size of
h is only dependent on the number primes used, not the number of blocks being
iterated over. For an L3 cache similar in size to the one used, this method could
help make it feasible to compute beyond 1016.

7.2. Combinatorial. Isolated values of M(x) were computed at powers of 2 up
to M(273) = −6524408924, which took roughly 6 days to calculate. At the time
this paper was written, to the author’s knowledge, there are no known combinato-
rial identities that lead to a runtime complexity less than O(x2/3+ε). However, a
speedup could still potentially be obtained with a combinatorial approach.

Recall that the identity used in the algorithm and stated in Theorem 3.1 is

M(x) =
∑

n≤x/u

μ(n)S(x/n, u).

Since μ(n) will asymptotically be zero 1 − 6/π2 ≈ 39% of the time, one approach
could be to look for a sum whose summand is zero more often than this. The closest
identity the author found in literature is due to Benito and Varona [15] and is

M(x) =
1

2

∑
n≤x/u

f−1(n)G(x/n, u),

where

G(y, u) = −3 +
∑

y/u<n≤κy

(h(n) − h(n− 1))M(y/n) + h(νy)M(κy)

+
∑
n≤νy

(
3

⌊
n

3k

⌋
− 2

⌊
n− k

2k

⌋)
μ(n),

and f−1(n) is the Dirichlet inverse of f(n) = h(n− 1) − h(n), and

h(n) =

⎧⎪⎪⎨
⎪⎪⎩

2 if n ≡ 0 mod 6,
0 if n ≡ 1 or 2 mod 6,
1 if n ≡ 3 or 4 mod 6,
−1 if n ≡ 5 mod 6.
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It turns out that f−1(n) is zero just as often as μ(n) with the added advantage that
f−1(2) = f−1(4) = 0, meaning 2 of the 4 most computationally expensive sum-
mands need not be computed. The drawback is that no efficient way of computing
f−1(n) was found.

Finally, an analytic approach could be considered. In 1987 Lagarias and Odlyzko
[16] described a way to compute π(x), the number of primes ≤ x, in O(x1/2+ε) time.
The algorithm uses a completely different approach, expressing π(x) in terms of a
contour integral in the complex plane. Moreover, the discussion section in [16] states
that the same ideas can be applied to compute M(x) in the same time complexity.

In 2010, Platt computed π(x) using this algorithm and stated the combinatorial
algorithm for π(x) would probably be faster until roughly x ≈ 4·1031. This is due to
overhead, some of which is from the need of multiple precision complex arithmetic
[17]. It seems likely the analytic algorithm for M(x) would follow suit.

7.3. Analytic. It has been shown lim inf q(x) < −1.837625 and lim sup q(x) >
1.826054. Extending these bounds further, with the same approach, would take a
considerable amount of time. To see why, first notice all values found with fplll,
using (δ, η) = (0.9999, 0.99985), resulted in bounds about 95.5% of the optimum
for a given N , i.e.,

h ≈ 1.91

N∑
i=1

ai.

Additionally, the runtime of fplll’s algorithm scales as O(N4+εν(N +ν)) [10]. Thus
given the timings of previous calls and assuming ν scales linearly with N , these
observations can help estimate what is needed to reach a given bound:

bound estimated N estimated time
1.90 865 2 months
1.95 985 5 months
2.00 1125 10 months

It therefore appears attaining bounds of ±2 is within reach with existing hard-
ware and algorithms. Attaining bounds larger than 2 will most likely need ρi and
ζ ′(ρi) computed to higher precision than what was achieved here, or different (δ, η)
values. At present, a different approach is likely needed to substantially improve
these bounds past 2.

8. Appendix

Access all computed data in a Mathematica notebook at

https://wolfr.am/mertens.
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