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EIGENVALUE BOUNDS FOR MATRIX POLYNOMIALS

IN GENERALIZED BASES

A. MELMAN

Abstract. We derive inclusion regions for the eigenvalues of matrix polyno-
mials expressed in a general polynomial basis, which can lead to significantly
better results than traditional bounds. We present several applications to
engineering problems.

1. Introduction

A polynomial eigenvalue problem consists in computing a nonzero complex eigen-
vector v and a complex eigenvalue z such that P (z)v = 0, where P is a matrix
polynomial of the form

Anz
n +An−1z

n−1 + . . . A1z +A0 ,

and Aj (j = 0, 1, . . . , n) are complex m×m matrices. If An is singular, then there
are infinite eigenvalues, and if A0 is singular, then zero is an eigenvalue. There
are nm eigenvalues, including possibly infinite ones. The finite eigenvalues are the
solutions of detP (z) = 0. Throughout we will assume that the eigenvalue problem
is regular, i.e., that detP (z) is not identically zero. We refer to [1] and [12] for an
overview of engineering applications.

It is, in general, a computationally intensive task to solve these problems, al-
though bounds on the eigenvalues are relatively easy to compute. Such bounds
are useful, e.g., in eigenvalue computation by iterative methods ([11]) and when
computing pseudospectra ([5], [13]). Most localization results for polynomial eigen-
values found in the literature apply to matrix polynomials that are expressed in
the regular polynomial power basis {1, z, z2, . . . }. However, using a different basis
can lead to significantly better results for particular classes of problems. It is what
we propose to do here.

Bounds for matrix polynomials are often based on bounds for scalar polynomials,
many examples of which can be found in [6], and our approach will be similar.
Specifically, we were inspired by Theorem 8.4.6 in [10], where a zero inclusion region
is derived for scalar polynomials, expressed in a weakly interlacing basis, namely,
a basis consisting of polynomials with real zeros such that the zeros of consecutive
polynomials interlace, while some or all zeros may coincide. We found such bases
to be too restrictive, and we will derive a matrix version of a generalization of this
theorem to more general bases. For one of those bases, the Newton basis with
complex nodes, our result, applied to scalar polynomials, is Theorem 8.6.3 of [10].
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We therefore unify and generalize to matrix polynomials inclusion regions not only
for weakly interlacing and Newton bases, but for more general ones as well.

To make our exposition reasonably self-contained, we now state a few theorems
and definitions that we will use later. The first is an extension to matrix-valued
analytical functions of Rouché’s theorem from [2] and [9].

Theorem 1.1. Let A,B : Ω → C
m×m be analytic matrix-valued functions, where

Ω is an open connected subset of C and assume that A(z) is nonsingular for all z
on the simple closed curve Γ ⊆ Ω.

If, for any matrix norm ‖ · ‖, ||A(z)−1B(z)|| < 1 for all z ∈ Γ, then det(A+B)
and det(A) have the same number of zeros inside Γ, counting multiplicities.

Theorem 1.1 is a convenient (although not the only) way to prove the following
generalization to matrix polynomials of a result by Cauchy from 1829 ([3], [8,
Theorem (27, 1), p. 122]). It can be found, with slight variations, in [2], [6], and
[9].

Theorem 1.2. The eigenvalues of the regular matrix polynomial P (z) = Anz
n +

An−1z
n−1 + · · · + A1z + A0, with Aj ∈ Cm×m and An nonsingular, are contained

in the disk |z| ≤ ρ, where ρ is the unique positive root of

‖A−1
n ‖−1xn − ‖An−1‖xn−1 − · · · − ‖A1‖x− ‖A0‖ = 0 ,

for any matrix norm ‖ · ‖.
We note that the smaller ‖A−1

n ‖ and ‖Aj‖ (0 ≤ j ≤ n − 1) are, all else being
equal, the smaller ρ will be.

Theorem 1.2 leads to the following definition.

Definition 1.1 (Cauchy radius). The quantity ρ in Theorem 1.2 is called the
Cauchy radius of the matrix polynomial P . It depends on the matrix norm used in
its statement.

The computational cost of solving the real equation in Theorem 1.2 is neg-
ligible compared to that of computing the eigenvalues of the matrix polynomial.
Many standard rootfinders exist that easily solve such equations, such as Laguerre’s
method or even a simple accelerated Newton method, and we will not dwell on it
here.

Theorem 1.2 will be the reference inclusion region to which we will compare our
results, since it generally appears to be among the best bounds attainable for matrix
polynomials expressed in the standard power basis, judging from the extensive
results in [6], where a large number of such eigenvalue bounds were compared.

Throughout the paper, we will use I for the identity matrix without specifying
its size, which is usually clear from the context. On those occasions where it is not,
a k × k identity matrix will be denoted by Ik.

The paper is organized as follows. In Section 2 we derive an inclusion region for
the eigenvalues of a matrix polynomial expressed in a generalized basis, which is
then applied to several engineering problems in Section 3.

2. Main result

The following theorem, our main result, is stated for a scalar polynomial basis
{qj}nj=0, where qj is a polynomial of degree j, whose zeros are denoted by rij , i =
1, . . . , j. It relies on an inequality that must be satisfied by these basis polynomials.
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To better explain it, consider the special case of a basis where for each j the roots
rij are all distinct. Then from the partial fraction expansion of qj−1(z)/qj(z) we
obtain

(2.1)

∣∣∣∣qj−1(z)

qj(z)

∣∣∣∣ =
∣∣∣∣∣

j∑
i=1

β
(j)
i

z − rij

∣∣∣∣∣ ≤
j∑

i=1

|β(j)
i |

|z − rij |
,

for appropriate numbers β
(j)
i . For each j, these numbers will be assumed to satisfy∑j

i=1 |β
(j)
i | = γj , with γj such that γj ≤ γ for all j, for some γj , γ > 0.

An inequality as in (2.1) can be obtained for many bases. As was shown
in Lemma 8.4.5 in [10], it holds with γj = 1 when the qj basis polynomials form
a weakly interlacing system, i.e., when the zeros of the basis polynomials are real
and when the zeros of qj−1 interlace those of qj , while allowed to coincide with ze-
ros of qj . Weakly interlacing bases include all classical orthogonal bases: Hermite,
Legendre, Chebyshev, etc.

Another important special case is obtained by choosing the Newton basis with
complex nodes {aj}, j = 1, 2, . . . , for which the basis polynomials are defined
by q0(z) = 1 and qj(z) = (z − aj)qj−1(z). This means that the zeros of qj are
a1, a2, . . . , aj . Since

qj−1(z)

qj(z)
=

1

z − aj
,

the inequality in (2.1) is once again satisfied with γj = 1.
We now state the theorem.

Theorem 2.1. Let {qj}nj=0 be a scalar polynomial basis, where qj is a polynomial of
degree j for j = 0, 1, . . . , n, and denote by rij the ith zero of qj (i ≤ j, j ≥ 1). If for

every j ≥ 1 there exist nonnegative numbers α
(j)
1 , . . . , α

(j)
j so that

∑j
i=1 α

(j)
i ≤ γ,

with γ > 0, and, for z �= rij,

(2.2)

∣∣∣∣qj−1(z)

qj(z)

∣∣∣∣ ≤
j∑

i=1

α
(j)
i

|z − rij |
,

then the eigenvalues of the regular matrix polynomial

P (z) = Anqn(z) +An−1qn−1(z) + . . . A1q1(z) +A0q0(z) ,

with Aj ∈ Cm×m and An nonsingular, are contained in the union of the at most
n(n+ 1)/2 distinct disks

R =
n⋃

i,j=1

i≤j

{z ∈ C : |z − rij | ≤ γρ} ,

where ρ is the Cauchy radius of
∑n

j=0 Ajz
j for any matrix norm. Moreover, if

the region R is composed of disjoint components, then each component contains m
times as many eigenvalues of P as it contains zeros of qn.

Proof. The norm ‖ · ‖ used in the proof stands for any matrix norm. If z is an
eigenvalue of P such that z �= rij , then

det
(
Anqn(z) + · · ·+A1q1(z) +A0q0(z)

)
= 0
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implies that

det

(
I +

(
Anqn(z)

)−1(
An−1qn−1(z) + · · ·+A1q1(z) +A0q0(z)

))
= 0 ,

which is only possible ([7, p. 351]) if

(2.3)
∥∥∥(Anqn(z)

)−1(
An−1qn−1(z) + · · ·+A1q1(z) +A0q0(z)

)∥∥∥ ≥ 1 .

Since ‖A−1‖‖B‖ ≥ ‖A−1B‖, inequality (2.3) implies that

(2.4) ‖An−1qn−1(z) + · · ·+A1q1(z) +A0q0(z)‖ ≥
∥∥A−1

n

∥∥−1 |qn(z)| ,
so that, with ‖A‖+ ‖B‖ ≥ ‖A+B‖, inequality (2.4) yields

(2.5) ‖An−1‖ |qn−1(z)|+ · · ·+ ‖A1‖ |q1(z)|+ ‖A0‖ |q0(z)| ≥
∥∥A−1

n

∥∥−1 |qn(z)| .
To express the left-hand side of (2.5) in a more useful way, we define for each j

(j = 1, 2, . . . , n),

dj(z) = min
1≤i,k≤j

|z − rik| ,

namely, the distance of a point z to the set of all the zeros of q1, . . . , qj . Clearly,
d1(z) ≥ d2(z) ≥ · · · ≥ dn(z). Inequality (2.2) then implies that
(2.6)∣∣∣∣qj−1(z)

qj(z)

∣∣∣∣ ≤
j∑

i=1

α
(j)
i

|z − rij |
≤

∑j
i=1 α

(j)
i

min
1≤i≤j

|z − rij |
≤ γ

dj(z)
≤ γ

dn(z)
(j = 1, . . . , n).

Repeated application of (2.6) yields

(2.7)

∣∣∣∣ qj(z)qn(z)

∣∣∣∣ =
∣∣∣∣ qj(z)

qj+1(z)

∣∣∣∣ . . .
∣∣∣∣qn−1(z)

qn(z)

∣∣∣∣ ≤
(

γ

dn(z)

)n−j

·

Dividing the left-hand side of (2.5) by |qn(z)| and majorizing it in terms of dn(z)
using (2.7) yields

‖An−1‖
∣∣∣∣qn−1(z)

qn(z)

∣∣∣∣+ · · ·+ ‖A1‖
∣∣∣∣ q1(z)qn(z)

∣∣∣∣+ ‖A0‖
∣∣∣∣ q0(z)qn(z)

∣∣∣∣
≤ ‖An−1‖

(
γ

dn(z)

)
+ · · ·+ ‖A1‖

(
γ

dn(z)

)n−1

+ ‖A0‖
(

γ

dn(z)

)n

≤
(
‖An−1‖

(
dn(z)

γ

)n−1

+ · · ·+ ‖A1‖
(
dn(z)

γ

)
+ ‖A0‖

)(
γ

dn(z)

)n

·(2.8)

Combining (2.8) with (2.5), we obtain that if z is an eigenvalue of P , then

‖An−1‖
(
dn(z)

γ

)n−1

+ · · ·+ ‖A1‖
(
dn(z)

γ

)
+ ‖A0‖ ≥

∥∥A−1
n

∥∥−1
(
dn(z)

γ

)n

·

By the definition of ρ this means that dn(z)/γ ≤ ρ, where ρ is the Cauchy radius
of

∑n
j=0 Ajz

j , or

min
1≤i,k≤n

|z − rik| ≤ γρ ,

i.e., z must lie in the union R of disks centered at the zeros of q1, . . . , qn with radius
γρ. The number of distinct disks is at most

∑n
j=1 j = n(n+1)/2 (basis polynomials

can have common zeros).
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If R is composed of disjoint subregions (each subregion necessarily a connected
union of disks), then the boundary Γ of such a subregion is a simple closed curve
on which Anqn(z) is nonsingular and dn(z) = γρ. Now consider the collection of
points z for which dn(z) = γρ + ε for ε > 0. It is the boundary of the union R1

of disks with the same centers as those that determine R, but with a larger radius.
Clearly, this boundary does not contain any of the centers rij . If R consists of
disjoint subregions, then we can choose ε small enough so that R1 does as well.
One of those will necessarily enclose Γ, and we define Γ1 as its boundary. It is a
simple closed curve on which Anqn(z) is nonsingular and dn(z) = γρ+ ε.

Using the same arguments as in (2.4), (2.5), and (2.8), one sees that, for z �= rij ,
the inequality

(2.9)
∥∥∥(Anqn(z)

)−1(
An−1qn−1(z) + · · ·+A1q1(z) +A0q0(z)

)∥∥∥ < 1

will certainly be satisfied when

(2.10) ‖An−1‖
(
dn(z)

γ

)n−1

+· · ·+‖A1‖
(
dn(z)

γ

)
+‖A0‖ <

∥∥A−1
n

∥∥−1
(
dn(z)

γ

)n

.

Since for any z ∈ Γ1 we have dn(z)/γ = ρ + ε/γ > ρ, by the definition of ρ we
get that (2.10) is satisfied on Γ1. This, in turn, implies that (2.9) is satisfied, from
which we obtain with Theorem 1.1 that P and Anqn have the same number of
eigenvalues in the open region enclosed by Γ1. Since Γ1 encloses Γ, we conclude,
by letting ε → 0+, that the closed subregion of R bounded by Γ contains a number
of eigenvalues of P equal to the number of eigenvalues of Anqn that it contains.
Because det(Anqn(w)) = 0 ⇐⇒ det(An) q

m
n (w) = 0, and det(An) �= 0, this

number is m times the number of zeros of qn in the closed region. �

We remark that for the standard power basis {zj}∞j=0 (for which rij = 0 for all
i, j, and γ = 1), Theorem 2.1 reduces to Theorem 1.2, i.e., it is an extension of
Theorem 1.2 to more general bases.

In the special case where P is a scalar polynomial and the polynomials qj form a
weakly interlacing system, Theorem 2.1 essentially reduces to Theorem 8.4.6 in [10].
In this case, the region derived in Theorem 8.4.6 in [10] is the convex hull of the
one in Theorem 2.1.

For the Newton basis with complex nodes {aj}, j = 1, 2, . . . , condition (2.2) is

satisfied with α
(j)
1 = α

(j)
2 = · · · = α

(j)
j−1 = 0, α

(j)
j = 1, and γ = 1. For scalar

polynomials, this is Theorem 8.6.3 in [10]. However, Theorem 2.1 allows for more
general bases where the zeros of different basis polynomials do not need to be
interlaced or satisfy a similar property, and we will see an example of this further
on.

Obviously, changing the basis does not universally improve results for all prob-
lems. As with other localization results, some problems lend themselves better to
certain bounds than others. In addition, when the degree is high and the polyno-
mial is expressed in the standard power basis, it may be too cumbersome to express
it in a general basis. On the other hand, if the polynomial is already given in a
general basis, then Theorem 2.1 makes it unnecessary to first transform it to a
power basis.

It should be mentioned that the degree of matrix polynomials appearing in engi-
neering applications tends to be low; many of them are quadratic. They are easily
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expressed in a different basis, while the computation of bounds, including the so-
lution of the real scalar polynomial equation appearing in Theorem 1.2, is several
orders of magnitude less onerous than the computation of the actual eigenvalues,
so that not much is lost by trying a different basis.

To illustrate how Theorem 2.1 can improve classical bounds, we turn to the
literature on quadratic eigenvalue problems with their many applications in engi-
neering.

3. Examples

We establish a few preliminary results concerning monic quadratic matrix poly-
nomials before applying them to numerical examples. Since it is easy to compute,
we choose the 1-norm throughout this section.

3.1. Quadratic matrix polynomials. We consider the monic quadratic matrix
polynomial P (z) = Iz2 +A1z+A0, expressed in the standard power basis, and we
define the Newton basisN = {f0, f1, f2} and the more general basis B = {q0, q1, q2},
respectively, by⎧⎨

⎩
f0(z) = 1,
f1(z) = z − a,
f2(z) = (z − a)(z − b),

and

⎧⎨
⎩

q0(z) = 1,
q1(z) = z − a,
q2(z) = (z − b)(z − c) .

These bases were chosen for no particular reason, other than that they are very
different from the power basis. The Newton basis is relatively commonly used for
scalar polynomials, and a zero inclusion exists in this case (Theorem 8.6.3 in [10]).
No such results exist for the basis B, making it a natural basis candidate.

For the basis B, either a = b = c in which case it becomes a Newton basis, or
b �= c. When b = c �= a, inequality (2.2) is not satisfied, which can be seen from
the partial fraction expansion of q1(z)/q2(z), whose denominator has a double zero
that is different from the zero of the numerator. The choice of the nodes a, b, and c,
which are generally different for different bases, is tailored to the particular matrix
polynomial. The power basis is easily expressed in terms of N and B:⎧⎨

⎩
1 = f0(z),
z = f1(z) + af0(z),
z2 = f2(z) + (a+ b)f1(z) + a2f0(z) ,

and ⎧⎨
⎩

1 = q0(z),
z = q1(z) + aq0(z),
z2 = q2(z) + (b+ c)q1(z) + (a(b+ c)− bc)q0(z) .

The quadratic P in the bases N and B then becomes, respectively,

P (z) = If2(z) +
(
A1 + (a+ b)I

)
f1(z) +

(
aA1 +A0 + a2I

)
f0(z) ,

(3.1)

P (z) = Iq2(z) +
(
A1 + (b+ c)I

)
q1(z) +

(
aA1 +A0 + (a(b+ c)− bc)I

)
q0(z) .

Let us verify condition (2.2) in Theorem 2.1 for these bases. For N , this was already
done in the remarks following that theorem. For the basis B with b �= c, we obtain

q0(z)

q1(z)
=

1

z − a
and

q1(z)

q2(z)
=

(a− b)/(c− b)

z − b
+

(c− a)/(c− b)

z − c
,
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so that (2.2) is satisfied with

α
(1)
1 = 1 , α

(2)
1 =

∣∣∣∣a− b

c− b

∣∣∣∣ , α
(2)
2 =

∣∣∣∣a− c

c− b

∣∣∣∣ , and γ =

∣∣∣∣a− b

c− b

∣∣∣∣+
∣∣∣∣a− c

c− b

∣∣∣∣ ·

We note that γ ≥ 1.
The nodes determining the bases N and B should be chosen so as to make the

norms of the coefficient matrices as small as possible, since this will make the radii
of the disks in the inclusion region smaller, as was observed immediately after the
statement of Theorem 1.2. To do this for the numerical examples below, we will
use the observation that for real numbers {βj}nj=1, ordered in increasing order, the
solution of the minimization problem

(3.2) min
x

max
1≤j≤n

|βj − x|

is obtained for x∗ = (β1 + βn)/2. This implies that if the numbers βj are the
diagonal of a diagonal matrix M , then ‖M − x∗I‖1 ≤ ‖M‖1. When the matrix M
is not diagonal, but strongly diagonally dominant, then we expect this inequality to
still be true in most cases. When the numbers βj are complex and the minimization
in x is to be carried out over the complex plane, then, to keep matters simple, we
will carry out the minimization separately for the real and complex parts.

3.2. Numerical examples.

Example 1. We consider the connected damped mass-spring system in [12, p. 259].
Its vibration is described by a second-order differential equation of the form
A2y

′′(t) + A1y
′(t) + A0y(t) = f(t), where A2, A1, and A0 are m × m matrices

and y(t) is an m-vector. The solution of the differential equation can be expressed
in terms of the eigenvalues and eigenvectors of the quadratic eigenvalue problem
(A2z

2 + A1z + A0)v = 0. Here, the mass matrix A2 is diagonal, and the damping
and stiffness matrices A1 and A0, respectively, are symmetric tridiagonal. In [12],
A2 = I, A1 = τ tridiag(−1, 3,−1), A0 = κ tridiag(−1, 3,−1), τ, κ ∈ R, and
m = 50. We will compare the standard power basis {1, z, z2} with the bases N and
B from Subsection 3.1.

We now determine the nodes a, b, and c defining those bases, and start with
the Newton basis N , where from (3.1) the coefficients of f1 and f0 are given,
respectively, by

A1 + (a+ b)I = tridiag(−τ, 3τ + a+ b,−τ ) ,

aA1 + A0 + a2I = tridiag(−τa− κ, a2 + 3τa+ 3κ,−τa− κ) .

In choosing a and b, we aim to make the 1-norm of the coefficients as small as
possible. Without attempting an elaborate optimization, we will choose a and b
such as to make the diagonals of the matrix coefficients zero, i.e., a2+3τa+3κ = 0
and a+ b = −3τ . This means that a and b are the two zeros of z2 + 3τz + 3κ, and
we choose a as the zero for which |aτ + κ| is smaller.

For the basis B, we have more flexibility since we now have three nodes a, b, and
c. Here, from (3.1), the coefficients of q1 and q0 are given, respectively, by

A1 + (b+ c)I = tridiag(−τ, 3τ + b+ c,−τ ) ,

aA1 +A0 + (a(b+ c)− bc)I

= tridiag(−τa− κ, a(b+ c)− bc+ 3τa+ 3κ,−τa− κ) .
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Arguing similarly as before, we choose the nodes such that b + c = −3τ , bc = 3κ
and a = −κ/τ . This makes the diagonal of the coefficient matrix of q1 zero, while
making the coefficient matrix of q0 vanish. The nodes b and c are the same as the
nodes a and b we found for the Newton basis since they are the zeros of the same
quadratic polynomial. If b = c, then we set a = b = c, reverting to a Newton basis.
Potentially better results could be obtained than for the Newton basis when b �= c
although there is a price to pay in the form of a larger value for γ. It is therefore
not a priori clear which basis is preferable. Fortunately, it is a simple matter to
compute the 1-norm, so that both bases can easily be compared.

The following figures show the eigenvalue inclusion regions for a few representa-
tive values of τ and κ. All eigenvalues have negative real parts since the coefficient
matrices are all strictly positive definite (see [12]). In each figure, the large circle
centered at the origin is the circle obtained from Theorem 1.2, namely, Cauchy’s
theorem for matrix polynomials; its radius is the Cauchy radius of P and we will
refer to it as the Cauchy disk of P . On the left, the smaller disks represent the
inclusion region obtained from Theorem 2.1 for the Newton basis, while those on
the right are for the basis B. Figure 1 and Figure 2 show the eigenvalue inclusion
regions for τ = 3, κ = 5 and τ = 10, κ = 5, respectively, which are the values used
in [12]. The dots are the eigenvalues, which are added for reference. For Figures 2,
3, 4, and 5, the values for the pair (τ, κ) are (1, 8), (5, 20), (5, 30), and (5, 80), re-
spectively. When τ is large relative to κ, the inclusion regions are almost identical
for both bases, as for the (10, 5) case. This can be seen from the roots

(
−1±

(
1− 4κ

3τ2

)1/2
)

· 3τ
2

of the quadratic polynomial z2 + 3τz+3κ (which are a and b in the basis N and b
and c in the basis B): as κ/τ approaches zero, the root with the “+” sign approaches
−κ/τ , which is a in the basis B. This follows (as κ/τ → 0) from

(
−1 +

(
1− 4κ

3τ2

)1/2
)

· 3τ
2

≈
(
−1 +

(
1− 2κ

3τ2

))
· 3τ
2

= −κ

τ
.

As a result, two of the inclusion disks for the basis B become almost identical with
a disk for the basis N when κ/τ is small.

These figures clearly show that using a more general basis can significantly re-
duce the eigenvalue inclusion regions, when compared to the disk obtained from
Theorem 1.2, which is often the best one can obtain for the power basis. Some-
times the Newton basis is better, and sometimes it is the more general basis B that
produces the smaller inclusion region. Of special interest is Figure 3, where the
eigenvalues are split among the top and bottom disks, 50 in each disk, as predicted
by the theorem, since the middle disk does not contain any zeros of q2. We remark
that it would not be possible to obtain such an inclusion region from any of the
classical bounds.
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Figure 1. Inclusion regions for Example 1 with τ = 3 and κ = 5.

Figure 2. Inclusion regions for Example 1 with τ = 10 and κ = 5.

Figure 3. Inclusion regions for Example 1 with τ = 1 and κ = 8.
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Figure 4. Inclusion regions for Example 1 with τ = 5 and κ = 20.

Figure 5. Inclusion regions for Example 1 with τ = 5 and κ = 30.

Figure 6. Inclusion regions for Example 1 with τ = 5 and κ = 80.

Example 2. In this example from [1] and [4], we consider a quadratic polynomial
produced by the finite-element discretization of a time-harmonic wave equation for
the acoustic pressure on the unit square [0, 1] × [0, 1]. The eigenvalues lie in the
upper half of the complex plane. Here we have m = 	(	− 1), where 	 = 1/h and h
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is the mesh size. Defining the 	× 	 matrix S� and the (	− 1)× (	− 1) matrix T�−1

as

S� =

⎛
⎜⎜⎜⎜⎝

4 −1

−1
. . .

. . .

. . . 4 −1
−1 2

⎞
⎟⎟⎟⎟⎠ and T�−1 =

⎛
⎜⎜⎜⎜⎝

0 −1

−1
. . .

. . .

. . .
. . . −1
−1 0

⎞
⎟⎟⎟⎟⎠ ,

the coefficients of the quadratic matrix polynomial P (z) = A2z
2 + A1z + A0 are

given by

A0 = I�−1 ⊗ S� + T�−1 ⊗
(
−I� +

1

2
e�e

T
�

)
, A1 =

2π

	ζ
I�−1 ⊗ e�e

T
� ,

A2 = −4π2

	2
I�−1 ⊗

(
I� −

1

2
e�e

T
�

)
,

where the complex number ζ is the impedance, ei is the ith standard unit vector,
and the Kronecker product of two matrices A ⊗ B is the block matrix (aijB).

Since A2 is nonsingular and diagonal, it is an easy matter to compute A−1
2 P =

Iz2+B1z+B0, where B1 = A−1
2 A1 and B0 = A−1

2 A0. The matrix B0 is diagonally
dominant for most of its rows and columns. We can now conveniently use the
results from Subsection 3.1 to express P in the basis N . In this example, as in the
next, we will only consider the Newton basis, since the disks in both bases are not
significantly different in size.

The diagonals are not constant, and to minimize their 1-norm we use the obser-
vation about the minimization problem in (3.2). We will once again aim to choose
nodes that minimize the 1-norms of the coefficients of P . We set diag

(
Bj

)
=

Cj + iDj for j = 0, 1, and, in light of the above observation about (3.2), we define

μj =
1

2

(
min (Cj) + max (Cj)

)
+

i

2

(
min (Dj) + max (Dj)

)
(j = 0, 1) .

From the expression in (3.1) for the matrix coefficients of f1, we see that a reasonable
choice for the nodes is to choose them so that a + b = −μ1. Since from (3.1) the
coefficient of f0 can be written as

aB1 +B0 + a2I = a2I + μ1aI + μ0I + a
(
B1 − μ1I

)
+
(
B0 − μ0I

)
,

we choose a as that solution of a2+μ1a+μ0 = 0 that minimizes ‖aB1+B0+a2I‖1.
Figures 7 and 8 show the eigenvalue inclusion regions for ζ = 0.1+0.1i and 2+2i,

respectively, with h = 0.05, so that the matrix coefficients are of size 380 × 380.
The large circle centered at the origin is, as before, the Cauchy disk of P , while the
black dots are the eigenvalues.

For very small or very large values of |ζ|, the disks in the Newton basis are not
significantly different from the ones in Figure 7 and Figure 8, respectively. From
these results, it is clear that using a generalized basis here clearly allows a significant
part of the Cauchy disk to be discarded as a possible location for the eigenvalues.
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Figure 7. Inclusion regions for Example 2 with ζ = 0.1 + 0.1i.

Figure 8. Inclusion regions for Example 2 with ζ = 2 + 2i.

Example 3. This example is taken from [6]. Its quadratic matrix polynomial
Iz2+A1z+A0 originates from a Galerkin method with n basis functions applied to
a second-order partial differential equation describing the free vibration of a string,
clamped at both ends in a spatially inhomogeneous environment. Here the matrix
coefficients are given, for ε, δ > 0, by

A0 = π diag
1≤j≤n

(
j2
)

, (A1)k� = 2ε

∫ π

0

(
x2(π − x)2 − δ

)
sin (kx) sin (	x) dx .

With n = 50, ε = 0.1, and δ = 2.7 as in [6], we proceed as in the previous example,
using similar arguments for the choice of the nodes. As for the previous example,
we have shown results only for the Newton basis as there is very little difference
in the size of the disks between the N and B bases. Figure 9 shows the inclusion
region for the Newton basis. The eigenvalues are concentrated along the imaginary
axis, but they are not purely imaginary.
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Figure 9. Inclusion regions for Example 3.

Summary. We have derived inclusion regions for the eigenvalues of matrix polyno-
mials expressed in a general basis and have shown the advantages this can provide
at the hand of several examples from the engineering literature. Not every problem
benefits from a change of basis, but there is apparently no shortage of problems
that do. We further remark that the relatively crude estimations we have used to
determine the nodes of the bases N and B will generally be different for different
problems and may be refined, depending on the properties of the coefficient matri-
ces and the choice of matrix norm. Fortunately, the computational cost involved is
negligible compared to the computation of the eigenvalues themselves, so that there
is no reason not to try and use a more general basis, especially since the eigenvalues
must lie in the intersection of all the inclusion regions obtained for different bases,
further reducing the size of those regions. Finally, we mention that the reverse
polynomial of a matrix polynomial with no zero eigenvalues can be used to gen-
erate additional information on the location of the eigenvalues. This polynomial
is obtained by the transformation z → 1/z, and it can be expressed in a general
basis to which Theorem 2.1 can be applied. This leads to inclusion disks for the
reciprocals of the eigenvalues. Because 1/z is a Möbius transformation, these disks
become inclusion or exclusion disks or half-planes for the eigenvalues themselves.
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