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ON LITTLEWOOD AND NEWMAN POLYNOMIAL MULTIPLES

OF BORWEIN POLYNOMIALS

P. DRUNGILAS, J. JANKAUSKAS, AND J. ŠIURYS

Abstract. A Newman polynomial has all the coefficients in {0, 1} and con-
stant term 1, whereas a Littlewood polynomial has all coefficients in {−1, 1}.
We call P (X) ∈ Z[X] a Borwein polynomial if all its coefficients belong to
{−1, 0, 1} and P (0) �= 0. By exploiting an algorithm which decides whether
a given monic integer polynomial with no roots on the unit circle |z| = 1 has
a non-zero multiple in Z[X] with coefficients in a finite set D ⊂ Z, for every
Borwein polynomial of degree at most 9 we determine whether it divides any
Littlewood or Newman polynomial. In particular, we show that every Bor-
wein polynomial of degree at most 8 which divides some Newman polynomial
divides some Littlewood polynomial as well. In addition to this, for every
Newman polynomial of degree at most 11, we check whether it has a Little-
wood multiple, extending the previous results of Borwein, Hare, Mossinghoff,
Dubickas and Jankauskas.

1. Introduction

Let d ∈ N and let P (X) be a polynomial

(1.1) P (X) = adX
d + ad−1X

d−1 + · · ·+ a1X + a0

in one variable X with integer coefficients aj ∈ Z. To avoid trivialities, we consider
only polynomials with non-zero leading and constant terms ad · a0 �= 0. In such
case, both P (X) and its reciprocal polynomial P ∗(X) := XdP (1/X) are of the
same degree d. If P (X) has only three non-zero coefficients aj , for 0 ≤ j ≤ d, then
it is called a trinomial. Similarly, if the number of non-zero coefficients is four,
P (X) is called a quadrinomial.

The polynomial P (X) in (1.1) is called a Littlewood polynomial, if aj ∈ {−1, 1}
for each 0 ≤ j ≤ d. For instance, P (X) = X4 +X3 −X2 +X − 1 is a Littlewood
polynomial. The set of all Littlewood polynomials is denoted by L. Similarly, a
polynomial P (X) is called a Newman polynomial, if all coefficients aj ∈ {0, 1} and
P (0) = 1. For instance, P (X) = X3 + X + 1 is a Newman polynomial. The
subset of Z[X] of all Newman polynomials is denoted by N . Finally, we call an
integer polynomial P (X) in (1.1) with all coefficients aj ∈ {−1, 0, 1} and a non-zero
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constant term P (0) a Borwein polynomial.1 P (X) = X5 −X2 +1 is an example of
a Borwein polynomial. The set of all Borwein polynomials is denoted by B. One
has trivial set relations N ⊂ B, L ⊂ B.

We say that a polynomial P (X) has a Littlewood multiple if it divides some
polynomial in the set L. In the similar way, we say that P (X) has a Newman
multiple, or a Borwein multiple if P (X) divides some polynomial in N or in B,
respectively. When we need to restrict our attention only to polynomials of fixed
degree, we use the subscript d in Nd, Ld and Bd to denote the sets of Newman,
Littlewood and Borwein polynomials of degree d, respectively. Similarly, we use
the subscript “≤ d” to indicate the sets of polynomials of degree at most d, that is,

N≤d =

d⋃
j=0

Nj , L≤d =

d⋃
j=0

Lj , B≤d =

d⋃
j=0

Bj .

Clearly, non-constant polynomials P (X) with all non-negative coefficients cannot
have any positive real zeros X ∈ [0,∞). Newman polynomials are among such
polynomials. To denote the subsets of Littlewood or Borwein polynomials with no
real positive zeros, we append the “−” superscript, for instance, L−, B−, L−

d , B
−
d

and L−
≤d, B

−
≤d.

Let A ⊂ Z[X]. We will employ the notation L(A) to denote the set of polyno-
mials P (X) ∈ A which divide some Littlewood polynomial. Similarly, denote by
N (A) the set of polynomials P (X) ∈ A which divide some Newman polynomial. In
particular, the set Bd\L(B) consists of those Borwein polynomials of degree d that
do not divide any Littlewood polynomial, whereas the set N (Bd)\L(B) consists of
those Borwein polynomials of degree d that divide some Newman polynomial but
do not divide any Littlewood polynomial.

Let D ⊂ Z be a finite set. We call D a digit set. Central to our work is a further
development (see Section 3) of an algorithm that can answer the following question.

Question 1. Given a monic polynomial P ∈ Z[X] which has no roots on the unit
circle |z| = 1 in the complex plane, does there exist a non-zero polynomial with
coefficients in D which is divisible by P?

The first instance of such an algorithm that we are aware of appeared in the
work of Lau [13]. It was confined to the case when P (X) is a minimal polynomial
of a Pisot number. Subsequent computations were done by Borwein and Hare [4],
Hare and Mossinghoff [9]. It was used for the computation of the discrete spectra
of Pisot numbers. In a special case where the set D = {−q, . . . ,−1, 0, 1, . . . , q}
(here q is a positive integer) the fact that P (X) has a non-zero multiple Q(X)
with coefficients in D is equivalent to the fact that the number 0 has a non-trivial
representation in the difference set of the spectra generated by the root α of P (X)
with digits {0, 1, . . . , q}. Stankov [22] extended the algorithm to non-Pisot algebraic
integers with no conjugates on the unit circle. Akiyama, Thuswaldner and Zäımi
[2, Theorem 3] show that there exists automata that can determine the minimal
height polynomial with integer coefficients for a given algebraic number provided
it has no algebraic conjugates on |z| = 1 in the complex plane. Thus the algorithm
of Akiyama, Thuswaldner and Zäımi [2] answers Question 1 for irreducible monic

1This nomenclature in honor of P. Borwein for his work on polynomials of this type was
proposed by C. Smyth during the 2015 workshop The Geometry, Algebra and Analysis of Algebraic
numbers in Banff, Alberta (personal communication).
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polynomials P (X) ∈ Z[X] with no roots on the unit circle. One contribution of our
paper is a further development of this algorithm to allow P (X) to have repeated
roots (i.e., when P (X) is not separable). This should open the way to answering
questions regarding the multiplicity of the divisors of polynomials with restricted
coefficients (see, e.g., Example 9 in Section 4). We do not know if the condition that
P (X) has no roots with |z| = 1 can be dropped or not; it seems to be essential to the
proof that the search terminates. In some cases this condition can be circumvented
(see Subsection 4.1 on cyclotomic factors and the last note at the end of Section
3). Other approaches to search for Newman and Littlewood multiples of P (X)
in the literature are: the application of LLL [4]; the factorization of Littlewood
polynomials of large degrees [15]; the search for multipliers of bounded height [7].
These approaches do not allow to identify polynomials P (X) that have no such
multiple.

We implement our algorithm to answer this question for all Borwein polynomials
of degree up to 9 and the digit sets D = {0, 1} and D = {−1, 1}. In other words, for
every Borwein polynomial of degree at most 9 we decide whether it has a Littlewood
multiple and whether it divides some Newman polynomial. Moreover, for every
Newman polynomial P (X) of degree at most 11 we determine whether P (X) ∈
L(N ). These computations allow us to extend the results previously obtained by
Dubickas and Jankauskas [7], Borwein and Hare [4], Hare and Mossinghoff [9] (see
Section 2 and Section 4).

This paper is organized as follows. The main results are given in Section 2. In
Section 4 we describe our computations. The algorithm, along with the proofs of
auxiliary results, are given in Section 3.

2. Main results

2.1. Relations between sets B, L(B) and N (B). The set B of Borwein polyno-
mials can be partitioned into the following four subsets.

L(B)\N (B) – the set of Borwein polynomials that have Littlewood mul-
tiples and don’t have Newman multiples;

N (B)\L(B) – the set of Borwein polynomials that have Newman multi-
ples and don’t have Littlewood multiples;

L(B) ∩ N (B) – the set of Borwein polynomials that have Littlewood and
Newman multiples;

B\(L(B) ∪ N (B)) – the set of Borwein polynomials that divide no Littlewood
and no Newman polynomial.

We implemented Algorithm 1 (see Section 4) and ran it to determine whether
P (X) ∈ L(B) and whether P (X) ∈ N (B) for all Borwein polynomials P (X) of de-
gree at most 9. Thus we have completed the classification of polynomials from B≤9

started by Dubickas and Jankauskas [7]. In particular, we calculated the numbers

# (L(Bd)\N (B)) , #(N (Bd)\L(B)) and # (L(Bd) ∩N (Bd))

for every d ∈ {1, 2, . . . , 9} that are provided in Table 1. As a result we obtain the
following statement (see the third column in Table 1).

Theorem 2. Every Borwein polynomial of degree at most 8 which divides some
Newman polynomial divides some Littlewood polynomial as well.
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Theorem 2 is a generalization of Theorem 2 in [7] where it is proved that every
Newman polynomial of degree at most 8 divides some Littlewood polynomial.

Table 1

d #(L(Bd)\N (B)) # (N (Bd)\L(B)) # (L(Bd) ∩N (Bd))

1 2 0 2
2 6 0 6
3 24 0 12
4 72 0 32
5 224 0 68
6 612 0 164
7 1518 0 342
8 3610 0 822
9 8564 60 1596

By the inclusion-exclusion principle, one obtains the following equalities:

#Bd\L(B) = #Bd −#(L(Bd)\N (B))−#(L(Bd) ∩ N (Bd)) ,

#Bd\N (B) = #Bd −#(N (Bd)\L(B))−#(L(Bd) ∩N (Bd)) ,

#Bd\(L(B) ∪ N (B)) = #Bd −#(L(Bd)\N (B))
−#(N (Bd)\L(B))−#(L(Bd) ∩N (Bd)) ,

which are valid for all positive integers d. These numbers, for d ∈ {1, 2, . . . , 9}, are
given in Table 2.

Table 2

d #(Bd\L(B)) # (Bd\N (B)) # (Bd\(L(B) ∪N (B)))
1 0 2 0
2 0 6 0
3 0 24 0
4 4 76 4
5 32 256 32
6 196 808 196
7 1056 2574 1056
8 4316 7926 4316
9 16084 24588 16024

For example, there are exactly 196 Borwein polynomials of degree 6 which have
no Littlewood multiple.

2.2. Borwein polynomials that do not divide any Littlewood polynomial.
Recall that a real algebraic integer α > 1 is called a Pisot number after [18], if all
the algebraic conjugates of α over Q (other than α itself) are of modulus |z| < 1.
Similarly, a real algebraic integer α > 1 is called a Salem number (see, e.g., [19–21]),
if all other conjugates of α lie in the unit circle |z| ≤ 1 with at least one conjugate
on the unit circle |z| = 1.

In their computation of the discrete spectra of Pisot numbers, Borwein and Hare
[4] found the first examples of Borwein polynomials P (X) that provably divide no
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Littlewood polynomial. All these polynomials are of degree d = 9 or d = 10 and
they are minimal polynomials of Pisot numbers; see Table 3. So the sets B9\L(B)
and B10\L(B) are non-empty.

Table 3. Minimal polynomials of Pisot numbers that divide no
Littlewood polynomial found by Borwein and Hare.

# Polynomial P (X) ∈ B Pisot number

1 X10 −X8 −X7 −X6 −X5 + 1 1.954062236 . . .
2 X9 −X8 −X7 −X6 −X5 −X4 + 1 1.963515789 . . .
3 X9 −X8 −X7 −X6 −X5 −X4 −X3 −X − 1 1.992483962 . . .
4 X9 −X8 −X7 −X6 −X5 −X4 −X3 −X2 − 1 1.994016415 . . .

In the present paper, we find the least degree Borwein polynomials with no
Littlewood multiple.

Proposition 3. The smallest degree Borwein polynomial which does not divide any
Littlewood polynomial is p(X) = X4 +X3 −X + 1. Moreover,

B≤4\L(B) = {±p(X),±p∗(X)}.
A systematic investigation of the sets L(B)∩N (B) and N (B)\L(B) was started

by Dubickas and Jankauskas in [7]. They found that each P (X) ∈ N≤8 has a
Littlewood multiple, so that L(N≤8) = N≤8. First known polynomials P (X) ∈ N9

that do not divide any polynomial in L were also identified in [7]. They are equal
to one of the polynomial nos. 1, 3, 5, 9 of Table 4 or their reciprocals. Moreover, all
the possible candidates of P (X) ∈ N9 with no Littlewood multiple were identified
(see Table 7 in [7]) but not fully resolved.

Table 4. The complete set N9\L(N ) (reciprocals omitted).

# Polynomial P (X)

1 X9 +X6 +X2 +X + 1
2 X9 +X7 +X6 +X2 + 1
3 X9 +X7 +X6 +X4 + 1
4 X9 +X8 +X6 +X5 +X2 + 1
5 X9 +X8 +X7 +X5 +X3 + 1
6 X9 +X8 +X7 +X5 +X2 +X + 1
7 X9 +X8 +X5 +X3 +X2 +X + 1
8 X9 +X7 +X6 +X3 +X2 +X + 1
9 X9 +X8 +X5 +X4 +X3 +X2 + 1

Our recent computations confirm that none of these candidates divides any Lit-
tlewood polynomial. They are listed as polynomial nos. 2, 4, 6, 7, 8 (or their
reciprocals) in Table 4. Hence, the sets L(N9) and N9\L(N ) are now completely
determined. In particular, #N9\L(N ) = 18. The complete list of Newman poly-
nomials of degree 9 that have no Littlewood multiple is provided in Table 4 (with
reciprocals omitted) .

In this paper, we have been able to extend the classification of the polynomials
from the set N9 to larger degrees. As it is not practical to provide the full lists here,
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we just indicate that the sets L(Nd), Nd\L(N ) have been completely determined
for d = 10 and d = 11. In particular, our computations show that #N10\L(N ) = 36
and #N11\L(N ) = 174.

Using the polynomial P (X) no. 3 from Table 4, Dubickas and Jankauskas [7]
proved that for all sufficiently large positive integers n the polynomial xnP (X)+ 1
does not divide any Littlewood polynomial. This implies that the set Nd\L(N ) is
non-empty for all sufficiently large d. In addition to this, they proved that every
Borwein polynomial with three non-zero terms

Xb ±Xa ± 1, 1 ≤ a < b, a, b ∈ Z

(including Newman trinomials Xb +Xa + 1) has a Littlewood multiple, as well as
some types of Borwein quadrinomials Xc ± Xb ± Xa ± 1 do. These results show
that set L(B) ∩ N (B) has a non-trivial structure.

Dubickas and Jankauskas [7] asked whether there exists a Borwein quadrinomial
that does not divide any Littlewood polynomial. Our computations imply that
there are exactly 20 such quadrinomials of degree ≤ 9. They are given in Table 5
(we only list quadrinomials with positive leading coefficient).

Table 5. Monic quadrinomials in B≤9\L(B) (reciprocals omitted).

X4 +X3 −X + 1 X6 −X5 −X − 1 X8 −X5 +X3 + 1
X8 +X7 −X + 1 X8 +X6 −X2 + 1

Since every Borwein trinomial divides some Littlewood polynomial (see [7, The-
orem 1]), we have the following result (see also Table 5).

Corollary 4. The least positive integer k for which there exists a Borwein polyno-
mial with k non-zero terms that divides no Littlewood polynomial is k = 4.

Our computations also show that each quadrinomial in N≤11 divides some Lit-
tlewood polynomial. Therefore the following question is of interest.

Question 5. Does there exist a Newman quadrinomial with no Littlewood multi-
ple? Equivalently, does the set N \L(N ) contain a quadrinomial?

If such quadrinomial exists, it must be of degree ≥ 12.

2.3. Borwein polynomials that do not divide any Newman polynomial.
Recall that a Newman polynomial has no non-negative real roots. However, not
every polynomial P (X) ∈ B− divides a Newman polynomial. Our computations
show the following.

Proposition 6. The smallest degree Borwein polynomial without non-negative real
roots and no Newman multiple is p(X) = X3 + X2 − X + 1, and B−

≤3 \N (B) =

{±p(X),±p∗(X)}.

Recall that the Mahler measure of a polynomial

p(X) =

n∑
i=k

akX
k = an

n∏
k=1

(X − αk) ∈ C[X]

is defined by M(p) = |an|
∏n

k=1 max{1, |αk|}.



ON LITTLEWOOD AND NEWMAN POLYNOMIAL MULTIPLES 1529

Hare and Mossinghoff [9] considered the following problem: does there exist a
real number σ > 1 such that if f(X) ∈ Z[X] has no non-negative real roots and
M(f) < σ, then f(X) divides some Newman polynomial F (X)? Based on the
results of Dufresnoy and Pisot [8], Amara [3] and Boyd [5, 6] they proved that
every negative Pisot number which has no positive real algebraic conjugate and is
larger than −τ , where τ = (1 +

√
5)/2 ≈ 1.61803 is the golden ratio, is a root of

some Newman polynomial. They also proved that certain negative Salem numbers
greater than−τ are roots of Newman polynomials. Moreover, they have constructed
a number of polynomials that have Mahler measure less than τ , have no positive real
roots and yet do not divide any Newman polynomial. The smallest Mahler measure
in their list is approximately 1.556 attained by the polynomialX6−X5−X3+X2+1.
We found that among Borwein polynomials of degree at most 9 there are exactly 16
polynomials which extend this list and have Mahler measure less than 1.556. They
are given in Table 6 (we omit their reciprocal polynomials).

Table 6. Polynomials in B−
≤9\N (B) of small Mahler measure.

Polynomial P (X) ∈ B−
≤9\N (B) Mahler measure

X9 +X8 +X7 −X5 −X4 −X3 + 1 1.436632261
X9 +X8 −X3 −X2 + 1 1.483444878
X9 −X7 −X5 +X3 +X + 1 1.489581321
X8 −X7 −X4 +X3 + 1 1.489581321
X8 +X7 −X3 −X2 + 1 1.518690904
X8 +X7 +X6 −X4 −X3 −X2 + 1 1.536566472
X9 −X8 −X6 +X5 + 1 1.536913983
X9 +X5 −X3 −X2 + 1 1.550687063

Note that the third polynomial in Table 6 factors as

(X + 1) · (X8 −X7 −X4 +X3 + 1)

and the second factor is the fourth polynomial of the table. All the other polyno-
mials in this table are irreducible over Z.

2.4. Examples with special factors. The following example demonstrates that
if two polynomials have Littlewood multiples, their product does not necessarily
have one.

Example 7. Borwein polynomials p(x) = X4 + X3 + 1 and q(x) = X5 − X4 +
X3 − X + 1 belong to L(B). However, their product p(x)q(x) has no Littlewood
multiple. Consequently, the Newman multiple of p(x)q(x),

P (X) = X11 +X10 +X9 +X8 +X7 +X5 +X4 +X3 + 1

= (X2 +X + 1)(X4 +X3 + 1)(X5 −X4 +X3 −X + 1)

also has no Littlewood multiple.

Moreover, p(X) ∈ N (B) does not imply that always p(X)p∗(X) ∈ N (B), as can
be seen from Example 8.
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Example 8. Let p(X) = X3 − X + 1 be the minimal polynomial of the largest
negative Pisot number −θ ≈ −1.32472. Both p(X) and its reciprocal p∗(X) =
X3−X2+1 have Newman multiples P (X) = X5+X4+1 and P ∗(X) = X5+X+1,
respectively. However, the product

p(X)p∗(X) = X6 −X5 −X4 + 3X3 −X2 −X + 1

has no Newman multiple. In contrast, p(X)p∗(X) divides the Borwein polynomial

Q(X) = (X2 +X + 1)(X3 −X + 1)(X3 −X2 + 1)
= X8 −X6 +X5 +X4 +X3 −X2 + 1

that, in turn, has its own Littlewood multiple.

The last example in this subsection illustrates the ability of Algorithm 1 to work
with polynomials P (X) with repeated noncyclotomic roots.

Example 9. The polynomial p(X) = X3 − X + 1 has a Newman multiple (see
Example 8). However, its square p(X)2 does not.

The square p(X)2 divides a Littlewood polynomial L(X) of degree 195 from
Table 7, while the cube p(X)3 has no Littlewood multiple at all.

These two facts imply that the Borwein multiple

P (X) = (X2 +X + 1)p(X)2 = X8 +X7 −X6 +X4 +X3 −X + 1

of p2(X) divides no Newman polynomial, but P (X) has a Littlewood multiple,
namely the polynomial L(X)Φ3(X

196), where Φ3(X) = X2 +X + 1.

Table 7. Coefficients l0, l1, . . . , l195 ∈ {−1, 1} of the Littlewood

multiple L(X) =
∑195

j=0 ljX
195−j of p(X) = (X3 −X + 1)2.

++−++−+−−−−+++++−+−++−+++++−+−
++++−−−−+++−+++−++++−+−++++−+−
+−−+−+−+−++−−+−+−++++−++−−−++−
+−+−+−+++−+−++−++−−−−−−++−++−+
−++++−++−+−+−−−++++−−−−+++−+++
++−+++++−−−−−+−−−−−+−−−+++−+−−
−++−−−++−+−−+−+−

2.5. Irreducible non-cyclotomic polynomials with some unimodular roots.
In the context of the work of Borwein and Hare [4], Stankov [22] on the spectra of
Salem numbers and the work of Hare and Mossinghoff [9] on Salem numbers that
are roots of Newman polynomials, we also investigated the subset U irr

≤9 of monic
irreducible non-cyclotomic Borwein polynomials of degree at most 9 with at least
one unimodular root. The set U irr

≤9 contains exactly 52 polynomials. It can be
partitioned into 3 disjoint subsets

U irr
≤9 = U1

≤9 ∪ U2
≤9 ∪ Uspor

≤9 ,

where:

– U1
≤9 consists of 28 minimal polynomials of Salem numbers (Salem polyno-

mials) or minimal polynomials of negative Salem numbers (α is a negative
Salem number if −α is a Salem number). Salem polynomials are given
in Table 8; negative-Salem polynomials can be obtained by substitution
X �→ −X. All P (X) from Table 8 belong to the set L(B)\N (B).
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– U2
≤9 consists of 19 minimal polynomials of complex Salem numbers. P (X) ∈

U irr
≤9 is a complex Salem polynomial when four of its roots, {z, z, z−1, z−1},

do not lie on the unit circle. These polynomials P (X) are shown in Table 9,
where P (−X) are omitted. All but one (no. 4) polynomials from Table 9
belong to L(B). Only polynomial nos. 5, 6 and 8 of Table 9 belong to
N (B).

– Uspor
≤9 contains remaining 5 ‘sporadic’ cases from U irr

≤9 ; these polynomials are

listed in Table 10; P (−X) are omitted. Polynomial no. 1 has 2 unimodular
roots; nos. 2 and 3 have 4 unimodular roots each. All polynomials from
Table 10 belong to L(B)\N (B).

Table 8. Salem polynomials from U1
≤9.

P (X) ∈ B≤9 P (−X) ∈ N (B)
X4 −X3 −X2 −X + 1 no
X6 −X5 −X4 −X3 −X2 −X + 1 no
X6 −X5 −X4 −X2 −X + 1 no
X6 −X5 −X4 +X3 −X2 −X + 1 yes
X6 −X5 −X3 −X + 1 yes
X6 −X4 −X3 −X2 + 1 yes
X8 −X7 −X6 −X5 −X3 −X2 −X + 1 no
X8 −X7 −X6 −X4 −X2 −X + 1 no
X8 −X7 −X6 −X2 −X + 1 no
X8 −X7 −X6 +X4 −X2 −X + 1 yes
X8 −X7 −X5 −X4 −X3 −X + 1 no
X8 −X7 −X5 +X4 −X3 −X + 1 yes
X8 −X6 −X5 −X3 −X2 + 1 yes
X8 −X5 −X4 −X3 + 1 yes

Table 9. Complex Salem polynomials U2
≤9; P (−X) omitted

# P (X) ∈ B≤9 P (−X) ∈ N (B)
1 X6 −X5 +X4 +X3 +X2 −X + 1 no
2 X8 −X7 −X6 +X5 +X4 +X3 −X2 −X + 1 yes
3 X8 −X7 +X5 +X3 −X + 1 yes
4 X8 −X7 +X5 +X4 +X3 −X + 1 no
5 X8 −X7 +X6 −X4 +X2 −X + 1 yes
6 X8 −X7 +X6 +X4 +X2 −X + 1 yes
7 X8 −X7 +X6 +X5 +X4 +X3 +X2 −X + 1 no
8 X8 +X5 +X4 +X3 + 1 yes
9 X8 +X6 −X4 +X2 + 1 no

10 X8 +X6 +X5 −X4 +X3 +X2 + 1 no
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Table 10. Sporadic polynomials from Uspor
≤9 ; P (−X) omitted

P (X) ∈ B≤9 P (−X) ∈ N (B)
X8 −X7 +X6 −X5 −X4 −X3 +X2 −X + 1 no
X8 −X7 −X6 +X5 −X4 +X3 −X2 −X + 1 no
X8 −X6 −X4 −X2 + 1 no

We end Section 2.5 by exhibiting a few notable examples of P (X) ∈ U irr
≤9 .

Example 10. Complex Salem polynomials P (X) = X8 −X7 +X6 −X4 +X2 −
X+1 and P (−X) belong to L(B)∩N (B). In contrast, complex Salem polynomials
Q(X) = X8 −X7 +X5 +X4 +X3 −X + 1 and Q(−X) are in B\(L(B) ∪N (B)).
Moreover, Q(X) and Q(−X) are the only polynomials from U irr

≤9 with no Littlewood
multiple.

Example 11. Sporadic polynomials P (X) = X8−X7−X6+X5−X4+X3−X2−
X+1 and P (−X) have 4 unimodular roots and 4 real roots. Sporadic polynomials
Q(X) = X8 −X7 +X6 −X5 −X4 −X3 +X2 −X + 1 and Q(−X) have exactly 2
unimodular roots each. It is notable that {P (±X), Q(±X)} ⊂ L(B)\N (B).

3. The algorithm

We develop the algorithm to answer Question 1 for non-separable polynomials.
In separable cases, it reduces to previous algorithms in [2, 13, 22].

Lemma 12. Suppose that z ∈ C is a root of multiplicity m ≥ 1 of the polynomial
Q(X) = adX

d + ad−1X
d−1 + · · · + a1X + a0 ∈ C[X] of degree d ≥ 1, and that

|z| �= 1. Let j ∈ {1, . . . , d} and R(X) = adX
j + ad−1X

j−1 + · · ·+ ad−j . Then, for
each k ∈ {0, 1, . . . ,m− 1}, the inequality

(3.1) |R(k)(z)| ≤ k!·H(Q)
||z|−1|k+1

holds.

Here R(k) denotes the kth derivative of the polynomial R, R(0) := R, and H(Q)
stands for the height of the polynomial Q, namely,

H(Q) = max{|ad| , |ad−1| , . . . , |a1| , |a0|}.

Proof of Lemma 12. First, assume that |z| > 1. Since z is a root of Q(X) of
multiplicity m, there exists a polynomial T (X) ∈ C[X] such that

adX
d + ad−1X

d−1 + · · ·+ a1X + a0 = T (X) · (X − z)m.

One has

Xd−j
(
adX

j + ad−1X
j−1 + · · ·+ ad−j

)
+ad−j−1X

d−j−1+· · ·+a0 = T (X)·(X−z)m,

and so

R(X) = adX
j + ad−1X

j−1 + · · ·+ ad−j = −ad−j−1

X − · · · − a0

Xd−j + T (X)·(X−z)m

Xd−j .
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Now fix k ∈ {0, 1, . . . ,m− 1}. One can easily see that the kth derivative of the
rational function T (X) · (X − z)m/Xd−j ∈ C(X) vanishes at X = z. Therefore

R(k)(z) =
(
−ad−j−1

X − · · · − a0

Xd−j

)(k)∣∣∣
X=z

= (−1)k+1 k! ad−j−1

zk+1 + (−1)k+1 (k+1)! ad−j−2

1! zk+2 + · · ·+ (−1)k+1 (d+k−j−1)!a0

(d−j−1)! zd+k−j .

From this we obtain

|R(k)(z)| ≤ H(Q)
(

k!
|z|k+1 + (k+1)!

1! |z|k+2 + · · ·+ (d+k−j−1)!
(d−j−1)! |z|d+k−j

)

≤ H(Q)
(

k!
|z|k+1 + (k+1)!

1! |z|k+2 + · · ·+ (d+k−j−1)!
(d−j−1)! |z|d+k−j + · · ·

)

= H(Q) (−1)k
(

1
X + 1

X2 + · · ·
)(k)∣∣∣

X=|z|

= H(Q) (−1)k
(

1
X−1

)(k)
∣∣∣∣
X=|z|

= k!H(Q)
(|z|−1)k+1 .(3.2)

Now assume that |z| < 1. If k > j = degR, then R(k)(X) ≡ 0 and the inequality
(3.1) obviously holds. Hence assume that k ≤ j. Then

R(k)(z) =
(
adX

j + ad−1X
j−1 + · · ·+ ad−j

)(k)∣∣∣
X=z

= j!
(j−k)!adz

j−k + · · ·+ (k+1)!
1! ad−j+k+1z + k!ad−j+k,

and therefore

|R(k)(z)| ≤ H(Q)
(

j!
(j−k)! |z|j−k + · · ·+ (k+1)!

1! |z|+ k!
)

≤ H(Q)
(
k! + (k+1)!

1! |z|+ · · ·+ j!
(j−k)! |z|j−k + · · ·

)

= H(Q)
(
1 +X +X2 + · · ·

)(k)∣∣∣
X=|z|

= H(Q)
(

1
1−X

)(k)
∣∣∣∣
X=|z|

= k!H(Q)
(1−|z|)k+1 .(3.3)

The inequality (3.1) follows from (3.2) and (3.3). �

Let P ∈ Z[X] be a monic polynomial (that is, the leading coefficient of P is equal
to 1). Then one can divide any integer polynomial Q by P in Z[X]: there exist
unique integer quotient and remainder polynomials S and R, degR < degP , such
that Q = P · S + R. The first key observation: polynomials S and R have integer
coefficients, provided that P is monic. The second key observation is as follows. For
any complex number z which satisfies P (z) = 0, one has Q(z) = R(z). This means
that the values of the polynomial Q evaluated at any complex root of the divisor
polynomial P coincide with the values of the remainder polynomial R evaluated
at the same points. The reduction map Q �→ Q (mod P ) is a homomorphism of
rings which maps the ring Z[X] to the quotient ring Z[X]/(P ). The remainder
polynomial R is a representative integer polynomial for the class in Z[X]/(P ) to
which Q belongs.
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Definition 13. Let P (X) be a non-constant polynomial with integer coefficients
with no roots on the complex unit circle |z| = 1. Suppose that the factorization of
P in C[X] is

P (X) = a · (X − α1)
e1(X − α2)

e2 · · · (X − αs)
es ,

where α1, α2, . . . , αs are distinct complex numbers and ej ≥ 1 for j = 1, 2, . . . , s.
Let B be arbitrary positive number. Define R(P,B) to be the set of all polynomials
R ∈ Z[X], degR < degP , which, for each j ∈ {1, 2, . . . , s}, satisfy the inequalities

(3.4) |R(αj)| ≤ B
||αj |−1| , |R′(αj)| ≤ 1!B

||αj |−1|2 , · · · , |R(ej−1)(αj)| ≤ (ej−1)!B
||αj |−1|ej .

Here R(k) denotes the kth derivative of the polynomial R, and R(0) := R.

Lemma 14. Let P ∈ Z[X] and B ∈ R be as in Definition 13. Then R(P,B) is a
finite set.

Proof. Write R(X) = rd−1X
d−1 + · · · + r1X + r0, where rk, 0 ≤ k ≤ d − 1 are

unknown integers. Denote by R(n)(X) the nth derivative of the polynomial R(X).
Consider the following equalities obtained by substituting X = αj into R(n)(X),
for j = 1, 2, . . . , s:

r0 + r1αj + r2α
2
j + . . . + rd−1α

d−1
j = R(αj),

r1 + 2r2αj + . . . + (d− 1)rd−1α
d−2
j = R′(αj),

· · · · · · · · ·

(ej − 1)!rej−1+ · · ·+ (d−1)!
(d−ej)!

rd−1α
d−ej
j = R(ej−1)(αj).

(3.5)

Write it in the matrix form Ax = y, where

x = (r0, r1, . . . , rd−1)
t
, y =

(
R(α1), R

′(α1), . . . , R
(es−1)(αs)

)t

and the system matrix A is the confluent Vandermonde matrix which consists of
row-blocks (j = 1, 2, . . . , s)

1 αj α2
j · · · αd−1

j

0 1 2αj · · · (d− 1)αd−2
j

0 0 2 · · · (d− 1)(d− 2)αd−3
j

· · · · · · · · ·
0 0 · · · (ej − 1)! ej !αj · · · (d−1)!

(d−ej)!
α
d−ej
j

(each row in this block, except for the first one, is the derivative in αj of the
previous row). Denote by D(αe1

1 , αe2
2 , . . . , αes

s ) the determinant of the confluent
Vandermonde matrix A. It is well-known (see, for instance, [1, Chapter VI], [10,
Chapter 6], [12] and [14]) that

D(αe1
1 , αe2

2 , . . . , αes
s ) =

∏
i<j

(αj − αi)
eiej

s∏
k=1

(ek − 1)!!,

where n!! stands for the product n!(n− 1)! · · · 2! 1!. In particular, det(A) �= 0, since
α1, α2, . . . , αs are distinct complex numbers. So the inverse matrix A−1 exists and
x = A−1y. By Cramer’s formula, we have

rk = 1
det(A)

(
R(α1)A1k+1 + · · ·+R(e1−1)(α1)Ae1k+1 + · · ·+R(es−1)(αs)Ad k+1

)
,

for k = 0, 1, . . . , d− 1, where Alm, 1 ≤ l,m ≤ d are the cofactors of the matrix A.
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Now, let B be arbitrary positive number and assume that R ∈ R(P,B). Then
in view of (3.4) we have

|rk| ≤ B
| det(A)|

(
|A1k+1|
||α1|−1| + · · ·+ (e1−1)!|Ae1k+1|

||α1|−1|e1 + · · ·+ (es−1)!|Ad k+1|
||αs|−1|es

)
,

for k = 0, 1, . . . , d−1. Therefore the number of solutions x ∈ Zd to (3.5), satisfying
the condition (3.4), is finite, i.e., the set R(P,B) is finite. �

We now define a certain graph which is associated to the set of remainder poly-
nomials and the digit set D.

Definition 15. Let G = G(P,D) be a directed graph whose vertices represent all
the distinct polynomials R ∈ R(P,B) ∪ D, where B = max{|b| : b ∈ D}. We
connect the vertices which represent two remainder polynomials Ri and Rj , by an
edge which points from Ri to Rj , if Rj ≡ X ·Ri+ b (mod P ) in Z[X]/(P ) for some
digit b ∈ D.

Here is the main theorem of this section.

Theorem 16. Let P ∈ Z[X] be a monic polynomial with no roots on the complex
unit circle |z| = 1. Then P divides an integer polynomial

Q(X) = anX
n + an−1X

n−1 + · · ·+ a1X + a0 ∈ C[X]

with all the coefficients aj ∈ D and the leading coefficient an ∈ D, if and only if
the graph G = G(P,D) contains a path which starts at the remainder polynomial
R(X) = an and ends at R(X) = 0. The length of the path is n, where n is the
degree of Q.

Proof. Let us first prove the necessity. Assume that P divides Q, that is, Q(X) ≡ 0
(mod P ). Define the polynomials

Q0(X) = an,

Q1(X) = anX + an−1,

Q2(X) = anX
2 + an−1X + an−2,

. . .

Qn(X) = anX
n + an−1X

n−1 + · · ·+ a1X + a0.

Let Rj be the remainder of Qj modulo P . Suppose that the factorization of P in
C[X] is

P (X) = a · (X − α1)
e1(X − α2)

e2 · · · (X − αs)
es ,

where α1, α2, . . . , αs are distinct complex numbers and ej ≥ 1 for j = 1, 2, . . . , s.
By Lemma 12, each polynomial Qi, i = 1, 2, . . . , n, satisfies the inequalities

(3.6) |Qi(αj)| ≤ H(Q)
||αj |−1| , |Q′

i(αj)| ≤ 1!H(Q)
||αj |−1|2 , · · · , |Q

(ej−1)
i (αj)| ≤ (ej−1)!H(Q)

||αj |−1|ej ,

for j = 1, 2, . . . , s. Moreover, for each j ∈ {1, 2, . . . , s} and each i ∈ {1, 2, . . . , n},
R

(k)
i (αj) = Q

(k)
i (αj), 0 ≤ k ≤ ej − 1, since Ri ≡ Qi (mod P ). Therefore, in view

of (3.6), Ri all belong to the set R(P,B), where B = H(Q). Reducing modulo
P the equality Qi = X · Qi−1 + an−i with an−i ∈ D yields Ri ≡ X · Ri−1 + an−i

(mod P ). Hence, there exists an edge in the graph G which connects Ri−1 to Ri.
Since Qn(X) = Q(X) ≡ 0 (mod P ), one has Rn = 0. Consequently, there exists a
path in G which joins R0 = an to the reminder polynomial Rn = 0.
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Conversely, assume that there exists a path of length n which connects the n+1
vertices R0, R1, . . . , Rn with R0 = an and Rn = 0. By the definition of the graph
G, there exist coefficients ai ∈ D, i = 1, . . . , n, such that Ri ≡ X · Ri−1 + an−i

(mod P ). Recursively define the polynomials Q0 := R0 = an, Qi := X ·Qi−1+an−i

for i = 1, 2, . . . , n. By the definition, Qi ≡ Ri (mod P ). Then the polynomial
Q(X) := Qn(X) = anX

n + an−1X
n−1 + · · · + a1X + a0 has all the coefficients

ai ∈ D, and Qn(X) is divisible by P in Z[X]. �

By Lemma 14, the graph G = G(P,D) is finite. Thus, the polynomial Q with
the coefficients in the set D may be found by running any path finding algorithm
on G. For performance reasons, depth-first search was used.

Algorithm 1. Determines whether P ∈ Z[X] has a multiple Q ∈ D[X] with leading
coefficient a ∈ D.

Input: a monic polynomial P ∈ Z[X], the finite digit set D ⊂ Z,
the leading coefficient a ∈ D, a �= 0.

Output: a polynomial Q ∈ D[X] or ∅, if such Q does not exist.
Variables: the set V of visited vertices of the directed graph G = G(P,D),

the set E of edges that join vertices of V, found - boolean variable.
Method: Depth-first search using Theorem 16.

Step 1: set V = {a}, E = ∅

Step 2: set found := False
Step 3: call do search(a, found)
Step 4: if found then print a

else print ∅
end if

Step 5: stop.
procedure do search(local var R ∈ Z[X], global var found):

local var S ∈ Z[X]
if R = 0 then

set found := True
else

for each d ∈ D do
compute S := X ·R + d (mod P ).
if S /∈ V and S ∈ R(P,B), where B := max{|d| : d ∈ D} then

add S to V
add d as an edge from R to S to E
call do search(S, found)

end if
if found then

print digit d
break loop

end if
end do

end if
end proc

Note. If a polynomial P (X) ∈ Z[X] has unimodular roots we can exclude them
from (3.4) and try to build the graph G(P,D). If the resulting graph is finite, then
we can still answer Question 1 for such polynomials.
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4. Computations

Assume that p(X) is a non-zero polynomial with integer coefficients and recall
that the content of p(X) is the greatest common divisor of all of its coefficients.
Suppose we have a factorization p(X) = a·C(X)N(X), where a ∈ Z, C(X), N(X) ∈
Z[X], the polynomial C(X) is a product of cyclotomic polynomials, whereas the
polynomial N(X) has no cyclotomic divisors, the content of N(X) equals 1 and
the leading coefficient of N(X) is a positive integer. Then N(X) is called the non-
cyclotomic part of p(X) and the polynomial C(X) is called the cyclotomic part of
p(X). Note that the non-cyclotomic part of a polynomial is uniquely determined.

The set B≤9 is the union of the following disjoint subsets (see Table 11):

C – the set of polynomials from B≤9 which are products of cyclotomic poly-
nomials;

F1 – the set of polynomials from B≤9 whose non-cyclotomic part is an irre-
ducible non-constant polynomial;

F2 – the set of polynomials from B≤9 whose non-cyclotomic part is the product
of two distinct monic irreducible non-constant polynomials;

M – the set of polynomials from B≤9 whose non-cyclotomic part is the square
of a monic irreducible non-constant polynomial.

The same classification of the elements of Bd is also valid for degrees d = 10 and
11, but no longer holds for B12. The numbers (computed with SAGE [23]) #Bd,
#Cd, #F1

d , #F2
d , #Md, for d ∈ {1, 2, . . . , 9}, are given in Table 11. (Recall that Ad

denotes the set of polynomials from A of degree d.) In particular, #B≤9 = 39364.

Table 11. Partition of the set B≤9.

d #Bd #Cd #F1
d #F2

d #Md

1 4 4 0 0 0
2 12 8 4 0 0
3 36 12 24 0 0
4 108 20 88 0 0
5 324 32 292 0 0
6 972 48 892 32 0
7 2916 68 2784 64 0
8 8748 96 8352 292 8
9 26244 136 25228 880 0

We implemented Algorithm 1 in C using library Arb [11] for arbitrary-precision
floating-point ball arithmetic and ran it on the SGI Altix 4700 server at Vilnius
University. We used OpenMP [17] for an implementation of multiprocessing. For
every Borwein polynomial p(X) of degree at most 9 we calculated whether it di-
vides some Littlewood polynomial as well as whether p(X) divides some Newman
polynomial. Moreover, for every Newman polynomial of degree at most 11 we cal-
culated whether it has a Littlewood multiple. We will briefly explain how these
calculations were organized.

First, note that in view of Proposition 18 a polynomial P (X) ∈ Z[X] divides
some Littlewood polynomial if and only if its non-cyclotomic part divides some
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Figure 1. Distribution of non-cyclotomic factors F (X) of poly-
nomials from B≤9 such that F (X) ∈ L(Z[X]).

Littlewood polynomial. Similarly, if P (1) �= 0 then P (X) has a Newman multiple
if and only if its non-cyclotomic part has a Newman multiple. (Note that Newman
polynomials do not have nonnegative real roots.) Therefore when considering the
statements P (X) ∈ L(B) and P (X) ∈ N (B) we can omit the cyclotomic part of the
polynomial P (X). Also, by Proposition 18, if P (X) ∈ C then P (X) divides some
Littlewood polynomial; P (X) ∈ C divides some Newman polynomial if and only if
P (1) �= 0.

For each non-cyclotomic irreducible factor of polynomials from B≤9 we ran our
algorithm and calculated whether it had a Littlewood multiple and whether it had
a Newman multiple. This allowed us to easily verify the statements P (X) ∈ L(B)
and P (X) ∈ N (B) for polynomials P (X) ∈ F1. Further, when considering the
statement P (X) ∈ L(B) we omitted those polynomials P (X) from F2 and M
which had a non-cyclotomic irreducible factor that does not divide any Littlewood
polynomial. The procedure for calculating Newman multiples was the same. Fi-
nally, we ran our algorithm for non-cyclotomic parts of the remaining polynomials
from F2 and M.

We used the following fact to decide that a polynomial has no Newman multiple.
Odlyzko and Poonen [16] proved that roots of Newman polynomials are contained

in the annulus 1/τ < |z| < τ , where τ = (1 +
√
5)/2 ≈ 1.61803 is the golden

ratio. There are exactly 376 Borwein polynomials of degree at most 9 that have
unimodular roots which are not roots of unity. For every such polynomial we ran
Algorithm 1 and omitted unimodular roots when checking the condition (3.4) (see
the note after Algorithm 1). We succeeded in deciding whether these polynomials
belong to L(B) and N (B).

Note that B = max{|a| | a ∈ D} = 1 in case of Littlewood and Newman
multiples. We introduced a new variable 0 ≤ δ < 1 to hasten the search for
polynomials in L(B≤9) and N (B≤9); see Figure 1. For a given δ we replaced B in
the inequalities (3.4) of Section 3 by B − δ. This eliminates some of the vertices in
the original graph G(P,D). We start with the initial value δ = 0.95. If a Littlewood
(or Newman) multiple is found then we are done. Otherwise we decrease δ by 0.05
and try again. Note that for polynomials in B\L(B) and B\N (B) the variable δ
always reaches the value δ = 0 in order to construct the full graph G(P,D).
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The above-mentioned computations took approximately 296 hours of CPU time.
The maximum recursion depth reached when searching for Littlewood multiples
was 57 767, whereas for Newman multiples it was 825. For instance, it took ap-
proximately 119 minutes of CPU time to run our algorithm to decide that the
polynomial X9 +X8 −X7 −X5 +X3 +X2 − 1 has no Littlewood multiple. The
graph G(P,D), constructed for this polynomial, contained 1 428 848 vertices. The
maximal recursion depth reached for this polynomial was 471. On the other hand,
it took 92 minutes of CPU time to find a Littlewood multiple for the polynomial
X9 −X8 +X7 +X6 −X5 +X4 −X3 +X − 11. The graph G(P,D), constructed
for this polynomial, contained 9 372 425 vertices and the maximal recursion depth
was 43554.

4.1. Omitting cyclotomic factors. Given a set X of numbers denote by −X the
set {−x | x ∈ X}.

Lemma 17. Let Φn(X) be the nth cyclotomic polynomial. If a positive integer t is
not divisible by n then Φn(X) divides the polynomial X(n−1)t+X(n−2)t+· · ·+Xt+1.

Proof. By applying formula Xm−1 =
∏

d|m Φd(X), which is valid for every positive

integerm, we obtain thatXt−1 is not divisible by Φn(X), because t is not a multiple
of n. Hence Φn(X) and Xt − 1 are coprime, since Φn(X) is irreducible.

Obviously, Xn − 1 divides Xnt − 1, and therefore Φn(X) divides Xnt − 1. On
the other hand, Xnt − 1 factors as

Xnt − 1 = (Xt − 1)(X(n−1)t +X(n−2)t + · · ·+Xt + 1).

Since Φn(X) is coprime to Xt − 1, we obtain that Φn(X) divides the polynomial
X(n−1)t +X(n−2)t + · · ·+Xt + 1. �

The following proposition shows that under certain conditions, we can omit its
cyclotomic divisors Φn(X), n > 1 from polynomial P (X) in Question 1.

Proposition 18. Let D ⊂ Z be non-empty set. Suppose that D satisfies at least
one of the two conditions: 0 ∈ D or D = −D. If P ∈ Z[X] divides some non-
zero polynomial with coefficients from D, then for every positive integer n > 1, the
product P (X)Φn(X), where Φn(X) is the nth cyclotomic polynomial, also divides
some non-zero polynomial with coefficients from D.

In case D = −D, this is also true for n = 1: P (X)(X − 1) has a non-zero
multiple with coefficients from D.

Proof. Suppose that there exists a non-zero polynomial R ∈ Z[X] whose all the
coefficients are in D and which is a multiple of P . Let d be the degree of R.
Assume that 0 ∈ D and choose an integer t ≥ d + 1, which is not divisible by n
(e.g., t = dn+ 1). Then all the coefficients of the polynomial

(4.1) R(X)(X(n−1)t +X(n−2)t + · · ·+Xt + 1)

lie in D. Moreover, this polynomial is divisible by the product PΦn, since P divides
R and, by Lemma 17, X(n−1)t + X(n−2)t + · · · + Xt + 1 is a multiple of Φn(X).
This completes the proof of the proposition in the case when 0 ∈ D.
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Assume that D = −D. If n divides d + 1, then, obviously, Xn − 1 divides
Xd+1 − 1, and therefore Xd+1 − 1 is a multiple of Φn. Since D = −D, all the
coefficients of the polynomial R(X)(Xd+1−1) lie in D and we are done in this case.
If d + 1 is not a multiple of n then, by Lemma 17, Φn(X) divides the polynomial
X(n−1)(d+1)+X(n−2)(d+1)+ · · ·+Xd+1+1. Finally, note that all the coefficients of
the polynomial (4.1) lie in D and this polynomial is divisible by the product PΦn.

As for the second part of the proposition, note that if D = −D then the polyno-
mial R(X)(Xd+1 − 1) is divisible by P (X)(X − 1) and all of its coefficients belong
to D. �
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