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POLYNOMIAL APPROXIMATION VIA COMPRESSED SENSING

OF HIGH-DIMENSIONAL FUNCTIONS ON LOWER SETS

ABDELLAH CHKIFA, NICK DEXTER, HOANG TRAN, AND CLAYTON G. WEBSTER

Abstract. This work proposes and analyzes a compressed sensing approach
to polynomial approximation of complex-valued functions in high dimensions.
In this context, the target function is often smooth and characterized by a
rapidly decaying orthonormal expansion, whose most important terms are cap-
tured by a lower (or downward closed) set. Motivated by this fact, we present
an innovative weighted �1-minimization procedure with a precise choice of
weights for imposing the downward closed preference. Theoretical results re-
veal that our computational approaches possess a provably reduced sample
complexity compared to existing compressed sensing techniques presented in
the literature. In addition, the recovery of the corresponding best approxima-
tion using these methods is established through an improved bound for the
restricted isometry property. Our analysis represents an extension of the ap-
proach for Hadamard matrices by J. Bourgain [An improved estimate in the
restricted isometry problem, Lecture Notes in Math., vol. 216, Springer, 2014,
pp. 65–70] to the general bounded orthonormal systems, quantifies the depen-
dence of sample complexity on the successful recovery probability, and provides

an estimate on the number of measurements with explicit constants. Numeri-
cal examples are provided to support the theoretical results and demonstrate
the computational efficiency of the novel weighted �1-minimization strategy.

1. Introduction

Compressed sensing (CS) is an appealing approach for reconstructing signals
from underdetermined systems, with far smaller number of measurements compared
to the signal length [6, 17]. Under the sparsity or compressibility assumption of
the signals, this approach enjoys a significant improvement in sample complexity
in contrast to traditional methods such as discrete least squares, projection, and
interpolation. As the solutions of many parameterized partial differential equations
(PDEs) are known to be compressible in the sense that they are well approximated
by a sparse expansion in an orthonormal system (see, e.g., [14] and the references
therein), it is no surprise that the interest in applying compressed sensing techniques
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to the approximation of high-dimensional functions and parameterized systems has
been growing rapidly in recent years [18, 24, 30, 31, 34, 35, 39, 47, 48].

In these works, the target function is a quantity of interest (QoI) associated with
the solution of a parameterized PDE of the form

(1.1) D(u,y) = 0,

where D is a differential operator and y := (y1, . . . , yd) is a parameter vector in

a compact tensor product domain U =
∏d

k=1 Uk ⊂ Rd, e.g., U = [−1, 1]d. The
solution u to such PDEs is therefore a map y ∈ U �→ u(y) ∈ V where V is the
solution space, typically a Sobolev space, e.g., V = H1

0 . The algorithms proposed
in the previously cited works are designed to approximate a QoI consisting of a
function g : y ∈ U �→ G(u(y)) which, e.g., is either the evaluation of u at a fixed
point of the space/time domain or a linear functional in u. Introducing F := N

d
0 =

{ν = (νk)
d
k=1 : νk ∈ N0}, and a measure � : U → R+ with �(y) =

∏d
k=1 �k(yk),

the resulting functions are smooth, complex-valued, and can be expanded in an
L2(U , d�)-orthonormal basis {Ψν}ν∈F according to

(1.2) g(y) =
∑
ν∈F

cνΨν(y),

where Ψν =
∏d

k=1 Ψνk
are tensor products of L2(Uk, d�k)-orthonormal polynomi-

als, and the coefficients cν belong to C. The series (1.2) is generally referred to as
the polynomial chaos (PC) expansion of g (see, e.g., [22, 46]), whose convergence
rates are well understood [39]. The orthonormal systems of particular interest in
this work consist of Legendre and Chebyshev expansions. The polynomial approx-
imation of the function g in the CS setting is fairly straightforward. First, one
truncates the expansion (1.2) in the multivariate polynomial space

(1.3) PJ := span{Ψν(y) : ν ∈ J }
with J := {ν1, . . . ,νN} a finite set of indices whose cardinality N := #(J ) is large
enough to yield g �

∑
ν∈J cνΨν . Then, for some m ≤ N , generate m samples

y1, . . . ,ym in the parametric domain U independently from the orthogonalization
measure � associated with {Ψν}ν∈F , and find an approximation g# of g of the form

g# =
∑
ν∈J

c#ν Ψν ,(1.4)

where c# := (c#ν )ν∈J is the sparsest signal with an inherent interpolatory aspect,
i.e., among solutions z of underdetermined system Ψz = g. Here, the matrix
Ψ ∈ Rm×N contains the samples of the PC basis and the vector g is the observation
of the target function, i.e.,

(1.5) Ψ :=
(
Ψνj

(yi)
)
1≤i≤m
1≤j≤N

and g := (g(y1), . . . , g(ym)),

respectively. In practice, noisy formulations of this problem are also considered by
investigating the expansion tail

∑
ν /∈J cνΨν .

To date, the sparse recovery of the polynomial expansion (1.2) via CS has shown
to be very promising. However, this approach requires a low uniform bound of the
underlying basis, given by

Θ = sup
ν∈J

‖Ψν‖L∞(U),
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as the sample complexity m required to recover the best s-term approximation (up
to a multiplicative constant) scales with the following bound (see, e.g., [20]):

m � Θ2s × log factors.(1.6)

This poses a challenge for many multivariate polynomial approximation strategies
as Θ is prohibitively large in high dimensions. In particular, for d-dimensional
problems, Θ = 2d/2 for Chebyshev systems and preconditioned Legendre systems
[40]. Moreover, when using the standard Legendre expansion, the theoretical num-
ber of samples can exceed the cardinality of the polynomial subspace, unless the
subspace a priori excludes all terms of high total order (see, e.g., [24, 47]). There-
fore, the advantages of sparse polynomial recovery methods, coming from reduced
query complexity, are eventually overcome by the curse of dimensionality, in that
such techniques require at least as many samples as traditional sparse interpolation
techniques in high dimensions [23, 32, 33].

Nevertheless, in many engineering and science applications, the target functions,
despite being high-dimensional, are smooth and often characterized by a rapidly
decaying polynomial expansion, whose most important coefficients are of low order
[12,14,15,26]. In such situations, the quest for finding the approximation containing
the largest s terms can be restricted to polynomial spaces associated with lower (or
downward closed) sets.

Definition 1.1 (Lower set). An index set Λ ⊂ F is called a lower set (also called
downward closed set) if and only if

ν ∈ Λ and μ ≤ ν =⇒ μ ∈ Λ,(1.7)

where μ ≤ ν if and only if μk ≤ νk for all 1 ≤ k ≤ d.

The practicality of downward closed sets is mainly computational, and has been
demonstrated in different approaches such as quasi-optimal strategies [3], Taylor
expansion [9], interpolation methods [11], and discrete least squares [10]. For in-
stance, in the context of parametric PDEs such as (1.1), it was shown in [12] that
for a large class of operators D with a certain type of anisotropic dependence on
y, the solution map y �→ u(y) can be approximated by best s-term PC expansions
associated with index sets of cardinality s, resulting in algebraic rates s−α, α > 0 in
the uniform and/or mean average sense. The same rates are preserved with index
sets that are lower. In addition, for U = [−1, 1]d, such lower sets of cardinality
s also enable the equivalence property ‖ · ‖L2(U,d�) ≤ ‖ · ‖L∞ ≤ sγ‖ · ‖L2(U,d�) in

arbitrary dimensions d with, e.g., γ = 2 for the uniform measure and γ = log 3
log 2 for

Chebyshev measure.
This paper is focused on developing and analyzing CS approximations confined

to downward closed sets, used to overcome the curse of dimensionality in the sam-
pling complexity bound (1.6). As such, our work also provides a fair comparison
with existing numerical polynomial approaches in high dimensions [3,9–11,43]. To
achieve our goal, we study a sparse recovery approach for imposing the downward
closed structure, namely a weighted �1-minimization with the specific choice of
weights ων = ‖Ψν‖L∞(Ω), and also briefly survey an iterative hard thresholding
method constrained to lower sets. In addition, we develop a rigorous theoretical
framework that provides the analytic evidence for the improved performance of our
proposed methods in reconstructing smooth functions.
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In the context of CS, it is a well-established fact that sparse recovery is strongly
tied to the concept of the restricted isometry property (RIP) of the (normalized)
sampling matrix Ψ. However, motivated by the fact that the best s-term approx-
imation is typically associated with a lower set, herein we adapt a weaker version
of the RIP which we call the lower RIP. Unlike the standard RIP which requires
all submatrices formed by s columns of Ψ to be well conditioned, the lower RIP
involves only s-tuples of columns whose indices form a lower set. Given the lower
RIP assumption, we establish stable and robust reconstruction guarantees for the
best lower s-term approximation of g, which is the best among all approximations
of g supported on lower index sets of cardinality s. It is reasonable to expect that
this approximation, while weaker, is close to best s-term approximation for smooth
functions g considered throughout this effort.

More importantly, the improved sample complexity for high-dimensional function
recovery, using our methods, can be deduced directly from the sufficient condition
for lower RIP. For clarification, a complete technical description of (1.6) is given
by the condition

m ≥ CΘ2s log3(s) log(N),(1.8)

which was developed in [7, 37, 42], and is often cited in the case of the standard

RIP, used to guarantee uniform recovery with probability exceeding 1−N− log3(s).
In this work, we develop three critical components that enable us to systematically
reduce the number of samples given by (1.8):

(1) The lower RIP is associated with downward closed sets which allows us to
employ efficient bounds of basis functions defined on those sets, derived in
[10, 13] for discrete least squares, and replace Θ2s by

K(s) = sup
Λ⊂J ,Λ lower

#(Λ)=s

∥∥∥ ∑
ν∈Λ

|Ψν |2
∥∥∥
L∞(U)

,(1.9)

which is significantly smaller.
(2) We can reasonably choose J as the Hyperbolic Cross index set

Hs :=
{
ν ∈ F :

d∏
k=1

(νk + 1) ≤ s
}
,(1.10)

which is the smallest set that surely contains the best lower s indices (i.e.,
the union of all lower sets of cardinality s). The cardinality of Hs grows
mildly in s and d, compared to other common choices such as tensor prod-
uct and total degree. Indeed, from [8, Theorem 3.7] and [29], we have
N := #(Hs) ≤ min{2s34d, e2s2+log2(d)}, which facilitates both slow growth
of m with respect to the dimension d and acceleration of matrix-vector
multiplication.

(3) We extend the chaining arguments, recently developed in [5, 25] for uni-
tary matrices, to general bounded orthonormal systems, so as to decrease
the logarithm factor in (1.8) by one unit. Following the approach in [5],
we modify the covering argument for this task. In addition, we provide
the technical details necessary to quantify the universal constants, and the
constraint of the number of samples m on the success probability. It is
worth noting that our analysis shows a success probability slightly weaker
than that associated with (1.8).
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By combining all the above ingredients, the analysis herein (see Theorems 2.2
and 3.3) details the improvements to (1.8), by showing that the sufficient condi-
tion required to reconstruct the best lower s-term approximation, with probability
exceeding 1 − N− log(s) is given by

m ≥ CK(s) log2(s) min
{

log(s) + d, log(s) log(d)
}
.(1.11)

As shown in Lemma 3.5, for J = Hs in high dimensions, i.e., 2d > s,

Θ2s ≥
{

s2/2, if (Ψν) is Chebyshev basis,

s
log 3
log 2+1/3, if (Ψν) is Legendre basis,

(1.12)

while as indicated in Lemma 3.7,

K(s) ≤
{

s
log 3
log 2 , if (Ψν) is Chebyshev basis,

s2, if (Ψν) is Legendre basis.
(1.13)

Therefore, the advantage of our sample complexity, given by (1.11), compared to the
well-known condition (1.8), is that our sufficient requirements for recovery possess:
lower order of s; lower order in the logarithmic factor; and an efficient and explicit
definition of log(N) given by min{log(s) + d, log(s) log(d)}.

1.1. Related works. Our lower RIP is a specific case of the weighted RIP con-
cept introduced in [41], several results on which carry over into our context. The
weighted RIP, while applicable to general weights, only gives the recovery guar-
antee for the best weighted s-term approximation, which is incomparable to and,
in the case of large weights, much weaker than the best s-term approximation in
regard to the number of terms to be recovered. The advantage of using weights
in reducing the computational complexity is therefore inconclusive. Furthermore,
the selection of multi-index set J in [41] depends on the weight, can be restrictive,
and is not suitable in certain cases, e.g., the Chebyshev weight advocated in this
paper. However, it can be beneficial to consider best weighted s-term approxima-
tions given that a finite upper bound of the coefficients on weighted �p-norms is
available (as in the context of parametric PDEs, [39]). By Stechkin-type estimates,
e.g., [41, Eq. (5)], one can obtain an error bound under the linear scaling of the
number of samples in the weighted sparsity, instead of the superlinear complexity
proposed in the present work.

The idea of using the weights to boost the recovery performance of �1-
minimization has appeared elsewhere, e.g., in the context of regularization or re-
moving aliasing [2, 41], as well as incorporating a priori information related to the
support set or the decay of the polynomial coefficients [1, 21, 35, 48, 49]. On the
contrary, our approach does not require any such a priori knowledge; for an im-
proved recovery performance, the generic requirement on the target functions is
that the multi-indices of best (largest) polynomial coefficients are captured in a
lower set. Moreover, we are concerned with the RIP-based uniform recovery of
high-dimensional functions on lower set, which requires knowledge of the expansion
tail, whereas similar weighted �1 strategies have been studied in [1] using the RIPless
approach, in which the tail estimates are not needed. Similar sample complexity for
sparse Legendre and Chebyshev approximations has been achieved; furthermore, it
has been remarked in [1] that the required number of measurements agrees with
the best known conditions for approximations on a fixed lower set via discrete least
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squares [10] and cannot be improved in case of Legendre expansions [36]. In this
sense, our choice of weights is optimal.

The RIP estimate herein extends the strategy in [5], introduced to improve the
standard RIP for Hadamard matrices, to the general case of continuous bounded
orthonormal systems. Upon completion of this work, we became aware of the work
[25], in which a different strategy of net constructions was introduced, leading to
a reduction in sample complexity (1.8) by one logarithmic factor, as well as an
improved dependence on restricted isometry constant. While [25] is only concerned
with asymptotic estimates for Fourier matrices, we believe that one might extend
such arguments to the setting in the present effort.

1.2. Notation and preliminaries. Throughout this paper, we use C to denote
a generic positive constant whose value may be different from place to place but
which is independent of any parameters. For Λ ⊂ F , Λc denotes the complement of
Λ, zΛ is the restriction of z = (zν)ν∈F to Λ. For convenience, ‖ · ‖L∞ := ‖ · ‖L∞(U).
Given the multi-index notation ν = (ν1, . . . , νd) ∈ F , we define

supp(ν) := {k : νk �= 0}, ‖ν‖0 := #(supp(ν)).

For g =
∑

ν∈F cνΨν and Λ a set of indices, we denote gΛ :=
∑

ν∈Λ cνΨν . We
normalize the sampling matrix and observation in (1.5) as

A :=
Ψ√
m

=
(Ψνj

(yi)√
m

)
1≤i≤m
1≤j≤N

, g̃ :=
g√
m

=
(g(yi)√

m

)
1≤i≤m

.(1.14)

Also, the normalized expansion tail is referred to as

ξ :=
(gJ c(yi)√

m

)
1≤i≤m

.(1.15)

Under the newly introduced notation, the exact coefficients c = (cν)ν∈J satisfy
Ac + ξ = g̃. Assuming that ξ is small (whose a priori upper bound is assumed
if �1-minimization is used), we approximate g via g# =

∑
ν∈J c#ν Ψν , where c# =

(c#ν )ν∈J is among the solutions z of Az ≈ g̃.

1.3. Organization. Our paper is organized as follows. First, using the recently
developed chaining technique, in Section 2 a new RIP estimate for general bounded
orthonormal systems is provided. To avoid unimportant technicalities, the discus-
sion in this section will focus on standard RIP, however, the analysis is general and
does not depend on whether standard RIP or lower RIP is considered. In Section
3, we describe the new mathematical tools necessary to establish the concept of the
lower RIP and the sparse recovery on lower sets. Section 4 is devoted to presenting
the innovative theoretical results and analysis for polynomial approximation using
our versions of weighted �1-minimization. Several high-dimensional computational
experiments supporting the theory are given in Section 5. Finally, the complete
technical details of our RIP estimate proofs and a discussion on an alternative re-
covery approach on lower sets based on iterative hard thresholding can be found in
Appendix A and Appendix B, respectively.

2. Improved RIP estimate for bounded orthonormal system

The restricted isometry property (RIP) is an important ingredient for sparse
recovery guarantees, which is given by the following definition.
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Definition 2.1 (RIP). Given a matrix A ∈ Cm×N , we say that A satisfies the
restricted isometry property of order s if there exists 0 < δs < 1 such that

(1 − δs)‖z‖22 ≤ ‖Az‖22 ≤ (1 + δs)‖z‖22,(2.1)

for all z ∈ C
N satisfying #(supp(z)) ≤ s. The smallest positive number δs for (2.1)

to hold is referred to as the restricted isometry constant of A.

We prove the following RIP estimate for bounded orthonormal system, inspired
by the approach in [5].

Theorem 2.2. Let δ, γ be fixed parameters with 0 < δ < 1/13, 0 < γ < 1 and let
{Ψν}ν∈J be an orthonormal system of finite size N = #(J ). Assume that

m ≥ 26e
Θ2s

δ2
log

(Θ2s

δ2

)
max

{
25

δ4
log

(
40

Θ2s

δ2
log

(Θ2s

δ2

))
log(4N),(2.2)

1

δ
log

( 1

γδ
log

(Θ2s

δ2

))}
,

and y1,y2, . . . ,ym are drawn independently from the orthogonalization measure �
associated to {Ψν}. Then with probability exceeding 1−γ, the normalized sampling
matrix A ∈ Cm×N satisfies

(1 − 13δ)‖z‖22 < ‖Az‖22 < (1 + 13δ)‖z‖22,(2.3)

for all z ∈ CN , #(supp(z)) ≤ s.

Remark 2.3. We remark that the results of Theorem 2.2 is not limited to the
Legendre and Chebyshev systems on the unit hypercube, which are of main interest
in this paper, but also holds for any bounded orthonormal system on any underlying
domain, discrete or continuous.

The complete detailed proof of Theorem 2.2 is given in Appendix A.2. However,
to assist the reader in better understanding the logic of our proof we next provide
a sketch that explains the essential features on how we achieved the improved RIP
estimate.

Sketch of proof. To begin, let us denote

ψ(y, z) :=
∑
ν∈J

zνΨν(y), ∀y ∈ U , z ∈ C
N ,

and Es := {z ∈ C
N : ‖z‖2 = 1, #(supp(z)) ≤ s}.

Our goal is to derive conditions on m such that for a set of m random samples
{yi}mi=1 ⊂ U , drawn according to �, then with high probability, there holds for all
z ∈ Es:

1

m

m∑
i=1

|ψ(yi, z)|2 ≈
∫
U
|ψ(y, z)|2d�.(2.4)

Note that the LHS of the above expression equals ‖Az‖22, and the RHS is ‖z‖22 = 1;
thus (2.4) is nothing but (2.3) rewritten with the new notation. We construct a finite
set S of piecewise constant functions on U , which provides a good approximation
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of ψ(·, z), denoted by ψ̃(·, z), for all z ∈ Es, and reduce the task of showing (2.4)
holds for infinitely many z ∈ Es to that of proving

1

m

m∑
i=1

|ψ̃(yi, z)|2 ≈
∫
U
|ψ̃(y, z)|2d�(2.5)

for all ψ̃(·, z) ∈ S. In particular, the family of “discrete” approximations ψ̃(·, z) is
constructed in such a way that (see Appendix A.2, Step 1):

(1) for any z ∈ Es, ψ̃(·, z) ≈ ψ(·, z);

(2) ψ̃(·, z) can be represented as a piecewise constant function on U : ψ̃(·, z) =∑
l∈L ψ̃z

l (·), where each ψ̃z
l is a constant function, pairwise disjointly sup-

ported on a subset of U , representing a scale of ψ̃(·, z) and L is a finite set
of scale; and

(3) for each l ∈ L, the class {ψ̃z
l : z ∈ Es} is finite, whose cardinality is as small

as possible.

With the use of (1) and (2) one can establish the bound (see Appendix A.2, Step
2):∣∣∣∣∣ 1

m

m∑
i=1

|ψ(yi, z)|2 −
∫
U
|ψ(y, z)|2d�

∣∣∣∣∣ �
∣∣∣∣∣ 1

m

m∑
i=1

|ψ̃(yi, z)|2 −
∫
U
|ψ̃(y, z)|2d�

∣∣∣∣∣
≤

∑
l∈L

∣∣∣∣∣ 1

m

m∑
i=1

|ψ̃z
l (yi)|2 −

∫
U
|ψ̃z

l (y)|2d�

∣∣∣∣∣ .(2.6)

Using the basic tail estimate given by Lemma A.2 yields for any l and z, with high
probability

1

m

m∑
i=1

ψ̃z
l (yi) ≈

∫
U

ψ̃z
l (y)d�.(2.7)

We can then obtain (2.4) by employing (2.6) and applying the union bound for
(2.7) over all l, z (see Appendix A.2, Step 3). For this argument to yield small

m, it is critical to construct ψ̃(·, z) so that the total number of functions ψ̃z
l (over

l ∈ L, z ∈ Es) is finite and minimal, justifying the requirement given by (3) above.

As an example, for each l ∈ L, we can define ψ̃z
l according to a covering of Es

under the pseudo-metric

d(z, z′) = sup
y∈U

|ψ(y, z − z′)|,

so that #{ψ̃z
l : z ∈ Es} is roughly a covering number of Es. However, one can check

that in our high-dimensional setting, this covering number grows exponentially in
the dimension of U . Fortunately, an inspection of |ψ(·, z − z′)| reveals that these
functions often have tall spikes in a small subregion of U , while they are relatively
small for the rest of the domain. This motivates us to consider a new “distance”
between z and z′, which is significantly smaller than d(z, z′), given by an upper
bound of |ψ(y, z − z′)| for most y ∈ U . More rigorously, we define

dς(z, z′) := inf
Ũ⊂U

�(Ũ)=1−ς

sup
y∈Ũ

|ψ(y, z − z′)|.

Although dς is not a proper pseudo-metric, an adaptation of the covering number
result can still be derived in this case (see Lemma A.3). This argument is similar
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in spirit to [25, Lemma 3.5]. The approximation ψ̃, constructed with dς , may not
agree with ψ in a small subdomain of U , but one can tune ς so as to not affect the
estimate (2.6).

This completes the sketch of the main proof. �

Remark 2.4. In brief, the RIP (and subsequently, best s-term reconstruction) occurs
with probability exceeding 1 − γ under the condition

m ≥ CΘ2s max{log2(Θ2s) log(N), log(Θ2s) log(log(Θ2s)/γ)}.(2.8)

The first constraint in (2.8) therefore reduces the order of log(s) in (1.8) by one unit.
The second constraint, on the other hand, has an additional log factor compared
to the well-known one, i.e., m ≥ CΘ2s log(1/γ) (see [37]), after balancing leading
to a weaker success probability, as discussed in Section 1.

3. Sparse recovery on lower sets

In this section we focus on a smooth g, given by (1.2), and exploit the fast
decay of its polynomial expansion to further improve (2.8). Central to this task is
the concept of lower or downward closed sets, given Definition 1.1. With this in
mind, instead of best s-term approximations, we are interested in best lower s-term
approximation of g, which is the best among all approximations of g supported on
lower sets of cardinality s. More rigorously, let Λ∗ be a lower subset of F which
realizes the infimum

Λ∗ := arg min
Λ lower
#(Λ)≤s

‖g − gΛ‖,(3.1)

where the norm to be specified later. Here ‖g− gΛ∗‖ is the best lower s-term error,
and our goal is to find approximations of g with error scaling linearly in ‖g − gΛ∗‖.
We expect the best lower s-term error, while generally larger, is close to best s-term
error in our setting. These quantities are particularly identical provided that g is
s-sparse, supp(g) lower, represented by finite Legendre and Chebyshev expansions.

To achieve our goal, it is reasonable to consider a relaxed version of RIP that
specifically involves s-tuples of columns associated with lower sets. Given a multi-
index set Λ ⊂ F , we introduce the quantity

K(Λ) :=
∥∥∥ ∑

ν∈Λ

|Ψν |2
∥∥∥
L∞

(3.2)

and, with an abuse of notation, denote

K(s) := sup
Λ⊂J ,Λ lower

#(Λ)=s

K(Λ),(3.3)

which has already been mentioned in (1.9). We define next the lower restricted
isometry property (lower RIP). This property is exclusive to the present setting
and defined here for submatrices whose columns are associated with indices ν ∈ F .

Definition 3.1 (Lower RIP). For A ∈ C
m×N as in (1.14), we say that A satisfies

the lower restricted isometry property of order s if there exists 0 < δ�,s < 1 such
that

(1 − δ�,s)‖z‖22 ≤ ‖Az‖22 ≤ (1 + δ�,s)‖z‖22(3.4)
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for all z ∈ CN satisfying K(supp(z)) ≤ K(s). The smallest positive number δ�,s
for (3.4) to hold is referred to as the lower restricted isometry constant of A.

Remark 3.2. The lower RIP is a specific case of the weighted RIP, introduced in
[41] for general weights, here with the weights ων = ‖Ψν‖L∞ . By introducing the
notation ‖z‖0,ω =

∑
ν∈supp(z) ω2

ν for z ∈ CN , the weighted RIP constant δω,s was

defined as the smallest number δω,s for which

(1 − δω,s)‖z‖22 ≤ ‖Az‖22 ≤ (1 + δω,s)‖z‖22, ‖z‖0,ω ≤ s.(3.5)

By (3.2), observe that K(supp(z)) ≤ ‖z‖0,ω, hence given z such that ‖z‖0,ω ≤
K(s), then K(supp(z)) ≤ K(s) so that (3.4) is satisfied showing that δω,K(s) ≤ δ�,s.
For the Chebyshev and Legendre systems, the polynomials Ψν all attain their
supremums at (1, . . . , 1), hence for any z ∈ CN , then K(supp(z)) = ‖z‖0,ω, showing
that

δ�,s = δω,K(s).(3.6)

Note the change of order in this relation: loosely speaking, the lower RIP of order
s corresponds to the weighted RIP of order K(s).

An important subclass of z satisfying (3.4) is z ∈ CN with #(supp(z)) ≤ s and
supp(z) lower. One may want to consider a more natural isometry property which
requires (3.4) for only vectors z in the above class. We can see from the following
analysis that this property is weaker but requires the same sampling cost as (3.4).
The sample complexity for lower RIP is established in the following theorem.

Theorem 3.3. Let δ, γ be fixed parameters with 0 < δ < 1/13, 0 < γ < 1 and let
{Ψν}ν∈J be an orthonormal system of finite size N = #(J ). Assume that

m ≥ 26e
K(s)

δ2
log

(K(s)

δ2

)
max

{
25

δ4
log

(
40

K(s)

δ2
log

(K(s)

δ2

))
log(4N),

(3.7)

1

δ
log

( 1

γδ
log

(K(s)

δ2

))}
,

and y1,y2, . . . ,ym are drawn independently from the orthogonalization measure �
associated to {Ψν}. Then with probability exceeding 1−γ, the normalized sampling
matrix A ∈ Cm×N satisfies

(1 − 13δ)‖z‖22 < ‖Az‖22 < (1 + 13δ)‖z‖22(3.8)

for all z ∈ CN , K(supp(z)) ≤ K(s).

The proof of Theorem 3.3 is discussed in the Appendix A.3. This proof essentially
follows the same path as the proof of Theorem 2.2 with few minor changes.

Remark 3.4. In brief, the random matrix A satisfies the lower RIP of order s and,
subsequently, guarantees lower reconstruction with probability exceeding 1 − γ if
the sample size m satisfies

m ≥ CK(s) max{log2(K(s)) log(N), log(K(s)) log(log(K(s))/γ)}.(3.9)

Next, we present a theoretical comparison between the complexity bounds re-
quired by standard RIP (2.8) and lower RIP (3.9), showing the computational cost
saving with our best lower approximations. Assuming that no information about
the support set or the decay of the polynomial coefficients is a priori known, we
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reasonably make the choice J = Hs, which is the smallest set that surely contains
the best lower s indices. For the sake of notational clearness, we denote (Lν)ν∈F
and (Tν)ν∈F the Legendre and Chebyshev basis of L2(U , d�) with � being the uni-
form or Chebyshev measure, respectively. For such polynomials, we have for any
ν ∈ F

‖Tν‖L∞ = 2‖ν‖0/2 and ‖Lν‖L∞ =
d∏

k=1

√
2νk + 1.(3.10)

First, we have the following sharp estimates.

Lemma 3.5. Let Hs be defined as in (1.10) with s ≤ 2d+1. There holds

s/2 ≤ sup
ν∈Hs

‖Tν‖2L∞ ≤ s and s
log 3
log 2 /3 ≤ sup

ν∈Hs

‖Lν‖2L∞ ≤ s
log 3
log 2 .(3.11)

Moreover, the upper estimates hold for all s ≥ 1.

Proof. For ν ∈ Hs, it is easy to see that ‖Tν‖2L∞ = 2‖ν‖0 ≤
∏d

k=1(νk + 1) ≤ s.

Also, since b �→ log(2b+1)
log(b+1) is decreasing over [1, +∞), (2b + 1) ≤ (b + 1)log 3/ log 2 for

any b ≥ 1 which implies ‖Lν‖2L∞ =
∏d

k=1(2νk + 1) ≤
∏d

k=1(νk + 1)
log 3
log 2 ≤ s

log 3
log 2 .

On the other hand, since s ≤ 2d+1, then 2d
′

< s ≤ 2d
′+1 for some d′ ≤ d, so

that the index ν = e1 + · · ·+ ed′ belongs to Hs and yields ‖Tν‖2L∞ = 2d
′ ≥ s/2 and

‖Lν‖2L∞ = 3d
′
= (2d

′
)

log 3
log 2 ≥ (s/2)

log 3
log 2 = s

log 3
log 2 /3. �

For the polynomial systems such as Chebyshev or Legendre (or more generally
Jacobi systems), log(Θ) � log(s) over the hyperbolic cross Hs regardless of the
dimension d. An immediate consequence of the previous lemma and condition
(2.8) is that the RIP can be obtained for J = Hs with

m ≥ C s1+β max
{
log2(s) log(N), log(s) log(log(s)/γ)

}
,(3.12)

where β = 1 for Chebyshev systems and β = log 3
log 2 � 1.58 for Legendre systems,

respectively. The lower bounds in (3.11) show that these orders of s are sharp
in high dimension (d ≥ log2(s) − 1). Following from the estimate #(Hs) ≤
ε−1s1+1/ε(1 − ε)−d/ε, ∀ 0 < ε < 1 (see [8, Theorem 3.7]), if we set ε = 1/2, it
is easy to see that

N ≤ 2s34d.(3.13)

Another estimate of N can be found in [29, Theorem 4.9]

N ≤ e2s2+log2(d).(3.14)

Taking the logarithm of N and plugging into (3.12) give the sample complexity
only depending linearly on d under (3.13) and logarithmically (with another log
factor of s) under (3.14):

m ≥ C s1+β max

{
min

{
log3(s) + d log2(s), log3(s) log(d)

}
,

log(s) log(log(s)/γ)

}
.

(3.15)

Although we have eliminated the exponential growth on d, the condition (1.6)
has not been broken up to this step. Rather, the bound (3.15) is merely acquired
from (1.6) with an estimate of Θ on the Hyperbolic Cross subspace. We proceed
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to detail the complexity bound of lower RIP. As the Chebyshev and Legendre
polynomials attain their supremum at the point 1 = (1, . . . , 1) with the supremums
given in (3.10), the value of K defined in (3.2)-(3.3) is then known and one can
derive estimates for it. For these two systems, we use the notations KT (Λ), KT (s),
KL(Λ) and KL(s), respectively, where

(3.16) KT (Λ) =
∑
ν∈Λ

2‖ν‖0 and KL(Λ) =
∑
ν∈Λ

d∏
k=1

(2νk + 1).

The following estimates of KT (Λ) and KT (Λ) can be found in [10].

Lemma 3.6. Let Λ ⊂ F be a lower set with #(Λ) ≥ 2. There holds

2#(Λ) − 1 ≤ KT (Λ) ≤ (#(Λ))
log 3
log 2 ,(3.17)

3#(Λ) − 1 ≤ KL(Λ) ≤ (#(Λ))2.(3.18)

We note that the left sides in (3.17) and (3.18) follow from
∏d

k=1(2νk + 1) ≥ 3

and 2‖ν‖0 ≥ 2 for any index ν �= 0. We also note that the right side inequalities
are sharp, equalities hold for lower sets of the form {μ ≤ e1 + · · · + ed′}. An

immediate implication of the Lemma 3.6 are the bounds 2s − 1 ≤ KT (s) ≤ s
log 3
log 2

and 3s − 1 ≤ KL(s) ≤ s2 for all s ≥ 2. The upper bounds are actually sharp in
high dimension. We indeed have the following.

Lemma 3.7. Let s ≤ 2d+1. There holds

s
log 3
log 2

3
≤ KT (s) ≤ s

log 3
log 2 ,

s2

4
≤ KL(s) ≤ s2.(3.19)

The upper estimates hold for all s ≥ 2.

Proof. For ν ∈ Hs, the rectangular block Rν := {μ ≤ ν} ⊂ Hs is lower and has a

tensor format, so that from identities 1 +
∑b

b′=1 2 = 1 + 2b and
∑b

b′=0(2b′ + 1) =
(1 + b)2, one infers

KT (Rν) = Πd
k=1(1 + 2νk) and KL(Rν) = Πd

k=1(1 + νk)
2.

Since s ≤ 2d+1, then 2d
′
< s ≤ 2d

′+1 for some d′ ≤ d. For ν = e1 + · · · + ed′ ∈ Hs,

one obtains KT (Rν) = 3d
′
= (2d

′
)

log 3
log 2 and KL(Rν) = (2d

′
)2, which implies

KT (Rν) ≥ (s/2)
log 3
log 2 = s

log 3
log 2 /3, KL(Rν) ≥ (s/2)2 = s2/4,

which completes the proof. �

Combining the complexity bound (3.9) with the estimate (3.19), we arrive at the
following RIP-based recovery guarantee of best lower s-term approximations, with
probability exceeding 1 − γ,

m ≥ C s1+β′
max

{
min

{
log3(s) + d log2(s), log3(s) log(d)

}
,

log(s) log(log(s)/γ)

}
,

(3.20)

where β′ = log 3
log 2 − 1 � 0.58 for Chebyshev system and β′ = 1 for Legendre system.

These conditions eliminate the dependence on Θ2s at the cost of a superlinear
growth on s, yet are clearly weaker than those required by standard RIP; see (3.15).
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We close this section by pointing out that the dependence on d in (3.20) can
be fully eliminated if instead of J = Hs, we work with J = As, the union of all
anchored sets Λ of cardinality smaller than s. Such sets are described in [16] and are
characterized by Λ lower and ek ∈ Λ if and only if ek′ ∈ Λ for any k′ = 1, . . . , k− 1.
Indeed, it is easy to see that As is included in the projection of Hs into an s-
dimensional space, hence d in (3.20) can be replaced by s. Such a subclass of
lower sets is also relevant in polynomial approximation of parametric PDEs (see,
e.g., [14]). It should also be emphasized that other types of polynomial spaces, e.g.,
Total Degree, have been attempted to overcome the fast growth of query complexity
in high-dimensional problems (see, e.g., [47]). However, these approaches impose
an a priori choice of the polynomial subspace unrelated to the number of terms
to be reconstructed and employ the standard RIP guaranteed by (1.8). In our
work, J = Hs is optimally determined based on the need of recovering best lower
s terms, and our lower RIP requires less samples than standard RIP, as discussed
throughout.

4. Weighted �1-minimization for polynomial approximation

on lower sets

In this section, we study a weighted �1-minimization approach with a precise
choice of weights that enable us to realize sparse reconstruction under the lower
RIP. To begin, let ω = (ων)ν∈F ∈ (0,∞)F be a sequence of weights. Given a
vector z = (zν)ν∈F of complex components or a function g =

∑
ν∈F zνΨν , we

define the weighted �1-norm of z and g by

‖g‖ω,1 = ‖z‖ω,1 :=
∑
ν∈F

ων |zν |,

and the best lower s-term error in weighted �1-norm by

σ(�)
s (z)ω,1 := inf

Λ lower
#(Λ)≤s

‖z − zΛ‖ω,1, σ(�)
s (g)ω,1 := inf

Λ lower
#(Λ)≤s

‖g − gΛ‖ω,1.

Recall that we are working with J = Hs, unless otherwise stated.
Assuming that an estimate η of the tail gHc

s
is available (specified later), our

weighted �1-minimization procedure for recovering an approximation g# of g, de-
fined by

(4.1) g# =
∑
ν∈Hs

c#ν Ψν ,

is given in the following: Given ων = ‖Ψν‖L∞ . Find g# from (4.1), with c# =
(c#ν )ν∈Hs

being a minimizer of the following constrained optimization problem

min
z∈CN

‖z‖ω,1 subject to ‖g̃ −Az‖2 ≤ η√
m

.(4.2)

The recovery guarantees that using weighted �1-minimization has been analyzed
in [41] for general choice of (ων)ν∈J . As discussed in Section 1, the benefit of
weighting in terms of query complexity is inconclusive therein. In this work, we
specifically define the weights ων = ‖Ψν‖L∞ for use with �1-minimization and
justify how smooth functions can be reconstructed with a significantly reduced
number of samples compared to the unweighted method (thanks to lower RIP).
Such choice of weight has also been studied in [1] for the RIPless recovery approach
while the condition ων ≥ ‖Ψν‖L∞ has been imposed elsewhere [2, 41].
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In what follows we consider and analyze two scenarios using our weighted �1-
minimization procedure (4.1)-(4.2). First, we assume only an upper estimate of the
tail gHc

s
is available, and second, exact knowledge of the tail is assumed.

4.1. Given an upper estimate of the tail. In this case, the proof of the recov-
ery guarantee of g# in (4.1), using the optimization procedure (4.2), follows the
arguments of general weighted �1-minimization analysis (see [41, Theorem 6.1]).
However, we remove the condition of large s required in the work [41], based on
an improvement of the null space property specific to our setting (see Proposition
4.4). We first need some intermediate estimates.

Lemma 4.1. For any d ≥ 1 and any s ≥ 2,

(4.3) KT (2s) ≥ 2KT (s) and KL(2s) ≥ 4KL(s).

In addition,

KT (s) ≥ 3

2
max
ν∈Hs

‖Tν‖2L∞ and KL(s) ≥ 4

3
max
ν∈Hs

‖Lν‖2L∞ .(4.4)

Proof. For ν = (νk)1≤k≤d, we use the notation ν̂ = (νk)2≤k≤d. Let Λ be a lower
set of cardinality s. We introduce

Λ′ := {(2ν1, ν̂), (2ν1 + 1, ν̂) : ν = (ν1, ν̂) ∈ Λ}.

It is easily checked that Λ′ ⊂ F is lower and #(Λ′) = 2#(Λ) = 2s. Therefore
Λ′ ⊂ H2s. Moreover, for the tensorized Chebyshev and Legendre systems, ων =∏d

k=1 ωνk
, where ωνk

denote the sup norm in one dimension. Hence

K(2s) ≥ K(Λ′) =
∑
μ∈Λ′

ω2
μ =

∑
ν∈Λ

(ω2
2ν1

+ ω2
2ν1+1)ω

2
ν̂ ≥

∑
ν∈Λ

2ω2
ν1

ω2
ν̂ = 2K(Λ),(4.5)

where we have used the increase of the weights which yields ω2ν1
, ω2ν1+1 ≥ ων1

.
For the Legendre system, we have

(ω2
2ν1

+ ω2
2ν1+1) = (4ν1 + 1 + 4ν1 + 3) = 4(2ν1 + 1) = 4ω2

ν1
.(4.6)

Since Λ is an arbitrary lower set included in Hs, (4.5) and (4.6) imply (4.3).
Now let ν ∈ Hs be the index that maximizes ‖Tν‖L∞ over Hs. We have Rν ⊂

Hs, so that KT (s) ≥ KT (Rν) =
∏d

k=1(1 + 2νk) ≥ 3‖ν‖0 = (3/2)‖ν‖0‖Tν‖2L∞ .

Similarly, for ν ∈ Hs maximizing ‖Lν‖L∞ , KL(s) ≥ KL(Rν) =
∏d

k=1(1 + νk)
2 ≥

(4/3)‖ν‖0
∏d

k=1(1 + 2νk), where we have used (1 + t)2 ≥ 4
3 (1 + 2t) for any t ≥ 1.

Since for s ≥ 2, we get that ν �= 0 and ‖ν‖0 ≥ 1. The proof is complete. �

Remark 4.2. In the previous proof, if we define Λ′ by copying Λ using 3ν1, 3ν1 +1,
3ν1 + 2, we get KT (3s) ≥ 3KT (s). For convenience, in the next proposition, we
will employ the estimates: for any d ≥ 1 and any s ≥ 2,

(4.7) KT (3s) ≥ 3KT (s) and KL(2s) ≥ 3KL(s),

where the second one is slightly weaker than (4.3).

We also employ the weighted null space property result [41, Theorem 4.5], re-
stated below with small changes in parameters, in the subsequent analysis.
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Lemma 4.3. Given J a subset of F (not necessarily Hs) and ω = (ων)ν∈J a
general weight. Let A ∈ Cm×N be defined as in (1.14) and satisfy the weighted RIP
(3.5) with constant

δω,3s < 1/5

for some s ≥ (4/3) supν∈J ω2
ν . Then, A satisfies the weighted robust null space

property of order s with constants ρ = 4δ
1−δ < 1, τ =

√
1+δ
1−δ , and δ = δω,3s, i.e.,

‖zΛ‖2 ≤ ρ√
s
‖zΛc‖ω,1 + τ‖Az‖2 for all z ∈ C

N and all Λ ⊂ J with
∑
ν∈Λ

ω2
ν ≤ s.

Now we are ready to provide a null space property result appropriate to the
lower reconstruction, associated with Chebyshev and Legendre systems defined on
the Hyperbolic Cross index set.

Proposition 4.4. Let s ≥ 2, J = Hs, and ων = ‖Ψν‖L∞ , and let A ∈ Cm×N be
a normalized sampling matrix satisfying the lower RIP (3.4) with

δ�,αs < 1/5,(4.8)

where α = 2 for Legendre system and α = 3 for Chebyshev system. Then, for any
Λ ⊂ Hs with K(Λ) ≤ K(s) and any z ∈ CN ,

‖zΛ‖2 ≤ ρ√
K(s)

‖zΛc‖ω,1 + τ‖Az‖2(4.9)

with ρ = 4δ
1−δ < 1, τ =

√
1+δ
1−δ , and δ = δ�,αs.

Proof. Since ων = ‖Ψν‖L∞ , we have K(Λ) =
∑

ν∈Λ ω2
ν , therefore proving (4.9) is

equivalent to showing that A satisfies the weighted robust null space property of
order K(s) with constants ρ and τ as in our proposition. By Lemma 4.3, this can
follow if A satisfies weighted RIP with δω,3K(s) < 1/5 and K(s) ≥ (4/3) supν∈Hs

ω2
ν .

In view of (4.7), 3K(s) ≤ K(αs) for both Legendre and Chebyshev systems. Since
δω,t is increasing in t, δω,3K(s) ≤ δω,K(αs) = δ�,αs < 1/5; see Remark 3.2 for the

equality. We also have from (4.4) that K(s) ≥ (4/3) supν∈Hs
ω2
ν for any s ≥ 2 for

both systems, which completes the proof. �

Combining (3.20) and Proposition 4.4 yields the uniform recovery of g up to the
best lower s-term error and the tail bound.

Theorem 4.5. Let s ≥ 2, J = Hs and N = #(Hs). Consider a number of samples

m ≥ C s1+β′
max

{
min

{
log3(s) + d log2(s), log3(s) log(d)

}
,

log(s) log(log(s)/γ)

}
,

(4.10)

where β′ = log 3
log 2−1 if {Ψν} is a Chebyshev system and β′ = 1 if {Ψν} is a Legendre

system. Let y1,y2, . . . ,ym be drawn independently from the orthogonalization mea-
sure � associated to {Ψν} and A ∈ C

m×N be the associated normalized sampling
matrix as in (1.14). Then, with probability exceeding 1 − γ, the following holds
for all functions g =

∑
ν∈F cνΨν : Given g̃, ξ as in (1.14)–(1.15) and η satisfying
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‖ξ‖2 ≤ η√
m
, the function g# =

∑
ν∈Hs

c#ν Ψν , with c# = (c#ν )ν∈Hs
a minimizer of

(4.2), satisfies

‖g − g#‖∞ ≤ ‖g − g#‖ω,1 ≤ c1σ
(�)
s (g)ω,1 + d1η

√
K(s)

m
,

‖g − g#‖2 ≤ c2
σ
(�)
s (g)ω,1√

K(s)
+ d2η

√
1

m
.

Above, c1, c2, d1, and d2 are universal constants.

Proof. According to Theorem 3.3 and the discussions that follow, for a fixed α > 0,
A satisfies the lower RIP of order αs and δ�,αs < 1/5 with probability exceeding
1 − γ under the complexity (4.10). Setting α = 2 for Legendre system and α = 3
for Chebyshev system and applying Proposition 4.4, (4.9) holds for all z ∈ CN and
all Λ ⊂ J with K(Λ) ≤ K(s). Following the arguments in [41, Theorem 4.2], for
s ≥ 2 and all z, z̃ ∈ CN , we have

‖z − z̃‖ω,1 ≤ 1 + ρ

1 − ρ
(‖z‖ω,1−‖z̃‖ω,1+2σ(�)

s (z̃)ω,1)+
2τ

√
K(s)

1 − ρ
‖A(z−z̃)‖2,

‖z − z̃‖2 ≤ c2√
K(s)

(‖z‖ω,1 − ‖z̃‖ω,1 + 2σ(�)
s (z̃)ω,1) + d2‖A(z − z̃)‖2,

(4.11)

where c2, d2 are universal constants. Recall that c = (cν)ν∈J denotes the exact
coefficients, which satisfy ‖Ac− g̃‖2 = ‖ξ‖2 ≤ η√

m
. Since c̃ is a minimizer of (4.2),

then ‖Ac# − g̃‖2 ≤ η√
m

and ‖c#‖ω,1 ≤ ‖c‖ω,1. We set z = c# and z̃ = c in (4.11)

to obtain

‖c− c#‖ω,1 ≤ 2(1 + ρ)

1 − ρ
σ(�)
s (c)ω,1 +

4τ

1 − ρ
η

√
K(s)

m
,

‖c− c#‖2 ≤ 2c2√
K(s)

σ(�)
s (c)ω,1 + 2d2η

√
1

m
.

(4.12)

The bounds of g − g# in weighted �1- and �2-norms follow from (4.12), with an
update on universal constants c2 and d2. Finally, the bound on ‖g − g#‖∞ can be
derived with observation

‖g − g#‖∞ ≤
∑
ν∈J

|cν − c#ν |‖Ψν‖L∞ +
∑

ν∈F\J
|cν |‖Ψν‖L∞ = ‖g − g#‖ω,1. �

Remark 4.6. In Theorem 4.5, ξ is actually a random variable varying with the
sampling points (yi)1≤i≤m. It can be shown, however, that ‖ξ‖2 ≤ ‖gHc

s
‖ω,1 for

every set of samples, thus η can be set deterministically as
√

m‖gHc
s
‖ω,1 ≤ η.

4.2. Given an exact estimate of the tail. This assumption allows us to prove a
stronger convergence rate. It should be mentioned that a result of this type has been
derived in [41], however, applying this to the reconstruction of the best lower s-term
approximations (which is comparable to best weighted K(s)-term approximations,
see Remark 3.2) would lead to a choice of the index set depending on the weights
as

J = {ν ∈ N
d
0 : ω2

ν ≤ CK(s)}.(4.13)

In our work, J is specified instead to be the smallest set that contains the supports
of all downward closed sets of cardinality s, i.e., J = Hs. As shown in Lemma
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4.1, ω2
ν ≤ 3

4 K(s) for all ν ∈ Hs. The converse, i.e., ω2
ν ≥ CK(s) for all ν /∈ Hs,

however, does not hold. Indeed, for our Chebyshev weights, definition (4.13) would
lead to a J with infinite cardinality. Therefore, Hs represents a significantly smaller
index set than those considered in [41]. Nonetheless, the recovery of g up to the best
lower s-term error is still available without condition (4.13), provided that cν/ων

is small in Hc
s. To clarify this assumption, for g =

∑
ν∈F cνΨν , we introduce a

parameter λ ≥ 0 such that

max
ν∈Hc

s

|cν |
ων

≤ (1 + λ) min
ν∈J̃

|cν |
ων

(4.14)

for some set J̃ ⊂ Hs with K(J̃ ) ≥ 2K(s) or, equivalently,

λ := min
J̃⊂Hs

K(J̃ )≥2K(s)

⎛⎝ max
ν∈Hc

s

|cν |/ων

min
ν∈J̃

|cν |/ων

⎞⎠− 1.(4.15)

Many subsets J̃ of Hs with cardinality 2s satisfy K(J̃ ) ≥ 2K(s); see (4.3). Thus,
the minimum in the right-hand side of (4.14) can be taken over only 2s multi-indices
in Hs. On the other hand, for function g whose expansion coefficients decay fast,

it is reasonable to assume small maxν∈Hc
s

|cν |
ων

, due to small cν and possibly big ων

for ν ∈ Hc
s. As a result, λ is expected to be small in this effort.

We first need an estimate of ‖cHc
s
‖2. The choice J = Hs is not essential in this

development, for which reason we state the result for general ‖cJ c‖2.

Lemma 4.7. Let c = (cν)ν∈F and J be a subset of F . For all s ≥ 1, there holds

‖cJ c‖2 ≤ ‖cJ c‖ω,1√
K(s)

+
√

K(s) max
ν∈J c

|cν |
ων

.(4.16)

Proof. We introduce J ′ = {ν ∈ J c : ω2
ν ≥ K(s)} and J ′′ = J c \ J ′. By definition

of J ′, we have

‖cJ ′‖2 ≤
√ ∑

ν∈J ′

ω2
νc2ν

K(s)
≤ ‖cJ ′‖ω,1√

K(s)
.

Since ‖cJ c‖2 ≤ ‖cJ ′‖2 + ‖cJ ′′‖2 and ‖cJ c‖ω,1 = ‖cJ ′‖ω,1 + ‖cJ ′′‖ω,1, one only
needs to show that

‖cJ ′′‖2 ≤ ‖cJ ′′‖ω,1√
K(s)

+
√

K(s) max
ν∈J ′′

|cν |
ων

.

We order J ′′ according to a nonincreasing order of (|cν |/ων)ν∈J ′′ and then partition

J ′′ as J ′′ =
⋃L

l=1 Jl where we inductively choose the sets Jl according to: J0 = ∅;
for l ≥ 1 and J0, . . . ,Jl−1 having been built, we set Ml = J ′′ \ {J0 ∪ · · · ∪ Jl−1},
and let Jl = Ml if K(Ml) < K(s), or be a subset containing the largest elements
of Ml such that K(s) ≤ K(Jl) ≤ 4K(s). If the induction does not terminate,
L = ∞ in which case

K(s) ≤ K(Jl) ≤ 4K(s), ∀ l ≥ 1.

If the induction terminates, L < ∞ and we have only K(JL) < K(s).
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Now, we denote by r+l and r−l the largest and smallest entries in (|cν |/ων)ν∈Jl
.

An easy extension of [20, Lemma 6.14] yields for all 1 ≤ l < L:

‖cJl
‖2 ≤ ‖cJl

‖ω,1√
K(Jl)

+

√
K(Jl)

4
(r+l − r−l ) ≤ ‖cJl

‖ω,1√
K(s)

+
√

K(s)(r+l − r−l ).

In the case L < ∞, we have ‖cJL
‖2 ≤ r+L

√
K(JL) ≤ r+L

√
K(s). There follows in

both cases L < ∞ and L = ∞:

‖cJ ′′‖2 ≤
L∑

l=1

‖cJl
‖2 ≤ ‖cJ ′′‖ω,1√

K(s)
+

√
K(s)r+1 .

Since r+1 ≤ maxν∈J ′′
|cν |
ων

the proof is complete. �

We are now ready to state and prove the recovery guarantee, assuming an exact
estimate of gHc

s
exists. The recovery holds with high probability for each fixed

function and therefore is nonuniform.

Theorem 4.8. Let s ≥ 2, J = Hs, and N = #(Hs), and let m be as in (4.10).
Consider a function g =

∑
ν∈F cνΨν with ‖g‖ω,1 < ∞, and λ defined as in (4.15).

We introduce Eg := max{
√

2‖gHc
s
‖2,

√
2‖gHc

s
‖ω,1√

K(s)
} and let η be such that

Eg ≤ η√
m

≤ (1 + ε)Eg(4.17)

for some ε > 0. Then, with probability exceeding 1 − γ, the function g# =∑
ν∈Hs

c#ν Ψν , with the vector c# = (c#ν )ν∈Hs
a minimizer of (4.2), satisfies

‖g − g#‖∞ ≤ ‖g − g#‖ω,1 ≤ (1 + λ + ε)c3σ
(�)
s (g)ω,1,

‖g − g#‖2 ≤ (1 + λ + ε)c4
σ
(�)
s (g)ω,1√

K(s)
.

(4.18)

Here, c3 and c4 are universal constants.

Proof. We introduce ξ̂ = (ξ̂i)1≤i≤m = (gHc
s
(yi))1≤i≤m. Since yi are i.i.d. random

variables with respect to �, by Lemma 4.7,

E[ξ̂2i ] = ‖cHc
s
‖22 ≤

2‖cHc
s
‖2ω,1

K(s)
+ 2K(s)M2

Hc
s
,(4.19)

where we have defined MHc
s

:= maxν∈Hc
s

|cν |
ων

. We consider two cases:

• Case 1: ‖cHc
s
‖2 >

‖cHc
s
‖ω,1√

K(s)
. Since |ξ̂i| ≤ ‖cHc

s
‖ω,1 <

√
K(s)‖cHc

s
‖2, it holds

that

E

[
(ξ̂2i − E[ξ̂2i ])

2
]
≤ E[ξ̂4i ] ≤ K(s)‖cHc

s
‖22 E[ξ̂2i ] ≤ K(s)‖cHc

s
‖42.

Applying Bernstein’s inequality with the mean-zero random variable ξ̂2i − E[ξ̂2i ],

P

( m∑
i=1

ξ̂2i
m

− ‖cHc
s
‖22 ≥ κ

)
≤ exp

(
− mκ2/2

K(s)‖cHc
s
‖42 + κ

3K(s)‖cHc
s
‖22

)
.

Choose κ = ‖cHc
s
‖22; then there follows

P

( m∑
i=1

ξ̂2i
m

≥ 2‖cHc
s
‖22

)
≤ exp

(
− 3m

8K(s)

)
.
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• Case 2: ‖cHc
s
‖2 ≤ ‖cHc

s
‖ω,1√

K(s)
. Similarly to [41], by Bernstein’s inequality,

P

( m∑
i=1

ξ̂2i
m

≥
2‖cHc

s
‖2ω,1

K(s)

)
≤ P

( m∑
i=1

ξ̂2i
m

− ‖cHc
s
‖22 ≥

‖cHc
s
‖2ω,1

K(s)

)
≤ exp

(
− 3m

8K(s)

)
.

In both cases, given that m ≥ (8/3)s1+β′
log(1/γ) ≥ (8/3)K(s) log(1/γ), then

with probability exceeding 1 − γ,

1

m
‖ξ̂‖22 ≤ max

{
2‖cHc

s
‖22,

2‖cHc
s
‖2ω,1

K(s)

}
≤

4‖cHc
s
‖2ω,1

K(s)
+ 4K(s)M2

Hc
s
,

where the second inequality follows from (4.19). Under the condition (4.17), an
application of Theorem 4.5 yields

‖g − g#‖ω,1 ≤ c1σ
(�)
s (c)ω,1 + (1 + ε)d1‖cHc

s
‖ω,1 + (1 + ε)d1K(s)MHc

s
.(4.20)

Let Λ∗ denote the support of best lower s-term approximation of g in �ω,1-norm, J̃
be determined by (4.14)-(4.15). For every ν ∈ Ĵ := J̃ \ Λ∗, there holds ω2

νMHc
s
≤

(1 + λ)ω2
ν
|cν |
ων

= (1 + λ)ων |cν |. Summing these over Ĵ gives

K(s)MHc
s
≤ K(Ĵ )MHc

s
≤ (1 + λ)‖cĴ ‖ω,1,(4.21)

the first inequality coming from K(J̃ ) ≥ 2K(s). We finally combine (4.20) and
(4.21) to obtain (4.18), which completes the proof. �

5. Numerical illustrations

In this section, we provide several numerical examples to demonstrate the effi-
ciency of our weighted �1-minimization with ων = ‖Ψν‖L∞ for smooth multivariate
function recovery. We focus here on the approximation of g in terms of orthonormal
Legendre expansions by solving

(5.1) min
z∈CN

‖z‖ω,1 subject to ‖g̃ −Az‖2 ≤ η√
m

,

for various choices of weights, where η =
√

m‖gHc
s
‖2. This tail bound complies

with Theorem 4.5, based on an estimate of ‖ξ‖2 (or ‖g̃−Ac‖2) via ‖gHc
s
‖2, and is

less conservative than those analytically studied in Theorem 4.8. As we test with
simple functions, the expansion of g can be computed numerically with the use of a
quadrature approximation yielding an estimate of the tail η a priori. The software
code SPGL1 [44, 45] is employed to solve (5.1).

In each example, we choose the polynomial subspace PJ ≡ PHs
, and increase

the number of samples m up to some mmax < N = #(Hs). For each ratio m/N ,
the set of random samples is fixed over various choices of weights for a performance
comparison. We then run 50 trials for the averaged L2

� error, setting the maximum
number of iterations in SPGL1 per trial to 10,000. Our results are shown in Figures
1–4 for several multivariate functions. The left panels represent the magnitudes
of polynomial coefficients (computed with MATLAB via a sparse-grid algorithm)
indexed in Hs and sorted lexicographically. The center panels depict the decay of
the coefficients once sorted by magnitude. The right panels show the corresponding
convergence results. In Figure 5, we include some results of the approximation
errors in the L∞-norm, showing little change in the performance of the investigated
weights compared to the L2

� case.



1434 A. CHKIFA, N. DEXTER, H. TRAN, AND C. G. WEBSTER

0 500 1000 1500 2000

   
 

10-70

10-60

10-50

10-40

10-30

10-20

10-10

10 0
|c
ν j
|

j
0 500 1000 1500 2000

10-70

10-60

10-50

10-40

10-30

10-20

10-10

10 0

|c
ν j
|

j (after sorting)

   
 

0.1 0.15 0.2 0.25

10-4

10-3

E
[|
|g
−

g
# |
| 2
]

m/N

ων=1
ων=∏k=1(νk+1)

1/4

ων=∏k=1(νk+1)

ων=∏k=1(νk+1)
3/2

ων=∏k=1(νk+1)
2

ων=∏k=1√2νk+1

d

d

d

d

d

0 1000 2000 3000 4000 5000
10-50

10-40

10-30

10-20

10-10

10 0

1010

|c
ν j
|

j
0 1000 2000 3000 4000 500010-50

10-40

10-30

10-20

10-10

10 0

1010
|c
ν j
|

j (after sorting)

0.1 0.15 0.2 0.25

10-5

10-4

E
[|
|g
−

g
# |
| 2
]

m/N

ων=1
ων=∏k=1(νk+1)

1/4

ων=∏k=1(νk+1)

ων=∏k=1(νk+1)
3/2

ων=∏k=1(νk+1)
2

ων=∏k=1√2νk+1

d

d

d

d

d

Figure 1. Comparison of the averaged L2
� error in approximat-

ing g(y) =
∏d

k=�d/2�+1 cos(16yk/2
k)

∏�d/2�
k=1 (1−yk/4k)

using weighted �1-minimization

with various choices of weights. (Top) d = 8, N = 1843, and
‖gHc

s
‖2 = 1.5922e − 05. (Bottom) d = 16, N = 4129, and

‖gHc
s
‖2 = 1.3388e − 06.

Our experiments indicate that for functions with very fast decaying polynomial
expansions, ων = ‖Ψν‖L∞ is virtually the optimal weight. Indeed, for the function
concerned in Figure 1, consisting of trigonometric and rational univariate functions,
we see in both d = 8 and d = 16 that the weight ων = ‖Ψν‖L∞ significantly
outperforms the unweighted �1 approach. We note that in d = 16, higher weights
begin to have decreasing benefit, performing worse than our proposed weight.

The results in Figure 2 are related to a function that involves the exponent of
a sum of univariate trigonometric functions. We note that only a small fraction
of coefficients exceed 10−16 in both d = 8 and d = 16. In this case, we see that
the weighted �1 with the weight ων = ‖Ψν‖L∞ performs the best out of all of
the weights supplied. We also observe that increasing the weights beyond ‖Ψν‖L∞

leads to a corresponding increase in the averaged L2
� error.

In Figure 3, we test with a root of a rational function. Here again, the weight
ων = ‖Ψν‖L∞ performs the best, and the approximation errors grow as the weights
increase beyond this weight. The two highest weights even perform worse than un-
weighted �1 for higher values of m/N . Comparing Figures 1 and 3, the similar center
panels suggest similar decay rates for both functions inside Hs. The performance
of the weights between the two examples, however, drastically differs, possibly due
to the different support of the large coefficients. For this function, we were unable
to test with d = 16 and N = 4129 due to the high expansion tail.
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Figure 2. Comparison of the averaged L2
� error in approximat-

ing g(y) = exp
(

−
∑d

k=1 cos(yk)

8d

)
using weighted �1-minimization

with various choices of weights. (Top) d = 8, N = 1843, and
‖gHc

s
‖2 = 4.0232e − 07. (Bottom) d = 16, N = 4129, and

‖gHc
s
‖2 = 2.0155e − 06.
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Figure 3. Comparison of the averaged L2
� error in approximating

g(y) =

[ ∏�d/2�
k=1 (1+4ky2

k)∏d
k=�d/2�+1(100+5yk)

]1/d
using weighted �1-minimization

with various choices of weights. d = 8, N = 1843, and ‖gHc
s
‖2 =

6.1018e − 3.
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On the other hand, if the polynomial expansion is less sparse, our weight may
not be optimal. Figure 4 shows the results for an exponential function of a linear
combination of the 1-d variables. For this function, over half of the coefficients in Hs

exceed 10−8, and ων = ‖Ψν‖L∞ performs worse than the larger weights. Still, we
observe here, as in all tests for smooth functions in higher dimensions, i.e., d = 8
and d = 16, that our weight consistently provides improved accuracy compared
with the unweighted �1, thus confirming the theory presented throughout.

All of the results have been presented in terms of the L2
� error thus far. To

investigate how the approximations behave pointwise, we also measure all the errors
in the L∞-norm. The achieved results show little or no change in the relative
performance with respect to different choice of weights, compared to that of the L2

�

case, i.e., our weight is always more accurate than the unweighted approach and
in cases of Figure 1–3 is the optimal weight. For brevity, we only show here the
L∞ error of the approximations considered in Figure 2. Figure 5 highlights a key
advantage of our approach that focusing on best lower s-term recovery mitigates
spurious oscillations that occur when using high-degree polynomial approximations.
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Figure 4. Comparison of the averaged L2
� error in approximat-

ing g(y) = exp
(
−

∑d
k=1 yk

2d

)
using weighted �1-minimization with

various choices of weights. (Top) d = 8, N = 1843, and
‖gHc

s
‖2 = 7.2714e − 07. (Bottom) d = 16, N = 4129, and

‖gHc
s
‖2 = 3.7412e − 07.



HIGH-DIMENSIONAL COMPRESSED SENSING ON LOWER SETS 1437

0.1 0.15 0.2 0.25

10-5

10-4

10-3

m/N

ων=1
ων=∏k=1(νk+1)

1/4

ων=∏k=1(νk+1)

ων=∏k=1(νk+1)
3/2

ων=∏k=1(νk+1)
2

ων=∏k=1√2νk+1

d

d

d

d

d

E
[|
|g
−

g
# |
| L

∞
]

0.1 0.15 0.2 0.25
2×10-5

5×10-5

1×10-4

2×10-4

3×10-4

m/N

ων=1
ων=∏k=1(νk+1)

1/4

ων=∏k=1(νk
+1)

ων=∏k=1(νk+1)
3/2

ων=∏k=1(νk+1)
2

ων=∏k=1√2νk+1

d

d

d

d

d

E
[|
|g
−

g
# |
| L

∞
]

Figure 5. Comparison of the averaged L∞ error of approxima-
tions studied in Figure 2. (Left) d = 8 and (Right) d = 16.

6. Concluding remarks

In this work we present a novel compressed sensing approach for sparse Legendre
and Chebyshev approximations of real and complex functions in high dimensions.
Motivated by the fact that the target function in many applications is smooth and
characterized by a rapidly decaying orthonormal expansion, whose most important
terms are captured by a lower set, we develop an �1-minimization procedure with a
precise choice of weights to impose the lower preference. Through rigorous analysis
and numerical illustrations we demonstrate that the proposed method possesses
a significantly reduced sample complexity compared to existing techniques. This
advantage is established through the introduction of lower RIP, a weaker version
of RIP that is associated with lower sets, and an optimal choice of polynomial
subspace. In addition, we prove a generalized version of the result in [5] for bounded
orthonormal systems and improve the RIP estimate by one logarithm factor.

Extending the theory and the procedures developed herein for approximating
high-dimensional parameterized PDE systems is the next logical step, as it has
been known that for a large class of such systems, the polynomial chaos expan-
sions of parameterized solutions decay exponentially. A significant challenge as-
sociated with this problem is that the “signal” c = (cν)ν∈J to be recovered is
Hilbert-valued, rather than real or complex, components, i.e., cν ∈ V . As shown in
[18, 24, 30, 35, 39, 48], standard compressed sensing techniques only approximate a
functional of PDE solutions, for instance, u(x�,y) (via cν(x�)) at a single location
x� in physical space. Although u(·,y) can be constructed from these pointwise
evaluations using piecewise polynomial interpolation, least square regression, etc.,
this practice faces several limitations. First, the decay of the polynomial coeffi-
cients may vary greatly over points in the physical domain, leading to different
levels of accuracy among pointwise evaluations, rendering less efficient global eval-
uation. Second, a priori estimate of the tail expansion is required at every selected
node, which may not be a realistic requirement. Also, estimates of cν in energy
norms, well known in the existing theory, cannot be exploited for improving the
convergence of recovery algorithms. To address these difficulties, we aim to in-
vestigate new convex optimization and thresholding frameworks for Hilbert-valued
functions, so that cν ∈ V can be directly computed. The mathematical analysis
and computational aspect of this approach will be documented in future work.
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Appendix A. Proofs of the RIPs

We recall the following notations, which will be used throughout this section:

B1,N := {z ∈ C
N : ‖z‖1 = 1},

Es := {z ∈ C
N : ‖z‖2 = 1, #(supp(z)) ≤ s},

E�
s := {z ∈ C

N : ‖z‖2 = 1, K(supp(z)) ≤ K(s)}, and

ψ(y, z) :=
∑
ν∈J

zνΨν(y), with y ∈ U , z ∈ C
N .

A.1. Supporting lemmas. First, we derive a Chernoff-Hoeffding bound for com-
plex random variables, as well as a tail bound for Bernoulli random variables.

Lemma A.1. Let X1, . . . , XM be M independent identically distributed complex-
valued random variables satisfying |Xk| ≤ a and E[Xk] = X for all k. We denote

X = 1
M

∑M
k=1 Xk. For every μ > 0,

P

(∣∣X − X
∣∣ ≥ μ

)
≤ 4 exp

(
−Mμ2

4a2

)
.(A.1)

Proof. We have

P
(∣∣X − X

∣∣ ≥ μ
)
≤ P

(∣∣�(X − X)
∣∣ ≥ μ√

2

)
+ P

(∣∣�(X − X)
∣∣ ≥ μ√

2

)
.

Applying Hoeffding’s inequality [27] for two sequences of bounded real random
variables {�(Xk)} and {�(Xk)}, there holds

P

(∣∣�(X − X)
∣∣ ≥ μ√

2

)
≤ 2 exp

(
−Mμ2

4a2

)
,

P

(∣∣�(X − X)
∣∣ ≥ μ√

2

)
≤ 2 exp

(
−Mμ2

4a2

)
.

The proof is then complete. �

Lemma A.2. Let X1, . . . , XM be M independent identically distributed Bernoulli

random variables with E[Xk] = X for all k. Denote X = 1
M

∑M
k=1 Xk. Then, for

every 0 < μ1 < 1, μ2 > 0 and M ≥ 16e
μ1μ2

, there holds

P

(
|X − X| ≥ μ1X + μ2

)
≤ exp

(
−Mμ1μ2

16e

)
.(A.2)

Proof. Let ε1, . . . , εM be a Rademacher sequence. Using symmetrization and Khint-
chine inequality [20, Section 8], we have for any q ≥ 1,

EX

∣∣X − X
∣∣q ≤ 2q

Mq
EXEε

∣∣∣∣∣
M∑
k=1

εkXk

∣∣∣∣∣
q

≤ 2q+
3
4 e−q/2qq/2

Mq
EX

(
M∑
k=1

X2
k

)q/2

=

(
21+

3
4q
√

q√
eM

)q

EXX
q/2

.
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Denote C = 27/4e−1/2; then there follows(
EX

∣∣X − X
∣∣q) 1

q ≤
21+

3
4q
√

q√
eM

(
EXX

q
2

) 1
q

≤ C

√
q

M

√
X + C

√
q

M

(
EX

∣∣X − X
∣∣q) 1

2q

.

The last inequality implies(
EX

∣∣X − X
∣∣q) 1

q ≤ C2 q

M
+ 2C

√
q

M

√
X.

Applying Markov’s inequality gives

P

(∣∣X − X
∣∣ ≥ eC2 q

M
+ 2eC

√
q

M

√
X

)
≤ e−q.

Finally, it is easy to see that

eC2 q

M
+ 2eC

√
q

M

√
X ≤ μ1X +

C2qe

M

(
e

μ1
+ 1

)
< μ1X +

C2qe2
√

2

Mμ1
.

Defining q = Mμ1μ2

16e so that μ2 = C2qe2
√
2

Mμ1
, we conclude the proof. �

Next, we state and prove an extended covering number result.

Lemma A.3. For 0 < ς < 1, μ > 0, there exists a set D ⊂ CN such that

(i) For all z ∈ Es, y1, . . . ,ym ∈ U , there exists z′ ∈ D satisfying:

|ψ(y, z − z′)| ≤ μ with probability exceeding 1 − ς in (U , �), and(A.3)

|ψ(yi, z − z′)| ≤ μ for at least (1 − ς)m indices i ∈ {1, . . . , m}.(A.4)

(ii) The cardinality of D satisfies

log(#(D)) ≤ (8/μ2)Θ2s log(4N) log(12/ς).(A.5)

Proof. We will find D using the empirical method of Maurey. First, we observe
that Es ⊂

√
sB1,N , hence if we denote P = {±ej

√
2s,±iej

√
2s}1≤j≤N , where (ej)

are canonical unit vectors in C
N , we have Es ⊂ conv(P). Every z ∈ Es can be

represented as z =
∑4N

r=1 λrvr, for some λr ≥ 0,
∑4N

r=1 λr = 1 and vr listing 4N
elements of P. There exists a probability measure λ on P that takes the values
vr ∈ P with probability λr.

Let z1, . . . , zM be i.i.d random variables with law λ. Note that Ezk = z, for all
k = 1, . . . , M . For each y ∈ U , ψ(y, zk) is also a complex-valued random variable
on probability space (ψ(y,P), λ) with

|ψ(y, zk)| ≤ Θ
√

2s and Eψ(y, zk) = ψ(y, z).

Denote z = 1
M

∑M
k=1 zk, let D be the set of all possible outcomes of z and let λ

be the probability measure on D according to z. We define a characteristic function
χ on (U × D, � ⊗ λ) such that

χ(y, z) =

{
1, if |ψ(y, z − z)| ≥ μ,

0, if |ψ(y, z − z)| < μ.
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Applying Lemma A.1 yields for all y ∈ U ,∫
D

χ(y, z)dλ = Pz

(
|ψ(y, z − z)| ≥ μ

)
≤ 4 exp

(
−Mμ2

8Θ2s

)
.

There follows∫
D

(∫
U

χ(y, z)d�

)
dλ =

∫
U

(∫
D

χ(y, z)dλ

)
d� ≤ 4 exp

(
−Mμ2

8Θ2s

)
,

which by Markov’s inequality yields that with probability exceeding 2/3, z satisfies

Py

(
|ψ(y, z − z)| ≥ μ

)
=

∫
U

χ(y, z)d� ≤ 12 exp
(
−Mμ2

8Θ2s

)
.(A.6)

Now, repeating the above arguments to the set {y1, . . . ,ym} with discrete uniform
distribution, one can also derive that with probability of z exceeding 2/3, there
holds

|ψ(yi, z − z)| ≥ μ, for at most 12 exp
(
−Mμ2

8Θ2s

)
m indices i ∈ {1, . . . , m}.(A.7)

Hence, there exists a realization z′ of z in D fulfilling both (A.6) and (A.7). Note

that #(D) ≤ (4N)M . By defining a new variable ς = 12 exp
(
−Mμ2

8Θ2s

)
and elimi-

nating M , we conclude the proof. �

We observe that a sharper estimate of log(#(D)) is possible. Indeed, one can

bound #(D) by
(
4N+M

M

)
instead of (4N)M , under which the assertion (ii) is replaced

by

log(#(D)) ≤ 8

μ2
Θ2s log

(
e +

eNμ2

Θ2s log(12/ς)

)
log

(
12/ς

)
.(A.8)

Consequently, the RIP estimate can be improved with a slightly weaker logarithm
factor. We will detail this point later in Remark A.5.

A.2. Proof of Theorem 2.2.

Proof. We define the set of integers

L = Z ∩
( log(δ)

log(1 + δ)
+ 1,

log(Θ
√

s)

log(1 + δ)
+ 1

)
,(A.9)

and denote by l, l the minimum and maximum of L, respectively, where L has been
chosen so that the integers l and l satisfy

(1 + δ)l−2 ≤ δ and (1 + δ)l ≥ Θ
√

s.(A.10)

Let Q := {y1, . . . ,ym} be the sample set containted in U and denote by �Q the
discrete uniform measure associated with Q.

Step 1. For 0 < ς < 1 (exact value will be set later), we seek to construct ψ̃
approximating ψ such that:

(i) For all z ∈ Es, the following holds with probability exceeding 1−ς in (U , �),
as well as probability exceeding 1 − ς in (Q, �Q):

(1 − 3δ/2) ψ̃(y, z) <|ψ(y, z)| < (1 + 3δ/2) ψ̃(y, z), if ψ̃(y, z) > 0,

|ψ(y, z)| < 6δ/5, if ψ̃(y, z) = 0.
(A.11)
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(ii) For all z ∈ Es, there exists a pairwise disjoint family of subsets (I
(z)
l )l∈L of

U depending on z such that

ψ̃(·, z) =
∑
l∈L

(1 + δ)lχ
I
(z)
l

.(A.12)

(iii) For every l ∈ L, (I
(z)
l )z∈Es

belongs to a finite class Fl of subsets of U
satisfying

log(#Fl) ≤
32

δ3(1 + δ)2l−2
Θ2s log (4N) log

(
12 log(δ−1Θ

√
s)

ς log(1 + δ)

)
.(A.13)

First, for l ∈ L, let Dl be a finite subset of CN determined as in Lemma A.3

with μ = δ(1+δ)l−1

2 and 0 < ς ′ < 1 (to be set accordingly to meet our needs). We
have

log(#Dl) ≤
32

δ2(1 + δ)2l−2
Θ2s log (4N) log (12/ς ′) .(A.14)

For a fixed z ∈ Es, there exists zl ∈ Dl and a measurable set Ul ⊂ U with �(Ul) ≥
1 − ς ′ such that

|ψ(y, z − zl)| ≤
δ(1 + δ)l−1

2
, ∀y ∈ Ul,

and yi’s are contained in Ul for at least (1 − ς ′)m indices i ∈ {1, . . . , m}.
We construct a pairwise disjoint family of subsets (I

(z)
l )l and mapping ψ̃(·, z) :

U → R which depend on z and Q, inductively for the integers l > · · · > l according
to:

I
′(z)
l = {y ∈ U : (1 + δ)l−1 < |ψ(y, zl)| < (1 + δ)l+1},

I
(z)
l = I

′(z)
l \

⋃
r>l

I ′(z)r , and

ψ̃(·, z) =
∑
l∈L

(1 + δ)lχ
I
(z)
l

.

(A.15)

In the following, we prove that ψ̃ satisfies (A.11)–(A.13). First, consider y ∈⋂
l∈L Ul. If y ∈ I

(z)
l for some l ∈ L, then

ψ̃(y, z) = (1 + δ)l > 0 and (1 + δ)l−1 < |ψ(y, zl)| < (1 + δ)l+1.

Since ||ψ(y, z)| − |ψ(y, zl)|| ≤ |ψ(y, z) − ψ(y, zl)| ≤ δ(1 + δ)l−1/2, we have

|ψ(y, z)| < (1 + δ)l+1 +
δ

2
(1 + δ)l−1 <

(
1 +

3

2
δ

)
ψ̃(y, z),

|ψ(y, z)| > (1 + δ)l−1 − δ

2
(1 + δ)l−1 >

(
1 − 3δ

2

)
ψ̃(y, z).

If y /∈
⋃

l∈L I
(z)
l , then ψ̃(y, z) = 0 and for every l ∈ L,

|ψ(y, zl)| /∈ ((1 + δ)l−1, (1 + δ)l+1).

We notice that ||ψ(y, z)| − |ψ(y, zl)|| < δ(1 + δ)l−1/2, and there follows

|ψ(y, z)| /∈
⋃
l∈L

(
(1 +

δ

2
)(1 + δ)l−1, (1 +

3δ

2
+ δ2)(1 + δ)l−1

)
.
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Observe that (1+ 3δ
2 +δ2)(1+δ)l−1 > (1+ δ

2 )(1+δ)l, the previous intervals intersect
for any two consecutive values of l. We infer

|ψ(y, z)| ≤ (1 +
δ

2
)(1 + δ)l−1 or |ψ(y, z)| ≥ (1 +

3δ

2
+ δ2)(1 + δ)l−1.

In view of the identities in (A.10) and ‖ψ‖L∞ ≤ Θ
√

s, the second inequality can-
not occur. As for the first, it implies by (A.10) and assumption δ < 1/13 that
|ψ(y, z)| ≤ δ(1 + δ/2)(1 + δ) < 6δ/5.

Next, consider y /∈
⋂

l∈L Ul. Condition (A.11) is not guaranteed in this case.
However, these only hold with probability not exceeding

(A.16)

�

(
U \

⋂
l∈L

Ul

)
≤

∑
l∈L

�(U \ Ul) ≤ ς ′(#L) ≤ log(δ−1Θ
√

s)

log(1 + δ)
ς ′ = ς,

#

{
i : yi /∈

⋂
l∈L

Ul

}
≤ ς ′m(#L) ≤ log(δ−1Θ

√
s)

log(1 + δ)
ς ′m = ςm,

when setting ς ′ =
log(1 + δ)

log(δ−1Θ
√

s)
ς.

In summary, we have proved that for all z ∈ Es, the following is satisfied:

(1 − 3δ/2) ψ̃(y, z) < |ψ(y, z)| < (1 + 3δ/2) ψ̃(y, z), for y ∈ I,(A.17)

0 ≤ |ψ(y, z)| < 6δ/5 and ψ̃(y, z) = 0, for y ∈ Î ,(A.18)

�(U ′) ≤ ς,(A.19)

where the three sets I :=
(⋂

l∈L Ul

)⋂(⋃
l∈L I

(z)
l

)
, Î :=

(⋂
l∈L Ul

)
\
(⋃

l∈L I
(z)
l

)
,

and U ′ := U \
(⋂

l∈L Ul

)
define a partition of U , and depend on z and Q.

It remains to verify (A.13). For any l ∈ L, #{I ′(z)l | z ∈ Es} ≤ #Dl and #Fl ≤∏
r≥l #Dr. From (A.14), we see that

log(#Fl) ≤
∑
r≥l

log(#Dr) ≤
32

δ3(1 + δ)2l−2
Θ2s log (4N) log (12/ς ′) .

Step 2. Derive essential estimates of ‖z‖2 and ‖Az‖2 in terms of ψ̃(·, z). First,
given z ∈ Es, we observe that

1 = ‖z‖22 =

∫
U
|ψ(y, z)|2d� and ‖Az‖22 =

m∑
i=1

|ψ(yi, z)|2
m

=

∫
Q

|ψ(y, z)|2d�Q.

(A.20)

It is easy to check that if δ ≤ 1/13, one has for real numbers a, b > 0,
(1 − 3δ

2 )a < b < (1 + 3δ
2 )a implies (1 − 3δ)a2 < b2 < (1 + 4δ)a2, which also

implies (1 − 4δ)b2 < a2 < (1 + 4δ)b2, so that |b2 − a2| < 4δ min(a2, b2). Therefore,
from (A.17) we get that∣∣∣|ψ(y, z)|2 − |ψ̃(y, z)|2

∣∣∣ < 4δ|ψ(y, z)|2, for y ∈ I,∣∣∣|ψ(y, z)|2 − |ψ̃(y, z)|2
∣∣∣ < 4δ|ψ̃(y, z)|2, for y ∈ I.
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This, combined with (A.18) and (A.19) and the fact that |ψ(·, z)|2 and |ψ̃(·, z)|2
are uniformly bounded in U by Θ2s and by (1 + δ)2Θ2s ≤ 2Θ2s, implies∣∣∣∣‖z‖22 − ∫

U
|ψ̃(y, z)|2d�

∣∣∣∣ ≤ ∫
I

∣∣∣|ψ(y, z)|2 − |ψ̃(y, z)|2
∣∣∣ d�

+

∫
Î

∣∣∣|ψ(y, z)|2 − |ψ̃(y, z)|2
∣∣∣ d� +

∫
U ′

∣∣∣|ψ(y, z)|2 − |ψ̃(y, z)|2
∣∣∣ d�

≤ 4δ

∫
I

|ψ(y, z)|2d� +
36δ2

25
�(Î) + 2Θ2sς.(A.21)

By noticing that �(Î) ≤ 1 and setting ς = δ
6Θ2s , we infer∣∣∣∣‖z‖22 − ∫

U
|ψ̃(y, z)|2d�

∣∣∣∣ < 4δ +
δ

6
+

δ

3
=

9δ

2
.(A.22)

Repeating the above argument for the probability space (Q, �Q) with notice that
�Q(U ′ ∩ Q) ≤ ς yields∣∣∣∣‖Az‖22 −

∫
Q

|ψ̃(y, z)|2d�Q

∣∣∣∣ ≤ 4δ

∫
Q

|ψ̃(y, z)|2d�Q +
δ

2
.(A.23)

From (A.22) and (A.23), we obtain∣∣∣‖Az‖22 − ‖z‖22
∣∣∣ ≤ 4δ

∫
U
|ψ̃(y, z)|2d� + 5δ

+ (1 + 4δ)

∣∣∣∣∫
Q

|ψ̃(y, z)|2d�Q −
∫
U
|ψ̃(y, z)|2d�

∣∣∣∣(A.24)

≤ 4δ
(
1 +

9δ

2

)
+ 5δ + (1 + 4δ)

∣∣∣∣∫
Q

|ψ̃(y, z)|2d�Q −
∫
U
|ψ̃(y, z)|2d�

∣∣∣∣ .
Step 3. We derive an upper bound of

∣∣∣‖Az‖22 − ‖z‖22
∣∣∣ via (A.24), by employing a

basic tail estimate (Lemma A.2) and the union bound. From the definition of ψ̃,
we have that

∣∣∣∣∫
Q

|ψ̃(y, z)|2d�Q −
∫
U
|ψ̃(y, z)|2d�

∣∣∣∣ ≤ ∑
l∈L

(1 + δ)2l

∣∣∣∣∣#(Q ∩ I
(z)
l )

m
− �(I

(z)
l )

∣∣∣∣∣ .
(A.25)

Let (κl)l∈L be a sequence of positive numbers. Applying Lemma A.2, for any set

Δ in the class Fl, with probability of Q exceeding 1 − exp
(
−mκlδ

16e

)
, there holds∣∣∣∣#(Q ∩ Δ)

m
− �(Δ)

∣∣∣∣ ≤ δ�(Δ) + κl.(A.26)

By the union bound, with probability exceeding 1 −
∑

l∈L exp
(
−mκlδ

16e

)
(#Fl), the

previous inequality holds uniformly for all sets Δ ∈
⋃

l∈L Fl. Therefore, with prob-

ability exceeding 1−
∑

l∈L exp
(
−mκlδ

16e

)
(#Fl), we can apply (A.26) with Δ = I

(z)
l
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(l ∈ L) to the sum in (A.25) and combine with (A.24) to infer that for all z ∈ Es,∣∣∣‖Az‖22 − ‖z‖22
∣∣∣ ≤ 4δ

(
1 +

9δ

2

)
+ 5δ + δ(1 + 4δ)

∫
U
|ψ̃(y, z)|2d�

+ (1 + 4δ)
∑
l∈L

(1 + δ)2lκl

≤ 4δ
(
1 +

9δ

2

)
+ 5δ + δ(1 + 4δ)

(
1 +

9δ

2

)
+ (1 + 4δ)

∑
l∈L

(1 + δ)2lκl

≤ 12δ + δ/3 + (1 + 4δ)
∑
l∈L

(1 + δ)2lκl,

for the last inequality we have used δ < 1/13.
Finally, in order to obtain Theorem 2.2, we need to assign appropriate values for

κl and derive conditions on m such that∑
l∈L

(1 + δ)2lκl ≤ δ/2 and
∑
l∈L

exp
(
−mκlδ

16e
+ log(#Fl)

)
≤ γ.

The two inequalities can be fulfilled if for example the numbers κl and the integer
m are chosen as follows:

κl :=
δ/2

(#L)(1 + δ)2l
, −mκlδ

16e
+ log(#Fl) ≤ log

(
γ

#L

)
, l ∈ L.

This implies that

m ≥ 32e (#L)
(1 + δ)2l

δ2

[
log(#Fl) + log

(
#L
γ

)]
, l ∈ L.

Observe that since ς =
δ

6Θ2s
, we have in view of (A.13) that

32e (#L)
(1 + δ)2l

δ2
log(#Fl)

≤ 210e
(1 + δ)2

δ5 log(1 + δ)
Θ2s log (4N) log

(
Θ
√

s

δ

)
log

(
72Θ2s

δ
· log(Θ

√
s/δ)

log(1 + δ)

)
< 210e

Θ2s

δ6
log(4N) log

(Θ2s

δ2

)
log

(
40

Θ2s

δ2
log

(Θ2s

δ2

))
,

32e (#L)
(1 + δ)2l

δ2
log

(
#L
γ

)
≤ 32e

(1 + δ)2

δ2 log(1 + δ)
Θ2s log

(Θ
√

s

δ

)
log

( 1

γ
· log(Θ

√
s/δ)

log(1 + δ)

)
< 25e

Θ2s

δ3
log

(Θ2s

δ2

)
log

( 1

γδ
log

(Θ2s

δ2

))
.

Here, we employed estimates (1+δ)2 < (14/13)2 and log−1(1+δ) < 1.1/δ, obtained
from the small condition of δ. Combining the two estimates and (a+b) ≤ 2 max(a, b)
shows that m as in Theorem 2.2 is suitable. �

We conclude this subsection with two remarks detailing some slight technical
improvements of Theorem 2.2.
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Remark A.4. We can give a sharper approximation of ψ by refining the map ψ̃(·, z).
For example, given an integer k ≥ 1, we define L as

L =
Z

k
∩
( log(δ)

log(1 + δ)
+

1

k
,
log(Θ

√
s)

log(1 + δ)
+

1

k

)
,(A.27)

and construct the domains Dl using μ = δ(1+δ)l−1/k

2k . We replace the domains I
′(z)
l

in (A.15) by

I
′(z)
l := {y ∈ U : (1 + δ)l−1/k < |ψ(y, zl)| < (1 + δ)l+1/k}.

Using the elementary inequalities (1+ δ)1/k ≤ 1+ δ/k and (1+ δ)1/k− δ
2k(1+δ)1/k

≥
1 + δ

2k and assuming δ/k ≤ 1/13, we verify that (A.17) can be improved as(
1 − 3δ

2k

)
ψ̃(y, z) < |ψ(y, z)| <

(
1 +

3δ

2k

)
ψ̃(y, z), for y ∈ I,(A.28)

while (A.18) and (A.19) are unchanged. An inspection of the proof shows that this
yields (A.21) with 4δ/k instead of 4δ and with 36δ2/25 and 2Θ2sς unchanged. We
mention, however, that the cardinality #(L) and the bound in (A.13) on log(#(Fl))
gets roughly multiplied by k and k3, respectively.

Remark A.5. If (A.8) is applied to bound log(#Dl), we can obtain

log(#Dl) ≤
32

δ2(1 + δ)2l−2
Θ2s log

(
e +

eNδ2(1 + δ)2l−2

4Θ2s log(12/ς ′)

)
log(12/ς ′)

≤ 32

δ2(1 + δ)2l−2
Θ2s log

(
e +

eNδ2

4 log(12/ς ′)

)
log(12/ς ′), l ∈ L,

where ς ′ = δ log(1+δ)
6Θ2s log(δ−1Θ

√
s)

, instead of (A.14). Subsequently, the term log(4N) in

sample complexity (2.2) and (3.7) can be replaced by log
(
e+ eNδ2

4 log

(
36Θ2s

δ2
log

(
Θ2s
δ2

)))
.

A.3. Proof of Theorem 3.3.

Proof. The proof of Theorem 3.3 follows closely that of Theorem 2.2 with one
critical change: Instead of Es, we only approximate ‖Az‖2 on the set E�

s defined as

E�
s = {z ∈ C

N : ‖z‖2 = 1 and K(supp(z)) ≤ K(s)}.(A.29)

We have that E�
s ⊂ conv(P�), where P� = {± ej

ωj

√
2K(s),±i

ej

ωj

√
2K(s)}1≤j≤N ,

with ωj = ‖Ψj‖L∞ and (ej) being canonical unit vectors in CN . On the other
hand,

|ψ(y, z)| ≤
√

K(s), ∀z ∈ E�
s , y ∈ U .(A.30)

We thus can derive an extended covering number result for E�
s (similar to Lemma

A.3 for Es), then replace the bound Θ
√

s by
√

K(s) throughout the previous proofs,
resulting in Theorem 3.3. �
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Appendix B. Iterative hard thresholding on lower sets

Thresholding approach for finding best s-term approximations consists of solving
problems of the form:

min ‖Az − g̃‖2 subject to supp(z) ≤ s.(B.1)

In this appendix, we show that lower RIP is also relevant to this approach by
studying a thresholding method for lower sparse recovery, which is guaranteed with
the reduced query complexity (3.20). The method solves the following constrained
minimization problem:

min ‖Az − g̃‖2 subject to supp(z) ≤ s, supp(z) lower.(B.2)

To achieve the minimum in (B.2) we first define the hard lower thresholding operator

H�
s(z) = arg min

supp(z̃) lower
|supp(z̃)|=s

‖z − z̃‖2.(B.3)

Our goal is to approximate a smooth function of the form g =
∑

ν∈F cνΨν by
a sparse expansion supported in a predefined polynomial subspace PJ . We let s
be the sparsity level, J = Hs defined as in (1.10), with A ∈ Cm×N and g̃ ∈
Cm the normalized sampling matrix and vector of observations, respectively. In
what follows, we consider the following lower version of iterative hard thresholding
algorithm [4].

Algorithm B.1 (Iterative hard thresholding on lower sets).

(1) Initialization: set the initial approximation c0 as an s-sparse lower vector,
e.g., c0 = 0.

(2) Iteration: repeat until a stopping criterion is met at n = n:

cn+1 = H�
s(c

n + A∗(g̃ −Acn)).

(3) Output: c# = cn, and g#=
∑

ν∈Hs
c#ν Ψν .

Our method is designed for function reconstruction with preference to low-
indexed terms, similarly to a thresholding approach named iterative hard weighted
thresholding, [28]. However, we focus on high-dimensional polynomial approxima-
tions and use the lower instead of weighted sparsity constraint for the thresholding
operator. A surrogate of H�

s can exploit the lower set structure and is indepen-
dent of weights, whose optimal choice is an important problem for iterative hard
weighted thresholding. Below we provide the convergence result for Algorithm B.1.

Theorem B.2. Let J = Hs. For s ≥ 2, consider a number of samples as in
(3.20). Let y1, . . . ,ym be drawn independently from the orthogonalization measure
� associated to {Ψν} and A ∈ Cm×N the normalized sampling matrix. Then:

(i) with probability exceeding 1−γ, the following holds for all g =
∑

ν∈F cνΨν :
the function gn=

∑
ν∈Hs

cnνΨν , with cn = (cnν)ν∈Hs
solving (2), satisfies

‖gn − gΛ∗‖2 ≤ ρn‖g0 − gΛ∗‖2 +
τ√
m
‖ξ̃‖2,(B.4)

where ξ̃ = (ξ̃i)1≤i≤m = (g(Λ∗)c(yi))1≤i≤m.
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(ii) for a fixed function g =
∑

ν∈F cνΨν with ‖g‖ω,1 < ∞, with probability
exceeding 1 − γ, for all n ∈ N, the function gn =

∑
ν∈Hs

cnνΨν , with cn =

(cnν)ν∈Hs
solving (2), satisfies

‖gn − g‖2 ≤ ρn‖g0 − gΛ∗‖2 + (τ
√

2 + 1)σ(�)
s (g)2 +

τ
√

2√
K(s)

‖g(Λ∗)c‖ω,1.(B.5)

Here, ρ and τ are universal constants with ρ < 1, Λ∗ is the support of best lower

s-term approximation of g in �2-norm, and σ
(�)
s (g)2 = ‖g(Λ∗)c‖2 is the best lower

s-term error in �2-norm.

Proof. We will prove that the assertion (i) holds provided that δ�,αs < 1/2 (where
α = 2 for Legendre system and α = 3 for Chebyshev system), following the
technique in [19] for standard iterative hard thresholding. First, let vn =
cn + A∗(g̃ − Acn). On one hand, by definition (2) of cn+1 in Algorithm B.1,
and since Λ∗ is lower of cardinality smaller than s,

‖vn − cΛ∗‖22 ≥ ‖vn − cn+1‖22 = ‖(vn − cΛ∗) − (cn+1 − cΛ∗)‖22
= ‖vn − cΛ∗‖22 + ‖cΛ∗ − cn+1‖22 − 2�〈vn − cΛ∗ , cn+1 − cΛ∗〉.

This yields that ‖cΛ∗ − cn+1‖22 ≤ 2�〈vn − cΛ∗ , cn+1 − cΛ∗〉. On the other hand,

〈vn − cΛ∗ , cn+1 − cΛ∗〉 = 〈(Id−A∗A)cn + A∗g̃ − cΛ∗ , cn+1 − cΛ∗〉

= 〈(Id−A∗A)(cn − cΛ∗), cn+1 − cΛ∗〉 +
1√
m
〈ξ̃,A(cn+1 − cΛ∗)〉.

It is easy to see that Λn,∗ := supp(cn)∪supp(cn+1)∪supp(cΛ∗) is a lower set which
satisfies K(Λn,∗) ≤ 3K(s) ≤ K(αs) (see (4.7) for the second inequality), thus from
Theorem 3.3,

|〈(Id−A∗A)(cn − cΛ∗), cn+1 − cΛ∗〉| ≤ δ�,αs‖cn − cΛ∗‖2‖cn+1 − cΛ∗‖2,
|〈ξ̃,A(cn+1 − cΛ∗)〉| ≤

√
1 + δ�,αs‖ξ̃‖2‖cn+1 − cΛ∗‖2.

We then have

‖cΛ∗ − cn+1‖2 ≤ 2δ�,αs‖cn − cΛ∗‖2 +
2
√

1 + δ�,αs√
m

‖ξ̃‖2.

The inequality (B.4) follows given δ�,αs < 1/2.

For (ii), note that we have E(ξ̃2i ) = ‖c(Λ∗)c‖22 and |ξ̃i| ≤ ‖c(Λ∗)c‖ω,1 implying
that

E

(
ξ̃2i − E[ξ̃2i ]

)2

≤ E[ξ4i ] ≤ ‖c(Λ∗)c‖2ω,1‖c(Λ∗)c‖22.

We can consider two cases ‖c(Λ∗)c‖22 >
‖c(Λ∗)c‖2

ω,1

K(s) and ‖c(Λ∗)c‖22 ≤ ‖c(Λ∗)c‖2
ω,1

K(s) and

prove using Bernstein’s inequality, similarly to Theorem 4.8, that with probability
exceeding 1 − γ, we always have

‖ξ̃‖22
m

≤ 2‖c(Λ∗)c‖22 +
2‖c(Λ∗)c‖2ω,1

K(s)
.
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Substituting the previous inequality to (B.4), we obtain

‖gn − gΛ∗‖2 ≤ ρn‖g0 − gΛ∗‖2 + τ
√

2‖c(Λ∗)c‖2 +
τ
√

2√
K(s)

‖c(Λ∗)c‖ω,1.

The inequality (B.5) can then be concluded by virtue of the triangle inequality. �
In general, it may not be feasible to find the optimal vector H�

s(z) exactly.
Greedy procedures can be used to explore a near optimal lower, s-sparse trunca-

tion of z and provide an approximation H̃�
s(z) of H�

s(z) (see [9]). A significant
advantage in our context is that we do not have to compute the components of z
inductively but have them all at hand. The exploration cost is therefore a fraction
of that of matrix multiplication. Exploiting full knowledge of z, new algorithms for
constructing the surrogates can also be considered. However, we expect the the-
oretical recovery guarantees using the surrogates are weaker than those proved in
Theorem B.2; see also the case of low rank tensor recovery [38]. The numerical real-
ization of Algorithm B.1 and comparison with standard iterative hard thresholding
and iterative hard weighted thresholding will be conducted in future work.
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