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UNIFORMLY ACCURATE EXPONENTIAL-TYPE

INTEGRATORS FOR KLEIN-GORDON EQUATIONS

WITH ASYMPTOTIC CONVERGENCE

TO THE CLASSICAL NLS SPLITTING

SIMON BAUMSTARK, ERWAN FAOU, AND KATHARINA SCHRATZ

Abstract. We introduce efficient and robust exponential-type integrators for
Klein-Gordon equations which resolve the solution in the relativistic regime
as well as in the highly-oscillatory nonrelativistic regime without any step-size
restriction under the same regularity assumptions on the initial data required
for the integration of the corresponding nonlinear Schrödinger limit system.
In contrast to previous works we do not employ any asymptotic/multiscale
expansion of the solution. This allows us to derive uniform convergent schemes
under far weaker regularity assumptions on the exact solution. In addition, the
newly derived first- and second-order exponential-type integrators converge to
the classical Lie, respectively, Strang splitting in the nonlinear Schrödinger
limit.

1. Introduction

Cubic Klein-Gordon equations

(1) c−2∂ttz −Δz + c2z = |z|2z, z(0, x) = z0(x), ∂tz(0, x) = c2z′0(x)

are extensively studied numerically in the relativistic regime c = 1; see [10,20] and
the references therein. In contrast, the so-called “nonrelativistic regime” c � 1
is numerically much more involved due to the highly-oscillatory behavior of the
solution. We refer to [7, 11] and the references therein for an introduction and
overview on highly-oscillatory problems.

Analytically, the nonrelativistic limit regime c → ∞ is well understood nowadays:
The exact solution z of (1) allows (for sufficiently smooth initial data) the expansion

z(t, x) =
1

2

(
eic

2tu∗,∞(t, x) + e−ic2tv∗,∞(t, x)
)
+O(c−2)

on a time-interval uniform in c, where (u∗,∞, v∗,∞) satisfy the cubic Schrödinger
limit system

(2)
i∂tu∗,∞ =

1

2
Δu∗,∞ +

1

8

(
|u∗,∞|2 + 2 |v∗,∞|2

)
u∗,∞, u∗,∞(0) = ϕ− iγ,

i∂tv∗,∞ =
1

2
Δv∗,∞ +

1

8

(
|v∗,∞|2 + 2 |u∗,∞|2

)
v∗,∞, v∗,∞(0) = ϕ− iγ,
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with initial values

z(0, x)
c→∞−→ ϕ(x) and c−1

(
c2 −Δ

)−1/2
∂tz(0, x)

c→∞−→ γ(x);

see [18, Formula (1.3)] and for the periodic setting [9, Formula (37)].
Also numerically, the nonrelativistic limit regime c � 1 has recently gained a lot

of attention: Gautschi-type methods (see [12]) are analyzed in [3]. However, due to
the difficult structure of the problem they suffer from a severe time-step restriction
as they introduce a global error of order c4τ2 which requires the CFL-type condition
c2τ < 1. To overcome this difficulty so-called limit integrators which reduce the
highly-oscillatory problem to the corresponding nonoscillatory limit system (i.e.,
c → ∞ in (1)) as well as uniformly accurate schemes based on multiscale expansions
were introduced in [9] and [1, 5]. In the following we give a comparison of these
methods focusing on their convergence rates and regularity assumptions.

Limit integrators. Based on the modulated Fourier expansion of the exact solu-
tion (see [6, 11]) numerical schemes for the Klein-Gordon equation in the strongly
nonrelativistic limit regime c � 1 were introduced in [9]. The benefit of this ansatz
is that it allows us to reduce the highly-oscillatory problem (1) to the integration of
the corresponding nonoscillatory limit Schrödinger equation (2). The latter can be
carried out very efficiently without imposing any c−dependent step-size restriction.
However, as this approach is based on the asymptotic expansion of the solution
with respect to c−2, it only allows error bounds of order

O(c−2 + τ2)

when integrating the limit system with a second-order method. Henceforth, the
limit integration method only yields an accurate approximation of the exact solution
for sufficiently large values of c.

Uniformly accurate schemes based on multiscale expansions. Uniformly accurate
schemes, i.e., schemes that work well for small as well as for large values of c
were recently introduced for Klein-Gordon equations in [1, 5]. The idea is thereby
based on a multiscale expansion of the exact solution. We also refer to [2] for the
construction and analysis in the case of highly-oscillatory second-order ordinary
differential equations. The multiscale time integrator (MTI) pseudospectral method
derived in [1] allows two independent error bounds at order

O(τ2 + c−2) and O(τ2c2)

for sufficiently smooth solutions. These error bounds immediately imply that the
MTI method converges uniformly in time with linear convergence rate at O(τ )
for all c ≥ 1 thanks to the observation that min(c−2, τ2c2) ≤ τ . However, the
optimal quadratic convergence rate at O(τ2) is only achieved in the regimes when
either 0 < c = O(1) (i.e., the relativistic regime) or 1

τ ≤ c (i.e., the strongly
nonrelativistic regime). In the context of ordinary differential equations similar
error estimates were established for MTI methods in [2]. The first-order uniform
convergence of the MTI-FP method [1] holds for sufficiently smooth solutions: First-
order convergence in time holds in H2 uniformly in c for solutions in H7 with
sup0≤t≤T ‖z(t)‖H7 + c−2‖∂tz(t)‖H6 ≤ 1 (see [1, Theorem 4.1]). First-order uniform

convergence also holds in H1 under weaker regularity assumptions, namely for
solutions in H6 satisfying sup0≤t≤T ‖z(t)‖H6 + c−2‖∂tz(t)‖H5 ≤ 1 if an additional
CFL-type condition is imposed in space dimensions d = 2, 3 (see [1, Theorem 4.9]).
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A second-order uniformly accurate scheme based on the Chapman-Enskog ex-
pansion was derived in [5] for the Klein-Gordon equation. Thereby, to control the
remainders in the expansion, second-order uniform convergence in Hr (r > d/2)
requires sufficiently smooth solutions with in particular z(0) ∈ Hr+10. Also, due to
the expansion, the problem needs to be considered in d+ 1 dimensions.

We establish exponential-type integrators which converge with second-order ac-
curacy in time uniformly in all c > 0. In comparison, the multiscale time integra-
tors (MTI) derived in [1,2] only converge with first-order accuracy uniformly in all
c ≥ 1. This is due to the fact that the MTI methods are based on the multiscale
decomposition

z(t, x) = eitc
2

zn+(t, x) + e−itc2zn−(t, x) + rn(t, x)

which leads to a coupled second-order system in time in the c2-frequency waves zn±
and the rest frequency waves rn (cf. [1, System (2.4)]) and only allows numerical
approximations at order O(τ2 + c−2) and O(τ2c2).

In contrast to [1, 5, 9] we do not employ any asymptotic/multiscale expansion
of the solution, but construct exponential-type integrators based on the following
strategy:

1. In a first step we reformulate the Klein-Gordon equation (1) as a coupled
first-order system in time via the transformations

u = z − i
(
c
√
−Δ+ c2

)−1
∂tz, v = z − i

(
c
√
−Δ+ c2

)−1
∂tz.

2. In a second step we rescale the coupled first-order system in time by looking
at the so-called “twisted variables”

u∗(t) = eic
2tu(t), v∗(t) = e−ic2tv(t).

This essential step will later on allow us to treat the highly-oscillatory

phases e±ic2t and their interaction explicitly.
3. Finally, we iterate Duhamel’s formula in (u∗(t), v∗(t)) and integrate the

interactions of the highly-oscillatory phases exactly by approximating only
the slowly varying parts.

This strategy in particular allows us to construct uniformly accurate exponential-
type integrators up to order two which in addition asymptotically converge to the
classical splitting approximation of the corresponding nonlinear Schrödinger limit
system (2) given in [9]. More precisely, the second-order exponential-type integrator
converges for c → ∞ to the classical Strang splitting scheme

(3) un+1
∗,∞ = e−i τ

2
Δ
2 e−iτ 3

8 |e
−i τ

2
Δ
2 un

∗,∞|2e−i τ
2

Δ
2 un

∗,∞, u0
∗,∞ = ϕ− iγ

associated to the nonlinear Schrödinger limit system (2) (see also Remark 31) where
for simplicity we assumed that z is real-valued such that u∗ = v∗. A similar result
holds for the asymptotic convergence of the first-order exponential-type integration
scheme towards the classical Lie splitting approximation (see also Remark 14).

In [9] the Strang splitting (3) is precisely proposed for the numerical approxi-
mation of nonrelativistic Klein-Gordon solutions. However, in contrast to the uni-
formly accurate exponential-type integrators derived here, the scheme in [9] only
yields second-order convergence in the strongly nonrelativistic regime c > 1

τ due to

its error bound at order O(τ2 + c−2).
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The main novelty in this work thus lies in the development and analysis of effi-
cient and robust exponential-type integrators for the cubic Klein-Gordon equation
(1) which

◦ allow second-order convergence uniformly in all c > 0 without adding an
extra dimension to the problem;

◦ resolve the solution z in the relativistic regime c = 1 as well as in the
nonrelativistic regime c → ∞ without any c−dependent step-size restriction
under the same regularity assumptions as needed for the integration of the
corresponding limit system;

◦ in addition to converging uniformly in c, converge asymptotically to the
classical Lie, respectively, Strang splitting for the corresponding nonlinear
Schrödinger limit system (2) in the nonrelativistic limit c → ∞.

Our strategy also applies to general polynomial nonlinearities f(z) = |z|2pz
with p ∈ N. However, for notational simplicity, we will focus only on the cubic
case p = 1. Furthermore, for practical implementation issues we impose periodic
boundary conditions, i.e., x ∈ T

d.
We commence in Section 2 with rescaling the Klein-Gordon equation (1) which

then allows us to construct first- and second-order schemes that converge uniformly
in c; see Sections 3 and 4, respectively.

2. Scaling for uniformly accurate schemes

In a first step we reformulate the Klein-Gordon equation (1) as a first-order
system in time which allows us to resolve the limit-behavior of the solution, i.e., its
behavior for c → ∞ (see also [9, 18]).

For a given c > 0, we define the operator

〈∇〉c =
√
−Δ+ c2.(4)

With this notation, equation (1) can be written as

(5) ∂ttz + c2〈∇〉2cz = c2f(z)

with the nonlinearity

f(z) = |z|2z.
In order to rewrite the above equation as a first-order system in time, we set

(6) u = z − ic−1〈∇〉−1
c ∂tz, v = z − ic−1〈∇〉−1

c ∂tz

such that in particular

(7) z =
1

2
(u+ v).

Remark 1. If z is real, then u ≡ v.

A short calculation shows that in terms of the variables u and v equation (5)
reads

(8)
i∂tu = −c〈∇〉cu+ c〈∇〉−1

c f( 12 (u+ v)),

i∂tv = −c〈∇〉cv + c〈∇〉−1
c f( 12 (u+ v))

with the initial conditions (see (1))

(9) u(0) = z(0)− ic−1〈∇〉−1
c z′(0) and v(0) = z(0)− ic−1〈∇〉−1

c z′(0).
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Formally, the definition of 〈∇〉c in (4) implies that

c〈∇〉c = c2 + “lower-order terms in c”.(10)

This observation motivates us to look at the so-called “twisted variables” by filtering
out the highly-oscillatory parts explicitly: More precisely, we set

u∗(t) = e−ic2tu(t), v∗(t) = e−ic2tv(t).(11)

This idea of “twisting” the variable is well known in numerical analysis, for instance
in the context of the modulated Fourier expansion [6, 11], adiabatic integrators
[11,16] as well as Lawson-type Runge-Kutta methods [15]. In the case of “multiple
high frequencies” it is also widely used in the analysis of partial differential equa-
tions in low regularity spaces (see for instance [4]) and has been recently successfully
employed numerically for the construction of low-regularity exponential-type inte-
grators for the KdV and Schrödinger equation; see [14, 19].

In terms of (u∗, v∗) system (8) reads (cf. [18, Formula (2.1)])

i∂tu∗ = −Acu∗ + c〈∇〉−1
c e−ic2tf

(
1
2 (e

ic2tu∗ + e−ic2tv∗)
)
,

i∂tv∗ = −Acv∗ + c〈∇〉−1
c e−ic2tf

(
1
2 (e

ic2tv∗ + e−ic2tu∗)
)(12)

with the leading operator

(13) Ac := c〈∇〉c − c2.

Remark 2. The advantage of looking numerically at (u∗, v∗) instead of (u, v) lies
in the fact that the leading operator −c〈∇〉c in system (8) is of order c2 (see (10))
whereas its counterpart −Ac in system (12) is “of order one in c” (see Lemma 3
below).

In the following we construct integration schemes for (12) based on Duhamel’s
formula

u∗(tn + τ ) = eiτAcu∗(tn)− ic〈∇〉−1
c

×
∫ τ

0

ei(τ−s)Ace−ic2(tn+s)

× f
(

1
2 (e

ic2(tn+s)u∗(tn + s) + e−ic2(tn+s)v∗(tn + s))
)
ds,

v∗(tn + τ ) = eiτAcv∗(tn)− ic〈∇〉−1
c

×
∫ τ

0

ei(τ−s)Ace−ic2(tn+s)

× f
(

1
2 (e

ic2(tn+s)v∗(tn + s) + e−ic2(tn+s)u∗(tn + s))
)
ds.

(14)

Thereby, to guarantee uniform convergence with respect to c we make the following
important observations. We define the Sobolev norm on T

d by the formula

‖u‖2r =
∑
k∈Zd

(1 + |k|2)r|ûk|2, where ûk =
1

(2π)d

∫
Td

u(x)eik·xdx,

where for k = (k1, . . . , kd) ∈ Z
d, we set k ·x = k1x1+ · · · kdxd and |k|2 = k ·k. More-

over, for a given linear bounded operator L we denote by ‖L‖r its corresponding
induced norm.
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Lemma 3 (Uniform bound on the operator Ac). For all c ∈ R we have that

‖Acu‖r ≤ 1

2
‖u‖r+2.(15)

Proof. The operator Ac acts as the Fourier multiplier (Ac)k = c2 − c
√
c2 + |k|2,

k ∈ Z
d. Thus, the assertion follows thanks to the bound

‖Acu‖2r =
∑
k∈Zd

(1 + |k|2)r
(
c
√
c2 + |k|2 − c2

)2

|ûk|2

≤
∑
k∈Zd

(1 + |k|2)r
(
|k|2
2

)2

|ûk|2,

where we have used that
√
1 + x2 ≤ 1 + 1

2x
2 for all x ∈ R. �

Lemma 4. For all t ∈ R we have that

(16) ‖eitAc‖r = 1 and
∥∥(e−itAc − 1

)
u
∥∥
r
≤ 1

2
|t|‖u‖r+2.

Proof. The first assertion is obvious and the second follows thanks to the estimate
|(eix − 1)| ≤ |x| which holds for all x ∈ R together with the essential bound on the
operator Ac given in (15). �

In particular, the time derivatives (u′
∗(t), v

′
∗(t)) can be bounded uniformly in c.

Lemma 5 (Uniform bounds on the derivatives (u′
∗(t), v

′
∗(t))). Fix r > d/2. Solu-

tions of (12) satisfy

‖u∗(tn + s)− u∗(tn)‖r

≤ 1

2
|s|‖u∗(tn)‖r+2 +

1

8
|s| sup

0≤ξ≤s

(
‖u∗(tn + ξ)‖r + ‖v∗(tn + ξ)‖r

)3
,

‖v∗(tn + s)− v∗(tn)‖r

≤ 1

2
|s|‖v∗(tn)‖r+2 +

1

8
|s| sup

0≤ξ≤s

(
‖u∗(tn + ξ)‖r + ‖v∗(tn + ξ)‖r

)3
.

(17)

Proof. The assertion follows thanks to Lemma 4 together with the bound

(18) ‖c〈∇〉−1
c ‖r ≤ 1

which implies by Duhamel’s perturbation formula (14) that

‖u∗(tn + s)− u∗(tn)‖r

≤ |s|‖Acu∗(tn)‖r +
1

8
|s|‖c〈∇〉−1

c ‖r sup
0≤ξ≤s

(
‖u∗(tn + ξ)‖r + ‖v∗(tn + ξ)‖r

)3

≤ 1

2
|s|‖u∗(tn)‖r+2 +

1

8
|s| sup

0≤ξ≤s

(
‖u∗(tn + ξ)‖r + ‖v∗(tn + ξ)‖r

)3
.

Similarly we can establish the bound on the derivative v′∗(t). �

We will also employ the so-called “ϕj functions” given in the following definition.

Definition 6 (ϕj functions [13]). Set

ϕ0(z) := ez and ϕk(z) :=

∫ 1

0

e(1−θ)z θk−1

(k − 1)!
dθ, k ≥ 1,
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such that in particular

ϕ0(z) = ez, ϕ1(z) =
ez − 1

z
, ϕ2(z) =

ϕ0(z)− ϕ1(z)

z
.

In the following we assume local-wellposedness (LWP) of (12) in Hr.

Assumption 7. Fix r > d/2 and assume that there exists a Tr = T > 0 such that
the solutions (u∗(t), v∗(t)) of (12) satisfy

sup
0≤t≤T

‖u∗(t)‖r + ‖v∗(t)‖r ≤ M

uniformly in c.

Remark 8. The previous assumption holds under the following condition on the
initial data

‖z(0)‖r + ‖c−1〈∇〉−1
c z′(0)‖r ≤ M0,

where M0 does not depend on c as can be easily proved from the formulation (14).

3. A first-order uniformly accurate scheme

In this section we derive a first-order exponential-type integration scheme for
the solutions (u∗, v∗) of (12) which allows first-order uniform time-convergence with
respect to c. The construction is thereby based on Duhamel’s formula (14) and the
essential estimates in Lemmas 3, 4 and 5. For the derivation we will for simplicity
assume that z is real, which (by Remark 1) implies that u = v such that system
(12) reduces to

(19) i∂tu∗ = −Acu∗ +
1

8
c〈∇〉−1

c e−ic2t
(
eic

2tu∗ + e−ic2tu∗
)3

with mild solutions

u∗(tn + τ ) = eiτAcu∗(tn)−
i

8
c〈∇〉−1

c

×
∫ τ

0

ei(τ−s)Ace−ic2(tn+s)

×
(
eic

2(tn+s)u∗(tn + s) + e−ic2(tn+s)u∗(tn + s)
)3

ds.

(20)

3.1. Construction. In order to derive a first-order scheme, we need to impose
additional regularity assumptions on the exact solution u∗(t) of (19).

Assumption 9. Fix r > d/2 and assume that u∗ ∈ C([0, T ];Hr+2(Td)) and in
particular

sup
0≤t≤T

‖u∗(t)‖r+2 ≤ M2 uniformly in c.

Applying Lemma 4 and Lemma 5 in (20) allows the expansion

(21)

u∗(tn + τ ) = eiτAcu∗(tn)−
i

8
c〈∇〉−1

c eiτAc

×
∫ τ

0

e−ic2(tn+s)
(
eic

2(tn+s)u∗(tn) + e−ic2(tn+s)u∗(tn)
)3

ds

+R(τ, tn, u∗),
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where the remainder R(τ, tn, u∗) satisfies thanks to the bounds (16), (17) and (18)
that

(22) ‖R(τ, tn, u∗)‖r ≤ τ2kr(M2)

for some constant kr(M2) which depends on M2 (see Assumption 9) and r, but
is independent of c. Solving the integral in (21) (in particular, integrating the
highly-oscillatory phases exp(±ilc2s) exactly) furthermore yields by adding and
subtracting the term τ 3i

8 e
iτAc |u∗(tn)|2u∗(tn) (see Remark 17 below for the purpose

of this manipulation) that
(23)

u∗(tn + τ ) = eiτAc

(
1− τ

3i

8
|u∗(tn)|2

)
u∗(tn)

− τ
3i

8

(
c〈∇〉−1

c − 1
)
eiτAc |u∗(tn)|2u∗(tn)

− τ
i

8
c〈∇〉−1

c eiτAc

{
e2ic

2tnϕ1(2ic
2τ )u3

∗(tn)

+ e−2ic2tnϕ1(−2ic2τ )3|u∗(tn)|2u∗(tn)

+ e−4ic2tnϕ1(−4ic2τ )u∗
3(tn)

}
+R(τ, tn, u∗)

with ϕ1 given in Definition 6.
As the operator eitAc is a linear isometry in Hr and by Taylor series expansion

|1− x− e−x| = O(x2) we obtain for r > d/2 that

(24)

∥∥∥∥eiτAc

(
1− τ

3i

8
|u∗(tn)|2u∗(tn)

)
− eiτAce−τ 3i

8 |u∗(tn)|2u∗(tn)

∥∥∥∥
r

≤ kr3τ
2‖u∗(tn)‖3r

for some constant kr independent of c.
The bound in (24) allows us to express (23) as

(25)

u∗(tn + τ ) = eiτAce−τ 3i
8 |u∗(tn)|2u∗(tn)− τ

3i

8

(
c〈∇〉−1

c − 1
)
eiτAc |u∗(tn)|2u∗(tn)

− τ
i

8
c〈∇〉−1

c eiτAc

{
e2ic

2tnϕ1(2ic
2τ )u3

∗(tn)

+ e−2ic2tnϕ1(−2ic2τ )3|u∗(tn)|2u∗(tn)

+ e−4ic2tnϕ1(−4ic2τ )u∗
3(tn)

}
+R(τ, tn, u∗),

where the remainder R(τ, tn, u∗) satisfies thanks to (22) and (24) that

(26) ‖R(τ, tn, u∗)‖r ≤ τ2kr(M2),

for some constant kr(M2) which depends on M2 (see Assumption 9) and r, but is
independent of c.
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The expansion (25) of the exact solution u∗(t) builds the basis of our numerical
scheme: As a numerical approximation to the exact solution u∗(t) at time tn+1 =
tn + τ we choose the exponential-type integration scheme
(27)

un+1
∗ = eiτAce−τ 3i

8 |un
∗ |

2

un
∗ − τ

3i

8

(
c〈∇〉−1

c − 1
)
eiτAc |un

∗ |2un
∗

− τ
i

8
c〈∇〉−1

c eiτAc

{
e2ic

2tnϕ1(2ic
2τ )(un

∗ )
3 + e−2ic2tnϕ1(−2ic2τ )3|un

∗ |2un
∗

+ e−4ic2tnϕ1(−4ic2τ )(un
∗ )

3
}
,

u0
∗ = z(0)− ic−1〈∇〉−1

c z′(0)

with ϕ1 given in Definition 6. Note that the definition of the initial value u0
∗ follows

from (9).
For complex-valued functions z (i.e., for u �≡v) we similarly derive the exponential-

type integration scheme
(28)

un+1
∗ = eiτAce−τ i

8

(
|un

∗ |
2+2|vn

∗ |2
)
un
∗ − τ

i

8

(
c〈∇〉−1

c − 1
)
eiτAc

(
|un

∗ |2 + 2|vn∗ |2
)
un
∗

− τ
i

8
c〈∇〉−1

c eiτAc

{
e2ic

2tnϕ1(2ic
2τ )(un

∗ )
2vn∗

+ e−2ic2tnϕ1(−2ic2τ )
(
2|un

∗ |2 + |vn∗ |2
)
vn∗

+ e−4ic2tnϕ1(−4ic2τ )(vn∗ )
2un

∗

}
,

u0
∗ = z(0)− ic−1〈∇〉−1

c z′(0),

where the scheme in vn+1
∗ is obtained by replacing un

∗ ↔ vn∗ on the right-hand side

of (28) with initial value v0∗ = z(0)− ic−1〈∇〉−1
c z′(0) (see (9)).

Remark 10 (Practical implementation). To reduce the computational effort we may
express the first-order scheme (28) in its equivalent form

un+1
∗ = eiτAc

(
e−τ i

8

(
|un

∗ |2+2|vn
∗ |2

)
un
∗ + τ

i

8

(
|un

∗ |2 + 2|vn∗ |2
)
un
∗

)

− iτ

8
c〈∇〉−1

c eiτAc

{(
|un

∗ |2 + 2|vn∗ |2
)
un
∗ + e2ic

2tnϕ1(2ic
2τ )(un

∗ )
2vn∗

+ e−2ic2tnϕ1(−2ic2τ )
(
2|un

∗ |2 + |vn∗ |2
)
vn∗

+ e−4ic2tnϕ1(−4ic2τ )(vn∗ )
2un

∗

}
,

u0
∗ = z(0)− ic−1〈∇〉−1

c z′(0)

which after a Fourier pseudospectral space discretization only requires the usage of
two Fast Fourier transforms (and its corresponding inverse counter parts) instead
of three.

In Section 3.2 below we prove that the exponential-type integration scheme (28)
is first-order convergent uniformly in c for sufficiently smooth solutions. Further-
more, we give a fractional convergence result under weaker regularity assumptions
and analyze its behavior in the nonrelativistic limit regime c → ∞. In Section 3.3
we give some simplifications in the latter regime.
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3.2. Convergence analysis. The exponential-type integration scheme (28) con-
verges (by construction) with first-order in time uniformly with respect to c; see
Theorem 11. Furthermore, a fractional convergence bound holds true for less reg-
ular solutions; see Theorem 13. In particular, in the limit c → ∞ the scheme
converges to the classical Lie splitting applied to the nonlinear Schrödinger limit
system; see Lemma 15.

Theorem 11 (Convergence bound for the first-order scheme). Fix r > d/2 and
assume that

‖z(0)‖r+2 + ‖c−1〈∇〉−1
c z′(0)‖r+2 ≤ M2(29)

uniformly in c. For (un
∗ , v

n
∗ ) defined in (28) we set

zn :=
1

2

(
eic

2tnun
∗ + e−ic2tnvn∗

)
.

Then, there exists a Tr > 0 and τ0 > 0 such that for all τ ≤ τ0 and tn ≤ Tr we
have for all c > 0 that

‖z(tn)− zn‖r ≤ τK1,r,M2
etnK2,r,M ≤ τK∗

r,M,M2,tn
,

where the constants K1,r,M2
,K2,r,M and K∗

r,M,M2,tn
can be chosen independently

of c.

Proof. Fix r > d/2. First note that the regularity assumption on the initial data
in (29) implies the regularity Assumption 9 on (u∗, v∗), i.e., there exists a Tr > 0
such that

sup
0≤t≤Tr

‖u∗(t)‖r+2 + ‖v∗(t)‖r+2 ≤ k(M2)

for some constant k that depends on M2 and Tr, but can be chosen independently
of c.

In the following let (φt
u∗ , φ

t
v∗) denote the exact flow of (12) and let (Φτ

u∗ ,Φ
τ
v∗)

denote the numerical flow defined in (28), i.e.,

u∗(tn+1) = φτ
u∗(u∗(tn), v∗(tn)), un+1

∗ = Φτ
u∗(u

n
∗ , v

n
∗ ),

and a similar formula for the functions v∗(tn) and vn∗ . This allows us to split the
global error as follows:

(30)

u∗(tn+1)− un+1
∗ = φτ

u∗(u∗(tn), v∗(tn))− Φτ
u∗(u

n
∗ , v

n
∗ )

= Φτ
u∗(u∗(tn), v∗(tn))− Φτ

u∗(u
n
∗ , v

n
∗ )

+ φτ
u∗(u∗(tn), v∗(tn))− Φτ

u∗(u∗(tn), v∗(tn)).

Local error bound. With the aid of (26) we have by the expansion of the exact
solution in (25) and the definition of the numerical scheme (28) that

(31) ‖φτ
u∗(u∗(tn), v∗(tn))−Φτ

u∗(u∗(tn), v∗(tn))‖r = ‖R(τ, tn, u∗, v∗)‖r ≤ τ2kr(M2)

for some constant kr which depends on M2 and r, but can be chosen independently
of c.

Stability bound. Note that for all l ∈ Z we have that

‖ϕ1(iτc
2l)‖r ≤ 2.
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Thus, as eitAc is a linear isometry for all t ∈ R we obtain together with the bound
(18) that as long as ‖un

∗‖r ≤ 2M and ‖u(tn)‖r ≤ M we have that

‖Φτ
u∗(u∗(tn), v∗(tn))− Φτ

u∗(u
n
∗ , v

n
∗ )‖r

≤ ‖u∗(tn)− un
∗‖r + τKr,M (‖u∗(tn)− un

∗‖r + ‖v∗(tn)− vn∗ ‖r) ,
(32)

where the constant Kr,M depends on r and M , but can be chosen independently
of c.

Global error bound. Plugging the stability bound (32) as well as the local error
bound (31) into (30) yields by a bootstrap argument that

‖u∗(tn)− un
∗‖r ≤ τK1,r,M2

etnK2,r,M ,(33)

where the constants are uniform in c. A similar bound holds for the difference
v∗(tn)−vn∗ . This implies first-order convergence of (un

∗ , v
n
∗ ) towards (u∗(tn), v∗(tn))

uniformly in c.
Furthermore, by (7) and (11) we have that

‖z(tn)− zn‖r =
∥∥∥ 1
2

(
u(tn) + v(tn)

)
− 1

2

(
eic

2tnun
∗ + e−ic2tnvn∗

)∥∥∥
≤ ‖eic2tn(u∗(tn)− un

∗ )‖r + ‖eic2tn(v∗(tn)− vn∗ )‖r
= ‖u∗(tn)− un

∗‖r + ‖v∗(tn)− vn∗ ‖r.
Together with the bound in (33) this completes the proof. �
Remark 12. Note that the regularity assumption (29) is always satisfied for initial
values

z(0, x) = ϕ(x), ∂tz(0, x) = c2γ(x) with ϕ, γ ∈ Hr+2

as then thanks to (18) we have∥∥c−1〈∇〉−1
c z′(0)

∥∥
r
=

∥∥c〈∇〉−1
c γ

∥∥
r
≤ ‖γ‖r.

Under weaker regularity assumptions on the exact solution we obtain uniform
fractional convergence of the formally first-order scheme (28).

Theorem 13 (Fractional convergence bound for the first-order scheme). Fix r >
d/2 and assume that for some 0 < γ ≤ 1

‖z(0)‖r+2γ + ‖c−1〈∇〉−1
c z′(0)‖r+2γ ≤ M2γ(34)

uniformly in c. For (un
∗ , v

n
∗ ) defined in (28) we set

zn :=
1

2

(
eic

2tnun
∗ + e−ic2tnvn∗

)
.

Then, there exists a Tr > 0 and τ0 > 0 such that for all τ ≤ τ0 and tn ≤ Tr we
have for all c > 0 that

‖z(tn)− zn‖r ≤ τγK1,r,M2γ
etnK2,r,M ≤ τγK∗

r,M,M2γ ,tn ,

where the constants K1,r,M2γ
,K2,r,M and K∗

r,M,M2γ ,tn
can be chosen independently

of c.

Proof. The proof follows the line of argumentation to the proof of Theorem 11 using
“fractional estimates” of the operator Ac. �

Next we point out an interesting observation: For sufficiently smooth solutions
the exponential-type integration scheme (28) converges in the limit c → ∞ to the
classical Lie splitting of the corresponding nonlinear Schrödinger limit (2).



1238 SIMON BAUMSTARK, ERWAN FAOU, AND KATHARINA SCHRATZ

Remark 14 (Approximation in the nonrelativistic limit c → ∞). The exponential-
type integration scheme (28) corresponds for sufficiently smooth solutions in the

limit (un
∗ , v

n
∗ )

c→∞−→ (un
∗,∞, vn∗,∞), essentially to the Lie splitting ([8, 17])

(35)
un+1
∗,∞ = e−iτ Δ

2 e−iτ 1
8

(
|un

∗,∞|2+2|vn
∗,∞|2

)
un
∗,∞, u0

∗,∞ = ϕ− iγ,

vn+1
∗,∞ = e−iτ Δ

2 e−iτ 1
8

(
|vn

∗,∞|2+2|un
∗,∞|2

)
vn∗,∞, v0∗,∞ = ϕ− iγ

applied to the cubic nonlinear Schrödinger system (2) which is the limit system of
the Klein-Gordon equation (1) for c → ∞ with initial values

z(0)
c→∞−→ γ and c−1〈∇〉−1

c z′(0)
c→∞−→ ϕ.

More precisely, the following lemma holds.

Lemma 15. Fix r > d/2 and let 0 < δ ≤ 2. Assume that

(36) ‖z(0)‖r+2δ+ε + ‖c−1〈∇〉−1
c z′(0)‖r+2δ+ε ≤ M2δ+ε

for some ε > 0 uniformly in c and let the initial value approximation (there exist
functions ϕ, γ such that)

‖z(0)− γ‖r + ‖c−1〈∇〉−1
c z′(0)− ϕ‖r ≤ krc

−δ(37)

hold for some constant kr independent of c.
Then, there exists a T > 0 and τ0 > 0 such that for all τ ≤ τ0 the difference of

the first-order scheme (28) for system (12) and the Lie splitting (35) for the limit
Schrödinger equation (2) satisfies for tn ≤ T and all c > 0 with

(38) τc2−δ ≥ 1

that

‖un
∗ − un

∗,∞‖r + ‖vn∗ − vn∗,∞‖r ≤ c−δkr(M2δ+ε, T )

for some constant kr that depends on M2δ+ε and T , but is independent of c.

Proof. In the following fix r > d/2, 0 < δ ≤ 2 and ε > 0:
1. Initial value approximation. Thanks to (37) we have by the definition of the

initial value u0
∗ in (28), respectively, u0

∗,∞ in (35) that

‖u0
∗ − u0

∗,∞‖r = ‖z(0)− ic−1〈∇〉−1
c z′(0)− (ϕ− iγ)‖r ≤ krc

−δ

for some constant kr independent of c. A similar bound holds for v0∗ − v0∗,∞.
2. Regularity of the numerical solutions (un

∗ , v
n
∗ ). Thanks to the regularity

assumption (36) we have by Theorem 13 that there exists a T > 0 and τ0 > 0 such
that for all τ ≤ τ0 we have

(39) ‖un
∗‖r+2δ + ‖vn∗ ‖r+2δ ≤ m2δ

as long as tn ≤ T for some constant m2δ depending on M2δ+ε and T , but not on c.
3. Regularity of the numerical solutions (un

∗,∞, vn∗,∞). Thanks to the regularity
assumption (36) we have by (37) and the global first-order convergence result of
the Lie splitting for semilinear Schrödinger equations (see for instance [8,17]) that
there exists a T > 0 and τ0 > 0 such that for all τ ≤ τ0 we have

(40) ‖un
∗,∞‖r + ‖vn∗,∞‖r ≤ m0

as long as tn ≤ T for some constant m0 depending on Mr and T , but not on c.
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4. Approximations. Using the following bounds, γ > 1,

(41)

∣∣∣∣
√
1 + x2 − 1− 1

2
x2

∣∣∣∣ ≤ x2γ and

∣∣∣∣ 1√
1 + x2

− 1

∣∣∣∣ ≤ x2γ−2,

together with the Definition of ϕ1 (see Definition 6) we have for every f ∈ Hr+2+2δ,

∥∥ (Ac +
Δ
2

)
f
∥∥
r
+
∥∥ (c〈∇〉−1

c − 1
)
f
∥∥
r+2

+
∥∥ϕ1(ilc

2τ )f
∥∥
r+2+δ

≤ krc
−δ‖f‖r+2+2δ

(42)

for l = ±2,−4 and for some constant kr independent of c, where we used (38) for
the last estimate.

5. Difference of the numerical solutions. Thanks to the a priori regularity of the
numerical solutions (39) and (40) we obtain with the aid of (42) under assumption
(38) for the difference un

∗ − un
∗,∞ that

(43)
‖un+1

∗ − un+1
∗,∞‖r ≤

(
1 + τk(m0)

)
‖un

∗ − un
∗,∞‖r + (c−2+δ + τ )c−δk(m2δ)

≤
(
1 + τk(m0)

)
‖un

∗ − un
∗,∞‖r + 2τc−δk(m2δ)

and a similar bound on vn∗ − vn∗,∞. Solving the recursion yields the assertion. �

3.3. Simplifications in the “weakly to strongly nonrelativistic limit
regime”. In the “ strongly nonrelativistic limit regime”, i.e., for large values of c,
we may simplify the first-order scheme (28) and nevertheless obtain a well-suited,
first-order approximation to (u∗, v∗) in (12).

Remark 16. Note that for l = ±2,−4 we have (see Definition 6)∥∥τϕ1(ilc
2τ )

∥∥
r
≤ 2c−2.

Furthermore, (42) yields that

‖
(
c〈∇〉−1

c − 1
)
u∗(t)‖r ≤ c−2kr‖u∗(t)‖r+2

for some constant kr independent of c.
Thus, for sufficiently large values of c, more precisely if

τc > 1

and under the same regularity assumption (34) we may take instead of (28) the
scheme

un+1
∗,c>τ = eiτAce−iτ 1

8

(
|un

∗,c>τ |2+2|vn
∗,c>τ |2

)
un
∗,c>τ ,

vn+1
∗,c>τ = eiτAce−iτ 1

8

(
|vn

∗,c>τ |
2+2|un

∗,c>τ |
2
)
vn∗,c>τ

as a first-order numerical approximation to (u∗(tn+1), v∗(tn+1)) in (12).

However, note that in the strongly nonrelativistic limit regime (such that in
particular cτ > 1) we may immediately take the Lie splitting scheme proposed in [9]
as a suitable first-order approximation to (12) thanks to the following observation.

Remark 17 (Limit scheme [9]). For sufficiently large values of c and sufficiently
smooth solutions, more precisely, if

‖z(0)‖r+2 + ‖c−1〈∇〉−1
c z′(0)‖r+2 ≤ M2 and τc > 1,
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the classical Lie splitting (see [8, 17]) for the nonlinear Schrödinger limit equation
(2), namely,

(44)
un+1
∗,∞ = e−iτ 1

2Δe−iτ 1
8

(
|un

∗,∞|2+2|vn
∗,∞|2

)
un
∗,∞,

vn+1
∗,∞ = e−iτ 1

2Δe−iτ 1
8

(
|vn

∗,∞|2+2|un
∗,∞|2

)
vn∗,∞,

yields a first-order numerical approximation to (u∗(tn+1), v∗(tn+1)) in (12).
This assertion follows from [9] thanks to the approximation

‖u∗(tn)− un
∗,∞‖r ≤ ‖u∗(tn)− u∗,∞(tn)‖r + ‖u∗,∞(tn)− un

∗,∞‖r = O
(
c−1 + τ

)
and a similar bound on v∗(tn)− vn∗,∞.

4. A second-order uniformly accurate scheme

In this section we derive a second-order exponential-type integration scheme for
the solutions (u∗, v∗) of (12) which allows second-order uniform time-convergence
with respect to c. For notational simplicity we again assume that z is real, which
reduces the coupled system (12) to equation (19) with mild solutions (20) (see also
Remark 1).

The construction of the second-order scheme is again based on Duhamel’s for-
mula (20) and the essential estimates in Lemmas 3, 4 and 5. However, the second-
order approximation is much more involved due to the fact that

u′
∗(t) = O(1), but u′′

∗(t) = O(c2).

The latter observation prevents us from simply applying the higher-order Taylor
series expansion

u∗(tn + s) = u∗(tn) + su′
∗(tn) +O

(
s2u′′

∗(tn + ξ)
)

in Duhamel’s formula (20) as this would lead to the “classical” c−dependent error
at order O(τ2c2). Therefore we need to carry out a much more careful frequency
analysis by iterating Duhamel’s formula (20) twice and controlling the appearing

highly-oscillatory terms e±ic2t and their interactions eilc
2t (l ∈ Z) precisely.

4.1. Construction of a second-order uniformly accurate scheme. In Section
4.1.1 we state the necessary regularity assumptions on the solution u∗ and derive
two useful expansions. In Section 4.1.2 we collect some useful lemmata on highly-
oscillatory integrals and their approximations. These approximations will then
allow us to construct a uniformly accurate second-order scheme in Section 4.1.3.
The rigorous convergence analysis is given in Section 4.2.

4.1.1. Regularity and expansion of the exact solution. In order to derive a second-
order scheme, we need to impose additional regularity on the exact solution u∗(t)
of (19).

Assumption 18. Fix r > d/2 and assume that u∗ ∈ C([0, T ];Hr+4(Td)) and in
particular

sup
0≤t≤T

‖u∗(t)‖r+4 ≤ M4 uniformly in c.

In Lemma 20 below we derive two useful expansions of the exact solution u∗ of
(19). For this purpose we introduce the following definition.
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Definition 19. For some function v and tn, t ∈ R, we set

(45)
Ψc2(tn, t, v) := te2ic

2tnϕ1

(
2ic2t

)
v3 + 3te−2ic2tnϕ1

(
−2ic2t

)
|v|2v

+ te−4ic2tnϕ1

(
−4ic2t

)
v3.

The above definition allows us the following expansions of the exact solution u∗.

Lemma 20. Fix r > d/2. Then the exact solution of (19) satisfies the expansions

u∗(tn + s) = eisAcu∗(tn)−
3i

8
c〈∇〉−1

c

∫ s

0

ei(s−ξ)Ac
∣∣eiξAcu∗(tn)

∣∣2 (eiξAcu∗(tn)
)
dξ

− i

8
c〈∇〉−1

c Ψc2(tn, s, u∗(tn)) +R1(tn, s, u∗)

and

u∗(tn + s) = eisAcu∗(tn)−
i

8
c〈∇〉−1

c

(
3s |u∗(tn)|2 u∗(tn) + Ψc2(tn, s, u∗(tn))

)
+R2(tn, s, u∗)

with Ψc2 defined in (45) and where the remainders satisfy

(46) ‖R1(tn, s, u∗)‖r + ‖R2(tn, s, u∗)‖r ≤ s2kr(M2)

for some constant kr(M2) which depends on M2, but is independent of c.

Proof. Note that by Duhamel’s perturbation formula (20) we have that
(47)

u∗(tn + s) = eisAcu∗(tn)−
i

8
c〈∇〉−1

c

×
∫ s

0

ei(s−ξ)Ac

(
3 |u∗(tn + ξ)|2 u∗(tn + ξ) + e2ic

2(tn+ξ)u∗(tn + ξ)3

+ 3e−2ic2(tn+ξ) |u∗(tn + ξ)|2 u∗(tn + ξ)

+ e−4ic2(tn+ξ)u∗(tn + ξ)3
)
dξ.

Therefore, the bound on c〈∇〉−1
c given in (18) in particular implies that for ξ ∈ R

‖u∗(tn + ξ)− eiξAcu∗(tn)‖r ≤ ξkr(1 +M0)
3

for some constant kr which is independent of c. Together with Lemmas 4 and 5
the assertion then follows by integrating the highly-oscillatory phases exp

(
±ilc2ξ

)
exactly. �

In the next section we collect some important definitions and useful lemmata on
highly-oscillatory integrals.

4.1.2. Preliminary lemmata on highly-oscillatory integrals. The construction of a
second-order approximation to u∗ based on the iteration of Duhamel’s formula (20)
that holds uniformly in all c > 0 leads to interactions of the highly-oscillatory

phases eic
2t. More precisely, we need to handle highly-oscillatory integrals of type

(48)

∫ τ

0

eis(δc
2−Ac)

(
eisAcv

)l (
e−isAcv

)m
ds, δ ∈ {−4,−2, 2}.

In order to control these integrals we first need to distinguish the nonresonant case
δ ∈ {−4,−2}, where

∀c > 0, k ∈ N : (δc2 −Ac)k = δc2 − c
√
c2 + k2 + c2 �= 0
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from the resonant case δ = 2 in which the operator δc2 −Ac may become singular.
In Lemma 21 we outline how to control the nonresonant case δ ∈ {−4,−2}.

Lemma 23 treats the resonant case δ = 2.

Lemma 21. Fix r > d/2. Then we have for δ1 = −2 and δ2 = −4 that for j = 1, 2
and l,m ∈ N

∗,

(49)

∫ τ

0

eis(δjc
2−Ac)

(
eisAcv

)l (
e−isAcv

)m
ds

= τϕ1

(
iτ (δjc

2 −Ac)
)
vlvm + iτ2ϕ2

(
iτ (δjc

2 −Ac)
)

×
(
lvl−1vmAcv −mvlvm−1Acv

)
+R(tn, s, v),

where the remainder satisfies

(50) ‖R(tn, s, v)‖r ≤ krτ
3‖v‖r+4‖v‖l+m−1

r

for some constant kr which is independent of c.

Proof. By Taylor series expansion of eisAc and noting (15) we obtain that
(51)∫ τ

0

e−isAceiδjc
2s
(
eisAcv

)l (
e−isAcv

)m
ds

=

∫ τ

0

eis(δjc
2−Ac)

(
vlvm + is

(
lvl−1vmAcv −mvlvm−1Acv

))
ds+R(tn, s, v),

where thanks to (15) we have for r > d/2 that (50) holds for the remainder. The
assertion then follows by the definition of the ϕj functions given in Definition 6. �

As our numerical scheme will be built on the approximation in (49) we need to
guarantee that the constructed term

τ2ϕ2

(
iτ (δjc

2 −Ac)
) (

lvl−1vmAcv −mvlvm−1Acv
)

is uniformly bounded with respect to c in Hr for all functions v ∈ Hr. This
stability analysis is carried out in Remark 22 below, where we in particular exploit
the bilinear estimate
(52)
‖vw‖r ≤ k ‖v‖r1‖w‖r2 for all r ≤ r1 + r2 − d

2 with r1, r2,−r �= d
2 and r1 + r2 ≥ 0.

Remark 22 (Stability in Lemma 21). Note that for δ1 = −2, respectively, δ2 = −4
we have that

(53) 0 �= δjc
2 −Ac = δjc

2 − c〈∇〉c + c2 =

{
−(c2 + c〈∇〉c) if j = 1,
−(3c2 + c〈∇〉c) if j = 2.

Thanks to (53) which in particular implies that

(〈∇〉c)k =
√
c2 + |k|2 ≤

√
c2 +

√
|k|2 = c+ |k| and

1

c2 + c (〈∇〉c)k
≤ min

{
|c|−2, |c

√
c2 + k2|−1

}
≤ min

{
|c|−2, (c|k|)−1

}
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we obtain together with the bilinear estimate (52) that for δj = −2,−4

(54)

∥∥τ2ϕ2

(
iτ (δjc

2 −Ac)
)
(vAcw)

∥∥
r

= τ

∥∥∥∥ϕ0(iτ (δjc
2 −Ac))− ϕ1(iτ (δjc

2 −Ac))

(δjc2 −Ac)
(vAcw)

∥∥∥∥
r

≤ 2τ

∥∥∥∥ 1

(c2 + c〈∇〉c)
(vAcw)

∥∥∥∥
r

≤ 2τ

∥∥∥∥ 1

(c2 + c〈∇〉c)
(
v2c2w

)∥∥∥∥
r

+ 2τ

∥∥∥∥ 1

(c2 + c〈∇〉c)
(vc〈∇〉0w)

∥∥∥∥
r

≤ 4krτ‖v‖r‖w‖r
for all r > d/2 and all functions v and w and some constant kr > 0. The estimate
(54) guarantees stability of our numerical scheme built on the approximation in
(49).

A simple manipulation allows us to treat the resonant case, i.e., δ = 2 in (48),
similarly to Lemma 21.

Lemma 23. Fix r > d/2 and let c �= 0. Then we have that
(55)∫ τ

0

eis(2c
2−Ac)

(
eisAcv

)l (
e−isAcv

)m
ds = τϕ1

(
iτ (2c2 − 1

2Δ)
) (

vlvm
)

+ iτ2ϕ2

(
iτ (2c2− 1

2Δ)
) [

( 12Δ−Ac)
(
vlvm

)
+
(
lvl−1vmAcv−mvlvm−1Acv

) ]
+R(tn, s, v),

where the remainder satisfies

(56) ‖R(tn, s, v)‖r ≤ krτ
3‖v‖r+4‖v‖l+m−1

r

for some constant kr which is independent of c.

Proof. Note that as
2c2 −Ac = 2c2 − 1

2Δ+ 1
2Δ−Ac

we obtain
(57)∫ τ

0

eis(2c
2−Ac)

(
eisAcv

)l (
e−isAcv

)m
ds

=

∫ τ

0

eis(2c
2− 1

2Δ)eis(
1
2Δ−Ac)

(
eisAcv

)l (
e−isAcv

)m
ds

=

∫ τ

0

eis(2c
2− 1

2Δ)
[(
1 + is( 12Δ−Ac)

) (
vlvm

)

+ is
(
lvl−1vmAcv −mvlvm−1Acv

) ]
ds+R(tn, s, v),

where thanks to (15) we have for r > d/2 that (56) holds for the remainder. The
assertion then follows by the definition of the ϕj functions given in Definition 6. �

Again we need to verify that the constructed term

τ2ϕ2

(
iτ (2c2 − 1

2Δ)
) [

( 12Δ−Ac)
(
vlvm

)
+
(
lvl−1vmAcv −mvlvm−1Acv

) ]

in (55) can be bounded uniformly with respect to c in Hr for all functions v ∈ Hr.
This is done in the following remark.
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Remark 24 (Stability in Lemma 23). Note that the operator 2c2 − 1
2Δ satisfies the

bounds

c|k|(
2c2 − 1

2Δ
)
k

=
c|k|

2c2 + 1
2 |k|2

≤ 2,
c2(

2c2 − 1
2Δ

)
k

=
c2

2c2 + 1
2 |k|2

≤ 1

2

and furthermore

(Ac)k = c
√
c2 + |k|2 − c2 ≤ 2c2 + c|k|.

The above estimates together with the bilinear estimate (52) imply that for r > d/2

(58)

∥∥τ2ϕ2

(
iτ (2c2 − 1

2Δ)
)
(vAcw)

∥∥2
r

≤ τ
∑
k

(1 + |k|2)r
(2c2 + 1

2 |k|2)2
∣∣∣ ∑
k=k1+k2

vk1
(Ac)k2

wk2

∣∣∣2

≤ τmr

∑
k

(1 + |k|2)rc4
(2c2 + 1

2 |k|2)2
( ∑

k=k1+k2

|vk1
||wk2

|
)2

+ τmr

∑
k

(1 + |k|2)rc2
(2c2 + 1

2 |k|2)2
( ∑

k=k1+k2

|vk1
||k2||wk2

|
)2

≤ τmr

∑
k

(1 + |k|2)r
( ∑

k=k1+k2

|vk1
||wk2

|
)2

+ τmr

∑
k

(1 + |k|2)r−1
( ∑

k=k1+k2

|vk1
||k2||wk2

|
)2

≤ τmr‖v‖2r‖w‖2r + τkr‖v‖2r‖∂xw‖2r−1 ≤ τkmr‖v‖2r‖w‖2r

for some constant mr > 0 which guarantees stability of the numerical method built
on the approximation in Lemma 23.

Next we need to analyze integrals involving the highly-oscillatory function Ψc2

defined in (19). The following lemma yields a uniform approximation.

Lemma 25. Fix r > d/2. Then for any polynomial p(v) in v and v we have that

(59)

∫ τ

0

ei(τ−s)Acp
(
eisAcv

)
c〈∇〉−1

c Ψc2(tn, s, v)ds

= τ2p(v)c〈∇〉−1
c ϑc2(tn, τ, v) +R(tn, τ, v)

with

(60)
ϑc2(tn, τ, v) := e2ic

2tn
ϕ1

(
2ic2τ

)
− 1

2iτc2
v3

+ 3e−2ic2tn
ϕ1

(
−2ic2τ

)
− 1

−2iτc2
|v|2v + e−4ic2tn

ϕ1

(
−4ic2τ

)
− 1

−4iτc2
v3

and where the remainder satisfies

(61) ‖R(tn, τ, v)‖r ≤ krτ
3 (1 + ‖v‖r+2)

5

for some constant kr independent of c.
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Proof. Thanks to the approximation (16) and the fact that Ψc2(tn, s, u∗(tn)) is of
order one in s uniformly in c we have that∫ τ

0

ei(τ−s)Acp
(
eisAcv

)
c〈∇〉−1

c Ψc2(tn, s, v)ds

= p (v) c〈∇〉−1
c

∫ τ

0

Ψc2(tn, s, v)ds+R(tn, τ, v),

where the remainder satisfies for r > d/2 the bound (61). �

Finally, we need to handle the interaction of highly-oscillatory phases eilc
2t with

the highly-oscillatory function Ψc2 defined in (19).

Lemma 26. Let c �= 0. Then, we have for l ∈ N that

(62)

Ωc2,l(tn, τ, v) :=
1

τ2

∫ τ

0

eilc
2sΨc2(tn, s, v)ds

= e2ic
2tn

ϕ1

(
(l + 2)ic2τ

)
− ϕ1

(
lic2τ

)
2iτc2

v3

+ 3e−2ic2tn
ϕ1

(
(l − 2)ic2τ

)
− ϕ1

(
lic2τ

)
−2iτc2

|v|2v

+ e−4ic2tn
ϕ1

(
(l − 4)ic2τ

)
− ϕ1

(
lic2τ

)
−4iτc2

v3

as well as that ∫ τ

0

eilc
2ssds = τ2ϕ2(ilc

2τ ).

Proof. Note that by Definition 19 we have that

Ψc2(tn, s, v) = e2ic
2tn

e(l+2)ic2s − elic
2s

2ic2
v3 + 3e−2ic2tn

e−2ic2s − elic
2s

−2ic2
|v|2v

+ e−4ic2tn
e(l−4)ic2s − elic

2s

−4ic2
v3,

which implies the assertion by Definition 6 of ϕ1 and ϕ2. �

With the above lemmata at hand we can commence the construction of the
second-order uniformly accurate scheme.

4.1.3. Uniform second-order discretization of Duhamel’s formula. Our starting
point is again Duhamel’s perturbation formula (see (20))

u∗(tn + τ ) = eiτAcu∗(tn)

− i

8
c〈∇〉−1

c

∫ τ

0

ei(τ−s)Ace−ic2(tn+s)

×
(
eic

2(tn+s)u∗(tn + s) + e−ic2(tn+s)u∗(tn + s)
)3

ds

which we split into two parts by separating the linear plus classical cubic part
|u∗|2u∗ from the terms involving u3

∗, u∗
3 and |u∗|2u∗. More precisely, we set

(63) u∗(tn + τ ) = I∗(τ, tn, u∗)−
i

8
c〈∇〉−1

c Ic2(τ, tn, u∗)
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with the linear as well as classical cubic part |u∗|2u∗,
(64)

I∗(τ, tn, u∗) := eiτAcu∗(tn)−
3i

8
c〈∇〉−1

c

∫ τ

0

ei(τ−s)Ac |u∗(tn + s)|2u∗(tn + s)ds,

and the terms involving u3
∗, u∗

3 and |u∗|2u∗,

(65)

Ic2(τ, tn, u∗) :=

∫ τ

0

ei(τ−s)Ac

(
e2ic

2(tn+s)u3
∗(tn + s)

+ 3e−2ic2(tn+s)|u∗(tn + s)|2u∗(tn + s)

+ e−4ic2(tn+s)u∗
3(tn + s)

)
ds.

In order to obtain a second-order uniformly accurate scheme based on the decompo-
sition (63) we need to carefully analyze the highly-oscillatory phases in I∗(τ, tn, u∗)
and Ic2(τ, tn, u∗). We commence with the analysis of I∗(τ, tn, u∗).

1) First term I∗(τ, tn, u∗). By Lemma 20 we have that
(66)

u∗(tn + s) = eisAcu∗(tn)−
3i

8
c〈∇〉−1

c

∫ s

0

ei(s−ξ)Ac
∣∣eiξAcu∗(tn)

∣∣2 (eiξAcu∗(tn)
)
dξ

− i

8
c〈∇〉−1

c Ψc2(tn, s, u∗(tn)) +R1(tn, s, u∗)

with Ψc2 defined in (45) and where the remainder R1 is of order O(s2) uniformly
in c. Plugging the approximation (66) into I∗(τ, tn, u∗) defined in (64) yields that
(67)

I∗(τ, tn, u∗) = eiτAcu∗(tn)−
3i

8
c〈∇〉−1

c

∫ τ

0

ei(τ−s)Ac |u∗(tn + s)|2u∗(tn + s)ds

= eiτAcu∗(tn)−
3i

8
c〈∇〉−1

c I1∗(τ, tn, u∗)

+
3i

8
c〈∇〉−1

c

i

8

∫ τ

0

ei(τ−s)Ac

{
2
∣∣eisAcu∗(tn)

∣∣2 c〈∇〉−1
c Ψc2(tn, s, u∗(tn))

−
(
eisAcu∗(tn)

)2
c〈∇〉−1

c Ψc2(tn, s, u∗(tn))
}
ds

+R(τ, tn, u∗),

where we have set

I1∗(τ, tn, u∗)

:=

∫ τ

0

ei(τ−s)Ac

{ ∣∣eisAcu∗(tn)
∣∣2 eisAcu∗(tn)

− 3i

4

∣∣eisAcu∗(tn)
∣∣2 c〈∇〉−1

c

∫ s

0

ei(s−ξ)Ac |eiξAcu∗(tn)|2eiξAcu∗(tn)dξ

+
3i

8

(
eisAcu∗(tn)

)2
c〈∇〉−1

c

∫ s

0

e−i(s−ξ)Ac |eiξAcu∗(tn)|2e−iξAcu∗(tn)dξ
}
ds

and the remainder satisfies

(68) ‖R(τ, tn, u∗)‖r ≤ τ3kr(M4)

for some constant kr(M4) which depends on M4, but is independent of c.
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Lemma 25 allows us to handle the highly-oscillatory integrals involving the func-
tion Ψc2 in (67). Thus, in order to obtain a uniform second-order approxima-
tion of I∗(τ, tn, u∗) it remains to derive a suitable second-order approximation to
I1∗(τ, tn, u∗).

1.1) Approximation of I1∗ (τ, tn, u∗). The midpoint rule yields the following ap-
proximation
(69)
I1∗ (τ, tn, u∗)

= τei
τ
2Ac

{ ∣∣ei τ2 Acu∗(tn)
∣∣2 ei τ

2Acu∗(tn)

− 3i

4

∣∣ei τ
2Acu∗(tn)

∣∣2 c〈∇〉−1
c

∫ τ/2

0

ei(
τ
2 −ξ)Ac |eiξAcu∗(tn)|2eiξAcu∗(tn)dξ

+
3i

8

(
ei

τ
2Acu∗(tn)

)2
c〈∇〉−1

c

∫ τ/2

0

e−i( τ
2−ξ)Ac |eiξAcu∗(tn)|2e−iξAcu∗(tn)dξ

}

+R(τ, tn, u∗(tn)),

where the remainder satisfies thanks to (15) and (18) that

(70) ‖R(τ, tn, u∗(tn))‖r ≤ τ3kr(M4)

with kr independent of c.
Next we approximate the two remaining integrals in (69) with the right rectan-

gular rule, i.e.,

(71)

∫ τ/2

0

ei(
τ
2−ξ)Ac |eiξAcu∗(tn)|2eiξAcu∗(tn)dξ

=
τ

2
|ei τ

2Acu∗(tn)|2ei
τ
2Acu∗(tn) +R(τ, tn, u∗(tn)),

where the remainder satisfies again thanks to (15) that

(72) ‖R(τ, tn, u∗(tn))‖r ≤ τ2kr(M4)

with kr independent of c.
Plugging (71) into (69) yields, with the notation

U∗(tn) = ei
τ
2Acu∗(tn),(73)

that

I1∗ (τ, tn, u∗) = ei
τ
2 Ac

{
τ |U∗(tn)|2 U∗(tn)

− τ2

2

3i

4
|U∗(tn)|2 c〈∇〉−1

c |U∗(tn)|2U∗(tn) +
τ2

2

3i

8
U∗(tn)

2c〈∇〉−1
c |U∗(tn)|2U∗(tn)

}
+R(τ, tn, u∗(tn)),

where thanks to inequalities (68), (70) and (72) the remainder satisfies the bound
‖R(τ, tn, u∗(tn))‖r ≤ τ2kr(M4) with kr independent of c.

In order to obtain asymptotic convergence to the classical Strang splitting scheme
(3) associated to the nonlinear Schrödinger limit (2) we add and subtract the term

ei
τ
2Ac

τ2

2

3i

8
|U∗(tn)|4U∗(tn)



1248 SIMON BAUMSTARK, ERWAN FAOU, AND KATHARINA SCHRATZ

in the above approximation of I1∗ (τ, tn, u∗). This yields that

(74)

I1∗(τ, tn, u∗)

= ei
τ
2Ac

{
τ |U∗(tn)|2 U∗(tn)−

τ2

2

3i

8
|U∗(tn)|4U∗(tn)

− τ2

2

3i

4
|U∗(tn)|2

(
c〈∇〉−1

c − 1
)
|U∗(tn)|2U∗(tn)

+
τ2

2

3i

8
U∗(tn)

2
(
c〈∇〉−1

c − 1
)
|U∗(tn)|2U∗(tn)

}
+R(τ, tn, u∗(tn)).

The above decomposition allows us a second-order approximation of I∗(τ, tn, u∗)
which holds uniformly in all c:

1.2) Final approximation of I∗(τ, tn, u∗). Plugging (74) into (67) yields with the
aid of Lemma 25 that

I∗(τ, tn, u∗) = ei
τ
2Ac

{
U∗(tn)−

3i

8
τ |U∗(tn)|2 U∗(tn) +

(
−3i

8

)2
τ2

2
|U∗(tn)|4U∗(tn)

}

− τ
3i

8

(
c〈∇〉−1

c − 1
)
ei

τ
2Ac |U∗(tn)|2 U∗(tn) + τ2θc〈∇〉c−1 (tn, τ,U∗(tn))

− τ2
3

32
c〈∇〉−1

c |u∗(tn)|2 c〈∇〉−1
c ϑc2(tn, τ, u∗(tn))

+ τ2
3

64
c〈∇〉−1

c (u∗(tn))
2 c〈∇〉−1

c ϑc2(tn, τ, u∗(tn))

+R(τ, tn, u∗)

with a remainder R of order O(τ3) uniformly in c. The Taylor series expansion∣∣1 + x+ x2

2 − ex
∣∣ = O(x3) furthermore allows the following final representation of

I∗:
(75)

I∗(τ, tn, u∗) = ei
τ
2 Acexp

(
−3i

8
τ |U∗(tn)|2

)
U∗(tn)

− τ
3i

8

(
c〈∇〉−1

c − 1
)
ei

τ
2 Ac |U∗(tn)|2 U∗(tn) + τ2θc〈∇〉c−1 (tn, τ,U∗(tn))

− τ2
3

32
c〈∇〉−1

c |u∗(tn)|2 c〈∇〉−1
c ϑc2(tn, τ, u∗(tn))

+ τ2
3

64
c〈∇〉−1

c (u∗(tn))
2 c〈∇〉−1

c ϑc2(tn, τ, u∗(tn))

+R(τ, tn, u∗)

with

θc〈∇〉c−1(tn, τ, v) := −1

2

9

64
ei

τ
2Ac

(
c〈∇〉−1

c − 1
)
|v|4 v

− 1

2

9

32
c〈∇〉−1

c ei
τ
2 Ac |v|2

(
c〈∇〉−1

c − 1
)
|v|2v

+
1

2

9

64
c〈∇〉−1

c ei
τ
2 Acv2

(
c〈∇〉−1

c − 1
)
|v|2v

(76)
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and where ϑc2 is defined in (60) and the remainder R(τ, tn, u∗) satisfies

(77) ‖R(τ, tn, u∗(tn))‖r ≤ τ3kr(M4)

with kr independent of c.
The approximation of I∗(τ, tn, u∗) given in (75) yields the first terms in our

numerical scheme. In order to obtain a full approximation to u∗(tn + τ ) in (63) we
next derive a second-order approximation to Ic2(τ, tn, u∗).

2) Second term Ic2(τ, tn, u∗). Applying the second approximation in Lemma 20
yields together with Lemma 4 and by the definition of Ic2(τ, tn, u∗) in (65) that

Ic2(τ, tn, u∗) =

∫ τ

0

ei(τ−s)Ac

{
e2ic

2(tn+s)
(
eisAcu∗(tn)

)3

+ 3e−2ic2(tn+s)
∣∣eisAcu∗(tn)

∣∣2 e−isAcu∗(tn)

+ e−4ic2(tn+s)
(
e−isAcu∗(tn)

)3 }
ds

+

∫ τ

0

{
− 3i

8
e2ic

2(tn+s) (u∗(tn))
2
c〈∇〉−1

c

[
3s|u∗(tn)|2u∗(tn) + Ψc2(tn, s, u∗(tn))

]

+ 3e−2ic2(tn+s)
(
− i

8
(u∗(tn))

2 c〈∇〉−1
c

[
3s|u∗(tn)|2u∗(tn) + Ψc2(tn, s, u∗(tn))

]

+
2i

8
|u∗(tn)|2 c〈∇〉−1

c

[
3s|u∗(tn)|2u∗(tn) + Ψc2(tn, s, u∗(tn))

])

+
3i

8
e−4ic2(tn+s) (u∗(tn))

2
c〈∇〉−1

c

[
3s|u∗(tn)|2u∗(tn) + Ψc2(tn, s, u∗(tn))

]}
ds

+R(tn, τ, u∗)

with Ψc2 defined in (45) and where thanks to Lemmas 4 and 20 and the fact that
Ψc2 is of order one in s uniformly in c the remainder satisfies ‖R(τ, tn, u∗(tn))‖r ≤
τ3kr(M4) with kr independent of c.

Lemmas 21 and 23 together with Lemma 26 thus allow the following expansion
of Ic2 : We have

(78) Ic2(τ, tn, u∗) = I1c2(τ, tn, u∗) +R(tn, τ, u∗)

with the highly-oscillatory term

I1c2(τ, tn, u∗) := τe2ic
2tneiτAcϕ1

(
iτ (2c2 − 1

2Δ)
)
u3
∗(tn)

(79)

+ iτ2e2ic
2tneiτAcϕ2

(
iτ (2c2 − 1

2Δ)
) [

( 12Δ−Ac)u
3
∗(tn) + 3u2

∗(tn)Acu∗(tn)
]

+ 3τe−2ic2tneiτAcϕ1(iτ (−2c2 −Ac)) |u∗(tn)|2 u∗(tn)

+ 3iτ2e−2ic2tneiτAcϕ2(iτ (−2c2 −Ac))
[
u∗

2(tn)Acu∗(tn)− 2|u∗(tn)|2Acu∗(tn)
]

+ τe−4ic2tneiτAcϕ1(iτ (−4c2 −Ac))u∗
3(tn)

− iτ2e−4ic2tneiτAcϕ2(iτ (−4c2 −Ac))3u∗
2(tn)Acu∗(tn)

− τ2
3i

8
e2ic

2tn (u∗(tn))
2
c〈∇〉−1

c

[
3ϕ2(2ic

2τ )|u∗(tn)|2u∗(tn) + Ωc2,2,(tn, τ, u∗(tn))
]

− τ2
3i

8
e−2ic2tn (u∗(tn))

2
c〈∇〉−1

c

[
3ϕ2(−2ic2τ )|u∗(tn)|2u∗(tn)+Ωc2,−2(tn, τ, u∗(tn))

]
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+ τ2
6i

8
e−2ic2tn |u∗(tn)|2 c〈∇〉−1

c

[
3ϕ2(−2ic2τ )|u∗(tn)|2u∗(tn)+ Ωc2,−2(tn, τ, u∗(tn))

]

+ τ2
3i

8
e−4ic2tn (u∗(tn))

2 c〈∇〉−1
c

[
3ϕ2(−4ic2τ )|u∗(tn)|2u∗(tn)+Ωc2,−4(tn, τ, u∗(tn))

]
+R(tn, τ, u∗),

where Ωc2,l is defined in Lemma 26 and the remainder satisfies

(80) ‖R(tn, τ, u∗)‖r ≤ τ3kr(M4),

with kr independent of c.
3) Final approximation of u∗(tn+τ ). Plugging (75) as well as (78) into (63) builds

the basis of our second-order scheme: As a numerical approximation to the exact
solution u∗ at time tn+1 we take the second-order uniform accurate exponential-
type integrator: Un

∗ = ei
τ
2Acun

∗ and
(81)

un+1
∗ = ei

τ
2 Ace−iτ 3

8 |U
n
∗ |2Un

∗

− τ
3i

8

(
c〈∇〉−1

c − 1
)
ei

τ
2Ac |Un

∗ |
2 Un

∗ + τ2θc〈∇〉c−1 (tn, τ,Un
∗ )

− τ2
3

64
c〈∇〉−1

c

[
2 |un

∗ |
2
c〈∇〉−1

c ϑc2(tn, τ, u
n
∗ )− (un

∗ )
2
c〈∇〉−1

c ϑc2(tn, τ, u
n
∗ )
]

− i

8
c〈∇〉−1

c I1c2(τ, tn, u
n
∗ ),

where I1c2(τ, tn, u
n
∗ ) is defined in (79) and with ϕ1, ϕ2 given in Definition 6, θc〈∇〉c−1

given in (76), ϑc2 in (60), and Ωc2,l in (62).

4.2. Convergence analysis. The exponential-type integration scheme (81) con-
verges (by construction) with second-order in time uniformly with respect to c.

Theorem 27 (Convergence bound for the second-order scheme). Fix r > d/2 and
assume that

(82) ‖z(0)‖r+4 + ‖c−1〈∇〉−1
c z′(0)‖r+4 ≤ M4

uniformly in c. For un
∗ defined in (81) we set

zn :=
1

2

(
eic

2tnun
∗ + e−ic2tnun

∗

)
.

Then, there exists a Tr > 0 and τ0 > 0 such that for all τ ≤ τ0 and tn ≤ Tr we
have for all c > 0 that

‖z(tn)− zn‖r ≤ τ2K1,r,M4
etnK2,r,M ≤ τ2K∗

r,M,M4,tn ,

where the constants K1,r,M2
,K2,r,M and K∗

r,M,M4,tn
can be chosen independently

of c.

Proof. First note that the regularity assumption on the initial data in (82) implies
the regularity Assumption 18 on u∗(t), i.e., there exists a Tr > 0 such that

sup
0≤t≤T

‖u∗(t)‖r+4 ≤ k(M4)

for some constant k that depends on M4 and Tr, but can be chosen independently
of c.
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In the following let φt denote the exact flow of (19), i.e., u∗(tn+1) = φτ (u∗(tn))
and let Φτ denote the numerical flow defined in (81), i.e.,

un+1
∗ = Φτ (un

∗ ).

Taking the difference of (20) and (81) yields that

(83)
u∗(tn+1)− un+1

∗ = φτ (u∗(tn))− Φτ (un
∗ )

= Φτ (u∗(tn))− Φτ (un
∗ ) + φτ (u∗(tn))− Φτ (u∗(tn)).

Local error bound. With the aid of the expansion (75) and (78) we obtain by
the representation of the exact solution in (63) together with the error bounds (80)
and (77) that

(84) ‖φτ (u∗(tn))− Φτ (u∗(tn))‖r = ‖R(τ, tn, u∗)‖r ≤ τ3kr(M4)

for some constant kr which depends on M4 and r, but can be chosen independently
of c.

Stability bound. Note that by the definition of ϕ2 in Definition 6, θc〈∇〉c−1 in
(76), ϑc2 in (60) and Ωc2,l in (62) we have for l = −4,−2, 2 that

(85)

τ2
(
‖ϕ2(lic

2t)(f − g)‖r + ‖Ωc2,l(tn, τ, f)− Ωc2,l(tn, τ, g)‖r

+ ‖ϑc2(tn, τ, f)− ϑc2(tn, τ, g)‖r
)

≤ τkr (‖f‖r, ‖g‖r) ‖f − g‖r
for some constant kr independent of c. Together with the bound (18), the definition
of ϕ1 in Definition 6 and the stability estimates (54) and (58) we thus obtain, as
long as ‖u∗(tn)‖r ≤ M and ‖un

∗‖R ≤ 2M , that

(86) ‖Φτ (u∗(tn))− Φτ (un
∗ )‖r ≤ ‖u∗(tn)− un

∗‖r + τKr,M‖u∗(tn)− un
∗‖r,

where the constant Kr,M depends on r and M , but can be chosen independently
of c.

Global error bound. Plugging the stability bound (86) as well as the local error
bound (84) into (83) yields by a bootstrap argument that

‖u∗(tn)− un
∗‖r ≤ τ2K1,r,M4

etnK2,r,M ,(87)

where the constants are uniform in c. Note that as u = v we have by (7) and (11)
that

‖z(tn)− zn‖r =
∥∥∥ 1
2

(
u(tn) + u(tn)

)
− 1

2

(
eic

2tnun
∗ + e−ic2tnun

∗
)∥∥∥

≤ ‖eic2tn(u∗(tn)− un
∗ )‖r = ‖u∗(tn)− un

∗‖r.
Together with the bound in (87) this completes the proof. �
Remark 28 (Fractional convergence and convergence in L2). A fractional conver-
gence result as Theorem 13 for the first-order scheme also holds for the second-order
exponential-type integrator (81): Fix r > d/2 and let 0 ≤ γ ≤ 1. Assume that

‖z(0)‖r+2+2γ + ‖c−1〈∇〉−1
c z′(0)‖r+2+2γ ≤ M2+2γ .

Then, the scheme (81) is convergent of order τ1+γ in Hr uniformly with respect to
c.

Furthermore, for initial values satisfying

‖z(0)‖4 + ‖c−1〈∇〉−1
c z′(0)‖4 ≤ M4,0
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the exponential-type integration scheme (81) is second-order convergent in L2 uni-
formly with respect to c by the strategy presented in [17].

In analogy to Remark 14 we make the following observation: For sufficiently
smooth solutions the exponential-type integration scheme (81) converges in the limit
c → ∞ to the classical Strang splitting of the corresponding nonlinear Schrödinger
limit equation (2).

Remark 29 (Approximation in the nonrelativistic limit c → ∞). The exponential-
type integration scheme (81) corresponds for sufficiently smooth solutions in the

limit un
∗

c→∞−→ un
∗,∞, essentially to the Strang splitting ([8, 17])

(88) un+1
∗,∞ = e−i τ

2
Δ
2 e−iτ 3

8 |e
−i τ

2
Δ
2 un

∗,∞|2e−i τ
2

Δ
2 un

∗,∞, u0
∗,∞ = ϕ− iγ

for the cubic nonlinear Schrödinger limit system (2).
More precisely, the following lemma holds.

Lemma 30. Fix r > d/2. Assume that

‖z(0)‖r+3 + ‖c−1〈∇〉−1
c z′(0)‖r+3 ≤ M3

for some ε > 0 uniformly in c and let the initial value approximation (there exist
functions ϕ, γ such that)

‖z(0)− γ‖r + ‖c−1〈∇〉−1
c z′(0)− ϕ‖r ≤ krc

−1

hold for some constant kr independent of c.
Then, there exists a T > 0 and τ0 > 0 such that for all τ ≤ τ0 the difference of

the second-order scheme (81) for system (19) and the Strang splitting (88) for the
limit Schrödinger equation (2) satisfies for tn ≤ T and all c > 0 with

τc ≥ 1

that
‖un

∗ − un
∗,∞‖r ≤ c−1kr(M3, T )

for some constant kr that depends on M3 and T , but is independent of c.

Proof. The proof follows the line of argumentation to the proof of Lemma 15 by
noting that for l = −4,−2 and n = −4,−2, 2,

τ
(
‖ϕj(2iτ 〈∇〉2c)‖r + ‖ϕj

(
iτ (lc2 −Ac)

)
‖r + ‖ϕj(nic

2τ )‖r
)
≤ krc

−2

for some constant kr independent of c. �

4.3. Simplifications in the “weakly to strongly nonrelativistic limit
regime”. In the “weakly to strongly nonrelativistic limit regime”, i.e., for large
values of c, we may again (substantially) simplify the second-order scheme (81) and
nevertheless obtain a well-suited second-order approximation to u∗(tn) in (19).

Remark 31 (Limit scheme [9]). For sufficiently large values of c and sufficiently
smooth solutions, more precisely, if

‖z(0)‖r+4 + ‖c−1〈∇〉−1
c z′(0)‖r+4 ≤ M4 and τc > 1

we may take instead of (81) the classical Strang splitting (see [8, 17]) for the non-
linear Schrödinger limit equation (2), namely,

(89) un+1
∗,∞ = e−i τ2

Δ
2 e−iτ 3

8 |e
−i τ

2
Δ
2 un

∗,∞|2e−i τ2
Δ
2 un

∗,∞
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Figure 1. Error of the first-, respectively, second-order
exponential-type integration scheme (28) and (81). The slope of
the dotted and dashed line is one and two, respectively.

as a second-order numerical approximation to u∗(tn) in (19). The assertion follows
from [9] thanks to the approximation

‖u∗(tn)− un
∗,∞‖r ≤ ‖u∗(tn)− u∗,∞(tn)‖r + ‖u∗,∞(tn)− un

∗,∞‖r = O
(
c−2 + τ2

)
.

5. Numerical experiments

In this section we numerically confirm first-, respectively, second-order conver-
gence uniformly in c of the exponential-type integration schemes (28) and (81). In
the numerical experiments we use a standard Fourier pseudospectral method for
the space discretization with the largest Fourier mode K = 210 (i.e., the spatial
mesh size Δx = 0.0061) and integrate up to T = 0.1. In Figure 1 we plot (double
logarithmic) the time-step size versus the error measured in a discrete H1 norm of
the first-order scheme (28) and the second-order scheme (81) with initial values

z(0, x) =
1

2

cos(3x)2sin(2x)

2− cos(x)
, ∂tz(0, x) = c2

1

2

sin(x)cos(2x)

2− cos(x)

for different values c = 1, 5, 10, 50, 100, 500, 1000, 5000, 10000.
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