ORDERS OF TATE-SHAFAREVICH GROUPS FOR THE NEUMANN-SETZER TYPE ELLIPTIC CURVES

ANDRZEJ DĄBROWSKI AND LUCJAN SZYMASZKIEWICZ

Abstract

We present the results of our search for the orders of Tate-Shafarevich groups for the Neumann-Setzer type elliptic curves.

1. Introduction

Let E be an elliptic curve defined over \mathbb{Q} of conductor N_{E}, and let $L(E, s)$ denote its L-series. Let $Ш(E)$ be the Tate-Shafarevich group of $E, E(\mathbb{Q})$ the group of rational points, and $R(E)$ the regulator, with respect to the Néron-Tate height pairing. Finally, let Ω_{E} be the least positive real period of the Néron differential on E, and define $C_{\infty}(E)=\Omega_{E}$ or $2 \Omega_{E}$ according to whether $E(\mathbb{R})$ is connected or not, and let $C_{\text {fin }}(E)$ denote the product of the Tamagawa factors of E at the bad primes. The Euler product defining $L(E, s)$ converges for $\operatorname{Re} s>3 / 2$. The modularity conjecture, proven by Wiles-Taylor-Diamond-Breuil-Conrad, implies that $L(E, s)$ has an analytic continuation to an entire function. The Birch and Swinnerton-Dyer conjecture relates the arithmetic data of E to the behaviour of $L(E, s)$ at $s=1$.

Let g_{E} be the rank of $E(\mathbb{Q})$ and let r_{E} denote the order of the zero of $L(E, s)$ at $s=1$.

Conjecture 1 (Birch and Swinnerton-Dyer).
(i) We have $r_{E}=g_{E}$,
(ii) the group $Ш(E)$ is finite, and

$$
\lim _{s \rightarrow 1} \frac{L(E, s)}{(s-1)^{r_{E}}}=\frac{C_{\infty}(E) C_{\text {fin }}(E) R(E)|Ш(E)|}{\left|E(\mathbb{Q})_{\text {tors }}\right|^{2}} .
$$

If $Ш(E)$ is finite, the work of Cassels and Tate shows that its order must be a square.

The first general result in the direction of this conjecture was proven for elliptic curves E with complex multiplication by Coates and Wiles in 1976 [4], who showed that if $L(E, 1) \neq 0$, then the group $E(\mathbb{Q})$ is finite. Gross and Zagier [17] showed that if $L(E, s)$ has a first-order zero at $s=1$, then E has a rational point of infinite order. Rubin [25] proves that if E has complex multiplication and $L(E, 1) \neq 0$, then $Ш(E)$ is finite. Kolyvagin [19] proved that, if $r_{E} \leq 1$, then $r_{E}=g_{E}$ and $Ш(E)$ is finite. Very recently, Bhargava, Skinner and Zhang [1] proved that at least 66.48% of all elliptic curves over \mathbb{Q}, when ordered by height, satisfy the weak form of the Birch and Swinnerton-Dyer conjecture, and have finite Tate-Shafarevich group.

[^0]Coates et al. [3], 2], and Gonzalez-Avilés [16] showed that there is a large class of explicit quadratic twists of $X_{0}(49)$ whose complex L-series does not vanish at $s=1$, and for which the full Birch and Swinnerton-Dyer conjecture is valid. The deep results by Skinner-Urban [30] allow (in practice, see section 3 for instance) to establish the full version of the Birch and Swinnerton-Dyer conjecture for a large class of elliptic curves without CM.

The numerical studies and conjectures by Conrey-Keating-Rubinstein-Snaith [6], Delaunay [11], 12], Watkins [33], Radziwiłł-Soundararajan [24] (see also the papers [9, [7, [8 and references therein) substantially extend the systematic tables given by Cremona.

Given an integer $u \equiv 1(\bmod 4)$, such that $u^{2}+64$ is square-free, we define two families of elliptic curves of conductor $u^{2}+64$ (we call them the Neumann-Setzer type elliptic curves):

$$
E_{1}(u): \quad y^{2}+x y=x^{3}+\frac{1}{4}(u-1) x^{2}-x
$$

and

$$
E_{2}(u): \quad y^{2}+x y=x^{3}+\frac{1}{4}(u-1) x^{2}+4 x+u
$$

In this paper we present the results of our search for the orders of Tate-Shafarevich groups for the Neumann-Setzer type elliptic curves. Our data contains values of $\left|Ш\left(E_{i}(u)\right)\right|$ for 2056445 values of $u \equiv 1(\bmod 4),|u| \leq 10^{7}$ such that $u^{2}+64$ is a product of an odd number of different primes, and such that $L(E(u), 1) \neq 0$ (456702 of these values satisfy the condition $u^{2}+64$ is a prime). Additionally, we have considered 10000 values of $u \equiv 1(\bmod 4),|u| \geq 10^{8}$ such that $u^{2}+64$ is a product of an odd number of different primes, and in cases $L(E(u), 1) \neq 0$ we computed the orders of $Ш\left(E_{i}(u)\right)$. Our data extends the calculations given by Stein-Watkins 32] (resp. by Delaunay-Wuthrich [15]), where the authors considered $|u| \leq \sqrt{2} \times 10^{6}$ (resp. $|u| \leq 10^{6}$) such that $u^{2}+64$ is a prime.

Our main observations concern the asymptotic formulae in section 4 (frequency of orders of $Ш$) and section 6 (asymptotics for the sums $\sum\left|Ш\left(E_{i}(u)\right)\right| R\left(E_{i}(u)\right.$ in the rank zero and one cases), and the distributions of $\log L\left(E_{i}(u), 1\right)$ and $\log \left(\left|Ш\left(E_{i}(u)\right)\right| / \sqrt{|u|}\right)$ in section 7.

2. Preliminaries

We have $\Delta_{E_{1}(u)}=u^{2}+64$ and $\Delta_{E_{2}(u)}=-\left(u^{2}+64\right)^{2}$. The curves $E_{1}(u)$ and $E_{2}(u)$ are 2-isogenous: write $E_{1}(u)$ and $E_{2}(u)$ in short Weierstrass forms $\left(y^{2}=\right.$ $x^{3}+u x^{2}-16 x$ and $y^{2}=x^{3}-2 u x^{2}+\left(u^{2}+64\right) x$, respectively), and use (29$]$, Example 4.5 on p. 70). It is known, due to Neumann and Setzer (21], [28]), that in the case $u^{2}+64$ is a prime, the curves $E_{1}(u)$ and $E_{2}(u)$ are the only (up to isomorphism) elliptic curves with a rational 2-division point and conductor $u^{2}+64$. In general there are more than two, up to isomorphism, elliptic curves with a rational 2-division point and conductor $u^{2}+64$. Take, for instance, $u=-51$, then the curves $E_{1}(u)$ and $E_{2}(u)$ have conductor $2665=5 \cdot 13 \cdot 41$. In Cremona's online tables we find 8 elliptic curves of conductor 2665 with a rational 2-division point.

Lemma 1. We have:
(i) $E_{1}(u)(\mathbb{Q})_{\text {tors }} \simeq E_{2}(u)(\mathbb{Q})_{\text {tors }} \simeq \mathbb{Z} / 2 \mathbb{Z}$;
(ii) $\Omega_{E_{1}(u)}=\Omega_{E_{2}(u)}, C_{\infty}\left(E_{1}(u)\right)=2 \Omega_{E_{1}(u)}, C_{\infty}\left(E_{2}(u)\right)=\Omega_{E_{2}(u)}$;
(iii) $C_{\text {fin }}\left(E_{1}(u)\right)=1$, and $C_{\text {fin }}\left(E_{2}(u)\right)=2^{k}$, where $u^{2}+64=p_{1} \cdots p_{k}$.

Proof. (i) Let $E(u)=E_{1}(u)$ or $E_{2}(u)$. Then $E(u)$ has good reduction at 2. Using the reduction map modulo 2 , we obtain that $\left|E_{i}(u)(\mathbb{Q})_{\text {tors }}\right|$ divides 4 . Now, one checks that $E_{i}(u)(\mathbb{Q})$ have only one point of order two, and no points of order four.
(ii) To check that $\Omega_{E_{1}(u)}=\Omega_{E_{2}(u)}$, one uses the explicit forms of Weierstrass equations. Now the sign of the discriminant of $E_{1}(u)$ (resp. of $E_{2}(u)$) is positive (resp. negative), hence the remaining assertions follow.
(iii) We have $C_{f i n}\left(E_{1}(u)\right)=\prod_{p \mid \Delta_{E(u)}} C_{p}(E(u))$, where $C_{p}(E(u))=\left[E(u)\left(\mathbb{Q}_{p}\right)\right.$: $\left.E_{0}(u)\left(\mathbb{Q}_{p}\right)\right]$, and $E_{0}(u)\left(\mathbb{Q}_{p}\right)$ denotes the subgroup of points of $E(u)\left(\mathbb{Q}_{p}\right)$ with nonsingular reduction modulo p. Both $E_{1}(u)$ and $E_{2}(u)$ have split multiplicative reductions at all primes p dividing $u^{2}+64$. Hence, in this case, $C_{p}(E(u))=\operatorname{ord}_{p}\left(\Delta_{E(u)}\right)$ (see, for instance, [2] Lemma 2.9), and the assertion follows.

Note that $L\left(E_{1}(u), s\right)=L\left(E_{2}(u), s\right)=\sum_{n=1}^{\infty} a_{n} n^{-s}, \operatorname{Re}(s)>3 / 2$. Assuming the truth of the Birch and Swinnerton-Dyer conjecture for $E(u)$ in the rank zero case, we can calculate the order of $Ш(E(u))$ by evaluating (an analytic continuation of) $L(E(u), s)$ at $s=1$:

$$
\begin{aligned}
& \left|Ш\left(E_{1}(u)\right)\right|=\frac{2 L\left(E_{1}(u), 1\right)}{\Omega_{E_{1}(u)}}, \\
& \left|Ш\left(E_{2}(u)\right)\right|=\frac{L\left(E_{2}(u), 1\right)}{2^{k-2} \Omega_{E_{2}(u)}}
\end{aligned}
$$

where as above, $u^{2}+64=p_{1} \cdots p_{k}$ is a product of different primes.
More precisely, we have to calculate the value

$$
L(E(u), 1)=2 \sum_{n=1}^{\infty} \frac{a_{n}}{n} e^{-\frac{2 \pi n}{\sqrt{u^{2}+64}}}
$$

with sufficient accuracy.
Lemma 2. In order to determine the order of $Ш\left(E_{1}(u)\right)$ and $Ш\left(E_{2}(u)\right)$, it is enough to take $\frac{1}{8} \sqrt{u^{2}+64} \log \left(u^{2}+64\right)$ terms of the above series.
Proof. Repeat the proof of Theorem 16 in [15].
Let $\epsilon(E(u))$ denote the root number of $E(u)$.
Lemma 3. Let $u^{2}+64=p_{1} \cdots p_{k}$ be a product of different primes. Then $\epsilon(E(u))=(-1)^{k+1}$.
Proof. $\epsilon(E(u))=-\prod_{i=1}^{k} \epsilon_{p_{i}}(E(u))$, a product of local root numbers. Now, $E(u)$ has split multiplicative reduction at all p_{i} dividing $u^{2}+64$. Hence, $\epsilon_{p_{i}}(E(u))=-1$, and the assertion follows.

Corollary 1. Assume the parity conjecture holds for the curves $E(u)$. Then $E(u)(\mathbb{Q})$ has even rank if and only if $u^{2}+64=p_{1} \cdots p_{k}$ is a product of an odd number of different primes.

We can use a classical 2-descent method ([29], Chapter X) to obtain a bound on the rank of $E_{i}(u)$ depending on k. Let $\phi: E_{1}(u) \rightarrow E_{2}(u)$ be the 2-isogeny, and write $\hat{\phi}$ for its dual. Let $S^{(\phi)}$ and $S^{(\hat{\phi})}$ denote the corresponding Selmer groups. One checks that $S^{(\phi)} \subset\left\langle p_{1}, \ldots, p_{k}\right\rangle$ and $S^{(\hat{\phi})}=\langle-1\rangle$. As a consequence, we obtain $\operatorname{rank}\left(E_{i}(u)\right) \leq \operatorname{dim}_{\mathbb{F}_{2}} S^{(\phi)}+\operatorname{dim}_{\mathbb{F}_{2}} S^{(\hat{\phi})}-2 \leq k+1-2=k-1$. In particular, if $u^{2}+64$ is a prime, then $E_{i}(u)$ have rank zero, and if $k=2$, then $\operatorname{rank}\left(E_{i}(u)\right) \leq 1$ ($=1$ if we assume the parity conjecture).

Definition 2. We say that an integer $u \equiv 1(\bmod 4)$ satisfies condition $(*)$ if $u^{2}+64$ is a prime; we say that an integer $u \equiv 1(\bmod 4)$ satisfies condition $\left(^{* *}\right)$ if $u^{2}+64$ is a product of odd number of different primes.

3. Birch and Swinnerton-Dyer conjecture for Neumann-Setzer type elliptic curves

In this section, we will use the deep results by Skinner-Urban 30] (and other available techniques), to prove the full version of the Birch-Swinnerton-Dyer conjecture for a large class of Neumann-Setzer type elliptic curves.

Let $\bar{\rho}_{E, p}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$ denote the Galois representation on the p torsion of E. Assume $p \geq 3$.

Theorem 3 ($\sqrt[30]{ }$, Theorem 2). Let E be an elliptic curve over \mathbb{Q} with conductor N_{E}. Suppose:
(i) E has good ordinary reduction at p;
(ii) $\bar{\rho}_{E, p}$ is irreducible;
(iii) there exists a prime $q \neq p$ such that $q \| N_{E}$ and $\bar{\rho}_{E, p}$ is ramified at q;
(iv) $\bar{\rho}_{E, p}$ is surjective.

If moreover $L(E, 1) \neq 0$, then the p-part of the Birch and Swinnerton-Dyer conjecture holds true, and we have

$$
\operatorname{ord}_{p}(|Ш(E)|)=\operatorname{ord}_{p}\left(\frac{\left|E(\mathbb{Q})_{\text {tors }}\right|^{2} L(E, 1)}{C_{\infty}(E) C_{f i n}(E)}\right) .
$$

Take $E(u)=E_{1}(u)$ or $E_{2}(u)$. Then:
(a) $E(u)$ is semistable and has a rational 2-division point, hence $\bar{\rho}_{E(u), p}$ is irreducible for $p \geq 7$ by ([10], Theorem 7). Note moreover (by Wiles [34]) that at least one of $\bar{\rho}_{E(u), 3}$ or $\bar{\rho}_{E(u), 5}$ is irreducible.
(b) If E is any semistable elliptic curve and $q \neq p$, then $\bar{\rho}_{E, p}$ is unramified at q if and only if $p \operatorname{ord}_{q}\left(\Delta_{E}\right)$. In our case, $\operatorname{ord}_{q}\left(\Delta_{E}(u)\right)$ equals 1 or 2 , hence $\bar{\rho}_{E(u), p}$ is ramified at any $q \geq 3$.
(c) If E is any semistable elliptic curve, then $\bar{\rho}_{E, p}$ is surjective for $p \geq 11$ by [27]. More precisely, Serre ([27], Prop. 1) shows that in this case $\bar{\rho}_{E, p}$ is surjective for all primes p unless E admits an isogeny of degree p defined over \mathbb{Q}. In particular, if such E additionally has a rational 2-division point, then $\bar{\rho}_{E, p}$ is surjective for $p \geq 7$. Note (by [26], Prop. 21, and [27], Prop. 1), that in the case of semistable elliptic curve E, the representation $\bar{\rho}_{E, p}$ is surjective if and only if it is irreducible. Now, Zywina (35], Prop. 6.1) gives a criterion to determine whether $\bar{\rho}_{E, p}$ is surjective or not for any non-CM elliptic curve and any prime $p \leq 11$. Using such a criterion, one immediately checks surjectivity of $\bar{\rho}_{E_{i}(u), p}$ for $p=2,3$, and 5 . As a consequence, we obtain the following general result.

Proposition 1. The representations $\bar{\rho}_{E(u), p}$ are surjective for all primes p.
Summing up all the above information, we obtain the following nice result.
Corollary 2. Let $E=E_{1}(u)$ or $E_{2}(u)$, with $u \equiv 1(\bmod 4)$ satisfying $\left({ }^{* *}\right)$ and such that $L(E, 1) \neq 0$. If E has good ordinary reduction at $p \geq 3$, then the p-part of the Birch and Swinnerton-Dyer conjecture holds for E.

Remark. Let us recall that a prime p is good for an elliptic curve E over \mathbb{Q}, if p does not divide $N_{E} ; p$ is good ordinary for E, if it is good and $a_{p}=p+1-N_{p}(E)$ is not divisible by p (here $N_{p}(E)$ denotes the number of \mathbb{F}_{p}-points of the reduction $\left.E_{p}\right)$. Here are explicit conditions for small primes p to satisfy the good ordinary condition in case $E=E_{i}(u)$ (we assume $u \equiv 1(\bmod 4)$):
(i) $p=3$, additional condition $u \not \equiv 0(\bmod 3)$;
(ii) $p=5$, no additional condition on u;
(iii) $p=7$, additional condition $u \not \equiv 0(\bmod 7)$;
(iv) $p=11$, additional condition $u \not \equiv 0,4,7(\bmod 11)$.

Remark. One can use explicit descent algorithms to compute $\boldsymbol{\omega}\left(E_{i}(u)\right)[m]$ for $m=2,4$ or 8 . If $Ш\left(E_{i}(u)\right)[2]$ is trivial, then $Ш\left(E_{i}(u)\right)$ has odd order. If $Ш\left(E_{i}(u)\right)[2]=Ш\left(E_{i}(u)\right)[4]$, say, then $\operatorname{ord}_{2}\left|Ш\left(E_{i}(u)\right)\right|=\operatorname{ord}_{2}\left|Ш\left(E_{i}(u)\right)[2]\right|$. Similarly, one can use explicit descent algorithms to compute Ш $\left(E_{i}(u)\right)[m]$ for $m=3$ or 9. Again, if $Ш\left(E_{i}(u)\right)$ [3] is trivial, then $Ш\left(E_{i}(u)\right)$ has order not divisible by 3 (here we not require that 3 is good ordinary). If $Ш\left(E_{i}(u)\right)[3]=Ш\left(E_{i}(u)\right)[9]$, then $\operatorname{ord}_{3}\left|Ш\left(E_{i}(u)\right)\right|=\operatorname{ord}_{3}\left|Ш\left(E_{i}(u)\right)[3]\right|$.

The theses [20] and [31] explore both theoretical and computational methods to compute the orders of Tate-Shafarevich groups.

Remark. (i) Among 456702 values of $u \equiv 1(\bmod 4),|u| \leq 10^{7}$ satisfying (*), there are 379898 values of $|u|$ such that $E(u)$ has good ordinary reduction at any prime dividing the analytic order $|Ш(E(u))|$. The groups $Ш\left(E_{i}(u)\right)[2]$ are both trivial (by 2-descent), hence by Corollary 2 the values $|Ш(E(u))|$ are the algebraic orders of Ш.
(ii) Among 2056445 values of $u \equiv 1(\bmod 4),|u| \leq 10^{7}$ satisfying (${ }^{* *}$) and such that $L(E(u), 1) \neq 0$, there are 1148683 values of $|u|$ such that $\left|Ш\left(E_{2}(u)\right)\right|$ is odd and $E(u)$ has good ordinary reduction at any prime dividing the analytic order $\left|Ш\left(E_{2}(u)\right)\right|$. Again, by Corollary 2 all these values are the algebraic orders of Ш.

The numerical data are done under the Birch and Swinnerton-Dyer conjecture. In particular, the experimental study in sections $4,5,6$, and 7 concern the analytic orders of the Tate-Shafarevich groups.

4. Frequency of orders of Ш

Our calculations strongly suggest that for any positive integer k there are infinitely many integers $u \equiv 1(\bmod 4)$ satisfying condition $\left({ }^{* *}\right)$, such that $E(u)$ has rank zero and $|Ш(E(u))|=k^{2}$. Below (at the end of this section) we will state a more precise conjecture.

Let $f(i, X)$ denote the number of integers $u \equiv 1(\bmod 4),|u| \leq X$, satisfying $\left(^{* *}\right)$ and such that $L(E(u), 1) \neq 0,\left|Ш\left(E_{i}(u)\right)\right|=1$. Let $g(X)$ denote the number of integers $u \equiv 1(\bmod 4),|u| \leq X$, satisfying $\left({ }^{* *}\right)$ and such that $L(E(u), 1)=0$. We obtain the graphs in Figure 1 (compare [7, [8, where similar observations are made for the families of quadratic twists of several elliptic curves).

Consider the set consisting of 10000 values of integers $u \equiv 1(\bmod 4),|u| \geq 10^{8}$, satisfying $\left({ }^{* *}\right)$. Let $f(i)$ denote the number of such u 's satisfying $L\left(E_{i}(u), 1\right) \neq 0$ and $\left|Ш\left(E_{i}(u)\right)\right|=1$, and let g denote the number of such u 's satisfying $L\left(E_{i}(u), 1\right)=$ 0 . Then $f(1)=118, f(2)=845, g=482$, hence $f(1) / g \approx 0,2448$, and $f(2) / g \approx$ 1,7531.

Figure 1. Graphs of the functions $f(i, X) / g(X), i=1,2$.

Delaunay and Watkins expect ([14], Heuristics 1.1):

$$
\sharp\left\{d \leq X: \epsilon\left(E_{d}\right)=1, \operatorname{rank}\left(E_{d}\right) \geq 2\right\} \sim c_{E} X^{3 / 4}(\log X)^{b_{E}+\frac{3}{8}}, \quad \text { as } \quad X \rightarrow \infty,
$$

where $c_{E}>0$, and there are four different possibilities for b_{E}, largely dependent on the rational 2-torsion structure of E. Watkins [33], and Park-Poonen-Voight-Wood [22] have conjectured that

$$
\sharp\{E: \operatorname{ht}(E) \leq X, \epsilon(E)=1, \operatorname{rank}(E) \geq 2\} \sim c X^{19 / 24}(\log X)^{3 / 8},
$$

where E runs over all elliptic curves defined over the rationals, and $\operatorname{ht}(E)$ denotes the height of E.

We expect a similar asymptotic formula for the family $E(u)$. Let $H(X):=$ $\frac{X^{19 / 24}(\log X)^{3 / 8}}{g(X)}$, and $G_{i}(X):=\frac{X^{3 / 4}(\log X)^{i}}{g(X)}, i=0,1 / 2$ or 1 . We obtain the graphs in Figure 2 (partially) confirming our expectation.

Now let $f_{k}(i, X)$ denote the number of integers $u \equiv 1(\bmod 4),|u| \leq X$, satisfying $\left({ }^{* *}\right)$ and such that $L(E(u), 1) \neq 0,\left|Ш\left(E_{i}(u)\right)\right|=k^{2}$. Let $F_{k}(i, X):=\frac{f(i, X)}{f_{k}(i, X)}$. We obtain the graphs in Figures 3 and 4 of the functions $F_{k}(i, X)$ for $i=1,2$ and $k=2,3,4,5,6,7$.

The above calculations suggest the following.
Conjecture 4. For any positive integer k there are constants $c_{k, i}>0, \alpha_{k, i}$, and $\beta_{k, i}$ such that

$$
f_{k}(i, X) \sim c_{k, i} X^{\alpha_{k, i}}(\log X)^{\beta_{k, i}}, \quad \text { as } \quad X \rightarrow \infty .
$$

Conjectures 8 in [7] and 2 in [8] suggest similar asymptotics for the family of quadratic twists of any elliptic curve defined over \mathbb{Q}.

Figure 2. Graph of the function $H(X)$.

Figure 3. Graphs of the functions $F_{k}(1, X), k=2, \ldots, 7$.

Consider the set consisting of 10000 values of integers $u \equiv 1(\bmod 4),|u| \geq 10^{8}$, satisfying $\left({ }^{* *}\right)$. Let $f_{k}(i)$ denote the number of such u 's satisfying $L\left(E_{i}(u), 1\right) \neq 0$ and $\left|Ш\left(E_{i}(u)\right)\right|=k^{2}$. Let $F_{k}(i):=\frac{f_{1}(i)}{f_{k}(i)}$. We obtain

$$
\begin{array}{lll}
F_{2}(1) \approx 0.2256, & F_{3}(1) \approx 0.8251, & F_{4}(1) \approx 0.1779 \\
F_{5}(1) \approx 1.0825, & F_{6}(1) \approx 0.2494, & F_{7}(1) \approx 1.1919 \\
F_{2}(2) \approx 1.1901, & F_{3}(2) \approx 1.0682, & F_{4}(2) \approx 1.5590 \\
F_{5}(2) \approx 1.4955, & F_{6}(2) \approx 1.9031, & F_{7}(2) \approx 1.8449
\end{array}
$$

Figure 4. Graphs of the functions $F_{k}(2, X), k=2, \ldots, 7$.

5. Cohen-Lenstra heuristics for the order of Ш

Delaunay [12] has considered Cohen-Lenstra heuristics for the order of TateShafarevich group. He predicts, among others, that in the rank zero case, the probability that $|Ш(E)|$ of a given elliptic curve E over \mathbb{Q} is divisible by a prime p should be $f_{0}(p):=1-\prod_{j=1}^{\infty}\left(1-p^{1-2 j}\right)=\frac{1}{p}+\frac{1}{p^{3}}+\cdots$. Hence, $f_{0}(2) \approx 0.580577$, $f_{0}(3) \approx 0.360995, f_{0}(5) \approx 0.206660, f_{0}(7) \approx 0.145408, f_{0}(11) \approx 0.092$, and so on.

Let $F(X)$ (resp. $G(X))$ denote the number of integers $u \equiv 1(\bmod 4),|u| \leq$ X, satisfying $\left({ }^{*}\right)\left(\right.$ resp. $\left.\left(^{* *}\right)\right)$ and such that $L(E(u), 1) \neq 0$. Let $F_{p}(X)$ (resp. $G_{p}(X)$ if $\left.p \geq 3\right)$ denote the number of integers $u \equiv 1(\bmod 4),|u| \leq X$, satisfying $\left(^{*}\right)\left(\right.$ resp. $\left.{ }^{(* *)}\right)$, such that $L(E(u), 1) \neq 0$ and $|Ш(E(u))|$ is divisible by p. Let $G_{2}(i, X)$ denote the number of integers $u \equiv 1(\bmod 4),|u| \leq X$, satisfying $\left({ }^{* *}\right)$, such that $L(E(u), 1) \neq 0$ and $\left|Ш\left(E_{i}(u)\right)\right|$ is divisible by 2 . Let $f_{p}(X):=\frac{F_{p}(X)}{F(X)}$, $g_{p}(X):=\frac{G_{p}(X)}{G(X)}$, and $g_{2}(i, X):=\frac{G_{2}(i, X)}{G(X)}$. We obtain the following table, extending the calculations given by Stein-Watkins [32] and Delaunay-Wuthrich [15]:

X	$f_{3}(X)$	$f_{5}(X)$	$f_{7}(X)$	$f_{11}(X)$
$2 \cdot 10^{6}$	0.358355	0.189909	0.123182	0.061527
$4 \cdot 10^{6}$	0.362001	0.192343	0.126864	0.066945
$6 \cdot 10^{6}$	0.363294	0.194413	0.129213	0.069780
$8 \cdot 10^{6}$	0.364051	0.196239	0.130556	0.071144
10^{7}	0.365067	0.197048	0.131812	0.072358

The numerical values of $f_{3}(X)$ exceed the expected value $f_{0}(3)$. In general, the values $f_{k}(X)$ may tend to some constants depending on the various congruential values of u (compare [32]).

Figure 5. Graphs of the functions $f(T)$ and $g_{i}(T), i=1,2$.

It seems that it would be better to consider u 's satisfying $\left({ }^{* *}\right)$, but here the convergence is very slow. Here are the results:

X	$g_{2}(1, X)$	$g_{2}(2, X)$	$g_{3}(X)$	$g_{5}(X)$	$g_{7}(X)$	$g_{11}(X)$
$2 \cdot 10^{6}$	0.746231	0.313111	0.295592	0.127626	0.072959	0.030979
$4 \cdot 10^{6}$	0.761104	0.326554	0.303529	0.134259	0.078513	0.034796
$6 \cdot 10^{6}$	0.768805	0.333854	0.307670	0.138168	0.081543	0.036884
$8 \cdot 10^{6}$	0.774040	0.338854	0.310603	0.140959	0.083638	0.038350
10^{7}	0.777917	0.342322	0.312758	0.143060	0.085332	0.039481

Note that the value $\left(g_{2}\left(1,10^{7}\right)+g_{2}\left(2,10^{7}\right)\right) / 2 \approx 0.56012$ is not so far from the expected one.

We have computed the orders of 9518 pairs of Tate-Shafarevich groups $\left(Ш\left(E_{1}(u)\right)\right.$, $\left.Ш\left(E_{1}(u)\right)\right)$ for $|u| \geq 10^{8}, u \equiv 1(\bmod 4)$, satisfying $\left({ }^{* *}\right)$, and such that $L(E(u), 1) \neq$ 0 . We obtained the following table:

p	2	3	5	7	11
Frequency of $p\left\|\left\|Ш\left(E_{1}(u)\right)\right\|\right.$	0.826329	0.332213	0.167262	0.111053	0.058100
Frequency of $p\left\|\left\|Ш\left(E_{2}(u)\right)\right\|\right.$	0.393045	0.332213	0.167262	0.111053	0.058100

6. Asymptotic formulae

6.1. The rank zero case. Let $M^{*}(T):=\frac{1}{T^{*}} \sum|Ш(E(u))|$, where the sum is over integers $u \equiv 1(\bmod 4),|u| \leq T$, satisfying $\left(^{*}\right)$ and $L(E(u), 1) \neq 0$, and T^{*} denotes the number of terms in the sum. Similarly, let $N_{i}^{* *}(T):=\frac{1}{T_{i}^{* *}} \sum\left|Ш\left(E_{i}(u)\right)\right|$, where $i=1,2$, and the sum is over integers $u \equiv 1(\bmod 4),|u| \leq T$, satisfying $\left({ }^{* *}\right)$ and $L(E(u), 1) \neq 0$, and $T_{i}^{* *}$ denotes the number of terms in the sum. Let $f(T):=$ $\frac{M^{*}(T)}{T^{1 / 2}}$, and $g_{i}(T):=\frac{N_{i}^{* *}(T)}{T^{1 / 2}}$. We obtain Figure 5

Figure 6. Graph of the function $u(X)$.

Note similarity with the predictions by Delaunay [11 for the case of quadratic twists of a given elliptic curve (and numerical evidence in [7], [8]).
6.2. The rank one case. Let $T(X):=\frac{2}{X^{*}} \sum \frac{L^{\prime}\left(E_{1}(u), 1\right)}{\Omega_{E_{1}(u)}}$, where the sum is over integers $u \equiv 1(\bmod 4),|u| \leq X$, such that $u^{2}+64=p_{1} \cdots p_{k}$ is a product of even number of different primes, and X^{*} denotes the number of terms in the sum. Let $u(X):=\frac{T(X)}{X^{1 / 2} \log (X)}$. Then, using PARI/GP for computations of $L^{\prime}\left(E_{1}(u), 1\right)$, we obtain Figure 6 .

Hence, assuming the exact Birch and Swinnerton-Dyer conjecture for the rank one families $E_{i}(u), i=1,2$, where $u^{2}+64=p_{1} \cdots p_{k}$ is a product of an even number of different primes, we expect the asymptotic formulae

$$
\frac{1}{X^{*}} \sum\left|Ш\left(E_{i}(u)\right)\right| R\left(E_{i}(u)\right) \sim c_{i} X^{1 / 2} \log X, \quad \text { as } \quad X \rightarrow \infty
$$

where we sum over $|u| \leq X, u \equiv 1(\bmod 4)$, such that $u^{2}+64=p_{1} \cdots p_{k}$ is a product of an even number of different primes (compare [7, section 7.2).

Remark. Delaunay and Roblot [13] investigated regulators of elliptic curves with rank one in some families of quadratic twists of a fixed elliptic curve, and formulated some conjectures on the average size of these regulators. Delaunay asked us to do similar calculations for our family $E_{i}(u)$. We hope to consider such investigations in the future.

7. Distributions of $L(E(u), 1)$ and $|Ш(E(u))|$

7.1. Distribution of $L(E(u), 1)$. It is a classical result (due to Selberg) that the values of $\log \left|\zeta\left(\frac{1}{2}+i t\right)\right|$ follow a normal distribution.

Let E be any elliptic curve defined over \mathbb{Q}. Let \mathcal{E} denote the set of all fundamental discriminants d with $\left(d, 2 N_{E}\right)=1$ and $\epsilon_{E}(d)=\epsilon_{E} \chi_{d}\left(-N_{E}\right)=1$, where ϵ_{E} is the root number of E and $\chi_{d}=(d / \cdot)$. Keating and Snaith [18] have conjectured that, for

Figure 7. Histogram of values $\left(\log L(E(u), 1)+\frac{1}{2} \log \log |u|\right)$ $/ \sqrt{\log \log |u|}$ for $|u| \leq B: u \equiv 1(\bmod 4)$ satisfying $\left(^{* *}\right)$, and such that $L(E, 1) \neq 0$.
$d \in \mathcal{E}$, the quantity $\log L\left(E_{d}, 1\right)$ has a normal distribution with mean $-\frac{1}{2} \log \log |d|$ and variance $\log \log |d|$; see [6], 7], [8] for numerical data towards this conjecture.

Below we consider the family of Neumann-Setzer type elliptic curves. Our data suggest that the values $\log L(E(u), 1)$ also follow an approximate normal distribution. Let $B=10^{7}, W=\left\{|u| \leq B: u \equiv 1(\bmod 4)\right.$ and satisfies $\left.\left({ }^{* *}\right)\right\}$ and $I_{x}=[x, x+0.1)$ for $x \in\{-10,-9.9,-9.8, \ldots, 10\}$. We create a histogram with bins I_{x} from the data $\left\{\left(\log L(E(u), 1)+\frac{1}{2} \log \log |u|\right) / \sqrt{\log \log |u|}:|u| \in W\right\}$. We picture this histogram in Figure 7
7.2. Distribution of $|Ш(E(u))|$. It is an interesting question to find results (or at least a conjecture) on distribution of the order of the Tate-Shafarevich group for rank zero Neumann-Setzer type elliptic curves $E_{1}(u)$ and $E_{2}(u)$. It turns out that the values of $\log \left(\left|Ш\left(E_{i}(u)\right)\right| / \sqrt{|u|}\right)$ are the natural ones to consider (compare Conjecture 1 in [24, and numerical experiments in [7], [8]). Below we create histograms from the data $\left\{\left(\log \left(\left|Ш\left(E_{i}(u)\right)\right| / \sqrt{|u|}\right)-\mu_{i} \log \log |u|\right) / \sqrt{\sigma_{i}^{2} \log \log |u|}:|u| \in W\right\}$, where $\mu_{1}=-\frac{1}{2}, \mu_{2}=-\frac{1}{2}-\log 2, \sigma_{1}^{2}=1$, and $\sigma_{2}^{2}=1+(\log 2)^{2}$ (here we use Lemma 1(iii) above, and Lemma 4 in [24]). Our data suggest that the values $\log \left(\left|Ш\left(E_{i}(u)\right)\right| / \sqrt{|u|}\right)$ also follow an approximate normal distribution. We picture these histograms in Figures 8 and 9

Acknowledgments

We thank Bjorn Poonen and Christophe Delaunay for their remarks and questions. We thank the anonymous referee for his/her remarks and comments which improved the final version of this paper.

Figure 8. Histogram of values $\left(\log \left(\left|Ш\left(E_{1}(u)\right)\right| / \sqrt{|u|}\right)+\right.$ $\left.\frac{1}{2} \log \log |u|\right) / \sqrt{\log \log |u|}$ for $|u| \leq B: u \equiv 1(\bmod 4)$ satisfying $\left(^{* *}\right)$, and such that $L(E, 1) \neq 0$.

Figure 9. Histogram of values $\left(\log \left(\left|Ш\left(E_{2}(u)\right)\right| / \sqrt{|u|}\right)+\right.$ $\left.\left(\frac{1}{2}+\log 2\right) \log \log |u|\right) / \sqrt{\left(1+(\log 2)^{2}\right) \log \log |u|}$ for $|u| \leq B: u \equiv$ $1(\bmod 4)$ satisfying $(* *)$, and such that $L(E, 1) \neq 0$.

Our experimental data were obtained using the the PARI/GP software [23]. The computations were carried out in 2015 and 2016 on the HPC cluster HAL9000 and desktop computers Core(TM) 2 Quad Q8300 4GB/8GB. All machines are located at the Department of Mathematics and Physics of Szczecin University.

References

[1] M. Bhargava, Ch. Skinner, W. Zhang, A majority of elliptic curves over \mathbb{Q} satisfy the Birch and Swinnerton-Dyer conjecture, arxiv.org/abs/1407.1826
[2] J. Coates, Lectures on the Birch-Swinnerton-Dyer conjecture, ICCM Not. 1 (2013), no. 2, 29-46, DOI 10.4310/ICCM.2013.v1.n2.a5. MR3310602
[3] J. Coates, Y. Li, Y. Tian, and S. Zhai, Quadratic twists of elliptic curves, Proc. Lond. Math. Soc. (3) 110 (2015), no. 2, 357-394, DOI 10.1112/plms/pdu059. MR 3335282
[4] J. Coates and A. Wiles, On the conjecture of Birch and Swinnerton-Dyer, Invent. Math. 39 (1977), no. 3, 223-251. MR0463176
[5] J. B. Conrey, D. W. Farmer, J. P. Keating, M. O. Rubinstein, and N. C. Snaith, Integral moments of L-functions, Proc. London Math. Soc. (3) 91 (2005), no. 1, 33-104, DOI 10.1112/S0024611504015175. MR2149530
[6] J. B. Conrey, J. P. Keating, M. O. Rubinstein, and N. C. Snaith, Random matrix theory and the Fourier coefficients of half-integral-weight forms, Experiment. Math. 15 (2006), no. 1, 67-82. MR2229387
[7] A. Dąbrowski, T. Jędrzejak, and L. Szymaszkiewicz, Behaviour of the order of TateShafarevich groups for the quadratic twists of $\left(X_{0}\right)(49)$, Elliptic curves, modular forms and Iwasawa theory, Springer Proc. Math. Stat., vol. 188, Springer, Cham, 2016, pp. 125-159. MR 3629650
[8] A. Dąbrowski, L. Szymaszkiewicz, Behaviour of the order of Tate-Shafarevich groups for the quadratic twists of elliptic curves, arXiv:1611.07840 [math.NT] 23 Nov 2016.
[9] A. Dąbrowski, M. Wodzicki, Elliptic curves with large analytic order of Ш(E), In: Algebra, Arithmetic and Geometry (in honour of Yu. I. Manin, vol. I), Progress in Math. 269 (2009), 407-421.
[10] H. Darmon and L. Merel, Winding quotients and some variants of Fermat's last theorem, J. Reine Angew. Math. 490 (1997), 81-100. MR 1468926
[11] C. Delaunay, Moments of the orders of Tate-Shafarevich groups, Int. J. Number Theory 1 (2005), no. 2, 243-264, DOI 10.1142/S1793042105000133. MR2173383
[12] C. Delaunay, Heuristics on class groups and on Tate-Shafarevich groups: The magic of the Cohen-Lenstra heuristics, Ranks of Elliptic Curves and Random Matrix Theory, London Math. Soc. Lecture Note Ser., vol. 341, Cambridge Univ. Press, Cambridge, 2007, pp. 323340, DOI 10.1017/CBO9780511735158.021. MR 2322355
[13] C. Delaunay and X.-F. Roblot, Regulators of rank one quadratic twists, J. Théor. Nombres Bordeaux 20 (2008), no. 3, 601-624. MR2523310
[14] C. Delaunay and M. Watkins, The powers of logarithm for quadratic twists, Ranks of Elliptic Curves and Random Matrix Theory, London Math. Soc. Lecture Note Ser., vol. 341, Cambridge Univ. Press, Cambridge, 2007, pp. 189-193, DOI 10.1017/CBO9780511735158.010. MR2322344
[15] C. Delaunay and C. Wuthrich, Some remarks on self-points on elliptic curves, Actes de la Conférence "Fonctions L et Arithmétique", Publ. Math. Besançon Algèbre Théorie Nr., Lab. Math. Besançon, Besançon, 2010, pp. 69-84. MR2760247
[16] C. D. Gonzalez-Avilés, On the conjecture of Birch and Swinnerton-Dyer, Trans. Amer. Math. Soc. 349 (1997), no. 10, 4181-4200, DOI 10.1090/S0002-9947-97-01762-5. MR1390036
[17] B. H. Gross and D. B. Zagier, Heegner points and derivatives of L-series, Invent. Math. 84 (1986), no. 2, 225-320, DOI 10.1007/BF01388809. MR833192
[18] J. P. Keating and N. C. Snaith, Random matrix theory and $\zeta(1 / 2+i t)$, Comm. Math. Phys. 214 (2000), no. 1, 57-89, DOI 10.1007/s002200000261. MR 1794265
[19] V. A. Kolyvagin, Finiteness of $E(\mathbf{Q})$ and $Ш(E, \mathbf{Q})$ for a subclass of Weil curves (Russian), Izv. Akad. Nauk SSSR Ser. Mat. 52 (1988), no. 3, 522-540, 670-671; English transl., Math. USSR-Izv. 32 (1989), no. 3, 523-541. MR 954295
[20] R. L. Miller, Empirical evidence for the Birch and Swinnerton-Dyer conjecture, ProQuest LLC, Ann Arbor, MI, 2010. Thesis (Ph.D.)-University of Washington. MR 2801688
[21] O. Neumann, Elliptische Kurven mit vorgeschriebenem Reduktionsverhalten. I (German), Math. Nachr. 49 (1971), 107-123. MR0337999
[22] J. Park, B. Poonen, J. Voight, M. M. Wood, A heuristic for boundedness of ranks of elliptic curves, www-math.mit.edu/ poonen/papers/bounded-ranks.pdf
[23] The PARI Group, PARI/GP version 2.7.2, Bordeaux, 2014, http://pari.math. u-bordeaux.fr/.
[24] M. Radziwiłl and K. Soundararajan, Moments and distribution of central L-values of quadratic twists of elliptic curves, Invent. Math. 202 (2015), no. 3, 1029-1068, DOI 10.1007/s00222-015-0582-z. MR3425386
[25] K. Rubin, Tate-Shafarevich groups and L-functions of elliptic curves with complex multiplication, Invent. Math. 89 (1987), no. 3, 527-559, DOI 10.1007/BF01388984. MR903383
[26] J.-P. Serre, Propriétés galoisiennes des points d'ordre fini des courbes elliptiques (French), Invent. Math. 15 (1972), no. 4, 259-331. MR0387283
[27] J.-P. Serre, Travaux de Wiles (et Taylor, ...). I, Astérisque 237 (1996), Exp. No. 803, 5, 319-332. Séminaire Bourbaki, Vol. 1994/95. MR1423630
[28] B. Setzer, Elliptic curves of prime conductor, J. London Math. Soc. (2) 10 (1975), 367-378. MR0371904
[29] J. H. Silverman, The Arithmetic of Elliptic Curves, 2nd ed., Graduate Texts in Mathematics, vol. 106, Springer, Dordrecht, 2009. MR2514094
[30] C. Skinner and E. Urban, The Iwasawa main conjectures for GL_{2}, Invent. Math. 195 (2014), no. 1, 1-277, DOI 10.1007/s00222-013-0448-1. MR3148103
[31] C. Soh, Explicit methods for the Birch and Swinnerton-Dyer conjecture, MSc Thesis, University of Oxford, 2014
[32] W. Stein and M. Watkins, Modular parametrizations of Neumann-Setzer elliptic curves, Int. Math. Res. Not. 27 (2004), 1395-1405, DOI 10.1155/S1073792804133916. MR2052021
[33] M. Watkins, Some heuristics about elliptic curves, Experiment. Math. 17 (2008), no. 1, 105125. MR2410120
[34] A. Wiles, Modular elliptic curves and Fermat's last theorem, Ann. of Math. (2) 141 (1995), no. 3, 443-551, DOI 10.2307/2118559. MR1333035
[35] D. Zywina, On the surjectivity of mod l representations associated to elliptic curves, arXiv:1508.07661v1 [math.NT] 31 Aug 2015

Institute of Mathematics, University of Szczecin, Wielkopolska 15, 70-451 Szczecin, Poland

E-mail address: andrzej.dabrowski@usz.edu.pl
E-mail address: dabrowskiandrzej7@gmail.com
Institute of Mathematics, University of Szczecin, Wielkopolska 15, 70-451 Szczecin, Poland

E-mail address: lucjansz@gmail.com

[^0]: Received by the editor May 31, 2016, and, in revised form, November 12, 2016.
 2010 Mathematics Subject Classification. Primary 11G05, 11G40, 11 Y 50.
 Key words and phrases. Elliptic curves, Tate-Shafarevich group, Cohen-Lenstra heuristics, distribution of central L-values.

