ORDERS OF TATE-SHAFAREVICH GROUPS FOR THE NEUMANN-SETZER TYPE ELLIPTIC CURVES

ANDRZEJ DĄBROWSKI AND LUCJAN SZYMASZKIEWICZ

ABSTRACT. We present the results of our search for the orders of Tate-Shafarevich groups for the Neumann-Setzer type elliptic curves.

1. INTRODUCTION

Let E be an elliptic curve defined over \mathbb{Q} of conductor N_E , and let L(E, s)denote its L-series. Let $\amalg(E)$ be the Tate-Shafarevich group of E, $E(\mathbb{Q})$ the group of rational points, and R(E) the regulator, with respect to the Néron-Tate height pairing. Finally, let Ω_E be the least positive real period of the Néron differential on E, and define $C_{\infty}(E) = \Omega_E$ or $2\Omega_E$ according to whether $E(\mathbb{R})$ is connected or not, and let $C_{\text{fin}}(E)$ denote the product of the Tamagawa factors of E at the bad primes. The Euler product defining L(E, s) converges for Re s > 3/2. The modularity conjecture, proven by Wiles-Taylor-Diamond-Breuil-Conrad, implies that L(E, s)has an analytic continuation to an entire function. The Birch and Swinnerton-Dyer conjecture relates the arithmetic data of E to the behaviour of L(E, s) at s = 1.

Let g_E be the rank of $E(\mathbb{Q})$ and let r_E denote the order of the zero of L(E, s) at s = 1.

Conjecture 1 (Birch and Swinnerton-Dyer).

- (i) We have $r_E = g_E$,
- (ii) the group $\amalg(E)$ is finite, and

$$\lim_{s \to 1} \frac{L(E,s)}{(s-1)^{r_E}} = \frac{C_{\infty}(E)C_{fin}(E) R(E) |\Pi(E)|}{|E(\mathbb{Q})_{tors}|^2}.$$

If $\amalg(E)$ is finite, the work of Cassels and Tate shows that its order must be a square.

The first general result in the direction of this conjecture was proven for elliptic curves E with complex multiplication by Coates and Wiles in 1976 [4], who showed that if $L(E, 1) \neq 0$, then the group $E(\mathbb{Q})$ is finite. Gross and Zagier [17] showed that if L(E, s) has a first-order zero at s = 1, then E has a rational point of infinite order. Rubin [25] proves that if E has complex multiplication and $L(E, 1) \neq 0$, then $\amalg(E)$ is finite. Kolyvagin [19] proved that, if $r_E \leq 1$, then $r_E = g_E$ and $\amalg(E)$ is finite. Very recently, Bhargava, Skinner and Zhang [1] proved that at least 66.48% of all elliptic curves over \mathbb{Q} , when ordered by height, satisfy the weak form of the Birch and Swinnerton-Dyer conjecture, and have finite Tate-Shafarevich group.

Received by the editor May 31, 2016, and, in revised form, November 12, 2016.

²⁰¹⁰ Mathematics Subject Classification. Primary 11G05, 11G40, 11Y50.

Key words and phrases. Elliptic curves, Tate-Shafarevich group, Cohen-Lenstra heuristics, distribution of central L-values.

Coates et al. [3], [2], and Gonzalez-Avilés [16] showed that there is a large class of explicit quadratic twists of $X_0(49)$ whose complex *L*-series does not vanish at s = 1, and for which the full Birch and Swinnerton-Dyer conjecture is valid. The deep results by Skinner-Urban [30] allow (in practice, see section 3 for instance) to establish the full version of the Birch and Swinnerton-Dyer conjecture for a large class of elliptic curves without CM.

The numerical studies and conjectures by Conrey-Keating-Rubinstein-Snaith [6], Delaunay [11], [12], Watkins [33], Radziwiłł-Soundararajan [24] (see also the papers [9], [7], [8] and references therein) substantially extend the systematic tables given by Cremona.

Given an integer $u \equiv 1 \pmod{4}$, such that $u^2 + 64$ is square-free, we define two families of elliptic curves of conductor $u^2 + 64$ (we call them the Neumann-Setzer type elliptic curves):

$$E_1(u): \quad y^2 + xy = x^3 + \frac{1}{4}(u-1)x^2 - x$$

and

$$E_2(u): \quad y^2 + xy = x^3 + \frac{1}{4}(u-1)x^2 + 4x + u$$

In this paper we present the results of our search for the orders of Tate-Shafarevich groups for the Neumann-Setzer type elliptic curves. Our data contains values of $|\coprod(E_i(u))|$ for 2056445 values of $u \equiv 1 \pmod{4}$, $|u| \leq 10^7$ such that $u^2 + 64$ is a product of an odd number of different primes, and such that $L(E(u), 1) \neq 0$ (456702 of these values satisfy the condition $u^2 + 64$ is a prime). Additionally, we have considered 10000 values of $u \equiv 1 \pmod{4}$, $|u| \geq 10^8$ such that $u^2 + 64$ is a product of an odd number of different primes, and in cases $L(E(u), 1) \neq 0$ we computed the orders of $\amalg(E_i(u))$. Our data extends the calculations given by Stein-Watkins [32] (resp. by Delaunay-Wuthrich [15]), where the authors considered $|u| \leq \sqrt{2} \times 10^6$ (resp. $|u| \leq 10^6$) such that $u^2 + 64$ is a prime.

Our main observations concern the asymptotic formulae in section 4 (frequency of orders of \amalg) and section 6 (asymptotics for the sums $\sum |\amalg(E_i(u))|R(E_i(u))|$ in the rank zero and one cases), and the distributions of $\log L(E_i(u), 1)$ and $\log(|\amalg(E_i(u))|/\sqrt{|u|})$ in section 7.

2. Preliminaries

We have $\Delta_{E_1(u)} = u^2 + 64$ and $\Delta_{E_2(u)} = -(u^2 + 64)^2$. The curves $E_1(u)$ and $E_2(u)$ are 2-isogenous: write $E_1(u)$ and $E_2(u)$ in short Weierstrass forms $(y^2 = x^3 + ux^2 - 16x$ and $y^2 = x^3 - 2ux^2 + (u^2 + 64)x$, respectively), and use ([29], Example 4.5 on p. 70). It is known, due to Neumann and Setzer ([21], [28]), that in the case $u^2 + 64$ is a prime, the curves $E_1(u)$ and $E_2(u)$ are the only (up to isomorphism) elliptic curves with a rational 2-division point and conductor $u^2 + 64$. In general there are more than two, up to isomorphism, elliptic curves with a rational 2-division point and conductor $u^2 + 64$. Take, for instance, u = -51, then the curves $E_1(u)$ and $E_2(u)$ have conductor $2665 = 5 \cdot 13 \cdot 41$. In Cremona's online tables we find 8 elliptic curves of conductor 2665 with a rational 2-division point.

Lemma 1. We have:

(i) $E_1(u)(\mathbb{Q})_{tors} \simeq E_2(u)(\mathbb{Q})_{tors} \simeq \mathbb{Z}/2\mathbb{Z};$ (ii) $\Omega_{E_1(u)} = \Omega_{E_2(u)}, C_{\infty}(E_1(u)) = 2\Omega_{E_1(u)}, C_{\infty}(E_2(u)) = \Omega_{E_2(u)};$ (iii) $C_{fin}(E_1(u)) = 1, and C_{fin}(E_2(u)) = 2^k, where u^2 + 64 = p_1 \cdots p_k.$ *Proof.* (i) Let $E(u) = E_1(u)$ or $E_2(u)$. Then E(u) has good reduction at 2. Using the reduction map modulo 2, we obtain that $|E_i(u)(\mathbb{Q})_{tors}|$ divides 4. Now, one checks that $E_i(u)(\mathbb{Q})$ have only one point of order two, and no points of order four.

(ii) To check that $\Omega_{E_1(u)} = \Omega_{E_2(u)}$, one uses the explicit forms of Weierstrass equations. Now the sign of the discriminant of $E_1(u)$ (resp. of $E_2(u)$) is positive (resp. negative), hence the remaining assertions follow.

(iii) We have $C_{fin}(E_1(u)) = \prod_{p \mid \Delta_{E(u)}} C_p(E(u))$, where $C_p(E(u)) = [E(u)(\mathbb{Q}_p) : E_0(u)(\mathbb{Q}_p)]$, and $E_0(u)(\mathbb{Q}_p)$ denotes the subgroup of points of $E(u)(\mathbb{Q}_p)$ with nonsingular reduction modulo p. Both $E_1(u)$ and $E_2(u)$ have split multiplicative reductions at all primes p dividing $u^2 + 64$. Hence, in this case, $C_p(E(u)) = \operatorname{ord}_p(\Delta_{E(u)})$ (see, for instance, [2], Lemma 2.9), and the assertion follows.

Note that $L(E_1(u), s) = L(E_2(u), s) = \sum_{n=1}^{\infty} a_n n^{-s}$, $\operatorname{Re}(s) > 3/2$. Assuming the truth of the Birch and Swinnerton-Dyer conjecture for E(u) in the rank zero case, we can calculate the order of $\coprod(E(u))$ by evaluating (an analytic continuation of) L(E(u), s) at s = 1:

$$|\Pi(E_1(u))| = \frac{2L(E_1(u), 1)}{\Omega_{E_1(u)}},$$
$$|\Pi(E_2(u))| = \frac{L(E_2(u), 1)}{2^{k-2}\Omega_{E_2(u)}},$$

where as above, $u^2 + 64 = p_1 \cdots p_k$ is a product of different primes.

More precisely, we have to calculate the value

$$L(E(u),1) = 2\sum_{n=1}^{\infty} \frac{a_n}{n} e^{-\frac{2\pi n}{\sqrt{u^2+64}}}$$

with sufficient accuracy.

Lemma 2. In order to determine the order of $\amalg(E_1(u))$ and $\amalg(E_2(u))$, it is enough to take $\frac{1}{8}\sqrt{u^2+64}\log(u^2+64)$ terms of the above series.

Proof. Repeat the proof of Theorem 16 in [15].

Let $\epsilon(E(u))$ denote the root number of E(u).

Lemma 3. Let $u^2 + 64 = p_1 \cdots p_k$ be a product of different primes. Then $\epsilon(E(u)) = (-1)^{k+1}$.

Proof. $\epsilon(E(u)) = -\prod_{i=1}^{k} \epsilon_{p_i}(E(u))$, a product of local root numbers. Now, E(u) has split multiplicative reduction at all p_i dividing $u^2 + 64$. Hence, $\epsilon_{p_i}(E(u)) = -1$, and the assertion follows.

Corollary 1. Assume the parity conjecture holds for the curves E(u). Then $E(u)(\mathbb{Q})$ has even rank if and only if $u^2 + 64 = p_1 \cdots p_k$ is a product of an odd number of different primes.

We can use a classical 2-descent method ([29], Chapter X) to obtain a bound on the rank of $E_i(u)$ depending on k. Let $\phi : E_1(u) \to E_2(u)$ be the 2-isogeny, and write $\hat{\phi}$ for its dual. Let $S^{(\phi)}$ and $S^{(\hat{\phi})}$ denote the corresponding Selmer groups. One checks that $S^{(\phi)} \subset \langle p_1, \ldots, p_k \rangle$ and $S^{(\hat{\phi})} = \langle -1 \rangle$. As a consequence, we obtain rank $(E_i(u)) \leq \dim_{\mathbb{F}_2} S^{(\phi)} + \dim_{\mathbb{F}_2} S^{(\hat{\phi})} - 2 \leq k + 1 - 2 = k - 1$. In particular, if $u^2 + 64$ is a prime, then $E_i(u)$ have rank zero, and if k = 2, then rank $(E_i(u)) \leq 1$ (= 1 if we assume the parity conjecture). **Definition 2.** We say that an integer $u \equiv 1 \pmod{4}$ satisfies condition (*) if $u^2 + 64$ is a prime; we say that an integer $u \equiv 1 \pmod{4}$ satisfies condition (**) if $u^2 + 64$ is a product of odd number of different primes.

3. BIRCH AND SWINNERTON-DYER CONJECTURE FOR NEUMANN-SETZER TYPE ELLIPTIC CURVES

In this section, we will use the deep results by Skinner-Urban [30] (and other available techniques), to prove the full version of the Birch–Swinnerton-Dyer conjecture for a large class of Neumann-Setzer type elliptic curves.

Let $\overline{\rho}_{E,p}$: $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_2(\mathbb{F}_p)$ denote the Galois representation on the *p*-torsion of *E*. Assume $p \geq 3$.

Theorem 3 ([30], Theorem 2). Let E be an elliptic curve over \mathbb{Q} with conductor N_E . Suppose:

- (i) E has good ordinary reduction at p;
- (ii) $\overline{\rho}_{E,p}$ is irreducible;
- (iii) there exists a prime $q \neq p$ such that $q \parallel N_E$ and $\overline{\rho}_{E,p}$ is ramified at q;
- (iv) $\overline{\rho}_{E,p}$ is surjective.

If moreover $L(E, 1) \neq 0$, then the p-part of the Birch and Swinnerton-Dyer conjecture holds true, and we have

$$ord_p(|\mathbf{U}(E)|) = ord_p\left(\frac{|E(\mathbb{Q})_{tors}|^2 L(E,1)}{C_{\infty}(E)C_{fin}(E)}\right)$$

Take $E(u) = E_1(u)$ or $E_2(u)$. Then:

(a) E(u) is semistable and has a rational 2-division point, hence $\overline{\rho}_{E(u),p}$ is irreducible for $p \geq 7$ by ([10], Theorem 7). Note moreover (by Wiles [34]) that at least one of $\overline{\rho}_{E(u),3}$ or $\overline{\rho}_{E(u),5}$ is irreducible.

(b) If E is any semistable elliptic curve and $q \neq p$, then $\overline{\rho}_{E,p}$ is unramified at q if and only if $p | \operatorname{ord}_q(\Delta_E)$. In our case, $\operatorname{ord}_q(\Delta_E(u))$ equals 1 or 2, hence $\overline{\rho}_{E(u),p}$ is ramified at any $q \geq 3$.

(c) If E is any semistable elliptic curve, then $\overline{\rho}_{E,p}$ is surjective for $p \geq 11$ by [27]. More precisely, Serre ([27], Prop. 1) shows that in this case $\overline{\rho}_{E,p}$ is surjective for all primes p unless E admits an isogeny of degree p defined over \mathbb{Q} . In particular, if such E additionally has a rational 2-division point, then $\overline{\rho}_{E,p}$ is surjective for $p \geq 7$. Note (by [26], Prop. 21, and [27], Prop. 1), that in the case of semistable elliptic curve E, the representation $\overline{\rho}_{E,p}$ is surjective if and only if it is irreducible. Now, Zywina ([35], Prop. 6.1) gives a criterion to determine whether $\overline{\rho}_{E,p}$ is surjective or not for any non-CM elliptic curve and any prime $p \leq 11$. Using such a criterion, one immediately checks surjectivity of $\overline{\rho}_{E_i(u),p}$ for p = 2, 3, and 5. As a consequence, we obtain the following general result.

Proposition 1. The representations $\overline{\rho}_{E(u),p}$ are surjective for all primes p.

Summing up all the above information, we obtain the following nice result.

Corollary 2. Let $E = E_1(u)$ or $E_2(u)$, with $u \equiv 1 \pmod{4}$ satisfying (**) and such that $L(E, 1) \neq 0$. If E has good ordinary reduction at $p \ge 3$, then the p-part of the Birch and Swinnerton-Dyer conjecture holds for E.

Remark. Let us recall that a prime p is good for an elliptic curve E over \mathbb{Q} , if p does not divide N_E ; p is good ordinary for E, if it is good and $a_p = p + 1 - N_p(E)$ is not divisible by p (here $N_p(E)$ denotes the number of \mathbb{F}_p -points of the reduction E_p). Here are explicit conditions for small primes p to satisfy the good ordinary condition in case $E = E_i(u)$ (we assume $u \equiv 1 \pmod{4}$):

- (i) p = 3, additional condition $u \not\equiv 0 \pmod{3}$;
- (ii) p = 5, no additional condition on u;
- (iii) p = 7, additional condition $u \not\equiv 0 \pmod{7}$;
- (iv) p = 11, additional condition $u \not\equiv 0, 4, 7 \pmod{11}$.

Remark. One can use explicit descent algorithms to compute $\amalg(E_i(u))[m]$ for m = 2, 4 or 8. If $\amalg(E_i(u))[2]$ is trivial, then $\amalg(E_i(u))$ has odd order. If $\amalg(E_i(u))[2] = \amalg(E_i(u))[4]$, say, then $\operatorname{ord}_2|\amalg(E_i(u))| = \operatorname{ord}_2|\amalg(E_i(u))[2]|$. Similarly, one can use explicit descent algorithms to compute $\amalg(E_i(u))[m]$ for m = 3 or 9. Again, if $\amalg(E_i(u))[3]$ is trivial, then $\amalg(E_i(u))$ has order not divisible by 3 (here we not require that 3 is good ordinary). If $\amalg(E_i(u))[3] = \amalg(E_i(u))[9]$, then $\operatorname{ord}_3|\amalg(E_i(u))| = \operatorname{ord}_3|\amalg(E_i(u))[3]|$.

The theses [20] and [31] explore both theoretical and computational methods to compute the orders of Tate-Shafarevich groups.

Remark. (i) Among 456702 values of $u \equiv 1 \pmod{4}$, $|u| \leq 10^7$ satisfying (*), there are 379898 values of |u| such that E(u) has good ordinary reduction at any prime dividing the analytic order $|\operatorname{III}(E(u))|$. The groups $\operatorname{III}(E_i(u))[2]$ are both trivial (by 2-descent), hence by Corollary 2 the values $|\operatorname{III}(E(u))|$ are the algebraic orders of III .

(ii) Among 2056445 values of $u \equiv 1 \pmod{4}$, $|u| \leq 10^7$ satisfying (**) and such that $L(E(u), 1) \neq 0$, there are 1148683 values of |u| such that $|\operatorname{III}(E_2(u))|$ is odd and E(u) has good ordinary reduction at any prime dividing the analytic order $|\operatorname{III}(E_2(u))|$. Again, by Corollary 2 all these values are the algebraic orders of II.

The numerical data are done under the Birch and Swinnerton-Dyer conjecture. In particular, the experimental study in sections 4, 5, 6, and 7 concern the analytic orders of the Tate-Shafarevich groups.

4. Frequency of orders of \square

Our calculations strongly suggest that for any positive integer k there are infinitely many integers $u \equiv 1 \pmod{4}$ satisfying condition (**), such that E(u) has rank zero and $|\Pi(E(u))| = k^2$. Below (at the end of this section) we will state a more precise conjecture.

Let f(i, X) denote the number of integers $u \equiv 1 \pmod{4}$, $|u| \leq X$, satisfying (**) and such that $L(E(u), 1) \neq 0$, $|\coprod(E_i(u))| = 1$. Let g(X) denote the number of integers $u \equiv 1 \pmod{4}$, $|u| \leq X$, satisfying (**) and such that L(E(u), 1) = 0. We obtain the graphs in Figure 1 (compare [7], [8], where similar observations are made for the families of quadratic twists of several elliptic curves).

Consider the set consisting of 10000 values of integers $u \equiv 1 \pmod{4}, |u| \geq 10^8$, satisfying (**). Let f(i) denote the number of such u's satisfying $L(E_i(u), 1) \neq 0$ and $|\coprod(E_i(u))| = 1$, and let g denote the number of such u's satisfying $L(E_i(u), 1) = 0$. Then f(1) = 118, f(2) = 845, g = 482, hence $f(1)/g \approx 0,2448$, and $f(2)/g \approx 1,7531$.

FIGURE 1. Graphs of the functions f(i, X)/g(X), i = 1, 2.

Delaunay and Watkins expect ([14], Heuristics 1.1):

$$\sharp\{d \le X : \epsilon(E_d) = 1, \operatorname{rank}(E_d) \ge 2\} \sim c_E X^{3/4} (\log X)^{b_E + \frac{3}{8}}, \quad \text{as} \quad X \to \infty,$$

where $c_E > 0$, and there are four different possibilities for b_E , largely dependent on the rational 2-torsion structure of E. Watkins [33], and Park-Poonen-Voight-Wood [22] have conjectured that

$$\# \{ E : \operatorname{ht}(E) \le X, \, \epsilon(E) = 1, \, \operatorname{rank}(E) \ge 2 \} \sim c X^{19/24} (\log X)^{3/8}$$

where E runs over all elliptic curves defined over the rationals, and ht(E) denotes the height of E.

We expect a similar asymptotic formula for the family E(u). Let $H(X) := \frac{X^{19/24}(\log X)^{3/8}}{g(X)}$, and $G_i(X) := \frac{X^{3/4}(\log X)^i}{g(X)}$, i = 0, 1/2 or 1. We obtain the graphs in Figure 2 (partially) confirming our expectation.

Now let $f_k(i, X)$ denote the number of integers $u \equiv 1 \pmod{4}$, $|u| \leq X$, satisfying (**) and such that $L(E(u), 1) \neq 0$, $|\coprod(E_i(u))| = k^2$. Let $F_k(i, X) := \frac{f(i, X)}{f_k(i, X)}$. We obtain the graphs in Figures 3 and 4 of the functions $F_k(i, X)$ for i = 1, 2 and k = 2, 3, 4, 5, 6, 7.

The above calculations suggest the following.

Conjecture 4. For any positive integer k there are constants $c_{k,i} > 0$, $\alpha_{k,i}$, and $\beta_{k,i}$ such that

$$f_k(i, X) \sim c_{k,i} X^{\alpha_{k,i}} (\log X)^{\beta_{k,i}}, \quad as \quad X \to \infty.$$

Conjectures 8 in [7] and 2 in [8] suggest similar asymptotics for the family of quadratic twists of any elliptic curve defined over \mathbb{Q} .

FIGURE 2. Graph of the function H(X).

FIGURE 3. Graphs of the functions $F_k(1, X)$, k = 2, ..., 7.

Consider the set consisting of 10000 values of integers $u \equiv 1 \pmod{4}$, $|u| \geq 10^8$, satisfying (**). Let $f_k(i)$ denote the number of such u's satisfying $L(E_i(u), 1) \neq 0$ and $|\coprod(E_i(u))| = k^2$. Let $F_k(i) := \frac{f_1(i)}{f_k(i)}$. We obtain

 $\begin{array}{ll} F_2(1) \approx 0.2256, & F_3(1) \approx 0.8251, & F_4(1) \approx 0.1779, \\ F_5(1) \approx 1.0825, & F_6(1) \approx 0.2494, & F_7(1) \approx 1.1919, \\ F_2(2) \approx 1.1901, & F_3(2) \approx 1.0682, & F_4(2) \approx 1.5590, \\ F_5(2) \approx 1.4955, & F_6(2) \approx 1.9031, & F_7(2) \approx 1.8449. \end{array}$

FIGURE 4. Graphs of the functions $F_k(2, X), k = 2, ..., 7$.

5. Cohen-Lenstra heuristics for the order of \amalg

Delaunay [12] has considered Cohen-Lenstra heuristics for the order of Tate-Shafarevich group. He predicts, among others, that in the rank zero case, the probability that $|\Pi(E)|$ of a given elliptic curve E over \mathbb{Q} is divisible by a prime p should be $f_0(p) := 1 - \prod_{j=1}^{\infty} (1 - p^{1-2j}) = \frac{1}{p} + \frac{1}{p^3} + \cdots$. Hence, $f_0(2) \approx 0.580577$, $f_0(3) \approx 0.360995$, $f_0(5) \approx 0.206660$, $f_0(7) \approx 0.145408$, $f_0(11) \approx 0.092$, and so on.

Let F(X) (resp. G(X)) denote the number of integers $u \equiv 1 \pmod{4}$, $|u| \leq X$, satisfying (*) (resp. (**)) and such that $L(E(u), 1) \neq 0$. Let $F_p(X)$ (resp. $G_p(X)$ if $p \geq 3$) denote the number of integers $u \equiv 1 \pmod{4}$, $|u| \leq X$, satisfying (*) (resp. (**)), such that $L(E(u), 1) \neq 0$ and $|\operatorname{III}(E(u))|$ is divisible by p. Let $G_2(i, X)$ denote the number of integers $u \equiv 1 \pmod{4}$, $|u| \leq X$, satisfying (**), such that $L(E(u), 1) \neq 0$ and $|\operatorname{III}(E(u))|$ is divisible by p. Let $G_2(i, X)$ denote the number of integers $u \equiv 1 \pmod{4}$, $|u| \leq X$, satisfying (**), such that $L(E(u), 1) \neq 0$ and $|\operatorname{III}(E_i(u))|$ is divisible by 2. Let $f_p(X) := \frac{F_p(X)}{F(X)}$, $g_p(X) := \frac{G_p(X)}{G(X)}$, and $g_2(i, X) := \frac{G_2(i, X)}{G(X)}$. We obtain the following table, extending the calculations given by Stein-Watkins [32] and Delaunay-Wuthrich [15]:

X	$f_3(X)$	$f_5(X)$	$f_7(X)$	$f_{11}(X)$
$2 \cdot 10^{6}$	0.358355	0.189909	0.123182	0.061527
$4\cdot 10^6$	0.362001	0.192343	0.126864	0.066945
$6 \cdot 10^6$	0.363294	0.194413	0.129213	0.069780
$8\cdot 10^6$	0.364051	0.196239	0.130556	0.071144
10^{7}	0.365067	0.197048	0.131812	0.072358

The numerical values of $f_3(X)$ exceed the expected value $f_0(3)$. In general, the values $f_k(X)$ may tend to some constants depending on the various congruential values of u (compare [32]).

FIGURE 5. Graphs of the functions f(T) and $g_i(T)$, i = 1, 2.

It seems that it would be better to consider u's satisfying (**), but here the convergence is very slow. Here are the results:

	X	$g_2(1,X)$	$g_2(2,X)$	$g_3(X)$	$g_5(X)$	$g_7(X)$	$g_{11}(X)$
2	10^{6}	0.746231	0.313111	0.295592	0.127626	0.072959	0.030979
4	$\cdot 10^{6}$	0.761104	0.326554	0.303529	0.134259	0.078513	0.034796
6	10^{6}	0.768805	0.333854	0.307670	0.138168	0.081543	0.036884
8	$\cdot 10^{6}$	0.774040	0.338854	0.310603	0.140959	0.083638	0.038350
	10^{7}	0.777917	0.342322	0.312758	0.143060	0.085332	0.039481

Note that the value $(g_2(1, 10^7) + g_2(2, 10^7))/2 \approx 0.56012$ is not so far from the expected one.

We have computed the orders of 9518 pairs of Tate-Shafarevich groups $(\amalg(E_1(u)), \amalg(E_1(u)))$ for $|u| \ge 10^8, u \equiv 1 \pmod{4}$, satisfying (**), and such that $L(E(u), 1) \ne 0$. We obtained the following table:

p	2	3	5	7	11
Frequency of $p \square (E_1(u)) $					
Frequency of $p \bigsqcup (E_2(u)) $	0.393045	0.332213	0.167262	0.111053	0.058100

6. Asymptotic formulae

6.1. The rank zero case. Let $M^*(T) := \frac{1}{T^*} \sum |\Pi(E(u))|$, where the sum is over integers $u \equiv 1 \pmod{4}$, $|u| \leq T$, satisfying (*) and $L(E(u), 1) \neq 0$, and T^* denotes the number of terms in the sum. Similarly, let $N_i^{**}(T) := \frac{1}{T_i^{**}} \sum |\Pi(E_i(u))|$, where i = 1, 2, and the sum is over integers $u \equiv 1 \pmod{4}$, $|u| \leq T$, satisfying (**) and $L(E(u), 1) \neq 0$, and T_i^{**} denotes the number of terms in the sum. Let $f(T) := \frac{M^*(T)}{T^{1/2}}$, and $g_i(T) := \frac{N_i^{**}(T)}{T^{1/2}}$. We obtain Figure 5.

FIGURE 6. Graph of the function u(X).

Note similarity with the predictions by Delaunay [11] for the case of quadratic twists of a given elliptic curve (and numerical evidence in [7], [8]).

6.2. The rank one case. Let $T(X) := \frac{2}{X^*} \sum \frac{L'(E_1(u),1)}{\Omega_{E_1(u)}}$, where the sum is over integers $u \equiv 1 \pmod{4}$, $|u| \leq X$, such that $u^2 + 64 = p_1 \cdots p_k$ is a product of even number of different primes, and X^* denotes the number of terms in the sum. Let $u(X) := \frac{T(X)}{X^{1/2}\log(X)}$. Then, using PARI/GP for computations of $L'(E_1(u), 1)$, we obtain Figure 6.

Hence, assuming the exact Birch and Swinnerton-Dyer conjecture for the rank one families $E_i(u)$, i = 1, 2, where $u^2 + 64 = p_1 \cdots p_k$ is a product of an even number of different primes, we expect the asymptotic formulae

$$\frac{1}{X^*} \sum |\mathrm{III}(E_i(u))| R(E_i(u)) \sim c_i X^{1/2} \log X, \quad \text{as} \quad X \to \infty,$$

where we sum over $|u| \leq X$, $u \equiv 1 \pmod{4}$, such that $u^2 + 64 = p_1 \cdots p_k$ is a product of an even number of different primes (compare [7], section 7.2).

Remark. Delaunay and Roblot [13] investigated regulators of elliptic curves with rank one in some families of quadratic twists of a fixed elliptic curve, and formulated some conjectures on the average size of these regulators. Delaunay asked us to do similar calculations for our family $E_i(u)$. We hope to consider such investigations in the future.

7. DISTRIBUTIONS OF L(E(u), 1) and $|\amalg(E(u))|$

7.1. Distribution of L(E(u), 1). It is a classical result (due to Selberg) that the values of $\log |\zeta(\frac{1}{2} + it)|$ follow a normal distribution.

Let E be any elliptic curve defined over \mathbb{Q} . Let \mathcal{E} denote the set of all fundamental discriminants d with $(d, 2N_E) = 1$ and $\epsilon_E(d) = \epsilon_E \chi_d(-N_E) = 1$, where ϵ_E is the root number of E and $\chi_d = (d/\cdot)$. Keating and Snaith [18] have conjectured that, for

FIGURE 7. Histogram of values $\left(\log L(E(u), 1) + \frac{1}{2}\log\log|u|\right)$ $/\sqrt{\log\log|u|}$ for $|u| \leq B : u \equiv 1 \pmod{4}$ satisfying (**), and such that $L(E, 1) \neq 0$.

 $d \in \mathcal{E}$, the quantity $\log L(E_d, 1)$ has a normal distribution with mean $-\frac{1}{2} \log \log |d|$ and variance $\log \log |d|$; see [6], [7], [8] for numerical data towards this conjecture.

Below we consider the family of Neumann-Setzer type elliptic curves. Our data suggest that the values $\log L(E(u), 1)$ also follow an approximate normal distribution. Let $B = 10^7$, $W = \{|u| \leq B : u \equiv 1 \pmod{4} \text{ and satisfies } (**)\}$ and $I_x = [x, x + 0.1)$ for $x \in \{-10, -9.9, -9.8, \ldots, 10\}$. We create a histogram with bins I_x from the data $\{ (\log L(E(u), 1) + \frac{1}{2} \log \log |u|) / \sqrt{\log \log |u|} : |u| \in W \}$. We picture this histogram in Figure 7.

7.2. **Distribution of** $||\Pi(E(u))|$. It is an interesting question to find results (or at least a conjecture) on distribution of the order of the Tate-Shafarevich group for rank zero Neumann-Setzer type elliptic curves $E_1(u)$ and $E_2(u)$. It turns out that the values of $\log(|\Pi(E_i(u))|/\sqrt{|u|})$ are the natural ones to consider (compare Conjecture 1 in [24], and numerical experiments in [7], [8]). Below we create histograms from the data $\left\{ \left(\log(|\Pi(E_i(u))|/\sqrt{|u|}) - \mu_i \log \log |u| \right) / \sqrt{\sigma_i^2 \log \log |u|} : |u| \in W \right\}$, where $\mu_1 = -\frac{1}{2}$, $\mu_2 = -\frac{1}{2} - \log 2$, $\sigma_1^2 = 1$, and $\sigma_2^2 = 1 + (\log 2)^2$ (here we use Lemma 1(iii) above, and Lemma 4 in [24]). Our data suggest that the values $\log(|\Pi(E_i(u))|/\sqrt{|u|})$ also follow an approximate normal distribution. We picture these histograms in Figures 8 and 9.

Acknowledgments

We thank Bjorn Poonen and Christophe Delaunay for their remarks and questions. We thank the anonymous referee for his/her remarks and comments which improved the final version of this paper.

FIGURE 8. Histogram of values $(\log(|\amalg(E_1(u))|/\sqrt{|u|}) + \frac{1}{2}\log\log|u|)/\sqrt{\log\log|u|}$ for $|u| \leq B : u \equiv 1 \pmod{4}$ satisfying (**), and such that $L(E, 1) \neq 0$.

FIGURE 9. Histogram of values $(\log(|\Pi(E_2(u))|/\sqrt{|u|}) + (\frac{1}{2} + \log 2) \log \log |u|)/\sqrt{(1 + (\log 2)^2) \log \log |u|}$ for $|u| \le B : u \equiv 1 \pmod{4}$ satisfying (**), and such that $L(E, 1) \ne 0$.

Our experimental data were obtained using the the PARI/GP software [23]. The computations were carried out in 2015 and 2016 on the HPC cluster HAL9000 and desktop computers Core(TM) 2 Quad Q8300 4GB/8GB. All machines are located at the Department of Mathematics and Physics of Szczecin University.

References

- M. Bhargava, Ch. Skinner, W. Zhang, A majority of elliptic curves over Q satisfy the Birch and Swinnerton-Dyer conjecture, arxiv.org/abs/1407.1826
- J. Coates, Lectures on the Birch-Swinnerton-Dyer conjecture, ICCM Not. 1 (2013), no. 2, 29–46, DOI 10.4310/ICCM.2013.v1.n2.a5. MR3310602
- [3] J. Coates, Y. Li, Y. Tian, and S. Zhai, *Quadratic twists of elliptic curves*, Proc. Lond. Math. Soc. (3) **110** (2015), no. 2, 357–394, DOI 10.1112/plms/pdu059. MR3335282
- [4] J. Coates and A. Wiles, On the conjecture of Birch and Swinnerton-Dyer, Invent. Math. 39 (1977), no. 3, 223–251. MR0463176
- [5] J. B. Conrey, D. W. Farmer, J. P. Keating, M. O. Rubinstein, and N. C. Snaith, *Integral moments of L-functions*, Proc. London Math. Soc. (3) **91** (2005), no. 1, 33–104, DOI 10.1112/S0024611504015175. MR2149530
- [6] J. B. Conrey, J. P. Keating, M. O. Rubinstein, and N. C. Snaith, Random matrix theory and the Fourier coefficients of half-integral-weight forms, Experiment. Math. 15 (2006), no. 1, 67–82. MR2229387
- [7] A. Dąbrowski, T. Jędrzejak, and L. Szymaszkiewicz, Behaviour of the order of Tate-Shafarevich groups for the quadratic twists of (X₀)(49), Elliptic curves, modular forms and Iwasawa theory, Springer Proc. Math. Stat., vol. 188, Springer, Cham, 2016, pp. 125–159. MR3629650
- [8] A. Dąbrowski, L. Szymaszkiewicz, Behaviour of the order of Tate-Shafarevich groups for the quadratic twists of elliptic curves, arXiv:1611.07840 [math.NT] 23 Nov 2016.
- [9] A. Dąbrowski, M. Wodzicki, Elliptic curves with large analytic order of Ш(E), In: Algebra, Arithmetic and Geometry (in honour of Yu. I. Manin, vol. I), Progress in Math. 269 (2009), 407-421.
- [10] H. Darmon and L. Merel, Winding quotients and some variants of Fermat's last theorem, J. Reine Angew. Math. 490 (1997), 81–100. MR1468926
- [11] C. Delaunay, Moments of the orders of Tate-Shafarevich groups, Int. J. Number Theory 1 (2005), no. 2, 243–264, DOI 10.1142/S1793042105000133. MR2173383
- [12] C. Delaunay, Heuristics on class groups and on Tate-Shafarevich groups: The magic of the Cohen-Lenstra heuristics, Ranks of Elliptic Curves and Random Matrix Theory, London Math. Soc. Lecture Note Ser., vol. 341, Cambridge Univ. Press, Cambridge, 2007, pp. 323– 340, DOI 10.1017/CBO9780511735158.021. MR2322355
- [13] C. Delaunay and X.-F. Roblot, Regulators of rank one quadratic twists, J. Théor. Nombres Bordeaux 20 (2008), no. 3, 601–624. MR2523310
- [14] C. Delaunay and M. Watkins, *The powers of logarithm for quadratic twists*, Ranks of Elliptic Curves and Random Matrix Theory, London Math. Soc. Lecture Note Ser., vol. 341, Cambridge Univ. Press, Cambridge, 2007, pp. 189–193, DOI 10.1017/CBO9780511735158.010. MR2322344
- [15] C. Delaunay and C. Wuthrich, Some remarks on self-points on elliptic curves, Actes de la Conférence "Fonctions L et Arithmétique", Publ. Math. Besançon Algèbre Théorie Nr., Lab. Math. Besançon, Besançon, 2010, pp. 69–84. MR2760247
- [16] C. D. Gonzalez-Avilés, On the conjecture of Birch and Swinnerton-Dyer, Trans. Amer. Math. Soc. 349 (1997), no. 10, 4181–4200, DOI 10.1090/S0002-9947-97-01762-5. MR1390036
- [17] B. H. Gross and D. B. Zagier, *Heegner points and derivatives of L-series*, Invent. Math. 84 (1986), no. 2, 225–320, DOI 10.1007/BF01388809. MR833192
- [18] J. P. Keating and N. C. Snaith, Random matrix theory and ζ(1/2+it), Comm. Math. Phys. 214 (2000), no. 1, 57–89, DOI 10.1007/s00220000261. MR1794265
- [19] V. A. Kolyvagin, Finiteness of E(Q) and Ш(E, Q) for a subclass of Weil curves (Russian), Izv. Akad. Nauk SSSR Ser. Mat. 52 (1988), no. 3, 522–540, 670–671; English transl., Math. USSR-Izv. 32 (1989), no. 3, 523–541. MR954295
- [20] R. L. Miller, Empirical evidence for the Birch and Swinnerton-Dyer conjecture, ProQuest LLC, Ann Arbor, MI, 2010. Thesis (Ph.D.)–University of Washington. MR2801688
- [21] O. Neumann, Elliptische Kurven mit vorgeschriebenem Reduktionsverhalten. I (German), Math. Nachr. 49 (1971), 107–123. MR0337999
- [22] J. Park, B. Poonen, J. Voight, M. M. Wood, A heuristic for boundedness of ranks of elliptic curves, www-math.mit.edu/ poonen/papers/bounded-ranks.pdf

- [23] The PARI Group, PARI/GP version 2.7.2, Bordeaux, 2014, http://pari.math.u-bordeaux.fr/.
- [24] M. Radziwiłl and K. Soundararajan, Moments and distribution of central L-values of quadratic twists of elliptic curves, Invent. Math. 202 (2015), no. 3, 1029–1068, DOI 10.1007/s00222-015-0582-z. MR3425386
- [25] K. Rubin, Tate-Shafarevich groups and L-functions of elliptic curves with complex multiplication, Invent. Math. 89 (1987), no. 3, 527–559, DOI 10.1007/BF01388984. MR903383
- [26] J.-P. Serre, Propriétés galoisiennes des points d'ordre fini des courbes elliptiques (French), Invent. Math. 15 (1972), no. 4, 259–331. MR0387283
- [27] J.-P. Serre, Travaux de Wiles (et Taylor, ...). I, Astérisque 237 (1996), Exp. No. 803, 5, 319–332. Séminaire Bourbaki, Vol. 1994/95. MR1423630
- [28] B. Setzer, Elliptic curves of prime conductor, J. London Math. Soc. (2) 10 (1975), 367–378. MR0371904
- [29] J. H. Silverman, The Arithmetic of Elliptic Curves, 2nd ed., Graduate Texts in Mathematics, vol. 106, Springer, Dordrecht, 2009. MR2514094
- [30] C. Skinner and E. Urban, The Iwasawa main conjectures for GL₂, Invent. Math. **195** (2014), no. 1, 1–277, DOI 10.1007/s00222-013-0448-1. MR3148103
- [31] C. Soh, Explicit methods for the Birch and Swinnerton-Dyer conjecture, MSc Thesis, University of Oxford, 2014
- [32] W. Stein and M. Watkins, Modular parametrizations of Neumann-Setzer elliptic curves, Int. Math. Res. Not. 27 (2004), 1395–1405, DOI 10.1155/S1073792804133916. MR2052021
- [33] M. Watkins, Some heuristics about elliptic curves, Experiment. Math. 17 (2008), no. 1, 105– 125. MR2410120
- [34] A. Wiles, Modular elliptic curves and Fermat's last theorem, Ann. of Math. (2) 141 (1995), no. 3, 443–551, DOI 10.2307/2118559. MR1333035
- [35] D. Zywina, On the surjectivity of mod l representations associated to elliptic curves, arXiv:1508.07661v1 [math.NT] 31 Aug 2015

Institute of Mathematics, University of Szczecin, Wielkopolska 15, 70-451 Szczecin, Poland

E-mail address: andrzej.dabrowski@usz.edu.pl *E-mail address*: dabrowskiandrzej7@gmail.com

Institute of Mathematics, University of Szczecin, Wielkopolska 15, 70-451 Szczecin, Poland

E-mail address: lucjansz@gmail.com