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ORDERS OF TATE-SHAFAREVICH GROUPS
FOR THE NEUMANN-SETZER TYPE ELLIPTIC CURVES

ANDRZEJ DĄBROWSKI AND LUCJAN SZYMASZKIEWICZ

Abstract. We present the results of our search for the orders of Tate-Shafarevich
groups for the Neumann-Setzer type elliptic curves.

1. Introduction

Let E be an elliptic curve defined over Q of conductor NE , and let L(E, s)
denote its L-series. Let X(E) be the Tate-Shafarevich group of E, E(Q) the group
of rational points, and R(E) the regulator, with respect to the Néron-Tate height
pairing. Finally, let ΩE be the least positive real period of the Néron differential on
E, and define C∞(E) = ΩE or 2ΩE according to whether E(R) is connected or not,
and let Cfin(E) denote the product of the Tamagawa factors of E at the bad primes.
The Euler product defining L(E, s) converges for Re s > 3/2. The modularity
conjecture, proven by Wiles-Taylor-Diamond-Breuil-Conrad, implies that L(E, s)
has an analytic continuation to an entire function. The Birch and Swinnerton-Dyer
conjecture relates the arithmetic data of E to the behaviour of L(E, s) at s = 1.

Let gE be the rank of E(Q) and let rE denote the order of the zero of L(E, s)
at s = 1.

Conjecture 1 (Birch and Swinnerton-Dyer).
(i) We have rE = gE,
(ii) the group X(E) is finite, and

lim
s→1

L(E, s)
(s− 1)rE

= C∞ (E)Cfin(E)R(E) |X(E)|
|E(Q)tors|2

.

If X(E) is finite, the work of Cassels and Tate shows that its order must be a
square.

The first general result in the direction of this conjecture was proven for elliptic
curves E with complex multiplication by Coates and Wiles in 1976 [4], who showed
that if L(E, 1) �= 0, then the group E(Q) is finite. Gross and Zagier [17] showed
that if L(E, s) has a first-order zero at s = 1, then E has a rational point of infinite
order. Rubin [25] proves that if E has complex multiplication and L(E, 1) �= 0, then
X(E) is finite. Kolyvagin [19] proved that, if rE ≤ 1, then rE = gE and X(E) is
finite. Very recently, Bhargava, Skinner and Zhang [1] proved that at least 66.48%
of all elliptic curves over Q, when ordered by height, satisfy the weak form of the
Birch and Swinnerton-Dyer conjecture, and have finite Tate-Shafarevich group.
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Coates et al. [3], [2], and Gonzalez-Avilés [16] showed that there is a large class
of explicit quadratic twists of X0(49) whose complex L-series does not vanish at
s = 1, and for which the full Birch and Swinnerton-Dyer conjecture is valid. The
deep results by Skinner-Urban [30] allow (in practice, see section 3 for instance) to
establish the full version of the Birch and Swinnerton-Dyer conjecture for a large
class of elliptic curves without CM.

The numerical studies and conjectures by Conrey-Keating-Rubinstein-Snaith [6],
Delaunay [11], [12], Watkins [33], Radziwiłł-Soundararajan [24] (see also the papers
[9], [7], [8] and references therein) substantially extend the systematic tables given
by Cremona.

Given an integer u ≡ 1(mod 4), such that u2 + 64 is square-free, we define two
families of elliptic curves of conductor u2 + 64 (we call them the Neumann-Setzer
type elliptic curves):

E1(u) : y2 + xy = x3 + 1
4
(u− 1)x2 − x

and
E2(u) : y2 + xy = x3 + 1

4
(u− 1)x2 + 4x + u.

In this paper we present the results of our search for the orders of Tate-Shafarevich
groups for the Neumann-Setzer type elliptic curves. Our data contains values of
|X(Ei(u))| for 2056445 values of u ≡ 1 (mod 4), |u| ≤ 107 such that u2 + 64 is a
product of an odd number of different primes, and such that L(E(u), 1) �= 0 (456702
of these values satisfy the condition u2 + 64 is a prime). Additionally, we have
considered 10000 values of u ≡ 1 (mod 4), |u| ≥ 108 such that u2 + 64 is a product
of an odd number of different primes, and in cases L(E(u), 1) �= 0 we computed the
orders of X(Ei(u)). Our data extends the calculations given by Stein-Watkins [32]
(resp. by Delaunay-Wuthrich [15]), where the authors considered |u| ≤

√
2 × 106

(resp. |u| ≤ 106) such that u2 + 64 is a prime.
Our main observations concern the asymptotic formulae in section 4 (frequency

of orders of X) and section 6 (asymptotics for the sums
∑

|X(Ei(u))|R(Ei(u)
in the rank zero and one cases), and the distributions of logL(Ei(u), 1) and
log(|X(Ei(u))|/

√
|u|) in section 7.

2. Preliminaries

We have ΔE1(u) = u2 + 64 and ΔE2(u) = −(u2 + 64)2. The curves E1(u) and
E2(u) are 2-isogenous: write E1(u) and E2(u) in short Weierstrass forms (y2 =
x3 + ux2 − 16x and y2 = x3 − 2ux2 + (u2 + 64)x, respectively), and use ([29],
Example 4.5 on p. 70). It is known, due to Neumann and Setzer ([21], [28]), that
in the case u2 + 64 is a prime, the curves E1(u) and E2(u) are the only (up to
isomorphism) elliptic curves with a rational 2-division point and conductor u2 +64.
In general there are more than two, up to isomorphism, elliptic curves with a
rational 2-division point and conductor u2 + 64. Take, for instance, u = −51, then
the curves E1(u) and E2(u) have conductor 2665 = 5 · 13 · 41. In Cremona’s online
tables we find 8 elliptic curves of conductor 2665 with a rational 2-division point.

Lemma 1. We have:
(i) E1(u)(Q)tors � E2(u)(Q)tors � Z/2Z;
(ii) ΩE1(u) = ΩE2(u), C∞(E1(u)) = 2ΩE1(u), C∞(E2(u)) = ΩE2(u);
(iii) Cfin(E1(u)) = 1, and Cfin(E2(u)) = 2k, where u2 + 64 = p1 · · · pk.
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Proof. (i) Let E(u) = E1(u) or E2(u). Then E(u) has good reduction at 2. Using
the reduction map modulo 2, we obtain that |Ei(u)(Q)tors| divides 4. Now, one
checks that Ei(u)(Q) have only one point of order two, and no points of order four.

(ii) To check that ΩE1(u) = ΩE2(u), one uses the explicit forms of Weierstrass
equations. Now the sign of the discriminant of E1(u) (resp. of E2(u)) is positive
(resp. negative), hence the remaining assertions follow.

(iii) We have Cfin(E1(u)) =
∏

p|ΔE(u)
Cp(E(u)), where Cp(E(u)) = [E(u)(Qp) :

E0(u)(Qp)], and E0(u)(Qp) denotes the subgroup of points of E(u)(Qp) with non-
singular reduction modulo p. Both E1(u) and E2(u) have split multiplicative reduc-
tions at all primes p dividing u2 +64. Hence, in this case, Cp(E(u)) = ordp(ΔE(u))
(see, for instance, [2], Lemma 2.9), and the assertion follows.

Note that L(E1(u), s) = L(E2(u), s) =
∑∞

n=1 ann
−s, Re(s) > 3/2. Assuming

the truth of the Birch and Swinnerton-Dyer conjecture for E(u) in the rank zero
case, we can calculate the order of X(E(u)) by evaluating (an analytic continuation
of) L(E(u), s) at s = 1:

|X(E1(u))| = 2L(E1(u), 1)
ΩE1(u)

,

|X(E2(u))| = L(E2(u), 1)
2k−2ΩE2(u)

,

where as above, u2 + 64 = p1 · · · pk is a product of different primes.
More precisely, we have to calculate the value

L(E(u), 1) = 2
∞∑
n=1

an
n

e
− 2πn√

u2+64

with sufficient accuracy.

Lemma 2. In order to determine the order of X(E1(u)) and X(E2(u)), it is
enough to take 1

8
√
u2 + 64 log(u2 + 64) terms of the above series.

Proof. Repeat the proof of Theorem 16 in [15].

Let ε(E(u)) denote the root number of E(u).
Lemma 3. Let u2 + 64 = p1 · · · pk be a product of different primes. Then
ε(E(u)) = (−1)k+1.

Proof. ε(E(u)) = −
∏k

i=1 εpi
(E(u)), a product of local root numbers. Now, E(u)

has split multiplicative reduction at all pi dividing u2 +64. Hence, εpi
(E(u)) = −1,

and the assertion follows.

Corollary 1. Assume the parity conjecture holds for the curves E(u). Then
E(u)(Q) has even rank if and only if u2 + 64 = p1 · · · pk is a product of an odd
number of different primes.

We can use a classical 2-descent method ([29], Chapter X) to obtain a bound on
the rank of Ei(u) depending on k. Let φ : E1(u) → E2(u) be the 2-isogeny, and
write φ̂ for its dual. Let S(φ) and S(φ̂) denote the corresponding Selmer groups.
One checks that S(φ) ⊂ 〈p1, . . . , pk〉 and S(φ̂) = 〈−1〉. As a consequence, we obtain
rank(Ei(u)) ≤ dimF2 S

(φ) + dimF2 S
(φ̂) − 2 ≤ k + 1 − 2 = k − 1. In particular, if

u2 + 64 is a prime, then Ei(u) have rank zero, and if k = 2, then rank(Ei(u)) ≤ 1
(= 1 if we assume the parity conjecture).
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Definition 2. We say that an integer u ≡ 1 (mod 4) satisfies condition (*) if u2+64
is a prime; we say that an integer u ≡ 1 (mod 4) satisfies condition (**) if u2 + 64
is a product of odd number of different primes.

3. Birch and Swinnerton-Dyer conjecture

for Neumann-Setzer type elliptic curves

In this section, we will use the deep results by Skinner-Urban [30] (and other
available techniques), to prove the full version of the Birch–Swinnerton-Dyer con-
jecture for a large class of Neumann-Setzer type elliptic curves.

Let ρE,p : Gal(Q/Q) → GL2(Fp) denote the Galois representation on the p-
torsion of E. Assume p ≥ 3.

Theorem 3 ([30], Theorem 2). Let E be an elliptic curve over Q with conductor
NE. Suppose:

(i) E has good ordinary reduction at p;
(ii) ρE,p is irreducible;
(iii) there exists a prime q �= p such that q || NE and ρE,p is ramified at q;
(iv) ρE,p is surjective.

If moreover L(E, 1) �= 0, then the p-part of the Birch and Swinnerton-Dyer con-
jecture holds true, and we have

ordp(|X(E)|) = ordp

(
|E(Q)tors|2L(E, 1)
C∞(E)Cfin(E)

)
.

Take E(u) = E1(u) or E2(u). Then:
(a) E(u) is semistable and has a rational 2-division point, hence ρE(u),p is irre-

ducible for p ≥ 7 by ([10], Theorem 7). Note moreover (by Wiles [34]) that at least
one of ρE(u),3 or ρE(u),5 is irreducible.

(b) If E is any semistable elliptic curve and q �= p, then ρE,p is unramified at q
if and only if p|ordq(ΔE). In our case, ordq(ΔE(u)) equals 1 or 2, hence ρE(u),p is
ramified at any q ≥ 3.

(c) If E is any semistable elliptic curve, then ρE,p is surjective for p ≥ 11 by [27].
More precisely, Serre ([27], Prop. 1) shows that in this case ρE,p is surjective for all
primes p unless E admits an isogeny of degree p defined over Q. In particular, if
such E additionally has a rational 2-division point, then ρE,p is surjective for p ≥ 7.
Note (by [26], Prop. 21, and [27], Prop. 1), that in the case of semistable elliptic
curve E, the representation ρE,p is surjective if and only if it is irreducible. Now,
Zywina ([35], Prop. 6.1) gives a criterion to determine whether ρE,p is surjective or
not for any non-CM elliptic curve and any prime p ≤ 11. Using such a criterion, one
immediately checks surjectivity of ρEi(u),p for p = 2, 3, and 5. As a consequence,
we obtain the following general result.

Proposition 1. The representations ρE(u),p are surjective for all primes p.

Summing up all the above information, we obtain the following nice result.

Corollary 2. Let E = E1(u) or E2(u), with u ≡ 1 (mod 4) satisfying (**) and
such that L(E, 1) �= 0. If E has good ordinary reduction at p ≥ 3, then the p-part
of the Birch and Swinnerton-Dyer conjecture holds for E.
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Remark. Let us recall that a prime p is good for an elliptic curve E over Q, if p
does not divide NE ; p is good ordinary for E, if it is good and ap = p+ 1−Np(E)
is not divisible by p (here Np(E) denotes the number of Fp-points of the reduction
Ep). Here are explicit conditions for small primes p to satisfy the good ordinary
condition in case E = Ei(u) (we assume u ≡ 1 (mod 4)):

(i) p = 3, additional condition u �≡ 0 (mod 3);
(ii) p = 5, no additional condition on u;
(iii) p = 7, additional condition u �≡ 0 (mod 7);
(iv) p = 11, additional condition u �≡ 0, 4, 7 (mod 11).

Remark. One can use explicit descent algorithms to compute X(Ei(u))[m] for
m = 2, 4 or 8. If X(Ei(u))[2] is trivial, then X(Ei(u)) has odd order. If
X(Ei(u))[2] = X(Ei(u))[4], say, then ord2|X(Ei(u))| = ord2|X(Ei(u))[2]|. Simi-
larly, one can use explicit descent algorithms to compute X(Ei(u))[m] for m = 3
or 9. Again, if X(Ei(u))[3] is trivial, then X(Ei(u)) has order not divisible by 3
(here we not require that 3 is good ordinary). If X(Ei(u))[3] = X(Ei(u))[9], then
ord3|X(Ei(u))| = ord3|X(Ei(u))[3]|.

The theses [20] and [31] explore both theoretical and computational methods to
compute the orders of Tate-Shafarevich groups.

Remark. (i) Among 456702 values of u ≡ 1 (mod 4), |u| ≤ 107 satisfying (*), there
are 379898 values of |u| such that E(u) has good ordinary reduction at any prime
dividing the analytic order |X(E(u))|. The groups X(Ei(u))[2] are both trivial (by
2-descent), hence by Corollary 2 the values |X(E(u))| are the algebraic orders of
X.

(ii) Among 2056445 values of u ≡ 1 (mod 4), |u| ≤ 107 satisfying (**) and such
that L(E(u), 1) �= 0, there are 1148683 values of |u| such that |X(E2(u))| is odd
and E(u) has good ordinary reduction at any prime dividing the analytic order
|X(E2(u))|. Again, by Corollary 2 all these values are the algebraic orders of X.

The numerical data are done under the Birch and Swinnerton-Dyer conjecture.
In particular, the experimental study in sections 4, 5, 6, and 7 concern the analytic
orders of the Tate-Shafarevich groups.

4. Frequency of orders of X

Our calculations strongly suggest that for any positive integer k there are in-
finitely many integers u ≡ 1 (mod 4) satisfying condition (**), such that E(u) has
rank zero and |X(E(u))| = k2. Below (at the end of this section) we will state a
more precise conjecture.

Let f(i,X) denote the number of integers u ≡ 1 (mod 4), |u| ≤ X, satisfying
(**) and such that L(E(u), 1) �= 0, |X(Ei(u))| = 1. Let g(X) denote the number
of integers u ≡ 1 (mod 4), |u| ≤ X, satisfying (**) and such that L(E(u), 1) = 0.
We obtain the graphs in Figure 1 (compare [7], [8], where similar observations are
made for the families of quadratic twists of several elliptic curves).

Consider the set consisting of 10000 values of integers u ≡ 1(mod 4), |u| ≥ 108,
satisfying (**). Let f(i) denote the number of such u’s satisfying L(Ei(u), 1) �= 0
and |X(Ei(u))| = 1, and let g denote the number of such u’s satisfying L(Ei(u), 1) =
0. Then f(1) = 118, f(2) = 845, g = 482, hence f(1)/g ≈ 0, 2448, and f(2)/g ≈
1, 7531.
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f(1,X)/g(X)
f(2,X)/g(X)

Figure 1. Graphs of the functions f(i,X)/g(X), i = 1, 2.

Delaunay and Watkins expect ([14], Heuristics 1.1):

�{d ≤ X : ε(Ed) = 1, rank(Ed) ≥ 2} ∼ cEX
3/4(logX)bE+ 3

8 , as X → ∞,

where cE > 0, and there are four different possibilities for bE , largely dependent on
the rational 2-torsion structure of E. Watkins [33], and Park-Poonen-Voight-Wood
[22] have conjectured that

�{E : ht(E) ≤ X, ε(E) = 1, rank(E) ≥ 2} ∼ cX19/24(logX)3/8,

where E runs over all elliptic curves defined over the rationals, and ht(E) denotes
the height of E.

We expect a similar asymptotic formula for the family E(u). Let H(X) :=
X19/24(logX)3/8

g(X) , and Gi(X) := X3/4(logX)i
g(X) , i = 0, 1/2 or 1. We obtain the graphs

in Figure 2 (partially) confirming our expectation.
Now let fk(i,X) denote the number of integers u ≡ 1 (mod 4), |u| ≤ X, satisfying

(**) and such that L(E(u), 1) �= 0, |X(Ei(u))| = k2. Let Fk(i,X) := f(i,X)
fk(i,X) . We

obtain the graphs in Figures 3 and 4 of the functions Fk(i,X) for i = 1, 2 and
k = 2, 3, 4, 5, 6, 7.

The above calculations suggest the following.

Conjecture 4. For any positive integer k there are constants ck,i > 0, αk,i, and
βk,i such that

fk(i,X) ∼ ck,iX
αk,i(logX)βk,i , as X → ∞.

Conjectures 8 in [7] and 2 in [8] suggest similar asymptotics for the family of
quadratic twists of any elliptic curve defined over Q.
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Figure 2. Graph of the function H(X).

Figure 3. Graphs of the functions Fk(1, X), k = 2, . . . , 7.

Consider the set consisting of 10000 values of integers u ≡ 1 (mod 4), |u| ≥ 108,
satisfying (**). Let fk(i) denote the number of such u’s satisfying L(Ei(u), 1) �= 0
and |X(Ei(u))| = k2. Let Fk(i) := f1(i)

fk(i) . We obtain
F2(1) ≈ 0.2256, F3(1) ≈ 0.8251, F4(1) ≈ 0.1779,
F5(1) ≈ 1.0825, F6(1) ≈ 0.2494, F7(1) ≈ 1.1919,
F2(2) ≈ 1.1901, F3(2) ≈ 1.0682, F4(2) ≈ 1.5590,
F5(2) ≈ 1.4955, F6(2) ≈ 1.9031, F7(2) ≈ 1.8449.
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Figure 4. Graphs of the functions Fk(2, X), k = 2, . . . , 7.

5. Cohen-Lenstra heuristics for the order of X

Delaunay [12] has considered Cohen-Lenstra heuristics for the order of Tate-
Shafarevich group. He predicts, among others, that in the rank zero case, the
probability that |X(E)| of a given elliptic curve E over Q is divisible by a prime p
should be f0(p) := 1 −

∏∞
j=1(1 − p1−2j) = 1

p + 1
p3 + · · · . Hence, f0(2) ≈ 0.580577,

f0(3) ≈ 0.360995, f0(5) ≈ 0.206660, f0(7) ≈ 0.145408, f0(11) ≈ 0.092, and so on.
Let F (X) (resp. G(X)) denote the number of integers u ≡ 1 (mod 4), |u| ≤

X, satisfying (*) (resp. (**)) and such that L(E(u), 1) �= 0. Let Fp(X) (resp.
Gp(X) if p ≥ 3) denote the number of integers u ≡ 1 (mod 4), |u| ≤ X, satisfying
(*) (resp. (**)), such that L(E(u), 1) �= 0 and |X(E(u))| is divisible by p. Let
G2(i,X) denote the number of integers u ≡ 1 (mod 4), |u| ≤ X, satisfying (**),
such that L(E(u), 1) �= 0 and |X(Ei(u))| is divisible by 2. Let fp(X) := Fp(X)

F (X) ,
gp(X) := Gp(X)

G(X) , and g2(i,X) := G2(i,X)
G(X) . We obtain the following table, extending

the calculations given by Stein-Watkins [32] and Delaunay-Wuthrich [15]:

X f3(X) f5(X) f7(X) f11(X)
2 · 106 0.358355 0.189909 0.123182 0.061527
4 · 106 0.362001 0.192343 0.126864 0.066945
6 · 106 0.363294 0.194413 0.129213 0.069780
8 · 106 0.364051 0.196239 0.130556 0.071144

107 0.365067 0.197048 0.131812 0.072358

The numerical values of f3(X) exceed the expected value f0(3). In general, the
values fk(X) may tend to some constants depending on the various congruential
values of u (compare [32]).
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Figure 5. Graphs of the functions f(T ) and gi(T ), i = 1, 2.

It seems that it would be better to consider u’s satisfying (**), but here the
convergence is very slow. Here are the results:

X g2(1,X) g2(2, X) g3(X) g5(X) g7(X) g11(X)
2 · 106 0.746231 0.313111 0.295592 0.127626 0.072959 0.030979
4 · 106 0.761104 0.326554 0.303529 0.134259 0.078513 0.034796
6 · 106 0.768805 0.333854 0.307670 0.138168 0.081543 0.036884
8 · 106 0.774040 0.338854 0.310603 0.140959 0.083638 0.038350

107 0.777917 0.342322 0.312758 0.143060 0.085332 0.039481

Note that the value (g2(1, 107) + g2(2, 107))/2 ≈ 0.56012 is not so far from the
expected one.

We have computed the orders of 9518 pairs of Tate-Shafarevich groups (X(E1(u)),
X(E1(u))) for |u| ≥ 108, u ≡ 1 (mod 4), satisfying (**), and such that L(E(u), 1) �=
0. We obtained the following table:

p 2 3 5 7 11
Frequency of p| |X(E1(u))| 0.826329 0.332213 0.167262 0.111053 0.058100
Frequency of p| |X(E2(u))| 0.393045 0.332213 0.167262 0.111053 0.058100

6. Asymptotic formulae

6.1. The rank zero case. Let M∗(T ) := 1
T∗

∑
|X(E(u))|, where the sum is over

integers u ≡ 1 (mod 4), |u| ≤ T , satisfying (*) and L(E(u), 1) �= 0, and T ∗ denotes
the number of terms in the sum. Similarly, let N∗∗

i (T ) := 1
T∗∗
i

∑
|X(Ei(u))|, where

i = 1, 2, and the sum is over integers u ≡ 1 (mod 4), |u| ≤ T , satisfying (**) and
L(E(u), 1) �= 0, and T ∗∗

i denotes the number of terms in the sum. Let f(T ) :=
M∗(T )
T 1/2 , and gi(T ) := N∗∗

i (T )
T 1/2 . We obtain Figure 5.
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Figure 6. Graph of the function u(X).

Note similarity with the predictions by Delaunay [11] for the case of quadratic
twists of a given elliptic curve (and numerical evidence in [7], [8]).

6.2. The rank one case. Let T (X) := 2
X∗

∑ L′(E1(u),1)
ΩE1(u)

, where the sum is over
integers u ≡ 1 (mod 4), |u| ≤ X, such that u2 + 64 = p1 · · · pk is a product of even
number of different primes, and X∗ denotes the number of terms in the sum. Let
u(X) := T (X)

X1/2 log(X) . Then, using PARI/GP for computations of L′(E1(u), 1), we
obtain Figure 6.

Hence, assuming the exact Birch and Swinnerton-Dyer conjecture for the rank
one families Ei(u), i = 1, 2, where u2+64 = p1 · · · pk is a product of an even number
of different primes, we expect the asymptotic formulae

1
X∗

∑
|X(Ei(u))|R(Ei(u)) ∼ ciX

1/2 logX, as X → ∞,

where we sum over |u| ≤ X, u ≡ 1 (mod 4), such that u2 + 64 = p1 · · · pk is a
product of an even number of different primes (compare [7], section 7.2).

Remark. Delaunay and Roblot [13] investigated regulators of elliptic curves with
rank one in some families of quadratic twists of a fixed elliptic curve, and formulated
some conjectures on the average size of these regulators. Delaunay asked us to do
similar calculations for our family Ei(u). We hope to consider such investigations
in the future.

7. Distributions of L(E(u), 1) and |X(E(u))|
7.1. Distribution of L(E(u), 1). It is a classical result (due to Selberg) that the
values of log |ζ( 1

2 + it)| follow a normal distribution.
Let E be any elliptic curve defined over Q. Let E denote the set of all fundamental

discriminants d with (d, 2NE) = 1 and εE(d) = εEχd(−NE) = 1, where εE is the
root number of E and χd = (d/·). Keating and Snaith [18] have conjectured that, for
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Figure 7. Histogram of values
(
logL(E(u), 1) + 1

2 log log |u|
)

/
√

log log |u| for |u| ≤ B : u ≡ 1 (mod 4) satisfying (**), and
such that L(E, 1) �= 0.

d ∈ E, the quantity logL(Ed, 1) has a normal distribution with mean −1
2 log log |d|

and variance log log |d|; see [6], [7], [8] for numerical data towards this conjecture.
Below we consider the family of Neumann-Setzer type elliptic curves. Our data

suggest that the values logL(E(u), 1) also follow an approximate normal distri-
bution. Let B = 107, W = {|u| ≤ B : u ≡ 1 (mod 4) and satisfies (**)} and
Ix = [x, x + 0.1) for x ∈ {−10,−9.9,−9.8, . . . , 10}. We create a histogram with
bins Ix from the data

{(
logL(E(u), 1) + 1

2 log log |u|
)
/
√

log log |u| : |u| ∈ W
}
. We

picture this histogram in Figure 7.

7.2. Distribution of |X(E(u))|. It is an interesting question to find results (or
at least a conjecture) on distribution of the order of the Tate-Shafarevich group for
rank zero Neumann-Setzer type elliptic curves E1(u) and E2(u). It turns out that
the values of log(|X(Ei(u))|/

√
|u|) are the natural ones to consider (compare Con-

jecture 1 in [24], and numerical experiments in [7], [8]). Below we create histograms
from the data

{(
log(|X(Ei(u))|/

√
|u|) − μi log log |u|

)
/
√
σ2
i log log |u| : |u| ∈ W

}
,

where μ1 = −1
2 , μ2 = −1

2 − log 2, σ2
1 = 1, and σ2

2 = 1 + (log 2)2 (here we use
Lemma 1(iii) above, and Lemma 4 in [24]). Our data suggest that the values
log(|X(Ei(u))|/

√
|u|) also follow an approximate normal distribution. We picture

these histograms in Figures 8 and 9.
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Figure 8. Histogram of values
(
log(|X(E1(u))|/

√
|u|) +

1
2 log log |u|

)
/
√

log log |u| for |u| ≤ B : u ≡ 1(mod 4) satisfying
(**), and such that L(E, 1) �= 0.

Figure 9. Histogram of values
(
log(|X(E2(u))|/

√
|u|) +

( 1
2 + log 2) log log |u|

)
/
√

(1 + (log 2)2) log log |u| for |u| ≤ B : u ≡
1 (mod 4) satisfying (**), and such that L(E, 1) �= 0.

Our experimental data were obtained using the the PARI/GP software [23]. The
computations were carried out in 2015 and 2016 on the HPC cluster HAL9000 and
desktop computers Core(TM) 2 Quad Q8300 4GB/8GB. All machines are located
at the Department of Mathematics and Physics of Szczecin University.



ORDERS OF TS GROUPS FOR THE NS TYPE ELLIPTIC CURVES 1521

References

[1] M. Bhargava, Ch. Skinner, W. Zhang, A majority of elliptic curves over Q satisfy the Birch
and Swinnerton-Dyer conjecture, arxiv.org/abs/1407.1826

[2] J. Coates, Lectures on the Birch-Swinnerton-Dyer conjecture, ICCM Not. 1 (2013), no. 2,
29–46, DOI 10.4310/ICCM.2013.v1.n2.a5. MR3310602

[3] J. Coates, Y. Li, Y. Tian, and S. Zhai, Quadratic twists of elliptic curves, Proc. Lond. Math.
Soc. (3) 110 (2015), no. 2, 357–394, DOI 10.1112/plms/pdu059. MR3335282

[4] J. Coates and A. Wiles, On the conjecture of Birch and Swinnerton-Dyer, Invent. Math. 39
(1977), no. 3, 223–251. MR0463176

[5] J. B. Conrey, D. W. Farmer, J. P. Keating, M. O. Rubinstein, and N. C. Snaith, Inte-
gral moments of L-functions, Proc. London Math. Soc. (3) 91 (2005), no. 1, 33–104, DOI
10.1112/S0024611504015175. MR2149530

[6] J. B. Conrey, J. P. Keating, M. O. Rubinstein, and N. C. Snaith, Random matrix theory and
the Fourier coefficients of half-integral-weight forms, Experiment. Math. 15 (2006), no. 1,
67–82. MR2229387

[7] A. Dąbrowski, T. Jędrzejak, and L. Szymaszkiewicz, Behaviour of the order of Tate-
Shafarevich groups for the quadratic twists of (X0)(49), Elliptic curves, modular forms and
Iwasawa theory, Springer Proc. Math. Stat., vol. 188, Springer, Cham, 2016, pp. 125–159.
MR3629650

[8] A. Dąbrowski, L. Szymaszkiewicz, Behaviour of the order of Tate-Shafarevich groups for the
quadratic twists of elliptic curves, arXiv:1611.07840 [math.NT] 23 Nov 2016.

[9] A. Dąbrowski, M. Wodzicki, Elliptic curves with large analytic order of X(E), In: Algebra,
Arithmetic and Geometry (in honour of Yu. I. Manin, vol. I), Progress in Math. 269 (2009),
407–421.

[10] H. Darmon and L. Merel, Winding quotients and some variants of Fermat’s last theorem, J.
Reine Angew. Math. 490 (1997), 81–100. MR1468926

[11] C. Delaunay, Moments of the orders of Tate-Shafarevich groups, Int. J. Number Theory 1
(2005), no. 2, 243–264, DOI 10.1142/S1793042105000133. MR2173383

[12] C. Delaunay, Heuristics on class groups and on Tate-Shafarevich groups: The magic of the
Cohen-Lenstra heuristics, Ranks of Elliptic Curves and Random Matrix Theory, London
Math. Soc. Lecture Note Ser., vol. 341, Cambridge Univ. Press, Cambridge, 2007, pp. 323–
340, DOI 10.1017/CBO9780511735158.021. MR2322355

[13] C. Delaunay and X.-F. Roblot, Regulators of rank one quadratic twists, J. Théor. Nombres
Bordeaux 20 (2008), no. 3, 601–624. MR2523310

[14] C. Delaunay and M. Watkins, The powers of logarithm for quadratic twists, Ranks of Elliptic
Curves and Random Matrix Theory, London Math. Soc. Lecture Note Ser., vol. 341, Cam-
bridge Univ. Press, Cambridge, 2007, pp. 189–193, DOI 10.1017/CBO9780511735158.010.
MR2322344

[15] C. Delaunay and C. Wuthrich, Some remarks on self-points on elliptic curves, Actes de la
Conférence “Fonctions L et Arithmétique”, Publ. Math. Besançon Algèbre Théorie Nr., Lab.
Math. Besançon, Besançon, 2010, pp. 69–84. MR2760247

[16] C. D. Gonzalez-Avilés, On the conjecture of Birch and Swinnerton-Dyer, Trans. Amer. Math.
Soc. 349 (1997), no. 10, 4181–4200, DOI 10.1090/S0002-9947-97-01762-5. MR1390036

[17] B. H. Gross and D. B. Zagier, Heegner points and derivatives of L-series, Invent. Math. 84
(1986), no. 2, 225–320, DOI 10.1007/BF01388809. MR833192

[18] J. P. Keating and N. C. Snaith, Random matrix theory and ζ(1/2 + it), Comm. Math. Phys.
214 (2000), no. 1, 57–89, DOI 10.1007/s002200000261. MR1794265

[19] V. A. Kolyvagin, Finiteness of E(Q) and X(E,Q) for a subclass of Weil curves (Russian),
Izv. Akad. Nauk SSSR Ser. Mat. 52 (1988), no. 3, 522–540, 670–671; English transl., Math.
USSR-Izv. 32 (1989), no. 3, 523–541. MR954295

[20] R. L. Miller, Empirical evidence for the Birch and Swinnerton-Dyer conjecture, ProQuest
LLC, Ann Arbor, MI, 2010. Thesis (Ph.D.)–University of Washington. MR2801688

[21] O. Neumann, Elliptische Kurven mit vorgeschriebenem Reduktionsverhalten. I (German),
Math. Nachr. 49 (1971), 107–123. MR0337999

[22] J. Park, B. Poonen, J. Voight, M. M. Wood, A heuristic for boundedness of ranks of elliptic
curves, www-math.mit.edu/ poonen/papers/bounded-ranks.pdf

http://www.ams.org/mathscinet-getitem?mr=3310602
http://www.ams.org/mathscinet-getitem?mr=3335282
http://www.ams.org/mathscinet-getitem?mr=0463176
http://www.ams.org/mathscinet-getitem?mr=2149530
http://www.ams.org/mathscinet-getitem?mr=2229387
http://www.ams.org/mathscinet-getitem?mr=3629650
http://www.ams.org/mathscinet-getitem?mr=1468926
http://www.ams.org/mathscinet-getitem?mr=2173383
http://www.ams.org/mathscinet-getitem?mr=2322355
http://www.ams.org/mathscinet-getitem?mr=2523310
http://www.ams.org/mathscinet-getitem?mr=2322344
http://www.ams.org/mathscinet-getitem?mr=2760247
http://www.ams.org/mathscinet-getitem?mr=1390036
http://www.ams.org/mathscinet-getitem?mr=833192
http://www.ams.org/mathscinet-getitem?mr=1794265
http://www.ams.org/mathscinet-getitem?mr=954295
http://www.ams.org/mathscinet-getitem?mr=2801688
http://www.ams.org/mathscinet-getitem?mr=0337999


1522 ANDRZEJ DĄBROWSKI AND LUCJAN SZYMASZKIEWICZ

[23] The PARI Group, PARI/GP version 2.7.2, Bordeaux, 2014, http://pari.math.
u-bordeaux.fr/.

[24] M. Radziwiłl and K. Soundararajan, Moments and distribution of central L-values of
quadratic twists of elliptic curves, Invent. Math. 202 (2015), no. 3, 1029–1068, DOI
10.1007/s00222-015-0582-z. MR3425386

[25] K. Rubin, Tate-Shafarevich groups and L-functions of elliptic curves with complex multipli-
cation, Invent. Math. 89 (1987), no. 3, 527–559, DOI 10.1007/BF01388984. MR903383

[26] J.-P. Serre, Propriétés galoisiennes des points d’ordre fini des courbes elliptiques (French),
Invent. Math. 15 (1972), no. 4, 259–331. MR0387283

[27] J.-P. Serre, Travaux de Wiles (et Taylor, . . .). I, Astérisque 237 (1996), Exp. No. 803, 5,
319–332. Séminaire Bourbaki, Vol. 1994/95. MR1423630

[28] B. Setzer, Elliptic curves of prime conductor, J. London Math. Soc. (2) 10 (1975), 367–378.
MR0371904

[29] J. H. Silverman, The Arithmetic of Elliptic Curves, 2nd ed., Graduate Texts in Mathematics,
vol. 106, Springer, Dordrecht, 2009. MR2514094

[30] C. Skinner and E. Urban, The Iwasawa main conjectures for GL2, Invent. Math. 195 (2014),
no. 1, 1–277, DOI 10.1007/s00222-013-0448-1. MR3148103

[31] C. Soh, Explicit methods for the Birch and Swinnerton-Dyer conjecture, MSc Thesis, Uni-
versity of Oxford, 2014

[32] W. Stein and M. Watkins, Modular parametrizations of Neumann-Setzer elliptic curves, Int.
Math. Res. Not. 27 (2004), 1395–1405, DOI 10.1155/S1073792804133916. MR2052021

[33] M. Watkins, Some heuristics about elliptic curves, Experiment. Math. 17 (2008), no. 1, 105–
125. MR2410120

[34] A. Wiles, Modular elliptic curves and Fermat’s last theorem, Ann. of Math. (2) 141 (1995),
no. 3, 443–551, DOI 10.2307/2118559. MR1333035

[35] D. Zywina, On the surjectivity of mod l representations associated to elliptic curves,
arXiv:1508.07661v1 [math.NT] 31 Aug 2015

Institute of Mathematics, University of Szczecin, Wielkopolska 15, 70-451 Szczecin,

Poland

E-mail address: andrzej.dabrowski@usz.edu.pl
E-mail address: dabrowskiandrzej7@gmail.com

Institute of Mathematics, University of Szczecin, Wielkopolska 15, 70-451 Szczecin,

Poland

E-mail address: lucjansz@gmail.com

http://www.ams.org/mathscinet-getitem?mr=3425386
http://www.ams.org/mathscinet-getitem?mr=903383
http://www.ams.org/mathscinet-getitem?mr=0387283
http://www.ams.org/mathscinet-getitem?mr=1423630
http://www.ams.org/mathscinet-getitem?mr=0371904
http://www.ams.org/mathscinet-getitem?mr=2514094
http://www.ams.org/mathscinet-getitem?mr=3148103
http://www.ams.org/mathscinet-getitem?mr=2052021
http://www.ams.org/mathscinet-getitem?mr=2410120
http://www.ams.org/mathscinet-getitem?mr=1333035

	1. Introduction
	2. Preliminaries
	3. Birch and Swinnerton-Dyer conjecture  for Neumann-Setzer type elliptic curves
	4. Frequency of orders of \cyrfont X
	5. Cohen-Lenstra heuristics for the order of \cyrfont X
	6. Asymptotic formulae
	6.1. The rank zero case
	6.2. The rank one case

	7. Distributions of 𝐿(𝐸(𝑢),1) and |\cyrfont X(𝐸(𝑢))|
	7.1. Distribution of 𝐿(𝐸(𝑢),1)
	7.2. Distribution of |\cyrfont X(𝐸(𝑢))|

	Acknowledgments
	References

