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POSITIVITY-PRESERVING AND ASYMPTOTIC PRESERVING

METHOD FOR 2D KELLER-SEGAL EQUATIONS

JIAN-GUO LIU, LI WANG, AND ZHENNAN ZHOU

Abstract. We propose a semi-discrete scheme for 2D Keller-Segel equations
based on a symmetrization reformation, which is equivalent to the convex split-
ting method and is free of any nonlinear solver. We show that, this new scheme
is stable as long as the initial condition does not exceed certain threshold, and
it asymptotically preserves the quasi-static limit in the transient regime. Fur-
thermore, we show that the fully discrete scheme is conservative and positivity
preserving, which makes it ideal for simulations. The analogical schemes for
the radial symmetric cases and the subcritical degenerate cases are also pre-
sented and analyzed. With extensive numerical tests, we verify the claimed
properties of the methods and demonstrate their superiority in various chal-
lenging applications.

1. Introduction

In this paper, we consider the following 2D Keller-Segel equations

∂tρ
ε = Δρε −∇ · (ρε∇cε), x ∈ R

2, t > 0,(1.1)

ε∂tc
ε = Δcε + ρε, x ∈ R

2, t > 0,(1.2)

ρε(x, 0) = f(x), cε(x, 0) = g(x).(1.3)

This system was originally established by Patlak [23] and Keller and Segel [19] to
model the phenomenon of chomotaxis, in which cells approach the chemically fa-
vorable environments according to the chemical substance generated by cells . Here
ρε(x, t) denotes the density distribution of cells and cε(x, t) denotes the chemical
concentration. Mathematically, this model describes the competition between the
diffusion and the nonlocal aggregation. This type of competition is ubiquitous in
evolutionary systems arisen in biology, social science and other interacting particle
systems, numerous mathematical studies of the Keller-Segel system and its variants
have been conducted in recent years; see [24] for a general discussion.

When ε > 0, the system (1.1), (1.2) is called the parabolic-parabolic model,
whereas when ε = 0, it is called the parabolic-elliptic model. When ε � 1, the
model is in a transition regime between the parabolic-parabolic and the parabolic-
elliptic cases. For the parabolic-elliptic model, it is well known that Mc = 8π is the
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critical mass that distinguishes the global-existent solution from finite-time blow
up solution by utilizing the logarithmic Hardy-Littlewood Sobolev inequality [2,24].
More recently, Liu and Wang have proved the uniqueness of the weak solutions when
the initial mass is less than 8π and the initial free energy and the second moment
are finite [22]. For the parabolic-parabolic model, the global existence is analyzed
and the critical mass (which is also 8π) is derived in [5]. Most analytical results
rely on the variational formation.

In particular, we denote the free energy of the parabolic-parabolic system as

(1.4) F(ρ, c) =

∫
R2

[
ρ log ρ− ρ− ρc+

1

2
|∇c|2

]
dx,

where we have suppressed the superscript ε for simplicity; see [3, 11]. Then the
system (1.1) and (1.2) can be formulated by the following mixed conservative and
nonconservative gradient flow

ρt = ∇ ·
(
ρ∇δF

δρ

)
, ct = −δF

δc
.

This mixed variational structure is known as the Le Chäterlier Principle. For-
mally when ρ and c solve the parabolic-parabolic system, the free energy F(t) =
F(ρ(·, t), c(·, t)) satisfies the following entropy-dissipation equality

d

dt
F(t) +

∫
R2

[
ρ |∇ (log ρ− c)|2 + |∂tc|2

]
dx = 0.

In the parabolic-elliptic case, one can replace the equation of c using the Newtonian
potential

c(x, t) =
1

2π
log |x| ∗ ρ(x, t),

and the free energy for some proper ρ is given by

(1.5) F(ρ) =

∫
R2

[ρ log ρ− ρ] dx+
1

2

∫
R2×R2

1

2π
log |x− y|ρ(x)ρ(y)dx dy.

We also consider the extension of the 2D Keller-Segel equations with degenerate
diffusion

∂tρ
ε = Δ(ρε)m −∇ · (ρε∇cε), x ∈ R

2, t > 0,(1.6)

ε∂tc
ε = Δcε + ρε, x ∈ R

2, t > 0,(1.7)

ρε(x, 0) = f(x), cε(x, 0) = g(x).(1.8)

Here m is the diffusion exponent, and we call it supercritical when 0 < m < 1,
critical when m = 1 and subcritical when m > 1. It is worth noting that the
classification of the exponent is dimension dependent, the readers may refer to
[1,4] for a broad summary. The free energy can be similarly defined for this system
and the entropy-dissipation equality can be derived , which we shall skip in this
paper.

While the Keller-Segel equations have been well studied and understood in the
analytical aspect, there is much to explore in the numerical computations. Owing
to the similarity to the drift-diffusion equation, Filbet proposed an implicit Finite
Volume Method (FVM) for the Keller-Segel model [15]. However, instead of be-
ing repulsive, the aggregation term in the Keller-Segel equation is attractive which
competes against the diffusion term, the FVM method is constrained by severe
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stability constraint. In [9], Chertock and Kurganov designed a second-order pos-
itivity preserving central-upwind scheme for the chemotaxis models by converting
the Keller-Segel equations to an advection-reaction-diffusion system. The main is-
sue there is that the Jacobian matrices coming from the advection part may have
complex eigenvalues, which force the advection part to be solved together with the
stabilizing diffusion terms, and result in complicated CFL conditions. Based on
this formulation, Kurganov and his collaborators have conducted many extensions,
including more general chemotaxis flux model, multi-species model and construct-
ing an alternative discontinuous Galerkin method; see [10,13,20]. Very recently, Li
et. al have improved the results in by introducing the local discontinuous Galerkin
method with optimal rate of convergence [21]. Another drawback of the methods
based on the advection-reaction-diffusion formulation is, in the transient regime
when ε � 1, this methods suffer from the stiffness in ε and the stability con-
strains are therefore magnified. Besides, there is a kinetic formulation modeling
the competition of diffusion and nonlocal aggregation, and some works on numeri-
cal simulation are available in [7, 8].

In this work, we aim to develop a numerical method which preserves both pos-
itivity and asymptotic limit. Namely, the numerical method does not generate
negative density if initialized properly under a less strict stability condition. More-
over, such condition does not deteriorate with the decreasing of ε, and when ε → 0,
the discrete scheme of the parabolic-parabolic system automatically becomes a sta-
ble solver to the parabolic-elliptic system. In other words, we expect the numerical
method to preserve the quasi-static limit of the Keller-Segel system in the transient
regime.

The key ingredient in our scheme is the following reformulation of the density
equation (1.1),

(1.9) ∂tρ
ε = ∇ ·

(
ec

ε∇
(

ρε

ecε

))
,

which is reminiscent of the symmetric Fokker-Planck equation. Therefore, we can
propose a semi-discrete approximation of (1.9) in the following way:

(1.10)
ρn+1 − ρn

Δt
= ∇ ·

(
ec(ρ

n)∇
(

ρn+1

ec(ρn)

))
.

It is interesting to point out that the above time discretization (1.10) is equivalent
to a first order convex splitting scheme [16]. To see this, we reformulate (1.10) as

ρn+1 − ρn

Δt
= Δρn+1−∇·

(
ρn+1∇c(ρn)

)
= ∇·

(
ρn+1∇ log ρn+1

)
−∇·

(
ρn+1∇c(ρn)

)
.

Further, thanks to the similarity of the reformulation (1.9) with the Fokker-Planck
operator, the spatial derivatives can be treated via a symmetric discretization de-
veloped in [17,18], which has been shown to be conservative and preserve positivity.
The analog of the equation with the diffusion exponent m �= 1 is

(1.11) ∂tρ
ε = ∇ ·

[
ρε exp

(
cε − m

m− 1
(ρε)m−1

)
∇ exp

(
−cε +

m

m− 1
(ρε)m−1

)]
.

We shall design numerical methods based on this formulation as well.
The rest of the paper is organized as follows. We conduct asymptotic analysis to

the Keller-Segel equations in the transient regime (ε � 1) in Section 1.1. In Sec-
tion 2, we give a detailed construction and analysis of the numerical method, prove
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its stability, asymptotic preserving and positivity preserving properties, explore its
high order accuracy analog and discuss its simplified structure in radial symmetric
cases. In Section 3, we extend the numerical method to the Keller-Segel equations
with degenerate diffusions. Several numerical examples are given in the last section
to verify the claimed properties and demonstrate its application in various chal-
lenging cases, including blow-up solutions, degenerate diffusions with large m (see
[12]) and two-species models with different blowup behavior (see [20]).

1.1. Asymptotic analysis for the quasi-static limit. We carry out the asymp-
totic analysis to the solutions of the Keller-Segel equations (1.1), (1.2) when ε � 1
in the following. Due to the presence of the small parameter ε, the solution cε is ex-
pected to experience a transient layer with a fast time scale τ = t/ε. In particular,
we construct the following ansatz for solutions,

ρε(x, t) = ρ0ε(x, t) + ερ1ε(x, t) ,

cε(x, t) = c0ε,in(x, τ ) + c0ε,out(x, t) + εc1ε(x, t) ,

where cin(x, τ ) represents the solution inside the transition layer and thus depends
on τ . Plugging this ansatz into the equations (1.1), (1.2) and collecting the systems
due to their orders, we have, to the leading order:

∂tρ
0
ε = Δρ0ε +∇ ·

(
ρ0ε∇

(
c0ε,in + c0ε,out

))
,(1.12)

∂τ c
0
ε,in = Δc0ε,in,(1.13)

0 = Δc0ε,out + ρ0ε.(1.14)

The initial conditions are given by

ρ0ε(x, 0) = f(x), c0ε,in(x, 0) + c0ε,out(x, 0) = g(x).(1.15)

Clearly, equations (1.14)–(1.15) imply that

c0ε,out(x, 0) = (−Δ)−1f(x), c0ε,in(x, 0) = g(x)− (−Δ)−1f(x).

Therefore, if initially we have f(x) = −Δg(x), there is no initial layer in the solution
cε. The next-order expansions solve the system

∂tρ
1
ε = Δρ1ε −∇ ·

(
ρ1ε∇

(
c0ε,in + c0ε,out

))
−∇ ·

(
ρ0ε∇c1ε

)
− ε∇ ·

(
ρ1ε∇c1ε

)
,(1.16)

ε∂tc
1
ε = Δc1ε + ρ1 − ∂tc

0
ε,out,(1.17)

with initial conditions

ρ1ε(x, 0) = 0, c1ε(x, 0) = 0.

Thus if we can show the boundedness of ρ1ε and c1ε, the validity of the ansatz we
proposed will be justified. Further, certain estimates of c0ε,in are needed to show
that as ε → 0, the correction terms vanish and the leading order system converges
to the parabolic-elliptic system

∂tρ = Δρ−∇ · (ρ∇c),(1.18)

0 = Δc+ ρ,(1.19)

ρ(x, 0) = f(x).(1.20)

We remark that, the above asymptotic analysis is unclear from a rigorous stand-
point, which is beyond the scope of this paper as we focus on designing numerical
schemes. Nevertheless, we shall explore numerically the asymptotic behavior of the
solutions to give an intuitive justification of the above formal derivation.
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2. Numerical schemes for the critical case m = 1

In this section, we aim to propose numerical schemes for the Keller-Segel sys-
tem (1.1), (1.2), which preserves the parabolic-elliptic limit in the discrete level as
ε → 0. We show that, under the small data assumption, our scheme (both first and
second order) are stable. The spatial discretization is carried out based on a sym-
metrization of the operators, with which we are able to prove its properties of mass
conservation and positivity preservation. The extension to the radially symmetric
cases is discussed at the end of this section.

2.1. A first order semi-discrete scheme and the small data condition.
We first focus on the time discretization and present a semi-discrete scheme for the
Keller-Segel equations. Denote Δt the time step, then tn = nΔt for n ∈ N and fn(x)
represents the numerical approximation to f(x, tn). Without loss of generality, we
assume homogeneous Dirichlet boundary condition on a bounded Lipschitz domain
Ω ⊂ R2 so that no boundary contribution shows up when applying integration by
parts. In this paper, unless specified, all the norms ‖ · ‖ denote the L2 norm on the
domain Ω. In theory, other boundary condition can be similarly analyzed and we
shall omit them here.

For stability concern, we want to use implicit method as far as we can, but due
to the nonlinearity of the system, this would require a Newton solver that may
converge slowly. Here we propose the following semi-discrete scheme:

ρn+1 − ρn

Δt
= Δρn+1 −∇ · (ρn+1∇cn+1) ,(2.1)

ε
cn+1 − cn

Δt
= Δcn+1 + ρn(2.2)

to handle the above-mentioned two difficulties. As written, (2.2) is just a linear
equation for cn+1, and thus can be solved cheaply by inverting a symmetric matrix
via conjugate gradient or directly using pseudo-spectral method. We will elaborate
on it in the next sections. Once cn+1 is obtained, (2.1) reduces to a linear equation
for ρ which can also be solved with ease if discretized appropriately. Also, we
observe that, if we formally take the ε → 0 limit with Δt fixed, the numerical scheme
converges to a semi-discrete method for the limiting parabolic-elliptic model.

To show the stability of this scheme, we have the following theorem.

Theorem 2.1. Given a final time T , then for nΔt ≤ T , assume the numerical
solution obtained by the semi-discrete numerical method (2.1) and (2.2) for the
Keller-Segel equations satisfies the following technical condition:

(2.3) Δt‖∇ρn‖ < 1, ∀n ≥ 0.

Then, the method is stable if the small data condition

(2.4) ‖ρ0‖2 + ε‖∇c0‖2 ≤ 2e−T

is satisfied.

Proof. Multiply equation (2.1) by ρn+1Δt and integrate with respect to x, we get

(2.5)
1

2
‖ρn+1‖2+1

2
‖ρn+1−ρn‖2−1

2
‖ρn‖2+Δt‖∇ρn+1‖2 = −Δt

2

〈(
ρn+1

)2
,Δcn+1

〉
,
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where the last term on the left is obtained using integration by parts. Applying
Young’s inequality, the right-hand side of this equation has the following estimate:

−Δt

2

〈(
ρn+1

)2
,Δcn+1

〉
≤ Δt

4
‖(ρn+1)2‖2 + Δt

4
‖Δcn+1‖2.

Next, we multiply equation (2.2) by −Δcn+1 and integrate against x. Again with
integration by parts, we obtain

(2.6)
ε

2
‖∇cn+1‖2+ ε

2
‖∇cn+1−∇cn‖2− ε

2
‖∇cn‖2+Δt‖Δcn+1‖2 = −Δt

〈
ρn,Δcn+1

〉
,

and Young’s inequality implies

−Δt
〈
ρn,Δcn+1

〉
≤ Δt

2
‖ρn‖2 + Δt

2
‖Δcn+1‖2.

A combination of equations (2.5) and (2.6) then leads to

(2.7)
1

2
‖ρn+1‖2 + ε

2
‖∇cn+1‖2 +Δt‖∇ρn+1‖2 + Δt

4
‖Δcn+1‖2

+
1

2
‖ρn+1 − ρn‖2 + ε

2
‖∇cn+1 −∇cn‖2

≤ 1

2
(1 + Δt)‖ρn‖2 + ε

2
‖∇cn‖2 + Δt

4
‖(ρn+1)2‖2.

To estimate the nonlinear term ‖(ρn+1)2‖2 in the two-dimensional case, we apply
the Ladyzhenskaya inequality and get

‖(ρn+1)2‖2 ≤ 2‖ρn+1‖2‖∇ρn+1‖2.
Hence we arrive at the following estimate:

(2.8)
1

2
‖ρn+1‖2 + ε

2
‖∇cn+1‖2 +Δt

(
1− 1

2
‖ρn+1‖2

)
‖∇ρn+1‖2

+
Δt

4
‖Δcn+1‖2 + 1

2
‖ρn+1 − ρn‖2 + ε

2
‖∇cn+1 −∇cn‖2

≤ 1

2
(1 + Δt)‖ρn‖2 + ε

2
‖∇cn‖2.

Thus, if

(2.9) 1− 1

2
‖ρn+1‖2 > 0

is satisfied, then we conclude that

(2.10) ‖ρn+1‖2 + ε‖∇cn+1‖2 ≤ (1 + Δt)‖ρn‖2 + ε‖∇cn‖2.
The by Gronwall’s inequality, if nΔt ≤ T , we have

‖ρn‖2 + ε‖∇cn‖2 ≤ eT
(
‖ρ0‖2 + ε‖∇c0‖2

)
.

We propose that, the presumed condition (2.9) and the stability estimate require
the following small data condition:

(2.11) eT
(
‖ρ0‖2 + ε‖∇c0‖2

)
≤ 2.

Actually, this can be shown by induction. Suppose that, we have shown

(2.12)
1

2
‖ρn‖2 + ε

2
‖∇cn‖2 ≤ enΔt−T
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for (n+ 1)Δt ≤ T , then clearly,

1

2
(1 + Δt)‖ρn‖2 + ε

2
‖∇cn‖2 ≤ e(n+1)Δt−T ≤ 1.

If we denote bn+1 = Δt‖∇ρn+1‖2, then (2.8) implies

1

2
‖ρn+1‖2 + bn+1

(
1− 1

2
‖ρn+1‖2

)
≤ 1.

Since bn+1 < 1 due to the technical condition (2.3), we conclude that

1

2
‖ρn+1‖2 < 1,

and by (2.12), (2.8) implies

1

2
‖ρn+1‖2 + ε

2
‖∇cn+1‖2 ≤ e(n+1)Δt−T .

This completes the proof. �

We end this part with a comment on the asymptotic preserving properties. As
ε → 0, the scheme for the parabolic-parabolic system not only converges to the one
for the parabolic-elliptic system, but also keeps the stability constraint satisfied
for fixed Δt, as seen from (2.11). This formally justifies that the semi-discrete
numerical method (2.1) and (2.2) is asymptotically preserving.

2.2. A conservative and positivity preserving fully discrete scheme. In
this section, we explore in detail the spatial discretizations of Keller-Segel equa-
tions. Note that, naive discretizations of equation (2.1) can easily destroy the
positivity of the solution and trigger instability. Our main idea is to make use
of the symmetric formulation of (1.9) and adopt a discretization in [17, 18] that
guarantees the positivity.

More specifically, let Mn+1 = ec
n+1

, and rewrite (2.1) as

(2.13)
ρn+1 − ρn

Δt
= ∇ ·

(
Mn+1∇

(
ρn+1

Mn+1

))
,

where the right-hand side is in the form of the Fokker-Planck operator and can be

discretized symmetrically [17, 18]. In particular, we denote hn+1 = ρn+1

√
Mn+1

, and

reformulate (2.13) into

(2.14) hn+1 − Δt√
Mn+1

∇ ·
(
Mn+1∇ hn+1

√
Mn+1

)
=

ρn√
Mn+1

.

Such a scheme has been shown to preserve positivity. Indeed, since the left-hand
side is a positive definite operator on hn+1, and the right-hand side is positive, as
long as the spatial discretization preserves the positive definiteness, we can ensure
the positivity of hn+1.

A fully discrete scheme is in order. Let the computational domain be [a, b]×[c, d],
and we consider uniform spatial mesh with mesh size Δx and Δy. Thus the mesh
grid points are (xi, yj) = (a + iΔx, c + jΔy). We apply the following five-point
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method for spatial decretization to equation (2.14) and (2.2), and get

ε

Δt
cn+1
i,j −Dn+1

i,j =
ε

Δt
cni,j + ρni,j ,(2.15)

hn+1
i,j −ΔtSn+1

i,j =
ρni,j√
Mn+1

i,j

.(2.16)

Here,

Dn+1
i,j =

1

Δx2

(
cn+1
i−1,j − 2cn+1

i,j + cn+1
i+1,j

)
+

1

Δy2
(
cn+1
i,j−1 − 2cn+1

i,j + cn+1
i,j+1

)
,

Sn+1
ij =

1

Δx2
√
Mn+1

i,j

√
Mn+1

i+1,jM
n+1
i,j

⎛
⎝ hn+1

i+1,j√
Mn+1

i+1,j

−
hn+1
i,j√
Mn+1

i,j

⎞
⎠

− 1

Δx2
√
Mn+1

ij

√
Mn+1

i,j Mn+1
i−1,j

⎛
⎝ hn+1

i,j√
Mn+1

i,j

−
hn+1
i−1,j√
Mn+1

i−1,j

⎞
⎠

+
1

Δy2
√
Mn+1

i,j

√
Mn+1

i,j+1M
n+1
i,j

⎛
⎝ hn+1

i,j+1√
Mn+1

i,j+1

−
hn+1
i,j√
Mn+1

i,j

⎞
⎠

− 1

Δy2
√
Mn+1

i,j

√
Mn+1

i,j Mn+1
i,j−1

⎛
⎝ hn+1

i,j√
Mn+1

i,j

−
hn+1
i,j−1√
Mn+1

i,j−1

⎞
⎠ .

When Δx = Δy, we can simplify the above expression to

Dn+1
i,j =

1

Δx2

(
cn+1
i−1,j + cn+1

i+1,j + cn+1
i,j−1 + cn+1

i,j+1 − 4cn+1
i,j

)
,

Sn+1
ij =

1

Δx2

(
hn+1
i−1,j + hn+1

i+1,j + hn+1
i,j−1 + hn+1

i,j+1

−
∑

d1=±1,d2=±1

√
Mn+1

i+d1,j+d2√
Mn+1

i,j

hn+1
i,j

)
.

In the end, ρn+1
i,j is easily obtained via

ρn+1
i,j = hn+1

i,j

√
Mn+1

i,j .

Multiply (2.16) by
√
Mn+1

i,j and sum over (i, j), we get

∑
i,j

ρn+1
i,j −Δt

∑
i,j

√
Mn+1

i,j Sn+1
i,j =

∑
i,j

ρni,j .
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Notice that∑
i,j

√
Mn+1

i,j Sn+1
i,j

=
∑
i,j

1

Δx2

(√
Mn+1

i,j hn+1
i+1,j −

(√
Mn+1

i+1,j +
√
Mn+1

i−1,j

)
hn+1
i,j +

√
Mn+1

i,j hn+1
i−1,j

)

+
∑
i,j

1

Δy2

(√
Mn+1

i,j hn+1
i,j+1 −

(√
Mn+1

i,j+1 +
√
Mn+1

i,j−1

)
hn+1
i,j +

√
Mn+1

i,j hn+1
i,j−1

)

= 0 ,

which implies the conservation of mass in the discrete level, i.e.,∑
i,j

ρn+1
i,j =

∑
i,j

ρni,j .

For positivity, we have the following result.

Theorem 2.2. Suppose initially we have ρki,j ≥ 0 for k = 0, then the five-point
scheme (2.15) and (2.16) guarantees

ρni,j ≥ 0, for n ≥ 1.

The proof is standard and is similar to some existing results, the readers may
consult [17] for details.

To conclude the discussions on the first order scheme, we would like to give the
following remarks:

(1) Given that cki,j ≥ 0 for k = 0, 1 and appropriate boundary conditions for

cε, we can show the positivity of cni,j ∀n ∈ N
+, ∀i, j.

(2) Other spatial discretization may apply to this semi-discrete system. Es-
pecially, the cε equation can easily be solved by pseudo-spectral method.
It is worth emphasizing that the positivity of ρni,j is independent of the
positivity of cni,j . Hence, one has more freedom to solve the c equation.

(3) This scheme can be easily extended to multi-species models, as will be
shown in Section 4.

2.3. A second-order scheme. The scheme presented above can be directly ex-
tended to second order. As the spatial discretization built upon the center difference
is already second-order accurate, we just focus on the second-order time discretiza-
tion, which can be accomplished using the backward difference formula (BDF).
Specifically, the semi-discrete scheme reads

1

Δt

(
3

2
ρn+1 − 2ρn +

1

2
ρn−1

)
= Δρn+1 −∇ · (ρn+1∇cn+1),(2.17)

ε

Δt

(
3

2
cn+1 − 2cn +

1

2
cn−1

)
= Δcn+1 + 2ρn − ρn−1.(2.18)

Again, as in the first-order scheme, no nonlinear solver is needed; one can solve for
cn+1 from (2.18) and then ρn+1 from (2.17).

A similar stability result is available.
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Theorem 2.3. Given a final time T , then for nΔt ≤ T , assume the numerical
solution obtained by the second-order semi-discrete numerical method (2.17) and
(2.18) for the Keller-Segel equations satisfies the following technical condition:

(2.19) Δt‖∇ρn‖ < 1, ∀n ≥ 0.

Then, the method is stable if the small data condition

(2.20)
1

4
‖ρ1‖2+ ε

4
‖∇c1‖2+ 1

4
‖2ρ1−ρ0‖2+ ε

4
‖2∇c1−∇c0‖2+Δt‖ρ0‖2 ≤ 1

2
e−20T

is satisfied.

Proof. Multiply equation (2.17) by ρn+1Δt and integrate with respect to x, by
integration by parts, we get

(2.21)
1

4
‖ρn+1‖2− 1

4
‖ρn‖2+ 1

4
‖2ρn+1−ρn‖2− 1

4
‖2ρn−ρn−1‖2+ 1

4
‖ρn+1−2ρn+ρn−1‖2

+Δt‖∇ρn+1‖2 = −Δt

2

〈(
ρn+1

)2
,Δcn+1

〉
.

By Young’s inequality, the right-hand side can be estimated as

−1

2

〈(
ρn+1

)2
,Δcn+1

〉
≤ Δt

4
‖(ρn+1)2‖2 + Δt

4
‖Δcn+1‖2.

Again, by the Ladyzhenskaya inequality, we get

‖(ρn+1)2‖2 ≤ 2‖ρn+1‖2‖∇ρn+1‖2,

we multiply equation (2.18) by −Δcn+1 and integrate with respect to x. With
integration by parts, we obtain that

(2.22)
ε

4
‖∇cn+1‖2 − ε

4
‖∇cn‖2 + ε

4
‖2∇cn+1 −∇cn‖2 − ε

4
‖2∇cn −∇cn−1‖2

+
ε

4
‖∇cn+1 − 2∇cn + cn−1‖2 +Δt‖Δcn+1‖2 = −Δt

〈
2ρn − ρn−1,Δcn+1

〉
,

and Young’s inequality implies

−Δt
〈
2ρn − ρn−1,Δcn+1

〉
≤ Δt

2
‖2ρn − ρn−1‖2 + Δt

2
‖Δcn+1‖2

≤ 4Δt‖ρn‖2 +Δt‖ρn−1‖2 + Δt

2
‖Δcn+1‖2.

Here we used the fact that ‖a+ b‖2 ≤ 2‖a‖2 + 2‖b‖2. Adding equation (2.21) and
(2.22), we get

1

4
‖ρn+1‖2 − 1

4
‖ρn‖2 + ε

4
‖∇cn+1‖2 − ε

4
‖∇cn‖2 + 1

4
‖2ρn+1 − ρn‖2

− 1

4
‖2ρn − ρn−1‖2 + ε

4
‖2∇cn+1 −∇cn‖2 − ε

4
‖2∇cn −∇cn−1‖2

+
1

4
‖ρn+1 − 2ρn + ρn−1‖2 + ε

4
‖∇cn+1 − 2∇cn + cn−1‖2,

Δt

(
1− 1

2
‖ρn+1‖2

)
‖∇ρn+1‖2 + Δt

4
‖Δcn+1‖2 ≤ 4Δt‖ρn‖2 +Δt‖ρn−1‖2.
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Assume that ρ0 and c0 are given by initial conditions, and ρ1 and c1 are computed
by a first-order numerical scheme. For N ∈ N

+, N ≥ 2, with NΔt ≤ T , we sum up
the above equations for n = 1, . . . , N − 1, and get

1

4
‖ρN‖2 − 1

4
‖ρ1‖2 + ε

4
‖∇cN‖2 − ε

4
‖∇c1‖2 + 1

4
‖2ρN − ρN−1‖2 − 1

4
‖2ρ1 − ρ0‖2

+
ε

4
‖2∇cN −∇cN−1‖2 − ε

4
‖2∇c1 −∇c0‖2 +

N−1∑
n=1

1

4
‖ρn+1 − 2ρn + ρn−1‖2

+
N−1∑
n=1

ε

4
‖∇cn+1 − 2∇cn + cn−1‖2 +

N−1∑
n=1

Δt

(
1− 1

2
‖ρn+1‖2

)
‖∇ρn+1‖2

+

N−1∑
n=1

Δt

4
‖Δcn+1‖2 ≤ 4Δt‖ρN−1‖2 +

N−2∑
n=1

5Δt‖ρn‖2 +Δt‖ρ0‖2.

Therefore, if

(2.23) 1− 1

2
‖ρn+1‖2 > 0 for n = 1, . . . , N − 1

holds, then we can conclude that

1

4
‖ρN‖2 + ε

4
‖∇cN‖2 ≤ 4Δt‖ρN−1‖2 +

N−2∑
n=1

5Δt‖ρn‖2 + C0

≤
N−1∑
n=1

5Δt‖ρn‖2 + C0

≤ 20Δt

N−1∑
n=1

(
1

4
‖ρn‖2 + ε

4
‖∇cn‖2

)
+ C0,

where

C0 =
1

4
‖ρ1‖2 + ε

4
‖∇c1‖2 + 1

4
‖2ρ1 − ρ0‖2 + ε

4
‖2∇c1 −∇c0‖2 +Δt‖ρ0‖2.

By induction, we have

1

4
‖ρN‖2 + ε

4
‖∇cN‖2 ≤ (1 + 20Δt)N−2(20Δta1 + C0),

where

a1 =
1

4
‖ρ1‖2 + ε

4
‖∇c1‖2.

Obviously, a1 ≤ C0, and thus we have

(20Δta1 + C0) ≤ C0(1 + 20Δt) ,

which implies
1

4
‖ρN‖2 + ε

4
‖∇cN‖2 ≤ e20TC0.

Subsequently, the following condition is sufficient to guarantee the small data
estimate (2.23):

e20TC0 ≤ 1

2
.

Similar to the first-order case, this condition implies the stability estimate, which
can be shown by induction. �
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We would remark that, the small data conditions (2.4) and (2.20) are not neces-
sary conditions, and are made primarily due to technical issues. In our numerical
simulations, we observe that unless the exact solutions to the Keller-Segel equations
blow up, the numerical methods do not exhibit unstable behavior.

2.4. Radially symmetric cases. This section is devoted to the radially symmet-
ric case. Recall the first-order semi-discrete scheme

ρn+1 − ρn

Δt
= Δρn+1 −∇ · (ρn+1∇cn+1),(2.24)

ε
cn+1 − cn

Δt
= Δcn+1 + ρn .(2.25)

If we confine ourselves to the radially symmetric case, we can write ρ(x) = ρ(r)
and c(x) = c(r), and simplify the above semi-discrete scheme to

ρn+1 − ρn

Δt
=

1

r

∂

∂r

(
r
∂

∂r
ρn+1

)
− 1

r

∂

∂r

(
rρn+1 ∂

∂r
cn+1

)
,(2.26)

ε
cn+1 − cn

Δt
=

1

r

∂

∂r

(
r
∂

∂r
cn+1

)
+ ρn,(2.27)

∂

∂r
ρn+1(0) = 0,

∂

∂r
cn+1(0) = 0.(2.28)

Then our task is to propose a numerical scheme to this system that is both conser-
vative and positivity preserving.

If the computation domain is an anulus a < r < b, where 0 < a < b, it may be
convenient to introduce an auxiliary variable s = log r or, equivalently, r = es, and
we have

e2s
ρn+1 − ρn

Δt
=

∂2

∂s2
ρn+1 − ∂

∂s

(
ρn+1 ∂

∂s
cn+1

)
,(2.29)

εe2s
cn+1 − cn

Δt
=

∂2

∂s2
cn+1 + e2sρn.(2.30)

Clearly, we can rewrite (2.29) in the following conservative form:

e2s
ρn+1 − ρn

Δt
=

∂

∂s

(
ec

n+1 ∂

∂s

ρn+1

ecn+1

)
.

This system shares the same structure with the one in the cartesian coordinates,
and one can design a positivity preserving scheme in the same spirit. However,
when r → 0, s → −∞. Therefore, in order the save the information in the vicinity
of r = 0, extra effort is needed when truncating the computational domain in s.

We consider an alternative approach. The key ingredient is the following refor-
mulation of equation (2.26)

(2.31)
ρn+1 − ρn

Δt
=

1

r

∂

∂r

(
rec

n+1 ∂

∂r

ρn+1

ecn+1

)
,

Here the computational domain is chosen r ∈ [0, L], and the mesh size is Δr =
L
Nr

, where Nr ∈ N is the number of grid points. rj = − 1
2Δr + jΔr, for j =

0, 1, . . . , Nr. Please note here, r0 = − 1
2Δr is introduced to handle the following

boundary condition at r = 0. We denote the numerical approximation of fn(rj) by
fn
j . The boundary condition at r = 0 is

(ρn)′(0) = 0, (cn)′(0) = 0,



POSITIVITY-PRESERVING AND ASYMPTOTIC PRESERVING METHOD 1177

and thus we have

ρn0 = ρn1 , cn0 = cn1 .

For simplicity, we still use M = ec. Then equations (2.31) and (2.27) are further
discretized into

ρn+1
j − ρnj

Δt
=

1

Δr2
1

rj

√
rjrj+1M

n+1
j Mn+1

j+1

(
ρn+1
j+1

Mn+1
j+1

−
ρn+1
j

Mn+1
j

)
(2.32)

− 1

Δr2
1

rj

√
rjrj−1M

n+1
j Mn+1

j−1

(
ρn+1
j

Mn+1
j

−
ρn+1
j−1

Mn+1
j−1

)
,

ε
cn+1
j − cnj

Δt
=

1

Δr2
1

rj

√
rjrj+1

(
cn+1
j+1 − cn+1

j

)
(2.33)

− 1

Δr2
1

rj

√
rjrj−1

(
cn+1
j − cn+1

j−1

)
+ ρnj .

As always, at every time step, we first solve the equation (2.33) for cn+1
j and then

equation (2.32) for ρn+1
j .

Multiply (2.32) by rj and sum over j, we can similarly show that∑
j

rjρ
n+1
j =

∑
j

rjρ
n
j ,

which preserves the discrete mass in the polar coordinates. Moreover, similar to
the case in Cartesian coordinates, we can show that the fully discrete scheme (2.32)
and (2.33) preserves positivity of ρn+1

j . Indeed, suppose ρnj ≥ 0, we can recast

equation (2.32) as

ρn+1
j = ΔtRn+1

j + ρnj ,

where

Rn+1
j =

1

Δr2
1

rj

√
rjrj+1M

n+1
j Mn+1

j+1

(
ρn+1
j+1

Mn+1
j+1

−
ρn+1
j

Mn+1
j

)

− 1

Δr2
1

rj

√
rjrj−1M

n+1
j Mn+1

j−1

(
ρn+1
j

Mn+1
j

−
ρn+1
j−1

Mn+1
j−1

)
.

If we assume that
ρn+1
j

Mn+1
j

achieves its mininum when j = j′ with
ρn+1

j′

Mn+1

j′
< 0, the from

the above formulation Rn+1
j′ > 0 which and thus ρj′ > 0, leading to a contradiction.

Therefore, the positivity is preserved.

3. Subcritical case m > 1

3.1. Dynamical and steady state. In this section, we study the 2D Keller-Segel
model in the subcritical regime m > 1:

∂tρ
ε = Δ(ρε)m −∇ · (ρε∇cε),(3.1)

ε∂tc
ε = Δcε + ρε,(3.2)

ρε(x, 0) = f(x), cε(x, 0) = g(x).(3.3)

We first review some properties of this system.
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Rewrite equation (3.1) as

(3.4) ∂tρ
ε = ∇ · (ρε∇μ) ,

where μ is the chemical potential

(3.5) μ =

{
m

m−1 (ρ
ε)m−1 − cε, m �= 1,

log ρε − cε, m = 1.

Then the (nonnegative) steady states to this system, which are denoted by ρεs and
cεs, satisfy the following system in the sense of distribution:

Δ(ρεs)
m −∇ · (ρεs∇cεs) = 0,(3.6)

Δcεs + ρεs = 0.(3.7)

To explore the radial symmetry of the steady solution, we define

(3.8) Ω =
{
x ∈ R

2; ρεs(x) > 0
}

and assume it is connected for simplicity. By [1], we know that, when m �= 1,
ρεs ∈ C(Ω̄) satisfies

m

m− 1
(ρεs)

m−1 − cεs = c̄, x ∈ Ω,

ρεs = 0, x ∈ R
2 \ Ω, ρεs > 0, x ∈ Ω,

−Δcεs = ρεs.

(3.9)

If we denote φ = m−1
m (cεs + c̄), then (3.9) implies

−Δφ =
m− 1

m
φk, x ∈ Ω, k =

1

m− 1
,

φ = 0, x ∈ ∂Ω, φ > 0, x ∈ Ω.
(3.10)

The nonnegative radial classical solution of (3.10) can be written in the form φ(x) =
φ(r), thus, for all a > 0, if we define L = {r;φ(r) ≥ 0}, φ(r) ∈ C2([0, L]) satisfies
the following initial value problem:

φrr +
2

r
φr = −m− 1

m
φk, r > 0, k =

1

m− 1
,

φ′(0) = 0, φ(0) = a > 0.
(3.11)

Here, φ(r)k is meaningful before it reaches zero.
When m = 1, the steady solution ρεs ∈ C(Ω̄) satisfies

log ρεs − cεs = c̄, x ∈ Ω,

ρεs = 0, x ∈ R
2 \ Ω, ρεs > 0, x ∈ Ω,

−Δcεs = ρεs.

(3.12)

If we denote φ = log ρεs, then, (3.12) implies

−Δφ = eφ, x ∈ R
2.(3.13)

The nonnegative radial classical solution of (3.13) can be written in the form φ(x) =
φ(r), thus, for all a > 0, if we define L = {r;φ(r) ≥ 0}, φ(r) ∈ C2([0, L]) satisfies
the following initial value problem

φrr +
2

r
φr = −eφ, r > 0,

φ′(0) = 0, φ(0) = a > 0.
(3.14)
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3.2. Numerical scheme. Similar to the critical case, we first propose the following
semi-discrete method for the (2D) Keller-Segel model with exponent m,

ρn+1 − ρn

Δt
= Δ(ρn+1)m −∇ · (ρn+1∇cn+1),(3.15)

ε
cn+1 − cn

Δt
= Δcn+1 + ρn.(3.16)

Here a Newton’s solver is inevitable due to the nonlinearity on the right-hand
side and, because of this, the stability analysis can be very complicated. We skip
the analysis on this scheme here and instead show substantial numerical evidence
to verify the properties of this method to the model especially in the subcritical
cases.

Another issue of this scheme concerns the positivity. We observe numerically
that when m > 1, this scheme is not necessarily positivity preserving, especially
when the solution is compacted supported, or when the diffusion exponent m is
large.

To propose a positivity scheme, recall that equation (3.1) can be reformulated
as

∂tρ
ε = ∇ ·

[
ρε exp

(
cε − m

m− 1
(ρε)m−1

)
∇ exp

(
−cε +

m

m− 1
(ρε)m−1

)]
.

(3.17)

Let M = exp
(
cε − m

m−1 (ρ
ε)m−1

)
, then we have equivalently

∂tρ
ε = ∇ ·

[
ρεM∇ 1

M

]
= ∇ ·

[
ρεM∇ ρε

ρεM

]
.(3.18)

Therefore, we propose the following semi-discrete, semi-implicit scheme

ρn+1 − ρn

Δt
= ∇ ·

[
ρnMn∇ ρn+1

ρnMn

]
,(3.19)

ε
cn+1 − cn

Δt
= Δcn+1 + ρn.(3.20)

In the radial symmetric case, we write ρε(x) = ρε(r) and cε(x) = cε(r), and the
system (3.1) and (3.2) is rewritten as

∂tρ
ε =

1

r

∂

∂r

(
r
∂

∂r
(ρε)m

)
− 1

r

∂

∂r

(
rρε

∂

∂r
cε
)
,(3.21)

ε∂tc
ε =

1

r

∂

∂r

(
r
∂

∂r
cε
)
+ ρε,(3.22)

∂

∂r
ρε(0, t) = 0,

∂

∂r
cε(0, t) = 0.(3.23)

Again, we denote M = exp
(
cε − m

m−1(ρ
ε)m−1

)
and equation (3.21) is reformu-

lated to

∂tρ
ε =

1

r

∂

∂r

(
rρεM

∂

∂r

1

M

)
=

1

r

∂

∂r

(
rρεM

∂

∂r

ρε

ρεM

)
.(3.24)



1180 JIAN-GUO LIU, LI WANG, AND ZHENNAN ZHOU

Then the corresponding semi-discrete, semi-implicit scheme reads:

ρn+1 − ρn

Δt
=

1

r

∂

∂r

(
rρnMn ∂

∂r

ρn+1

ρnMn

)
,(3.25)

ε
cn+1 − cn

Δt
= Δcn+1 + ρn.(3.26)

Similar to this previous cases, we can show that five-point scheme for the semi-
discrete system (3.19), (3.20) and the centered difference approximation for the
semi-discrete system (3.25), (3.26) are both conservative and positivity preserving.
As the proofs are similar to that of the previous cases, we shall omit them here.

4. Numerical examples

In this section, we present several numerical examples in dimension two. Here
periodic boundary condition is used among all examples. The first three examples
concern m = 1 whereas the last one focuses on m > 1.

4.1. Convergence. First we check the accuracy of the first- and second-order
schemes in cartesian coordinates. Here the initial data takes the form

(4.1) ρ(x, 0) = 4e−(x2+y2), c(x, 0) = e−(x2+y2)/2, x ∈ [−5, 5] y ∈ [−5, 5],

and output time is tmax = 5. The meshes are chosen as Δx = 1, 0.5, 0.25, 0.125,
respectively, and Δt = Δx. The relative error is computed as

errorΔx =
||ρΔx(x, tmax)− ρ2Δx(x, tmax)||�1

||ρΔx||�1
,(4.2)

and collected in Figure 1. Here a uniform convergence for both first- and second-
order schemes are observed for a wide range of ε.

10
010

−3

10
−2

10
−1

10
0

Δ x

er
ro

r

 

 

slope=1
ε=1
ε=1e−2
ε=1e−4

10
010

−4

10
−2

10
0

10
2

Δ x

er
ro

r

 

 slope=2
ε=1
ε=1e−2
ε=1e−4

Figure 1. Uniform convergence of our schemes: error (4.2) versus
mesh size Δx = Δy for different ε = 10−4, 10−2 and 1. The
red dashed line is a reference with a fixed slope. Left: first-order
scheme (2.15) (2.16). Right: second-order scheme (2.17) (2.18).
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4.2. Asymptotic behavior. Next, we demonstrate the asymptotic behavior of
both ρ and c. Both asymptotic in small ε limit and long time limit will be consid-
ered.

4.2.1. Quasi-static asymptotic behavior. Denote ρε and cε the solution to (2.15)
and (2.16), and ρ0 and c0 the solutions with ε = 0, and we compute the 	1 error in
time:

‖ρε(x, y, t)− ρ0(x, y, t)‖�1 =
∑
i,j

|(ρε)ni,j − (ρ0)ni,j |ΔxΔy,(4.3)

‖cε(x, y, t)− c0(x, y, t)‖�1 =
∑
i,j

|(cε)ni,j − (c0)ni,j |ΔxΔy.(4.4)

The initial data is chosen to be

ρ(x, 0) = 400e−100(x2+y2), c(x, 0) = e−50(x2+y2)(4.5)

such that ρ(x, 0) �= (1 − Δ)−1f(x, 0). The results are gathered in Figure 2 for
different choices of ε. Here the computational domain is (x, y) ∈ [−1, 1] × [−1, 1]
the meshes are Δx = Δy = 0.05, and we use both big time step Δt = 0.05 and
small time step Δt = 5e − 4. It is shown that in c, the error undergoes a drastic
change at the beginning until it reaches a state after which the errors decrease at
the order of ε. This initial period time is independent of our choice of time step,
which implies that it is a period of initial layer. After such layer, the error decreases
as ε decreases, and they change at the same order, as suggested in Section 2. On the
contrary, the error in ρ varies at the same order of ε starting from the beginning,
which implies the nonexistence of initial layer. This transition can be observed even
with a coarse time step, as shown in Figure 2. To get a closer look at the dynamics
in this layer regime, we have a zoom-in plot in the lower left corner are computed
using small Δt < 10−3, less than the smallest ε we choose here. Then a similar
transition discussed above is observed, further confirm the asymptotic behavior of
the solutions.
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102 l1 error in C

ε=1
ε=1e-1
ε=1e-2
ε=1e-3
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105
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time
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100

102 l1 error in ρ
ε=1
ε=1e-1
ε=1e-2
ε=1e-3

0.2 0.4

100

Figure 2. Left: 	1 error in c (4.4). Right: 	1 error in ρ (4.3). Here
Δx = Δy = 0.05, Δt = 0.05 for the big picture and Δt = 5e− 4 in
the pictures on the lower left corner.
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4.2.2. Long time behavior. Here we briefly compute the free energy at each time.
The initial condition is taken the same as in (4.5), and the computational domain,
mesh size and time step are kept all the same as in section 4.2.1. When ε = 1, the
free energy is defined in (1.4), and (1.5) when ε = 0. In Figure 3, we plot both
cases and observe the decay of energy in time, a property highlighted in [6].

0 1 2 3 4 5
time

-40

-20
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20

40

60

0 0.5 1 1.5 2
time

-10

0

10

20

30

40

50

Figure 3. Plot of free energy versus time. Left: ε = 1 with free
energy defined in (1.4). Right: ε = 0 with energy (1.5). Here
Δx = Δy = Δt = 0.05.

4.3. Blow up. In this subsection, we focus on the cases when ρ blows up, and show
that our schemes, both in cartesian and polar coordinates, are positivity preserving
regardless of the choice of Δt. For the radial symmetric case, consider the following
initial data for ρ(r, 0):

(4.6) ρ(r, 0) = 600e−60r2 , r ∈ [0, 2],

and we choose c(r, 0) such that it solves

(4.7)
1

r

∂

∂r

(
r
∂

∂r
c(r, 0)

)
− c(r, 0) + ρ(r, 0) = 0.

When ε = 0, we plot the profile of ρ at different times in Figure 4 on the left, and on
the right, we show the maximum of ρ with time. Different mesh sizes are used, for
the upper figures Δr = 0.025 and lower figures Δr = 0.00625, and Δt = Δr/5. It
is interesting to point out that, the maximum amplitude of ρ increases by a factor
of 16 as Δr decreases by 1/4, indicating a blow up of ρ in O

(
1

Δr2

)
fashion.

Similarly, in cartesian coordinates, we consider the following initial data
(4.8)

ρ(x, y, 0) = 600e−60(x2+y2), (x, y) ∈ [−4, 4]×[−4, 4], c(x, y, 0) = 300e−30(x2+y2).

In Figure 5 on the left, we plot a slice of solution at y = 0 for different times, where
a trend to blow up is observed. On the right, we plot the maximum magnitude of
ρ, which is very similar to the one obtained in the radial symmetric case. Also,
we observe that this magnitude increases at the order of O

(
1

Δx2

)
. Similar type of

blow up is observed in [21].



POSITIVITY-PRESERVING AND ASYMPTOTIC PRESERVING METHOD 1183

-0.3 -0.2 -0.1 0 0.1 0.2
r

0

1

2

3

4

ρ

×104

t=0
t=0.01
t=0.04
t=0.07
t=0.09
t=0.11

0 0.05 0.1 0.15 0.2 0.25
time

0

1

2

3

4

m
ax

(ρ
)

×104

-0.1 -0.05 0 0.05 0.1
r

0

1

2

3

4

5

6

ρ

× 105

t=0
t=0.0025
t=0.01
t=0.02
t=0.04
t=0.06

0 0.05 0.1 0.15 0.2 0.25
time

0

1

2

3

4

5

6

m
ax

(ρ
)

×105

Figure 4. Computation of the model in radial symmetric case
with ε = 0. Left: the plot of ρ at different times. Right: max(ρ)
versus time. Top: Δr = 0.025. Bottom: Δr = 0.00625. Δt =
Δr/5.

4.4. Subcritical case m > 1. This section is devoted to the subcritical case:
m > 1. Our focus will be the limit behavior when m → ∞. First we consider the
‘square’ initial data in polar coordinates

(4.9) ρ(r, 0) =

{
ρ0, r2 ≤ 0.1,
0, elsewhere,

c(r, 0) =
1

2
ρ(r, 0)

displayed in a black curve in Figure 6, where ρ0 is a constant. The output time
is 50, long enough to produce a solution in steady state. On the left ρ0 = 1, and
one sees that as m increases, the steady state solution transits from a smooth, fat
bump to a tall sharp square that happens to be the same as the initial profile. This
indicates that the steady state, as m → ∞, tends to converge to the characteristic
function with the length of the region determined by the total mass. We then
choose ρ0 = 0.5, and similar trends is observed on the right of Figure 6, which
confirms the recent result that the steady state in the infinity limit of m tends to
the characteristic function; see [12].

To further check the shape of the steady state, we compute the problem in the
cartesian grid. First we choose the initial data to be a double annulus, which is
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Figure 5. Computation of the model in cartesian coordinates.
ε = 0. Left: the plot of a slice of ρ at y = 0 at different times.
Right: max(ρ) versus time. Top: Δx = Δy = 0.2. Bottom:
Δx = Δy = 0.05. Δt = Δx/20.

Figure 6. Computation of the radial symmetric case (3.21),
(3.22). ε = 0, output time is t = 50, and the plot of ρ for dif-
ferent m = 4, 16, 64, and 256. The black solid curves are the
initial profile of ρ. Left: ρ0 = 1. Right: ρ0 = 0.5. Here Δr = 0.05,
Δt = 1.25e− 4.
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radially symmetric, as shown in the upper left of Figure 7:

ρ(x, y, 0) =

{
1, 0.5 < x2 + y2 < 1 or 1.5 < x2 + y2 < 2,
0, elsewhere,

c(x, y, 0) =
1

2
ρ(x, y, 0).

(4.10)

The next two figures display the profile of ρ at later times, both in the top view
and in 3D view. From these three figures, one sees that the shape of ρ, starting
out with a double annulus, tends towards a thicker single annulus closer to the
origin, and then towards a circle around the origin, which is just a 2D analog of
the radial symmetric case in the previous test. The last picture in Figure 7 plots
one cross-section of ρ at x = 0, and the dynamics is the same as we expected.
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1
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Figure 7. Time evolution of model (3.15) (3.16) with initial data
(4.10). ε = 0, m = 64. Out put times are: t = 0 (upper left),
t = 4 (upper right), t = 10 (lower left). Lower right: plot of one
cross-section of ρ at x = 0.

In the end, we consider a case with nonradially symmetric initial data

ρ(x, y, 0) =

{
1, −1 ≤ x ≤ −0.1, 0.1 ≤ y ≤ 1 or 0 ≤ x ≤ 1,−1 ≤ y ≤ 0,
0, elsewhere,

(4.11)

c(x, y, 0) =
1

2
ρ(x, y, 0).(4.12)

The dynamics is displayed in Figure 8.
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Figure 8. Time evolution of model (3.15) (3.16) with initial data
(4.11) (4.12). Here ε = 0, m = 64. Output times are: t = 0 (upper
left), t = 2 (upper right), t = 4 (lower left) and t = 10 (lower
right).

4.5. Two species. In this section, we test our scheme on a two-species model [20]:⎧⎨
⎩

∂tρ1 + χ1∇ · (ρ1∇c) = μ1Δρ1,
∂tρ2 + χ2∇ · (ρ2∇c) = μ2Δρ2,
εct = DΔc+ α1ρ1 + α2ρ2 − βc.

(4.13)

Here ρ1 and ρ2 denote the cell densities of the first and second species. c is the
concentration of the chemoattractant. μi, χi, αi i = 1, 2, β, and D are positive
constants characterizing the cell diffusion, chemotactic sensitivities, production and
consumption rates, and chemoattractant diffusion coefficient, respectively. A differ-
ent combination of χ1, χ2 and the total mass of ρ1 and ρ2 would generate solutions
with completely different behavior. Here we test our schemes in two specific com-
binations [20], and other choices can be easily adapted and we omit the result here
for simplicity. For both examples, we let μ2 = γ1 = γ2 = α1 = α2 = D = 1, and
choose the computational domain to be [−3, 3]× [−3, 3].

Example 1. First we choose χ1 = 1, χ2 = 10, μ1 = 1, and initial condition is

(4.14) ρ1(x, y, 0) = ρ2(x, y, 0) = 50e−100(x2+y2).

In this case, we should have global existence in both ρ1 and ρ2. In Figure 9, we
plot ρ1, ρ2 and c at t = 0.05, and none of them displays any intensity of blowing
up, yet ρ2 has a sharper profile than ρ1 since it has a large chemotactic sensitivity.
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Figure 9. Two species: Example 1. ρ1, ρ2 and c at time t = 0.05,
computed on 100× 100 uniform mesh. Δt = Δx/10.
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Figure 10. Two species: Example 2. ρ1 and ρ2 at time t = 0.05,
computed on 100× 100 uniform mesh (upper) and 200× 200 mesh
(lower). Δt = Δx/10.

Example 2. Next we consider χ1 = 1, χ2 = 20, μ1 = 1, and use the same
initial condition as in (4.14). Here the problem falls into a subtle regime in which,
according to [14], should blow up ρ1 and ρ2 at different rate. Here we examine the
profile of ρ1 and ρ2 at time t = 0.05 with two different mesh sizes, and it is seem
from Figure 10 that both densities blow up at the order of O

(
1

Δx2

)
, but ρ2 blow

up faster than ρ1.
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