
MATHEMATICS OF COMPUTATION
Volume 87, Number 311, May 2018, Pages 1479–1508
http://dx.doi.org/10.1090/mcom/3245

Article electronically published on November 1, 2017

COMPUTING JACOBI’S THETA IN QUASI-LINEAR TIME

HUGO LABRANDE

Abstract. Jacobi’s θ function has numerous applications in mathematics and
computer science; a naive algorithm allows the computation of θ(z, τ), for z, τ

verifying certain conditions, with precision P in O(M(P)
√
P) bit operations,

where M(P) denotes the number of operations needed to multiply two complex
P -bit numbers. We generalize an algorithm which computes specific values of
the θ function (the theta-constants) in asymptotically faster time; this gives
us an algorithm to compute θ(z, τ) with precision P in O(M(P) logP) bit
operations, for any τ ∈ F and z reduced using the quasi-periodicity of θ.

1. Introduction

Jacobi’s θ function appears in a wide range of fields, such as non-linear differential
equations (as a solution of the heat equation), the study of modular forms, and
number theory, in which it is the main ingredient to convert between algebraic and
analytic representations of elliptic curves. Namely, we have the embedding [13, I.4]

C/(Z+ τZ) → P
3(C)

z �→ (θ00(2z, τ), θ01(2z, τ), θ10(2z, τ), θ11(2z, τ)) ,

where the θi are essentially the θ function with its z argument translated. We also
have the equation

℘(z, τ) =
π2

3
(θ410(0, τ)− θ401(0, τ))− π2θ201(0, τ)θ

2
10(0, τ)

θ200(z, τ)

θ211(z, τ)

which allows one to compute, for any point on the torus, its x-coordinate on the
curve E(C) : y2 = 4x3 − g2x− g3.

Special values of the θ function have interesting additional properties: the theta-
constants, the value of θ at points z = 0, 1

2 and τ
2 . As modular forms in τ , they

are linked to other modular functions, such as the j-invariant or Dedekind’s η
function. Computing the value of the theta-constants allows one to compute the
value of those modular functions; this has been used in record computations of class
polynomials [8], which are interesting to generate safe cryptographic curves with
the CM method.

The main problem we are dealing with here is to compute θ(z, τ) with given ab-
solute precision P , which allows us to compute the above embedding at any given
precision. We will suppose throughout the article that (z, τ) satisfy certain con-
ditions; the general case can be deduced from this one using formulas we mention

Received by the editor November 13, 2015, and, in revised form, June 2, 2016, and November

22, 2016.
2010 Mathematics Subject Classification. Primary 11-04, 14H42, 14K25; Secondary 14H81,

14H82.

c©2017 by Hugo Labrande

1479

http://www.ams.org/mcom/
http://dx.doi.org/10.1090/mcom/3245

1480 HUGO LABRANDE

later. The θ function is defined by a rapidly convergent series; under the condi-
tions specified on z, τ , it gives a naive algorithm that requires a running time of
O(M(P)

√
P) bit operations, where M(P) is the number of operations needed to

multiply two P -bit complex numbers. Although fast, this is a worse running time
than other transcendental functions such as the exponential of a complex number,
which can be computed in quasi-optimal time O(M(P) logP).

There is an algorithm to compute the theta-constants asymptotically faster than
with the naive method, outlined in [7]. This algorithm relies on connections between
theta-constants and the arithmetico-geometric mean (AGM) of Gauss; the complex-
valued AGM, when evaluated at the theta-constants, has interesting properties,
and this is used along with Newton’s method to, in a sense, invert the AGM and
recover the values of the theta-constants. This algorithm allows computation of
theta-constants for τ ∈ F with precision P in quasi-optimal time O(M(P) logP),
independently of τ . It is faster than the naive method for precisions as low as a
few thousand bits.

In this article, we provide a generalization of this algorithm which computes
θ(z, τ), for τ ∈ F and z such that Im(z) ≤ Im(τ)/2, with absolute precision P
in O(M(P) logP) bit operations. We give two algorithms: the first one runs in
quasi-optimal time in P , but its running time depends on z and τ ; we then use
this algorithm as a subroutine to build a quasi-optimal algorithm with complexity
independent of z and τ , provided τ ∈ F and Im(z) ≤ Im(τ)/2. An GNU MPC [9]
implementation of the algorithm was realized; it is faster than the naive method
for values of P greater than a few hundred thousand digits.

Our algorithm provides the six values θ(z, τ), θ(z+ 1
2 , τ), θ(z+

τ
2 , τ), θ(0, τ), θ(

1
2)

and θ(τ2), which are sufficient to compute the projective embedding mentioned
above. It can also be used to compute the Weierstrass ℘ function and its derivative
in quasi-optimal time; hence, this paper provides a quasi-optimal time algorithm
to compute the “Jacobi map” C/Λ → E(C) of an elliptic curve. We note that the
“Abel map” E(C) → C/Λ can already be computed in quasi-optimal time using
links to elliptic integrals and the Landen isogeny; see [2] and [5].

We note that [12] gives an algorithm to compute θ with real arguments (i.e.,
θ(u,m) with 0 < m < 1 and 0 ≤ u ≤ K(m)), defined by its representation as an
infinite product, with the same, quasi-optimal complexity. Their algorithm relies
on the Landen transform for the θ function, and could perhaps be generalized to
the complex setting. We had independently pursued this line of thought, but found
that in the complex setting, the presence of trigonometric functions induced heavy
precision losses for some inputs; however, there may be a workaround for those
issues, which would allow one to find an algorithm for the complex setting and
with quasi-optimal complexity relying on the Landen transform.

This article is organized as follows. We introduce the necessary mathemati-
cal background and the strategies we follow for argument reduction in section 2,
which justifies our choice to consider throughout the paper the case τ ∈ F and
Im(z) ≤ Im(τ)/2; we then provide an analysis of the naive algorithm for θ(z, τ)
under those conditions. Section 3 introduces a sequence derived from relations be-
tween values of θ, and we prove quadratic convergence of a certain homogenization
of the sequence; this is what replaces the AGM in the general case. Section 4 gives
a first algorithm for computing θ functions, with a complexity depending on z and
τ ; this is quasi-optimal provided that z, τ belong to a compact set. We then get rid

COMPUTING JACOBI’S THETA IN QUASI-LINEAR TIME 1481

of the dependency in z, τ much in the same way as in the case of theta-constants,
which gives a uniform algorithm with complexity O(M(P) logP). Section 5 shows
timings for our GNU MPC implementation of this last algorithm and compares it
to our implementation of the naive algorithm.

2. The theta function and theta-constants

2.1. Definitions and argument reduction. We recall a few basic facts, following
the presentation of [13].

Definition 2.1. Define, for z ∈ C and τ ∈ H (i.e., Im τ > 0)

θ(z, τ) =
∑
n∈Z

exp
(
πiτn2 + 2πinz

)
.

Proposition 2.2 (Quasi-periodicity). We have θ(z + 1, τ) = θ(z, τ) and θ(z +
τ, τ) = e−πiz−2πiτθ(z, τ); in fact for any integers a, b,

(2.1) θ(z + aτ + b, τ) = e−iπa2τ−2iπazθ(z, τ).

We also define the following variants of the theta function (which are related to
the definition of “theta functions with characteristics”) [13, Section I.3]:

Definition 2.3.

θ00(z, τ) = θ (z, τ) θ10(z, τ) = exp (πiτ/4 + πiz) θ
(
z +

τ

2
, τ
)
,

θ01(z, τ) = θ

(
z +

1

2
, τ

)
θ11(z, τ) = exp (πiτ/4 + πi(z + 1/2)) θ

(
z +

τ + 1

2
, τ

)
.

We define theta-constants as the values in 0 of those functions.

Those functions and their theta-constants are linked by a great number of for-
mulas; we will give such formulas as we use them, and most of them can be found
in [13, Section I.5]. Note that we have the following.

Proposition 2.4. For any τ , the functions z �→ θ00(z, τ), z �→ θ01(z, τ), z �→
θ10(z, τ) are even, while z �→ θ11(z, τ) is odd.

The latter implies that θ11(0, τ) = 0, so the only theta constants we are interested
in are θ00(0, τ), θ01(0, τ), and θ10(0, τ).

Those properties can be used for the purpose of argument reduction. For in-
stance, we can use the parity of θ to suppose that Im(z) ≥ 0; if this is not the case,
one can consider −z instead of z, which does not change the value of θ but ensures
that Im(z) ≥ 0. Furthermore, equation (2.1) can be used to recover θ(z, τ) from

the value of θ(z′, τ), where z′ is such that |Re(z′)| ≤ 1
2 and | Im(z′)| ≤ Im(τ)

2 ; the
added cost is the cost of computing an exponential factor. This exponential factor
can become quite big; should one want to compute θ(z, τ) with an error of at most
2−P , they have to work with representations of at least P + C bits, with

C = log2(|θ(z′, τ)|) + π log2(e)(a
2 Im(τ) + 2a Im(z)) + 2.

This is because the integral part of the result fits in C bits, while the fractional
part should be coded on at least P bits to ensure a final error bounded by 2−P .
The complexity of running our algorithm and computing the exponential factor
will be O(M(P + C) log(P + C)), and hence will depend on τ and z; this is in-
evitable. Hence, throughout the paper we suppose that z is reduced, in the sense

1482 HUGO LABRANDE

that |Re(z)| ≤ 1
2 and 0 ≤ Im(z) ≤ Im(τ)

2 , with the understanding that the step of
argument reduction has a complexity depending on the original values of z and τ .
However, as section 2.2 shows, this hypothesis, combined with a hypothesis in τ , al-
lows us to work with values of θ bounded by 4, which allows us to write an algorithm
with complexity only depending on P for any z satisfying these conditions.

We can also reduce the second argument of θ. Define the action of SL2(Z) on
the complex upper half-plane H by(

a b
c d

)
· τ �→ aτ + b

cτ + d
.

Its fundamental domain is

F = {ω ∈ H | |Re(ω)| < 1/2, |ω| > 1}.

Computing τ ′ ∈ F and M =
(
a b
c d

)
∈ SL2(Z) such that τ ′ = Mτ can be done by

finding the shortest vector in the lattice (1, τ) using Gauss’s algorithm [14], which
(since the inertia is small) will be asymptotically negligible. The value of θ(z, τ) can
then be computed from θ(z′, τ ′) (for some value z′) using the following theorem.

Theorem 2.5 (Extension of [13, Theorem 7.1]). Let τ ∈ H and z ∈ C, and let
γ =

(
a b
c d

)
∈ SL2(Z). Suppose c > 0, or c = 0 and d > 0; if not, take −γ. Then we

have

(2.2) θi

(
z

cτ + d
,
aτ + b

cτ + d

)
= ζi,γ,τ

√
cτ + deiπcz

2/(cτ+d)θσ(i)(z, τ),

where the square root is taken with positive real part, ζi,γ,τ is an eighth root of unity
and σ is a permutation of the elements (00, 01, 10), defined by the following table:

a b c d σ(00, 01, 10)

odd even even odd (00, 01, 10)
odd odd even odd (01, 00, 10)
odd even odd odd (10, 01, 00)
even odd odd even (00, 10, 01)
odd odd odd even (10, 00, 01)
even odd odd odd (01, 10, 00)

Proof. Define for any γ =
(
a b
c d

)
∈ SL2(Z):

eγ(τ) = cτ + d, fγ(z, τ) = eiπcz
2/(cτ+d).

With a bit of care, one can prove

eγ1
(γ2τ)eγ2

(τ) = eγ1γ2
(τ), fγ1

(
z

c2τ + d2
, γ2τ

)
fγ2

(z, τ) = fγ1γ2
(z, τ).

The maps T : τ �→ τ + 1 and S : τ �→ −1
τ are generators of SL2(Z), and we have

[13, Table V, p. 36]

θi (z, T τ) = ζi,T,τ

√
eT (τ)fT (z, τ)θσT (i)(z, τ),

θi

(z
τ
, Sτ

)
= ζi,S,τ

√
eS(τ)fS(z, τ)θσS(i)(z, τ),

COMPUTING JACOBI’S THETA IN QUASI-LINEAR TIME 1483

with square roots taken with real parts and for some ζ ∈ U8 and σS , σT ∈ S3.
Hence for all γ ∈ SL2(Z),

θi

(
z

eγ(τ)2
, γτ

)
= ζi,γ,τ

√
eγ(τ)fγ(z, τ)θσγ(i)(z, τ)

for some root of unity and some permutation. The correspondence γ �→ σγ can be
determined from [13, p. 36], although one can simply notice it is independent of
z and use the tables found by Gauss in the case of theta-constants [4, Eq. 2.15].
Finally, we could attempt to give a formula for ζi,γ,τ , but it is more efficient to
simply compute a very low precision approximation of θ(z, τ) and compare it to
the full-precision value to determine which eighth root is needed. �

Thus, in order to recover θi(z, τ) from θi

(
z

cτ+d ,
aτ+b
cτ+d

)
, one needs to compute

√
cτ + d (which is done in O(M(P)) bit operations) and eπicz

2/(cτ+d) (done in
O(M(P) logP) bit operations), and perform a division; determining ζ is asymp-
totically negligible. The cost of this step is then O(M(P) logP) bit operations.

We note that, in general, because of the permutation σγ , we need to have com-

puted all three values θ00,01,10

(
z

cτ+d ,
aτ+b
cτ+d

)
in order to be able to use the formula

to compute, say, θ00(z, τ). We will occasionally talk about computing θ11, but this
will not be the focus of the paper. Hence, the problem we consider in this paper is
the following:

Compute θ00(z, τ), θ00(0, τ), θ01(z, τ), θ01(0, τ), θ10(z, τ), θ10(0, τ)

where |τ | > 1, |Re(τ)| ≤ 1

2
, Im(τ) > 0,

|Re(z)| ≤ 1

2
, 0 ≤ Im(z) ≤ Im(τ)

2
(2.3)

in quasi-optimal time, i.e., O(M(P) logP).

2.2. Naive algorithm to compute theta.

2.2.1. Partial summation of the series defining theta. We define the following par-
tial summation for the series defining θ(z, τ):

SB(z, τ) = 1 +
∑

0<n<B

qn
2

(e2iπnz + e−2iπnz),

where use the notation q = eiπτ . We have the following.

Proposition 2.6. Suppose that Im(τ) ≥ 0.35 and 0 ≤ Im(z) ≤ Im(τ)/2; in par-
ticular, this is the case if the conditions (2.3) are satisfied. Then, for B ≥ 1,

|θ(z, τ)− SB(z, τ)| ≤ 3|q|(B−1)2 .

1484 HUGO LABRANDE

Proof. We look at the remainder of the series:

|θ(z, τ)− SB(z, τ)| ≤
∑
n≥B

|q|n2

(|e2iπnz|+ |e−2iπnz|)

≤
∑
n≥B

|q|n2

(1 + |q|−n) ≤ 2
∑
n≥B

|q|n2−n

≤ 2
∑
n≥B

|q|(n−1)2 ≤ 2
∑
n≥0

|q|(B−1+n)2

≤ 2|q|(B−1)2
∑
n≥0

|q|2n(B−1)+n2

≤ 2
|q|(B−1)2

1− |q|2B−1
.(2.4)

A numerical calculation shows that for Im(τ) ≥ 0.35, we have 2
1−|q| ≤ 3, which

proves the proposition. �
We can prove the same inequality for θ01, since the series that defines it has the

same terms, up to sign, as the series for θ. Note that, unlike the analysis of [7] for
naive theta-constant evaluation, we cannot get a bound for the relative precision:
since θ(1+τ

2 , τ) = 0, there is no lower bound for |θ(z, τ)|.1 If we set

B(P, τ) =

⌈√
P + 2

π Im(τ) log2(e)

⌉
+ 1,

we have 4|q|(B−1)2 ≤ 2−P , which means the approximation is accurate with absolute
precision P . We just showed what follows.

Theorem 2.7. To compute θ(z, τ) with absolute precision P bits, it is enough to
sum over all k ∈ Z such that

|k| ≤
⌈√

P + 2

π Im(τ) log2(e)

⌉
+ 1.

Note that this bound is larger than the one of [7, p. 5].

2.2.2. Naive algorithm. We then present a naive algorithm to compute not only the
value of θ(z, τ), but also the value of θ01(z, τ), θ00(0, τ), θ01(0, τ) for only a marginal
amount of extra computation; this is the algorithm we will use for comparison to the
fast algorithm we propose in this article. The algorithm performs computations at
a precision P, which we determine later so that the result is accurate to the desired
precision P .

Define the sequence (vn)n∈N as

vn = qn
2

(e2iπnz + e−2iπnz)

so that θ(z, τ) = 1 +
∑

n≥1 vn. This satisfies the following recurrence relation for
n > 1:

vn+1 = q2nv1vn − q4nvn−1.

We use this recursion formula to compute vn efficiently, which is similar to the trick
used by [10, Prop. 3]. This removes the need for divisions and the need to compute

1Incidentally, this is why we consider only absolute precision in this paper.

COMPUTING JACOBI’S THETA IN QUASI-LINEAR TIME 1485

and store e−2iπnz, which can get quite big; indeed, computing it only to multiply

it by the very small qn
2

is wasteful. The resulting algorithm is Algorithm 1.

Algorithm 1 Compute θ00,01(z, τ), θ00,01(0, τ) for z, τ satisfying conditions (2.3).

1: prec ← P
2: B ←

⌈√
P+2

π Im(τ) log2(e)

⌉
+ 1

3: θ0,z ← 1, θ1,z ← 1, θ0,0 ← 1, θ1,0 ← 1
4: q ← eiπτ , q1 ← q, q2 ← q
5: v1 ← e2iπ(z+τ/2) + e−2iπ(z−τ/2), v ← v1, v′ ← 2
6: for n = 1..B do
7: /* q1 = qn, q2 = qn

2

, v = vn, v
′ = vn−1 */

8: θ0,z ← θ0,z + v, θ1,z ← θ1,z + (−1)n × v
9: θ0,0 ← θ0,0 + 2q2, θ1,0 ← θ1,0 + (−1)n × 2q2

10: q2 ← q2 × (q1)
2 × q

11: q1 ← q1 × q
12: temp ← v, v ←

(
q21 × v1

)
× v − q41 × v′ v′ ← temp

13: end for

2.2.3. Error analysis and complexity. We have the following theorem.

Theorem 2.8. For z, τ satisfying conditions (2.3), Algorithm 1 with P = P +
logB+7 computes θ00(z, τ), θ01(z, τ), θ00(0, τ), θ01(0, τ) with absolute precision P

bits. This gives an algorithm which has bit complexity O
(
M(P)

√
P

Im(τ)

)
.

Performing the analysis of this algorithm requires bounding the error that is
incurred during the computation. We then compensate the number of inaccurate
bits by increasing the precision. We use the following theorem.

Theorem 2.9. For j = 1, 2, let zj = xj + iyj ∈ C and z̃j = x̃j + iỹj be its

approximation. Suppose that |zj − z̃j | ≤ kj2
−P and that kj ≤ 2P/2. Then

(1) |Re(z1 + z2)− Re(z̃1 + z̃2)| ≤ (k1 + k2)2
−P ,

(2) |Re(z1z2)− Re(z̃1z̃2)| ≤ (2 + 2k1|z2|+ 2k2|z1|)2−P ,
(3) |Re(z21)− Re(z̃1

2)| ≤ (2 + 4k1|z1|)2−P ,

and the same bounds apply to imaginary parts as well; and

(4) |ez1 − ez̃1 | ≤ |ez1 | 7k1+8.5
2 2−P .

Furthermore if |zj | ≥ 2kj2
−P ,

(5) |Re
(

z1
z2

)
−Re

(
z̃1
z̃2

)
| ≤

(
6(2+2k1|z2|+2k2|z1|)

|z2|2 + 2(4+8k2|z2|)(2|z1||z2|+1)+2
|z2|4

)
2−P

and the same bound applies to the imaginary part, and

(6) |√z1 −
√
z̃1| ≤ k1√

|z1|
2−P .

This theorem is not very hard to prove; we refer to [11] for details.

Proof of Theorem 2.8. We first determine the size of the quantities we are manip-
ulating; this is needed to evaluate the error incurred during the computation, as
well as the number of bits needed to store fixed-point approximations of absolute
precision P of the intermediate quantities. Taking B = 1 in Proposition 2.6 gives
|θ(z, τ) − 1| ≤ 3, so |θ(z, τ)| ≤ 4; actually, this also proves |SB(z, τ)| ≤ 4, which

1486 HUGO LABRANDE

means that |θ0,z |, |θ1,z|, |θ0,0|, |θ1,0| are bounded by 4. We also have |q| ≤ 0.07, and

|q2| ≤ |q|n2 ≤ |q|n = |q1| ≤ |q| ≤ 0.07. As for the vi, we have v0 = 2, and for n ≥ 1,

|vn| ≤ |q|n2+n + |q|n2−n ≤ (1 + |q|2n)qn2−n ≤ 1.0049qn
2−n ≤ 1.0049.

Hence, storing all the complex numbers above, including our result, with absolute
precision P only requires P + 2 bits, since their integral part is coded on only 2

bits. Note that, had we computed e−2iπnz before multiplying it by qn
2

, we would
have needed O(Im(τ)) more bits, which worsens the asymptotic complexity.

Computing the absolute precision lost during this computation is done using
Theorem 2.9. We start with the bounds |τ− τ̃ | ≤ 1

22
−P and |z− z̃| ≤ 1

22
−P , coming

from the hypothesis that the approximations of z and τ are correctly rounded with
precision P. We then need to estimate kv1 and kq, which can be done using the
formula giving the absolute error when computing an exponential from Theorem 2.9.
Given that τ ∈ F , we have

|q − q̃| ≤ 0.07
7× 1/2 + 8.5

2
2−P ≤ 0.42× 2−P ,

|v1 − ṽ1| ≤ 6(|e−π(Im(τ)+2 Im(z))|+ |eπ(2 Im(z)−Im(τ))|)× 2−P

≤ 6(|q|+ 1)2−P ≤ 6.42× 2−P ,

which means that kq ≤ 0.42 and kv1 ≤ 6.42. We then need to evaluate the loss of
precision for each variable and at each step of the algorithm, which gives recurrence
relations with non-constant coefficients. Solving those is rather tedious, and we use
loose upper bounds to simplify the computation; we do not detail this proof in the
present article. The results obtained by this method show that the error on the
computation of the theta-constants is bounded by (0.3B+105.958)2−P , and the one
on the computation of the theta function is smaller than (5.894B + 28.062)2−P .
This proves that the number of bits lost is bounded by log2 B + c, where c is a
constant smaller than 7; hence we set P = P + logB + 7.

Finally, evaluating π and exp(z) with precision P can be done in O(M(P) logP)
[1], but this is negligible asymptotically. In the end, computing an approxima-

tion up to 2−P of θ(z, τ) can be done in O
(
M (P + log(P/ Im(τ)) + c)

√
P

Im(τ)

)
=

O
(
M(P)

√
P

Im(τ)

)
bit operations. �

2.2.4. Computing the third theta function. We mentioned in section 2.1 the need to
compute θ10(z, τ) and θ10(0, τ) as well. One could think of recovering those values
using Jacobi’s quartic formula and the equation of the variety:

θ00(0, τ)
4 = θ01(0, τ)

4 + θ10(0, τ)
4(2.5)

θ200(z, τ)θ
2
00(0, τ) = θ201(z, τ)θ

2
01(0, τ) + θ210(z, τ)θ

2
10(z, τ)(2.6)

that is to say, compute

θ10(0, τ) =
(
θ00(0, τ)

4 − θ01(0, τ)
4
)1/4

θ10(z, τ) =

√
θ200(z, τ)θ

2
00(0, τ)− θ201(z, τ)θ

2
01(0, τ)

θ10(0, τ)
.

However, this approach induces an asymptotically large loss of absolute precision for
both θ10(0, τ) and θ10(z, τ). According to Theorem 2.9, both square root extraction
and inversion induce a loss of precision proportional to |z|−1; since θ10(0, τ) ∼

COMPUTING JACOBI’S THETA IN QUASI-LINEAR TIME 1487

4q1/2, the number of bits lost by applying those formulas is O(Im(τ)). Note that
those formulas would also induce a big loss in relative precision; since θ00(0, τ)
and θ01(0, τ) are very close when Im(τ) goes to infinity, the subtraction induces
a relative precision loss of O(Im(τ)) bits (for more details, see [7, Section 6.3]).
Either of those analyses show that, in order to compensate precision loss, the naive
algorithm should actually be run with a precision of O(P + logB + Im(τ)), which
gives a running time that worsens, instead of getting better, when Im(τ) gets big.
We do not recommend this approach.

Instead, one should compute partial summations of the series defining θ10, much
in the same way as we did for θ(z, τ). We outline the analysis in this case, which
is very similar to the one for θ: supposing n ≥ 2, we have n2 − 2n ≥ (n − 2)2,

which can be used to prove that |θ10(z, τ) − SB| ≤ 3|q|(B−2)2 , so that the bound
on B is thus just one more than for θ; the recurrence relation is the same; q2n|v1|
is bounded by 2 instead of 1, which in the worst case means logB more guard bits
are needed. In what follows, we will refer to this algorithm as “the naive algorithm
to compute θ10(0, τ), θ10(z, τ)”; its asymptotic complexity is, just like Algorithm 1,

O
(
M(P)

√
P

Im(τ)

)
bit operations, which gets better as Im(τ) increases.

We note that similar considerations apply to the problem of computing θ11. One
can compute θ11(z, τ) using the formula [13, p. 22]

(2.7) θ11(z, τ)
2 =

θ01(z, τ)
2θ10(0, τ)

2 − θ10(z, τ)
2θ01(0, τ)

2

θ00(0, τ)2
.

Using this formula loses only a few bits of precision since θ00(0, τ) is bounded;
however, one then needs to compute a square root, which potentially loses O(Im(τ))
bits. Hence, a summation of the series, which directly gives θ11, is preferable.

2.3. Fast computation of theta-constants. Now we recall the definition of the
arithmetico-geometric mean (AGM) for two positive real numbers a, b:

a0 = a, b0 = b,

an+1 =
an + bn

2
, bn+1 =

√
anbn.(2.8)

The sequences (an)n∈N and (bn)n∈N both converge to the same limit, called the
arithmetico-geometric mean of a and b. Furthermore, (an) and (bn) are quad-
ratically convergent, in the sense of the following definition.

Definition 2.10. A sequence (an) is said to be quadratically convergent (to a
limit �) if there is a C > 0 such that for n large enough:

|an+1 − an| ≤ C|an − an−1|2.

The constant C in the case of the AGM can be taken as π
8min(|a|,|b|) [7, Thm. 1].

Quadratic convergence implies that the number of exact digits approximately dou-
bles with each iteration, so that one only needs O(logP) iterations to compute
AGM(a, b) with precision P ; hence the total cost of computing AGM(a, b) up to
2−P is O(M(P) logP) bit operations.

It is possible to generalize the AGM to complex numbers, but there are two
possibilities for the choice of the square root at each step. We then call an AGM
sequence for a and b any sequence (an, bn)n∈N such that

a0 = a, b0 = b, 2an+1 = an + bn, b2n+1 = anbn.

1488 HUGO LABRANDE

Note that there are uncountably many AGM sequences for a, b. We define unam-
biguously the AGM of two complex numbers following [4].

Proposition 2.11. Let a, b ∈ C and let (an, bn)n∈N be an AGM sequence for a and
b. We say that the choice of signs is good at the rank n if

|an − bn| < |an + bn| or |an − bn| = |an + bn| and Im

(
bn
an

)
> 0.

We call the AGM sequence for a and b in which all the choices of signs are good
the optimal AGM sequence, and define AGM(a, b) as the limit of the optimal
AGM sequence for a and b.

Finally we have the following proposition.

Proposition 2.12 ([4, Proposition 2.1]). Let (an, bn)n∈N be an AGM sequence for
a, b:

• If (an, bn) has infinitely many bad choices of sign, limn→∞ an = 0 and the
convergence is at least linear.

• If (an, bn) has only finitely many bad choices of sign (for instance if it is
optimal), (an) and (bn) both converge quadratically to the same non-zero
limit.

The link between the complex AGM and theta-constants is well-known.

Proposition 2.13. We have the following formulas linking theta-constants:

θ200(0, 2τ) =
θ200(0, τ) + θ201(0, τ)

2
,(2.9)

θ201(0, 2τ) = θ00(0, τ)θ01(0, τ).(2.10)

This shows that (θ200(0, 2
nτ), θ01(0, 2

nτ))n∈N is an AGM sequence for θ200(0, τ)
and θ201(0, τ), and it converges quadratically to 1. Whether or not this sequence is
the optimal AGM sequence is controlled by the following result.

Proposition 2.14 ([7, Theorem 2] or [4, Lemma 2.9]). Define

Fk′ =

{
τ ∈ H | |Re(τ)| < 1,

∣∣∣∣τ +
3

4

∣∣∣∣ ≥ 1

4
,

∣∣∣∣τ +
1

4

∣∣∣∣ > 1

4
,

∣∣∣∣τ − 1

4

∣∣∣∣ ≥ 1

4
,

∣∣∣∣τ − 3

4

∣∣∣∣ > 1

4

}
⊂ H.

Let τ ∈ Fk′ , and let (an, bn)n∈N be the optimal AGM sequence for θ200(0, τ) and
θ201(0, τ). Then for all n we have (an, bn) = (θ200(0, 2

nτ), θ201(0, 2
nτ)), which implies

AGM(θ200(0, τ), θ
2
01(0, τ)) = 1.

In [7, Algorithm 4], an algorithm relying on the AGM, and with complexity
O(M(P) logP), is given to compute the value of the theta-constants with precision

P bits. The algorithm uses the fact that k′(τ) =
θ2
01(0,τ)

θ2
00(0,τ)

is a solution to the

following equation:

iAGM(1, z)− τ AGM
(
1,
√
1− z2

)
= 0

which is a consequence of the action of SL2(Z) on the theta-constants, as well
as of Jacobi’s quartic formula (equation (2.5)). Newton’s method, when given
an approximation of k′(τ) with precision P/2 as well as the knowledge of τ with
precision P , computes an approximation of k′(τ) with precision P − δ, where δ is
a small constant. If one carries out Newton’s method while doubling the working

COMPUTING JACOBI’S THETA IN QUASI-LINEAR TIME 1489

precision with each iteration, it is asymptotically only as costly as the last iteration;
this means k′(τ) can be computed with precision P in quasi-optimal running time.
One can then recover the individual values of the theta-constants using the equation

(2.11) AGM

(
1,

θ01(0, τ)
2

θ00(0, τ)2

)
=

1

θ00(0, τ)2
.

However, the complexity of this algorithm is not uniform; that is to say, it reaches
this complexity only for τ within a compact set. A variant of the algorithm is pro-
posed in [7, Algorithm 5] which makes the complexity uniform: if P ≤ 2 log Im(τ),
use the naive algorithm (which gives the right complexity); if not, compute the
value of the theta-constants at τ

2n for some n ≤ log Im(τ), and use the AGM to
compute the theta-constants at τ . This gives an algorithm which complexity does
not depend on τ .

3. A sequence related to theta functions

3.1. Definition of the F sequence. We start with the following formula.

Proposition 3.1.

θ00(z, 2τ)
2 =

θ00(z, τ)θ00(0, τ) + θ01(z, τ)θ01(0, τ)

2
,(3.1)

θ01(z, 2τ)
2 =

θ00(z, τ)θ01(0, τ) + θ01(z, τ)θ00(0, τ)

2
.(3.2)

This formula is called in [3, formula 3.13, p. 39] the change of basis formula
from the F2 basis to the F(n,2)2 basis. However, a direct proof can be obtained
with limited effort, using the series defining θ and some manipulations and term
reorganization akin to ∑

n+m≡0 (mod 2)

qn
2+m2

=
∑
i,j∈Z

q(i+j)2+(i−j)2 .

We also note that one can similarly prove the following formula, which will be used
in section 4.2:

(3.3) θ10(z, 2τ)
2 =

θ00(z, τ)θ00(0, τ)− θ01(z, τ)θ01(0, τ)

2
.

We then define the following function:

F : C4 → C
4

(x, y, z, t) �→
(√

x
√
z +

√
y
√
t

2
,

√
x
√
t+

√
y
√
z

2
,
z + t

2
,
√
z
√
t

)
.

Hence, according to Propositions 2.13 and 3.1, for some appropriate choice of roots
we have

F
(
θ200(z, τ), θ

2
01(z, τ), θ

2
00(0, τ), θ

2
01(0, τ)

)
=

(
θ200(z, 2τ), θ

2
01(z, 2τ), θ

2
00(0, 2τ), θ

2
01(0, 2τ)

)
.

1490 HUGO LABRANDE

Remark. One can also write rewrite F using Karatsuba-like techniques

F (x, y, z, t) =

(
(
√
x+

√
y)(

√
z +

√
t) + (

√
x−√

y)(
√
z −

√
t)

4
,(3.4)

(
√
x+

√
y)(

√
z +

√
t)− (

√
x−√

y)(
√
z −

√
t)

4
,

(
√
z +

√
t)2 + (

√
z −

√
t)2

4
,
(
√
z +

√
t)2 − (

√
z −

√
t)2

4

)
to speed up computations. �

Following section 2.3, we define a good choice for square roots at the rank n
as the following conditions being satisfied:

• Re(
√
xn) ≥ 0, Re(

√
zn) ≥ 0;

• |√xn − √
yn| < |√xn +

√
yn| or |√xn − √

yn| = |√xn +
√
yn| and

Im
(√

yn√
xn

)
> 0;

• |√zn −
√
tn| < |√zn +

√
tn| or |√zn −

√
tn| = |√zn +

√
tn| and

Im
(√

tn√
zn

)
> 0.

The last condition is equivalent to |zn − tn| ≤ |zn + tn|, which means that (zn, tn)
is an AGM sequence for (z0, t0) in which all the choices of sign are good. Note that
the condition |x− y| < |x+ y| is equivalent to Re

(
y
x

)
> 0.

Again, similarly to the AGM, for any x, y, z, t ∈ C we define the optimal F
sequence ((xn, yn, zn, tn))n∈N as follows:

(x0, y0, z0, t0) = (x, y, z, t),

(xn+1, yn+1, zn+1, tn+1) = F (xn, yn, zn, tn) ,

where all the choices of sign for the square roots are good. The study of this
sequence and its convergence is done in section 3.4.

3.2. Link with theta functions.

3.2.1. More argument reduction. We go slightly further than the conditions (2.3)
in order to justify the forthcoming results. We wish to further reduce z, as follows:

(3.5) 0 ≤ Im(z) ≤ Im(τ)

4
, |Re(z)| ≤ 1

8
.

The first hypothesis allows us to avoid z = τ+1
2 , which is a zero of θ(z, τ), and hence

a pole of quotients of the form θi
θ00

, which we consider in our algorithm much in the

same way as [7]. We prove Lemma 3.3 and Theorem 3.4 under this assumption.
The second condition complements the first one as follows.

Lemma 3.2. Let z, τ such that |Re(τ)| ≤ 1
2 and the conditions of (3.5) are verified.

Then z
τ ,

−1
τ verify the first condition of (3.5).

Proof. Write∣∣∣Im(z
τ

)∣∣∣ = 1

|τ |2 | Im(z) Re(τ)− Re(z) Im(τ)| ≤ Im(τ)

|τ |2

(
1

4

1

2
+

1

8

)
=

1

4
Im

(
−1

τ

)
.

�

COMPUTING JACOBI’S THETA IN QUASI-LINEAR TIME 1491

This will be used to apply Theorem 3.4 to z
τ ,

−1
τ in Proposition 4.1.

Note that those conditions are satisfied if one takes z′ = z
4 with z satisfy-

ing conditions (2.3). One can then compute θ200,01(z, τ) from θ200,01,10(z/2, τ) and

θ200,01,10(0, τ) using the following z-duplication formulas [13, p. 22]:

θ00(z, τ)θ
3
00(0, τ) = θ401(z/2, τ) + θ410(z/2, τ),(3.6)

θ01(z, τ)θ
3
01(0, τ) = θ400(z/2, τ)− θ410(z/2, τ),

θ10(z, τ)θ
3
10(0, τ) = θ400(z/2, τ)− θ401(z/2, τ).

This requires the knowledge of θ10(z, τ) and the associated theta-constant; this
could be computed using Jacobi’s formula (equation (2.5)) and the equation of the
variety (equation (2.6)), but we end up using a different trick in our final algorithm.

3.2.2. Good choices of sign and thetas. We now prove, for the arguments we con-
sider, that the good choices of sign correspond exactly to values of θ.

Lemma 3.3. For any τ such that Im(τ) ≥ 0. 345 (in particular, for τ ∈ F) and z
verifying the first condition in (3.5) we have

|θ00(z, τ)− θ01(z, τ)| < |θ00(z, τ) + θ01(z, τ)|,

which also proves that Re
(

θ01(z,τ)
θ00(z,τ)

)
> 0,Re

(
θ01(0,τ)
θ00(0,τ)

)
> 0.

Proof. Write:

|θ00(z, τ) + θ01(z, τ)− 2| ≤ 2
∑

n≥2,n even

|qn2

(w2n + w−2n)|

≤ 2
∑

n≥2,n even

|q|n2

(1 + |q|−n/2)

≤ 2
∑
n≥1

|q|4n2

(1 + |q|−n)

≤ 2|q|3 + 2|q|4 + 2q16

1− q20
+

2q14

1− q19
,

|θ00(z, τ)− θ01(z, τ)| ≤ 2
∑

n≥1,n odd

|q|n2

(1 + |q|−n/2)

≤ 2|q|1/2 + 2|q|+ 2q9

1− q16
+

2q7.5

1− q19
.

We have

2|q|1/2 + 2|q|+ 2q9

1−q16 + 2q7.5

1−q19

2− (2|q|3 + 2|q|4 + 2q16

1−q20 + 2q14

1−q19)
≤ 1

for Im(τ) > 0. 345, which proves the lemma. �

We are now ready to prove the next lemma.

Theorem 3.4. Let (xn, yn, zn, tn) be the optimal F sequence for θ200(z, τ), θ
2
01(z, τ),

θ200(0, τ), θ
2
01(0, τ). For any τ such that Im(τ) ≥ 0. 345 and z satisfying the first

condition of (3.5) we have

(xn, yn, zn, tn) =
(
θ200(z, 2

nτ), θ201(z, 2
nτ), θ200(0, 2

nτ), θ201(0, 2
nτ)

)
.

1492 HUGO LABRANDE

Proof. This is true for n = 0; we prove the statement inductively. Suppose it is
true for n = k. We have

θ00(0, τ) = 1 + 2q + c, |c| ≤ 2|q|4
1− |q|5

for any τ such that Im(τ) ≥ 0. 345, 2|q| ≤ 0.676 and |c| ≤ 0.027; hence we have
Re(θ00(0, 2

kτ)) > 0 for any k, which proves that
√
zk = θ00(0, 2

kτ). Lemma 3.3

shows that Re
(

θ01(0,τ)
θ00(0,τ)

)
> 0, and we also have Re

(√
tk√
zk

)
≥ 0 since the choice of

roots is good, hence
√
tk = θ01(0, 2

kτ). Proposition 2.13 then proves that tk+1 =
θ201(0, 2

k+1τ) and zk+1 = θ200(0, 2
k+1τ).

Similarly, given that z satisfies the first condition of (3.5):

(3.7) |θ00(z, τ)− 1| ≤ |q|1/2 + |q|+ |q|3 + |q|4 + |q|7/2 + |q|9 + 2|q|14
1− |q|2 .

For Im(τ) ≥ 0. 345, this is strictly smaller than 1; hence Re(θ00(z, τ)) > 0, which

proves that
√
xk = θ00(z, 2

kτ). Again, Lemma 3.3 proves that Re
(

θ01(z,2
kτ)

θ00(z,2kτ)

)
> 0,

and since the choice of signs is good, Re
(√

yk√
xk

)
≥ 0, necessarily

√
yk = θ01(z, 2

kτ).

This along with Proposition 3.1 finishes the induction. �

Note that a consequence of this proposition is the following fact.

Proposition 3.5. The optimal F sequence for θ200(z, τ), θ
2
01(z, τ), θ

2
00(0, τ), θ

2
01(0, τ)

converges quadratically to (1, 1, 1, 1).

3.3. A function with quasi-optimal time evaluation. The strategy of [7] is
to use an homogenization of the AGM to get a function fτ : C → C, on which
Newton’s method can be applied. To generalize this, we homogenize the function
which maps to (x, y, z, t) the limit of the optimal F sequence associated to them;
it becomes a function from C2 to C2. We call this function F∞; this function is a
major building block for the function we use to compute our two parameters z, τ
using Newton’s method.

Proposition 3.6. Let λ, μ ∈ C. Let ((xn, yn, zn, tn))n∈N be the optimal F sequence
for (x, y, z, t), and ((x′

n, y
′
n, z

′
n, t

′
n))n∈N the optimal F sequence for (λx, λy, μz, μt).

Put limn→∞ zn = z∞ and limn→∞ z′n = z′∞. Then we have

μ =
z′∞
z∞

, λ =

(
limn→∞

(
x′
n

z′
∞

)2n
)
× z′∞(

limn→∞
(

xn

z∞

)2n
)
× z∞

.

Proof. We prove by induction that

x′
n = εnλ

1/2nμ1−1/2nxn, y′n = εnλ
1/2nμ1−1/2nyn, z′n = μzn, t′n = μtn,

where Re(λ1/2n) ≥ 0, Re(μ1−1/2n) ≥ 0, and εn is a 2n-th root of unity. This is
enough to prove the proposition above, since then

lim
n→∞

(
x′
n

z′∞

)2n

= lim
n→∞

λμ2n−1

(
xn

z′∞

)2n

=
λ

μ
lim
n→∞

(
xn

z∞

)2n

.

COMPUTING JACOBI’S THETA IN QUASI-LINEAR TIME 1493

Since this is true for n = 0, suppose this is true for n = k. We have

z′k+1 =
z′k + t′k

2
= μzk+1.

As for tk+1, we can write√
z′k = εz

√
μ
√
zk,

√
t′k = εt

√
μ
√
tk,

where εz = ±1 and εt = ±1, and the square roots are taken with positive real part.

But since Re

(√
t′k√
z′
k

)
≥ 0 and Re

(√
tk√
zk

)
≥ 0, we have εz = εt. Hence

t′k+1 = (εz
√
μ
√
zk)

(
εz
√
μ
√
tk
)
= μtk+1.

As for the other coordinates, we have√
x′
k = εx

√
εkλ

1/2k+1

μ1/2−1/2k+1√
xk,

√
y′k = εy

√
εkλ

1/2k+1

μ1/2−1/2k+1√
yk,

where the roots are taken with positive real part, and εx, εy ∈ {−1, 1}. Since

Re
(√

yk√
xk

)
≥ 0 and we require Re

(√
y′
k√

x′
k

)
≥ 0, necessarily εx = εy; hence

x′
k+1 =

√
x′
k

√
z′k +

√
y′k
√
t′k

2

= εk+1λ
1/2k+1

μ1−1/2k+1

√
xk

√
zk +

√
yk
√
tk

2

= εk+1λ
1/2k+1

μ1−1/2k+1

xk+1,

where εk+1 = εx
√
εz is indeed such that ε2

k+1

k+1 = 1. This proves the proposition. �

In the case of theta functions, however, we have what follows.

Proposition 3.7.

lim
n→∞

θ(z, 2nτ)2
n

θ(0, 2nτ)2n
= 1.

Proof. It is enough to prove limn→∞ θ(z, 2nτ)2
n

= 1, since it also covers the case
z = 0. Write, as equation (3.7):

θ(z, 2nτ) = 1 + q2
n

(w2 + w−2) + c, |c| ≤ 2|q|2n+3

1− |q| .

We can write θ(z, 2nτ) = 1 + dn with |dn| ≤ 2|q|2n |w2 + w−2|. We then have
classically

|θ(z, 2nτ)2n − 1| ∼ |2ndn|,
and since limn→∞ 2n|q|2n = 0, this proves the proposition. �

Combining this with Proposition 3.6 and Theorem 3.4 proves that, for (xn, yn,
zn, tn) as in Theorem 3.4, we have

λ = lim
n→∞

(
x′
n

μ

)2n

× μ.

1494 HUGO LABRANDE

In particular, if we define the following function as

F∞ : C4 → C
2

(x, y, z, t) �→
((

lim
n→∞

(
xn

z∞

)2n
)

× z∞, z∞

)
,

where z∞ = limn→∞ zn, then we have that, for any z, τ satisfying the hypotheses
of Theorem 3.4,

F∞ (
λθ200(z, τ), λθ

2
01(z, τ), μθ

2
00(0, τ), μθ

2
01(0, τ)

)
= (λ, μ).

For instance,

(3.8) F∞
(
1,

θ201(z, τ)

θ200(z, τ)
, 1,

θ201(0, τ)

θ200(0, τ)

)
=

(
1

θ200(z, τ)
,

1

θ200(0, τ)

)
.

This is similar to equation (2.11), and will play a similar role in the computation
of θ(z, τ).

3.4. Convergence. Let us start by showing that, contrary to the AGM and despite
Proposition 3.5, an optimal F sequence does not always converge quadratically; for
instance, the optimal F sequence for (2, 2, 1, 1) is ((21/2

n

, 21/2
n

, 1, 1))n∈N, which
does not converge quadratically. This is a big difference from the AGM, and this is
why we are reluctant to call optimal F sequences a “generalization of the AGM”.

However, we now show that the sequence (λn) =

((
xn

z∞

)2n

× z∞

)
n∈N

converges

quadratically, whence F∞ can be computed in O(M(P) logP) bit operations.

Lemma 3.8. Let (x0, y0, z0, t0)∈C
4. Put (xn+1, yn+1, zn+1, tn+1)=F (xn, yn, zn, tn)

for any integer n ∈ N, and suppose this is an optimal F sequence. Then there exists
positive real constants c, C such that for all n ≥ 1,

c ≤ |xn|, |yn|, |zn|, |tn| < C.

Proof. The upper bound result follows from a trivial induction using the equations
defining F . We prove in section 4.3.5 that there is a suitable C for any z, τ we
consider in our final algorithm.

We now prove the existence of c. Recall that the choice of signs for the square
roots are good at all steps, since we assume (xn, yn, zn, tn) is an optimal F sequence.
Thus there exists α, β ∈ C∗ such that

Re(x1/α) > 0, Re(y1/α) > 0, Re(z1/β) > 0, Re(t1/β) > 0.

For instance, in most cases one can take α = x1 and β = z1. Let us assume without
loss of generality that |α| = |β| = 1, and let c = min(Re(x1/α),Re(y1/α),Re(z1/β),
Re(t1/β)). For good choices of square roots, we have (see e.g. [6, Lemme 7.3])

Re

(√
x1

α

√
z1
β

)
≥ min

(
Re

(x1

α

)
,Re

(
z1
β

))
≥ c,

and the same goes if one replaces x1 by y1 or z1 by t1. This implies from the
definition that |x2| ≥ Re(x2/

√
αβ) ≥ c, and the same goes for |y2|, |z2|, |t2|. The

result follows by induction, with
√
αβ, of module 1, playing the role of α at the

next iteration. �

COMPUTING JACOBI’S THETA IN QUASI-LINEAR TIME 1495

Lemma 3.9. If the choice of square roots is good, we have

|√xn +
√
yn| ≥

√
2c, |√zn +

√
tn| ≥

√
2c

and hence

|√xn −√
yn| ≤

|xn − yn|√
2c

, |√zn −
√
tn| ≤

|zn − tn|√
2c

.

Proof. The parallelogram identity gives

|√xn +
√
yn|2 = 2|√xn|2 + 2|√yn|2 − |√xn −√

yn|2

≥ 2|√xn|2 + 2|√yn|2 − |√xn +
√
yn|2

since choice of signs are good and hence |√xn +
√
yn|2 ≥ 2c. The proof is the same

for |√zn +
√
tn|. �

We now prove that (λn) =

((
xn

z∞

)2n

× z∞

)
n∈N

converges quadratically, by

proving the following theorem.

Theorem 3.10. The sequence (λn) converges, to a limit λ. Furthermore, for P
large enough, there exists a constant c1 > 0, depending on C, c and |λ|, such that, if
k is the first integer such that |zk − tk| ≤ 2−P−k−c1 , then λk+1 is an approximation
of λ with absolute precision P bits.

Proof. The point here is that once zn and tn are close enough, xn+1 and yn+1 are
also close and the value of λn does not change much after that. Let c1 ≥ 0, and
take n to be the first integer for which |zn − tn| ≤ η with η = 2−P−c1−n. We then
have for all k ≥ 0 [7, Theorem 1],

|zn+k − tn+k| ≤ A2k−1η2
k

,

with A = π
8min(|z0|,|t0|) . Furthermore, |zn+1 − zn| = 1

2 |zn − tn|, so that

|z∞ − zn+k| ≤
1

2

∞∑
i=k

A2i−1η2
i

and we have |z∞ − zn+k| ≤ 1
A (Aη)2

k

. Finally, using equation (3.4), one can write

|xn+k+1 − yn+k+1| ≤
|√xn −√

yn||
√
zn −

√
tn|

2

≤
√
C
√
2
√
|zn+k+1 − tn+1|

since zn+k+1 − tn+k+1 =
(
√
zn+k −

√
tn+k)

2

2

≤
√
2AC|zn+k − tn+k|.

Now, define qn = (xn/z∞)2

xn−1/z∞
, so that λn+1

λn
= q2

n

n . Note that if one makes the

approximation xn+k+1 = yn+k+1 and zn+k+1 = tn+k+1 = z∞, we have xn+k+2 =

1496 HUGO LABRANDE

√
xn+k+1z∞ which gives qn+k+2 = 1. We take a closer look at those approximations:

|xn+k+2 −
√
xn+k+1

√
zn+k+1| ≤

|√yn+k+1 −
√
xn+k+1||

√
zn+k+1 +

√
tn+k+1|

4

+
|√yn+k+1 +

√
xn+k+1||

√
zn+k+1 −

√
tn+k+1|

4

≤
√
C

2
(|√yn+k+1 −

√
xn+k+1|+ |√zn+k+1 −

√
tn+k+1|)

≤
√
C

2

(√
2AC

|√xn+k+1 +
√
yn+k+1|

|zn+k − tn+k|+
√
2A|zn+k+1 − tn+k+1|

)

≤ B(Aη)2
k

so

qn+k+2 − 1 =
(xn+k+2/z∞)2 − xn+k+1/z∞

xn+k+1/z∞

≤
1

z2
∞
(
√
xn+k+1

√
zn+k+1 +B(Aη)2

k

)2 − xn+k+1/z∞

xn+k+1/z∞

≤ xn+k+1zn+k+1/z
2
∞ − xn+k+1/z∞

xn+k+1/z∞
+

2C/z2∞B(Aη)2
k

+B2(Aη)2
k+1

xn+k+1/z∞

≤ 1

2z∞

∞∑
i=k+1

(Aη)2
i

+
CB(Aη)2

k

xn+k+1z∞
+

B2(Aη)2
k+1

xn+k+1/z∞

≤ B′ × (Aη)2
k

.

This proves that (qn) converges quadratically to 1; using the equivalent q2
n

n −
1 ∼ 2nqn, we have that (q2

n

n) also converges quadratically to 1, which proves the
convergence of the sequence (λn).

Finally we have

q2
n+2

n+2 ...q2
n+k

n+k − 1 ≤
k−2∏
i=0

(
1 +B′(Aη)2

i
)2n+i+2

− 1

< exp

(
4B′

k−2∑
i=0

2n+i(Aη)2
i

)
− 1

≤ 4B′ ∑k−2
i=0 2n+i(Aη)2

i

1− (4B′ ∑k−2
i=0 2n+i(Aη)2i)/2

which proves, for P large enough,

|λ− λn+1| ≤ 8B′|λn+1|
∞∑
i=0

2n+i(Aη)2
i

≤ 16B′|λn+1|Aη2n

≤ 16AcB′|λn+1|2−c1 × 2−P .

This inequality proves that, at least for P large enough, |λn+1| ≤ 2|λ|. Hence if we
suppose log2(32Ac|λ|) ≤ c1, we have that λn+1 is an approximation of λ with P
bits of absolute precision. �

COMPUTING JACOBI’S THETA IN QUASI-LINEAR TIME 1497

Algorithm 2 Compute F∞(x, y, z, t)

1: Work at precision P.
2: n ← 0
3: while |z − t| ≤ 2−P−n−c1 do
4: n ← n+ 1
5: (x, y, z, t) ← F (x, y, z, t)
6: end while
7: (x, y, z, t) ← F (x, y, z, t)

8: Return
((

x
z

)2n+1

× z, z
)

This gives an algorithm, Algorithm 2, to compute F∞(x, y, z, t). According to
[7, Theorem 12], if n = max(log | log |z0/t0||, 1)+log(P+c1), an is an approximation

of AGM
(
1, | z0t0 |

)
with relative precision P bits. This proves that at the end of the

algorithm, n = O(logP); in fact, we have more precisely n ≤ log2 P + C ′′ with
C ′′ a constant independent of P . Finally in the next subsection we prove that one
can take P = P + O(logP), which means that this algorithm computes F∞ in
O(M(P) logP) bit operations.

3.5. Loss of precision. We use Theorem 2.9 in order to evaluate the precision
lost when computing F∞(x, y, z, t). First note that the upper and lower bounds on
the terms of the sequence allow us to write(

1√
|zn|

+
1√
|tn|

)(√
|zn|+

√
|tn|

)
≤ b/2,

(
1√
|zn|

+
1√
|tn|

)(√
|xn|+

√
|yn|

)
≤ b,

(
1√
|xn|

+
1√
|yn|

)(√
|zn|+

√
|tn|

)
≤ b

for some b > 1; for instance, one can take b = max
(
1, 4

√
C
c

)
. We prove in

section 4.3.5 the existence of c and C, and hence of b, for any values of theta we
consider as arguments.

We first evaluate a bound on the error incurred when computing F using equa-
tion (3.4). Using those formulas allows us to get error bounds that are identical for
Fx and Fy, and Fz and Ft. For simplicity, we assume that the error on z and t is
the same, as well as the error on x and y. This gives:

|Re(Fx)− Re(F̃x)| ≤
(
1 + kz

(
1√
|z|

+
1√
|t|

)(√
|x|+

√
|y|

)

+kx

(
1√
|x|

+
1√
|y|

)(√
|z|+

√
|t|
))

2−P ,

|Re(Fz)− Re(F̃z)| ≤
(
1 + 2kz

(
1√
|z|

+
1√
|t|

)(√
|z|+

√
|t|
))

2−P .

1498 HUGO LABRANDE

We thus get the following induction relations when looking at what happens when
applying F n times in a row:

k(n)x ≤ 1 + bk(n−1)
z + bk(n−1)

x , k(n)z ≤ 1 + bk(n−1)
z .

The last equation is rewritten as k
(n)
z + 1

b−1 ≤ b
(
k
(n−1)
z + 1

b−1

)
, which gives k

(n)
z ≤

bn
(
kz +

1
b−1

)
. The induction for x becomes k

(n)
x ≤ 1 + (kz + 1

b−1)b
n + bk

(n−1)
x ,

which we solve:

k(n)x ≤ (1 + b+ · · ·+ bn)kx + nbn
(
kz +

1

b− 1

)
≤ bn

(
nkz +

b+ n

b− 1

)
.

For b > 1, we have for n large enough that k(n) ≤ 2b2n, which ultimately means the
number of bits lost when applying F n times in a row is bounded by 2n log b+ 1.

Finally we need to find the number of bits lost in the computation of
(

xn

z∞

)2n

.

Call Ek the error made after computing k squarings in a row; we have the following
recurrence relation:

Ek+1 ≤ 2 + 4Ek|xn/z∞|2k .

However, since (λn) converges, |λn| ≤ ρ for some constant ρ; furthermore, for

any k ≤ n, one has |xn/z∞|2k ≤ 1 + ρ
z∞

. Hence the recurrence becomes Ek+1 ≤
2 + 4

(
1 + ρ

z∞

)
Ek, which we solve to get

En ≤ 2
C ′n+1 − 1

C ′ − 1
≤ 2

C ′ − 1
C ′n+1

with C ′ = 4
(
1 + ρ

z∞

)
. This means the number of bits lost after n successive

squarings is at the most (n+ 1) logC ′ + 1− log(C ′ − 1).
Overall, if we write that the final value of n in Algorithm 2 is bounded by

log2 P + C ′′, we have that the number of bits lost is bounded by

(2 log2 b+ logC ′)(log2 P + C ′′) + logC ′ + 2− logC ′ − 1,

which is O(logP).

4. Fast computation of theta

We use a similar method as in [7], that is to say, finding a function F such that

F

(
θ201(z, τ)

θ200(z, τ)
,
θ201(0, τ)

θ200(0, τ)

)
= (z, τ),

which can then be inverted using Newton’s method. One can then compute θ(z, τ)
by, for instance, using equation (3.8) and extracting a square root, determining the
correct choice of sign by computing a low-precision (say, 10 bits) approximation of
the value using the naive method; we use a different trick in our final algorithm
(Algorithm 5). We build this function F using F∞ as a building block.

COMPUTING JACOBI’S THETA IN QUASI-LINEAR TIME 1499

4.1. Building a function to invert. Just as with the algorithm for theta-
constants, we use formulas derived from the action of SL2(Z) on the values of
θ in order to get multiplicative factors depending on our parameters; this will allow
us to build a function which computes z, τ from the values θi(z, τ). We define the
function F as the result of Algorithm 3.

Algorithm 3 Compute F (s, t)

1: b ←
√
1− t′2 � Choose the root with positive real part [4, Prop. 2.9]

2: a ← 1−st
b

3: (x, y) ← F∞ (1, a, 1, b)
4: (q1, q2) ← F∞ (1, s, 1, t)

5: Return

(√
log

(
q2x
q1y

)
× q2/y

−2π , i
q2
y

)
, choosing the sign of the square root so that

it has positive imaginary part.

Proposition 4.1. Let τ be such that |Re(τ)| ≤ 0.5, Im(τ) ≥ 0. 345 and Im
(−1

τ

)
≥

0. 345, and let z be such that the conditions (3.5) are satisfied. Then

F

(
θ201(z, τ)

θ200(z, τ)
,
θ201(0, τ)

θ200(0, τ)

)
= (z, τ).

Proof. Equation (3.8) proves that (q1, q2) =
(

1
θ00(z,τ)2

, 1
θ00(0,τ)2

)
. Furthermore,

using Jacobi’s formula (2.5) and the equation defining the variety (2.6), it is easy

to see that b = θ10(0,τ)
2

θ00(0,τ)2
and a = θ10(z,τ)

2

θ00(z,τ)2
.

The formulas in [13, Table V, p. 36] give(
θ200(z, τ), θ

2
10(z, τ), θ

2
00(0, τ), θ

2
10(0, τ)

)
=

(
λθ200

(
z

τ
,
−1

τ

)
, λθ201

(
z

τ
,
−1

τ

)
, μθ200

(
0,

−1

τ

)
, μθ201

(
0,

−1

τ

))

with λ = e−2iπz2/τ

−iτ , μ = 1
−iτ . From the discussion in section 3.2.1, the conditions

on z, τ allow us to apply Theorem 3.4 to z
τ ,

−1
τ . This proves that

F∞ (
θ200(z, τ), θ

2
10(z, τ), θ

2
00(0, τ), θ

2
10(0, τ)

)
=

(
e−2iπz2/τ

−iτ
,

1

−iτ

)
,

and by homogeneity (x, y) =
(

e−2iπz2/τ

−iτθ00(z,τ)2
, 1
−iτθ00(0,τ)2

)
. �

This means that, starting from the knowledge of z and τ with precision P and a

low-precision approximation of the quotients θ01(z,τ)
θ00(z,τ)

and θ01(0,τ)
θ00(0,τ)

, one can compute

those quotients with precision P using Newton’s method. This is Algorithm 4. Note
that we put P ′, a precision that is large enough to ensure that the final result is
accurate up to 2−P ; we discuss the matter of precision loss later in this subsection.

We make a few remarks:

• The proof of the invertibility of the Jacobian of F is delayed until sec-
tion 4.3.2.

1500 HUGO LABRANDE

Algorithm 4 Compute θ200(z, τ), θ
2
01(z, τ), θ

2
00(0, τ), θ

2
01(0, τ) with precision P .

Input: (z, τ) with absolute precision P .

1: Compute θ200,01(z, τ), θ
2
00,01(0, τ) with absolute precision P0 using Algorithm 1.

2: s ← θ01(z,τ)
2

θ00(z,τ)2
, t ← θ01(0,τ)

2

θ00(0,τ)2

3: p ← P0

4: while p ≤ P ′ do
5: p ← 2p

6: Compute a11 = ∂Fx

∂x (s, t), a22 =
∂Fy

∂y (s, t), a12 = ∂Fx

∂y (s, t) with precision p.

7: (s, t) ← (s, t)− (F(s, t)− (z, τ))

(
a11 a12
0 a22

)−1

8: end while
9: (a, b) ← F∞(1, s, 1, t)

10: (a, b) ← (1/a, 1/b), (s, t) = (sa, tb)
11: Return (a, s, b, t).

• Much in the same way as [10], we find it preferable to use finite differences to
compute the coefficients a11, a21, a22 of the Jacobian, as it does not require
the computation of the derivative of F, which could be tedious.

• The value of P0 has to be large enough that Newton’s method converges. We
note that, in general, a lower bound on P0 may depend on the arguments;
for instance, [7] experimentally finds 4.53 Im(τ) to be a suitable lower bound
for P0 when computing theta-constants. However, we outline in the next
section a better algorithm which only uses the present algorithm for z, τ
within a compact set; hence, P0 can be chosen to be a constant, and we
use in practice P0 = 30000.

We do not provide a full analysis for this algorithm: in the next section we outline
a better algorithm, which uses this algorithm as a subroutine, and we will provide
a full analysis at that time. It is enough to say that the computation of F∞ at
precision p is done in time O(M(p) log p) using Algorithm 2; however, this running
time depends on z, τ , since it depends on the bounds C, c that one can write for
|xn|, |yn|, |zn|, |tn|. Hence, the cost of evaluating F at precision p is O(M(p) log p)
bit operations, and the fact that we double the working precision at every step
means that the algorithm is as costly as the last iteration. Furthermore, one should
choose P ′ so that the final result is accurate with absolute precision P . This means
compensating the loss of absolute precision incurred during the computation of F;
in general, this only depends on Im(τ) and linearly in log p. Furthermore, we have
the following proposition.

Proposition 4.2. Let x and y be approximations of a and b with absolute preci-
sion N , and x′, y′ the result of step 7 in Algorithm 4 when using finite differences
to approximate the Jacobian matrix. Then x′, y′ are approximations of a, b with
precision 2P0 − δ.

Its proof can be adapted from the proof of [10, Theorem 12]. In practice, we
found δ = 4 to be enough. Determining the number of bits lost at each step can be
done in the same way as [10, p. 19]: if s(n−1) and s(n−2) agree to k bits, and s(n)

and s(n−1) agree to k′ bits, the number of bits lost can be computed as 2k− k′. In
the end, working at precision P ′ = P + c logP + d, with c, d independent of P but

COMPUTING JACOBI’S THETA IN QUASI-LINEAR TIME 1501

functions of z, τ , is enough to compensate all precision losses; this proves that the
running time of this algorithm is asymptotically O(M(P) logP).

4.2. Computing θ(z, τ) in uniform quasi-optimal time. We now show an al-
gorithm with uniform (i.e., independent in z and τ) quasi-optimal complexity that
computes θ(z, τ) for any (z, τ) satisfying conditions (2.3). We use the same strat-
egy as [7]; namely, we use the naive algorithm when Im(τ) is large; and for smaller
values of Im(τ), we put τ ′ = τ

2s so that τ ′ is within a compact set, then use Algo-
rithm 4, whose complexity will be uniform since its arguments belong to a compact
set. However, we also need to divide z by a power of 2 so that it also belongs to a
compact set, and so that (z′, τ ′) satisfies conditions (2.3) and (3.5). Once θ

(
z
2t ,

τ
2s

)
has been computed by the previous algorithm, we alternate between using equa-
tion (3.1) to double the second argument and equation (3.6) to double the first
argument, until finally recovering θ(z, τ). This is Algorithm 5.

Algorithm 5 Compute θ(z, τ) for τ ∈ F and z reduced

1: if P ≤ 25 Im(τ) then
2: Compute θ00,01,10(z, τ), θ00,01,10(0, τ) with precision P using the naive

method (Algorithm 1 + section 2.2.4).
3: else
4: Take s ∈ N such that 1 ≤ |τ |/2s < 2
5: Put τ1 = τ

2s and z1 = z
2s , so that Im(z1) ≤ Im(τ1)/2.

6: Put z2 = z1/4 and τ2 = τ1/2.
7: Compute approximations of absolute precision P of θ200(z2, τ2), θ

2
01(z2, τ2),

θ200(0, τ2), and θ201(0, τ2) using Algorithm 4.
8: Compute θ200(z2, τ1), θ

2
01(z2, τ1), θ

2
00(0, τ1), θ

2
01(0, τ1) using equation (3.1),

and θ210(z2, τ1) using equation (3.3) and θ210(0, τ1) using its equivalent in z = 0.
9: Compute θ00,01,10(0, τ1).

10: Compute θ00,01(z1/2, τ1) using equation (3.6).
11: for i = 1 .. s do
12: Compute θ200(0, 2

iτ1), θ
2
01(0, 2

iτ1) using the AGM.
13: Compute θ200(2

i−2z1, 2
iτ1), θ

2
01(2

i−2z1, 2
iτ1) using equation (3.1).

14: If i = s, compute also θ210(0, 2
iτ1) using the equivalent of equation (3.3)

in z = 0, then θ10(0, 2
iτ1) by taking the square root.

15: Compute θ210(2
i−2z1, 2

iτ1) using equation (3.3).
16: Compute θ00,01(0, 2

iτ1).
17: Compute θ00(2

i−1z1, 2
iτ1), θ01(2

i−1z1, 2
iτ1) using equation (3.6).

18: end for
19: Compute θ210(2

s−1z1, 2
sτ1) using equation (2.6).

20: Compute θ00,01,10(z, τ) using equation (3.6).
21: end if

A few notes on this algorithm:

• We note that, at several steps of the algorithm (e.g. steps 9, 14, 16) we need
to compute theta-constants from their square. The correct choice of signs
is given by the proof of Theorem 3.4, which shows that Re(θ00(0, τ)) ≥ 0
and Re(θ01(0, τ)) ≥ 0; and furthermore, since Re(q1/4) ≥ |q|1/4 cos(π/8),
we also have Re(θ10(0, τ)) ≥ 0.

1502 HUGO LABRANDE

• Taking τ2 = τ1/2 allows us to use equation (3.3) in step 8 instead of equa-
tion (2.5) and equation (2.6), which is more efficient and loses fewer bits.

• The knowledge of θ210(2
i−2z1, 2

iτ) is enough for the z-duplication formu-
las of step 17, and it can be computed directly from θ00 and θ01 using
equation (3.3).

• Computing θ11(z, τ) is also possible; one should use a partial summation
if P ≤ 25 Im(τ). In the other case, since all the z-duplication formulas for
θ11(z, τ) involve a division by θ10(0, τ) [13, p. 22], it is just as efficient to
simply use equation (2.7) after step 20, then extract the square root. The
square root extraction loses O(Im(τ)) = O(P) bits, and this also gives a
quasi-optimal algorithm.

4.3. Proving the correctness of the algorithm. This section is devoted to
proving the following theorem.

Theorem 4.3. For any τ, z satisfying conditions (2.3), Algorithm 5 with P = 2P
computes θ00,01,10(z, τ), θ00,01,10(0, τ) with absolute precision P in O(M(P) logP)
bit operations.

As we discussed in section 2, this also gives an algorithm that computes θ(z, τ)
for any (z, τ) ∈ C × H; one simply needs to reduce τ in τ ′ ∈ F , then reduce z in
z′, and deduce θ(z, τ) from θ(z′, τ ′) using equations (2.1) and (2.2). This causes a
loss of absolute precision which depends on z and τ , and this algorithm is no longer
uniform.

We need to perform an analysis of the number of bits lost by the algorithm; once
again, we use Theorem 2.9. For each step, we proceed as follows: assuming the
error on all the quantities is bounded by k, determine a factor x such that the error
on the quantities we get after the computation is bounded by xk, then declare the
number of bits lost in this step to be log x; this gives a very loose upper bound, but
simplifies the process.

Finally, we also need to prove that the hypotheses made in sections 3.4 and 3.5
are verified in step 7 of the algorithm. This is necessary to prove that the sequence
(λn) we consider is quadratically convergent, and that the number of bits lost is
only O(logP). We prove this in section 4.3.5, which then completes the proof that
the running time is indeed uniform and quasi-optimal.

4.3.1. Naive algorithm. As we showed in Theorem 2.8, the number of bits lost when
using the naive algorithm is logB + 7, although this constant could be made even

smaller when taking into account that P ≤ 25 Im(τ). Furthermore,
√

P
Im(τ) ≤ 25,

which means the running time of this step is asymptotically dominated by the cost
of the computation of π, q and w with precision P = P + logB + 7, which takes
O(M(P) logP) bit operations.

4.3.2. Invertibility of the Jacobian matrix. Newton’s method can only be applied
if the Jacobian of the function we invert (here, F) is invertible. The following
proposition establishes this:

Proposition 4.4. The Jacobian of F at
(

θ2
1(z,τ)

θ2
0(z,τ)

,
θ2
1(0,τ)

θ2
0(0,τ)

)
is of the form (a b

0 c) with

a, c
= 0.

COMPUTING JACOBI’S THETA IN QUASI-LINEAR TIME 1503

This proves that the Jacobian is invertible on a neighborhood of
(

θ2
1(z,τ)

θ2
0(z,τ)

,
θ2
1(0,τ)

θ2
0(0,τ)

)
,

e.g., on a ball centered on this point and of radius 2−P0 for some value of P0. In
practice, the value P0 = 30000 gives invertible Jacobians for any z, τ in the compact
set we consider, and is enough to make Newton’s method converge.

Proof. We have

a =
∂F1

∂z1

(
θ21(z, τ)

θ20(z, τ)
,
θ21(0, τ)

θ20(0, τ)

)
,

c =
∂F2

∂z2

(
θ21(z, τ)

θ20(z, τ)
,
θ21(0, τ)

θ20(0, τ)

)
.

Given the expression of the function F , where only the third and fourth argument

influence the third and fourth coordinate, we have that c = ∂fτ
∂z

(
θ2
1(0,τ)

θ2
0(0,τ)

)
, where fτ

is the function in [6, Section 4.2] such that fτ

(
θ2
1(0,τ)

θ2
0(0,τ)

)
= 0. We then have c
= 0

by [6, Prop. 4.3, p. 102].

We prove a
= 0 using the chain rule: define u : (z, τ) �→
(

θ2
1(z,τ)

θ2
0(z,τ)

,
θ2
1(0,τ)

θ2
0(0,τ)

)
. Then

(F ◦ u)(z, τ) = (z, τ) and we thus have

1 =
∂(F ◦ u)1

∂z
(z, τ) = a× ∂u1

∂z
(z, τ) +

∂F1

∂u2

(
θ21(z, τ)

θ20(z, τ)
,
θ21(0, τ)

θ20(0, τ)

)
× ∂u2

∂z
(z, τ)

= a× ∂u1

∂z
(z, τ) since

∂u2

∂z
(z, τ) = 0.

This already proves that a
= 0, but we can actually give a more explicit form:

a =
∂u1

∂z
(z, τ)−1

= 2
θ1(z, τ)

θ0(z, τ)

(
θ1(z, τ)

θ0(z, τ)

)′

= 2
θ1(z, τ)

θ30(z, τ)
(θ′1(z, τ)θ0(z, τ)− θ′0(z, τ)θ1(z, τ))

= 2
θ1(z, τ)

θ30(z, τ)
πθ22(0, τ)θ2(z, τ)θ3(z, τ)
= 0,

the last equality deriving from formula 10 in [15, Section 23]. This finishes the
proof. �

4.3.3. Square root extraction. Steps 9, 16 and 14 require extracting square roots,
which multiply the error by 1√

|z|
. We prove in the next subsection that

|θ00,01(0, 2iτ1)| ≥ 0.859 for i = [1 . . . s].

Hence, each extraction of square root loses at most 4 bits: step 9 loses 4 bits, and
step 16 loses 4s ≤ 4 logP bits.

Step 14 loses more bits since θ10(0, τ) is smaller; indeed, |θ10(0, τ)| ∼ |q|1/4. This
means the number of bits lost during this step is bounded by log |q|

8 = π
8 log2 e Im(τ).

1504 HUGO LABRANDE

4.3.4. Duplication formulas and finishing the proof of correctness. The algorithm
uses both τ -duplication formulas and z-duplication formulas, and we need to analyse
how many bits are lost for each application of those formulas.

The τ -duplication formulas are nothing more than applying F to θ200,01(z, τ) and

θ200,01(0, τ). However, the analysis here is simpler than in section 3.5, because we do
not need to compute the square roots of θ00,01(z, τ), since they are directly given by
step 17. Hence we just need to account for the error of the additions, subtractions
and multiplications in equation (3.4); since all the quantities are bounded, this
means each step loses a constant number g of bits (our analysis shows that g ≤
10.48). In the end, the τ -duplication formulas account for the loss of g×s ≤ g logP
bits of precision.

As for the z-duplication formulas, we need to perform several analyses. Looking
at equation (3.6), one needs to evaluate the fourth power of theta functions, then
add them; then evaluate the third power of theta-constants, then perform a division.
Computing the error using the formulas from Theorem 2.9 is rather straightforward
when one has bounds on those quantities, which are given by the following theorem.

Theorem 4.5. Assume Im(τ) >
√
3/2. Then

0.859 ≤ |θ00,01(0, τ)| ≤ 1.141, |θ10(0, τ)| ≤ 1.018.

We also have:

• Suppose that 0 ≤ Im(z) ≤ Im(τ)
8 , as in steps 10 and 17. Then |w|−2n ≤

enπ Im(τ)/4 and

0.8038 ≤ |θ00,01(z, τ)| ≤ 1.1962 |θ10(z, τ)| ≤ 1.228.

• Suppose that 0 ≤ Im(z) ≤ Im(τ)
4 , as in steps 20. Then |w|−2n ≤ enπ Im(τ)/2

and

0.6772 ≤ |θ00,01(z, τ)| ≤ 1.3228 |θ10(z, τ)| ≤ 1.543.

Proof. The bounds on the theta-constants come from [7, p. 5], which proves

|θ00,01(0, τ)− 1| ≤ 2|q|
1− |q| .

The techniques are the same as the proof of Lemma 3.3 or Proposition 2.6. This
gives in the first case

|θ00,01(z, τ)− 1| ≤ |q|3/4 + |q|+ |q|7/2 + |q|4 + |q|8.25 + |q|9 + |q|15
1− |q|

≤ 0.1962 since Im(τ) ≥
√
3/2

|θ10(z, τ)− q1/4(w + w−1)| ≤ q15/8

1− q3/8
≤ 0.009,

so |θ10(z, τ)| ≤ |q|1/4(|w|+ |w|−1) + 0.009 ≤ 1.228. In the second case:

|θ00,01(z, τ)− 1| ≤ |q|1/2 + |q|+ |q|3
1− |q| ≤ 0.3228

|θ10(z, τ)− q1/4(w + w−1)| ≤ |q|5/4 + |q|9/4 + ... ≤ q5/4

1− q
≤ 0.0357. �

COMPUTING JACOBI’S THETA IN QUASI-LINEAR TIME 1505

Combining these bounds with formulas from Theorem 2.9 gives the following
bounds:

error(θ00(2
iz1, 2

i+1τ1))

≤ (20050.518 + 1818.032kθz
01

+ 1966.823kθz
10

+ 33516kθ0
00
)2−P ,

error(θ01(2
iz1, 2

i+1τ1))

≤ (20050.518 + 1818.032kθz
00

+ 1966.823kθz
10

+ 33516kθ0
01
)2−P ,

which means losing at most 16 more bits of precision.
Step 19 causes the loss of a greater number of bits. We use equation (2.6) instead

of the third z-duplication formula, because dividing by θ10(0, τ)
2 loses fewer bits

than dividing by θ10(0, τ)
3, and we only need the knowledge of θ210(2

s−1z, 2sτ) for
the next step anyway. This amounts to computing:

θ210(z, τ) =
θ200(z, τ)θ

2
00(0, τ)− θ201(z, τ)θ

2
01(0, τ)

θ210(0, τ)
.

Computing the numerator multiplies the error by a factor at most 60, and the norm
of this numerator is bounded by 4.557; we then get from Theorem 2.9 that the error
is bounded by m

|θ10(0,τ)|8 ∼ m|q|−2, with m ≤ 1600. In the end, we lose at most

2π log2 e Im(τ) + 11 bits.
Finally, we also lose a great number of bits during the last application of the

z-duplication formulas in step 20, since the formula for θ10(z, τ) requires dividing
by θ10(0, τ)

3. The error is thus multiplied by |q|−3 up to a constant factor; this
means a loss of 3π log2 e Im(τ) bits, plus a constant.

In the end, we see that the number of lost bits is bounded by

(2π + π/8 + 3π) Im(τ) log2 e+ c logP + d;

given that P ≥ 25 Im(τ) and that 5.125π log2 e ≤ 23.3, the number of bits lost is
thus less than P . This means that P = 1.93P + c logP + d ≤ 2P is enough to get
a result which is accurate to absolute precision P ; this also means that we indeed
never have an error k bigger than 2(2P)/2, which is necessary to apply Theorem 2.9.

4.3.5. Proof of quadratic convergence and quasi-optimal running time. It remains
to prove that the complexity is the right one. If P ≥ 25 Im(τ), log2 P > log2 Im(τ)+
4.7, which means s ≤ logP and the cost of steps 11 to 18 is O(M(P) logP). We
verify that conditions (2.3) and (3.5) hold:

|Re(τ2)| ≤ 1/2s+2 ≤ 1/4, 0. 345 ≤
√
3

4
≤ Im(τ2) ≤ 1,

|Re(z2)| ≤ 1/2s+3 ≤ 1/8, 0 ≤ Im(z2) ≤
Im(τ2)

4
.

This means the choices of signs are always good, and hence our result is indeed
(squares of) theta functions and theta-constants.

We also need to prove that there is a C > 1 such that for all z2, τ2 that we
consider,

θ201(0, τ2)

θ200(0, τ2)
≤ C,

θ210(0, τ2)

θ200(0, τ2)
≤ C,

θ201(z2, τ2)

θ200(z2, τ2)
≤ C,

θ210(z2, τ2)

θ200(z2, τ2)
≤ C.

This is a direct consequence of the fact that z2, τ2 are within a compact set that
does not contain any zero of θ(z, τ); hence one can write (non-zero) lower and upper

1506 HUGO LABRANDE

bounds for any of the values of theta. If one wants to be a bit more precise, using
the same reasoning as in Theorem 4.5, we have for

√
3/4 ≤ Im(τ) ≤ 1,

|θ00,01(z, τ)− 1| ≤ |q|1/2 + |q|+ |q|3
1− |q| ≤ 0.7859,

|θ10(z, τ)| ≤ 1 + |q|1/4 + |q|5/4
1− |q| ≤ 1.958.

This gives C ≤ 83.64 and c ≥ 0.0422

1.78592 � 1
1808 . Furthermore, with a careful analysis,

one can prove that c1 = 55 is enough in Theorem 3.10.
In any case, this proves that (λn) is quadratically convergent. We note that the

fact that z2, τ2 are within a compact shows that the constants b1, b2, b3 exist and
are independent of z, τ . This makes the running time of step 7 only dependent in
P , which was the point of the uniform algorithm. In particular, the number of bits
lost during the computation of F∞ or in F can be written as c1 logP + c2, with
c1, c2 constants independent in z, τ . Hence, the number of bits that are lost in the
whole of step 7 is

n∑
i=1

δ + h+ log(p/2i) ≤ G logP +H,

since the number n of steps in Newton’s method is O(logP).
This means the computations in step 7 should be carried out at precision P ′ =

P + G logP +H, so that the result is accurate with P bits. This gives a running
time of O(M(P) logP), independently of z and τ . All the other steps cost no
more than O(M(P)) bit operations. Given the formula for P in subsections 4.3.1
to 4.3.4, this indeed gives us a running time of O(M(P) logP).

5. Implementation

An implementation using the GNU MPC library [9] for arithmetic on multi-
precision complex numbers was developed; we compared our algorithm to our own
implementation of Algorithm 1 using MPC.2 The code is distributed under the GNU
General public license, version 3 or any later version (GPLv3+); it is available at
the address

http://www.hlabrande.fr/pubs/fastthetas.tar.gz

We compared those implementations to MAGMA’s implementation of the compu-
tation of θ(z, τ) (function Theta). Each of those implementations computed θ(z, τ)
for z = 0.123456789 + 0.123456789i and τ = 0.23456789+1.23456789i at different
precisions; the computations took place on a computer with an Intel Core i5-4570
processor. The results are presented in Figure 1 and Table 1.

Our figures show that our algorithm outperforms Magma even for computations
at relatively low (i.e., 1000 digits) precision3, and the naive algorithm for more
than 325000 digits of precision. Hence, a combined algorithm which uses the naive
method for precisions smaller than 325000 digits, and our method for larger preci-
sion, will yield the best algorithm, and outperform Magma in all cases, as shown
in Table 1.

2The naive algorithm which only computes θ(z, τ) is only 5% faster; furthermore, since Algo-
rithm 5 computes all 4 values, it is fair to compare it to Algorithm 1.

3This is even though Magma only returns θ(z, τ), when our algorithm returns 4 values.

COMPUTING JACOBI’S THETA IN QUASI-LINEAR TIME 1507

103 104 105 106 107

10−3

10−1

101

103

105

107

Base 10 precision

T
im

e
(s
)

Our algo (low prec=9000)
Naive
Magma

Figure 1. Timing results

Table 1. Times (in s) of different methods

Prec (digits) This work Naive Magma
4000 0.092 0.032 0.1740
8000 0.298 0.112 0.8719
16000 0.868 0.384 4.358
32000 2.399 1.347 22.70
64000 6.778 4.598 116.4
128000 18.32 15.29 606.1
256000 45.54 41.56
325000 62.74 63.90
512000 111.78 129.8
1024000 263.7 390.3
2048000 625.4 1275
4096000 1468 3921

Acknowledgments

The author would like to thank Emmanuel Thom for his guidance and fruitful
discussions which led to this work, as well as the anonymous reviewer for their
useful comments on this paper.

References

[1] J. M. Borwein and P. B. Borwein, Pi and the AGM: A Study in Analytic Number Theory
and Computational Complexity; A Wiley-Interscience Publication, Canadian Mathematical
Society Series of Monographs and Advanced Texts, John Wiley and Sons, Inc., New York,
1987. MR877728

[2] J.-B. Bost and J.-F. Mestre, Moyenne arithmético-géométrique et périodes des courbes de
genre 1 et 2 (French), Gaz. Math. No. 38 (1988), 36–64. MR970659

http://www.ams.org/mathscinet-getitem?mr=877728
http://www.ams.org/mathscinet-getitem?mr=970659

1508 HUGO LABRANDE

[3] R. Cosset, Applications des fonctions thêta à la cryptographie sur courbes hyperelliptiques.,
Ph.D. thesis, Université Henri Poincaré-Nancy I, 2011.

[4] D. A. Cox, The arithmetic-geometric mean of Gauss, Enseign. Math. (2) 30 (1984), no. 3-4,
275–330. MR767905

[5] J. E. Cremona and T. Thongjunthug, The complex AGM, periods of elliptic curves over C

and complex elliptic logarithms, J. Number Theory 133 (2013), no. 8, 2813–2841. MR3045217
[6] R. Dupont, Moyenne arithmético-géométrique, suites de Borchardt et applications, Ph.D.

thesis, École polytechnique, Palaiseau, 2006, http://www.lix.polytechnique.fr/Labo/

Regis.Dupont/these soutenance.pdf

[7] R. Dupont, Fast evaluation of modular functions using Newton iterations and the AGM,
Math. Comp. 80 (2011), no. 275, 1823–1847. MR2785482

[8] A. Enge, The complexity of class polynomial computation via floating point approximations,
Math. Comp. 78 (2009), no. 266, 1089–1107. MR2476572

[9] A. Enge, M. Gastineau, P. Théveny, and P. Zimmerman, GNU MPC – A library for mul-
tiprecision complex arithmetic with exact rounding, INRIA, September 2012, Release 1.0.1,
http://mpc.multiprecision.org/.

[10] A. Enge and E. Thomé, Computing class polynomials for abelian surfaces, Exp. Math. 23
(2014), no. 2, 129–145. MR3223768

[11] Hugo Labrande, Absolute error in complex fixed-point arithmetic, 2015, available at
http://www.hlabrande.fr/pubs/absolutelossofprecision.pdf.

[12] W. Luther and W. Otten, Reliable computation of elliptic functions, J. Univ. Comp. Sci. 4
(1998), no. 1, 25–33. SCAN-97 (Lyon). MR1661836

[13] D. Mumford, Tata Lectures on Theta. I, Progress in Mathematics, vol. 28, Birkhäuser Boston,
Inc., Boston, MA, 1983. MR688651

[14] B. Vallée, Gauss’ algorithm revisited, J. Algorithms 12 (1991), no. 4, 556–572. MR1130316
[15] H. Weber, Lehrbuch der algebra, Druck und verlag Fr. Vieweg & Sohn, 1921.

INRIA Lorraine – projet CARAMBA, 615 rue du jardin botanique, 54602 Villers-les-

Nancy Cedex, France

E-mail address: hugo@hlabrande.fr

http://www.ams.org/mathscinet-getitem?mr=767905
http://www.ams.org/mathscinet-getitem?mr=3045217
http://www.ams.org/mathscinet-getitem?mr=2785482
http://www.ams.org/mathscinet-getitem?mr=2476572
http://www.ams.org/mathscinet-getitem?mr=3223768
http://www.ams.org/mathscinet-getitem?mr=1661836
http://www.ams.org/mathscinet-getitem?mr=688651
http://www.ams.org/mathscinet-getitem?mr=1130316

	1. Introduction
	2. The theta function and theta-constants
	2.1. Definitions and argument reduction
	2.2. Naive algorithm to compute theta
	2.3. Fast computation of theta-constants

	3. A sequence related to theta functions
	3.1. Definition of the F sequence
	3.2. Link with theta functions
	3.3. A function with quasi-optimal time evaluation
	3.4. Convergence
	3.5. Loss of precision

	4. Fast computation of theta
	4.1. Building a function to invert
	4.2. Computing 𝜃(𝑧,𝜏) in uniform quasi-optimal time
	4.3. Proving the correctness of the algorithm

	5. Implementation
	Acknowledgments
	References

