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AN INVERSE THEOREM FOR COMPACT LIPSCHITZ REGIONS

IN Rd USING LOCALIZED KERNEL BASES

T. HANGELBROEK, F. J. NARCOWICH, C. RIEGER, AND J. D. WARD

Abstract. While inverse estimates in the context of radial basis function
approximation on boundary-free domains have been known for at least ten
years, such theorems for the more important and difficult setting of bounded
domains have been notably absent. This article develops inverse estimates for
finite dimensional spaces arising in radial basis function approximation and
meshless methods. The inverse estimates we consider control Sobolev norms
of linear combinations of a localized basis by the Lp norm over a bounded
domain. The localized basis is generated by forming local Lagrange functions
for certain types of RBFs (namely Matérn and surface spline RBFs). In this

way it extends the boundary-free construction recently presented by Fuse-
lier, Hangelbroek and Narcowich [Localized bases for kernel spaces on the unit
sphere, SIAM J. Numer. Anal. 51 (2013), no. 5, 2358-2562].

1. Introduction

This article presents a construction for localized bases generated by radial basis
functions (RBFs) in the presence of a boundary and develops analytic properties
of this basis, most notably inverse inequalities. Such inequalities are an essential
tool in the numerical solution of PDEs by finite element and related methods (see
[3, 10, 11]) notably in proving inf-sup (Babuška-Brezzi) conditions, which play a
central role for mixed element and saddle point problems [1,13,14,21]. They are also
prevalent in approximation theory (where they are called ’Bernstein inequalities’);
specifically they are used to obtain characterization of approximation spaces as
interpolation spaces by way of K-functionals [4].

The type of localized basis investigated in this article was introduced very re-
cently for the boundary-free setting (e.g., on a manifold without boundary) and
has already been employed to deliver strong results in function approximation and
scattered data fitting [8], numerical quadrature [9] and solution of PDEs [24] and
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integral equations [19]. Indeed, in [19], Lehoucq and Rowe have applied the local-
ized basis investigated in this article to obtain a Galerkin solution to a constrained
integral equation, and they have used the Lp stability of the basis (presented in
this paper in Section 4) to obtain norm bounds on the stiffness matrix associated
with this problem.

The inverse estimates we consider treat finite dimensional spaces of functions,
bounding strong (Sobolev) norms by weak (Lebesgue) norms:

(1.1) ‖s‖Wσ
p (Ω) ≤ Ch−σ‖s‖Lp(Ω) (or ‖s‖Cσ(Ω) ≤ Ch−σ‖s‖L∞(Ω) for p = ∞),

where Ω is a bounded subset in Rd, subject to mild conditions on ∂Ω and h is the
fill distance (also known as mesh ratio) of the finite set of points used to generate
our finite dimensional space (see Section 2.1 for a precise description). In one
sense, these estimates can be viewed as providing an operator norm bound (from
Lp → Lp) of differential operators restricted to this finite dimensional space. In
another sense, they give precise equivalences between different norms in terms of a
simple measure of the complexity (given by the parameter N above) of the finite
dimensional space. Direct consequences of these inverse estimates include trace
estimates and Bernstein-Nikolskii inequalities.

This topic has been considered in the boundary-free setting by a number of au-
thors, we list [26], [27], [22], [31], [12] (although there are certainly others). The
inequalities we consider here are similar, but depend only on the norm of a basic
function over a bounded region.1 Without a doubt this type of estimate is signif-
icantly more challenging when a boundary is present and has, to the best of our
knowledge, remained elusive. Indeed, such inverse inequalities seem to have been
absent for meshless methods in general (not only radial basis function approxima-
tion; cf. the discussion in [21, Section 7]).

In this article we consider two prominent families of radial basis functions: the
Matérn (or Whittle-Matérn) and surface spline kernels. Generalizations to other
kernels and other settings (namely, compact Riemannian manifolds) are considered
in the manuscript [15].

The conventional finite dimensional space associated with a positive definite RBF
φ and a finite set X ⊂ Rd has the form S(X) = spanη∈Xφ(·−η); for a conditionally
positive definite RBF, S(X) involves polynomials; see Section 2.5.2. A common set-
up for a host of numerical problems invites the user to employ the basis of sampled
kernels φ(· − η), η ∈ X as one would use polynomials, splines, finite elements, etc.;
that is to say, as test functions for Galerkin or collocation methods, or as basis
functions to solve interpolation, quadrature or other basic problems.

For a basic interpolation problem, using S(X) to interpolate data sampled at
the point set X, the ensuing interpolation matrix will be positive definite, thanks
to the kernel’s positive definiteness, but if X is sampled densely, the interpolation
matrix will become dense2.

Instead of using the basis of kernels, one may attempt to use another basis for
S(X); one for which basic matrices (Gram, collocation, stiffness, interpolation)
exhibit off-diagonal decay. Univariate splines provide a prime example of this phe-
nomenon: for a fixed k, the shifted truncated powers (x − tj) �→ xk

+ provide, in

1A previous result in the setting of a bounded region was presented in [28], but these estimates
significantly undershoot the precise exponent −σ in (1.1).

2One may attempt to circumvent this problem by dilating the kernel; this is often done, but
will generally result in degraded rates of approximation.
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conjunction with polynomials of degree k or less, a basis for the spline space with
breakpoints at tj , but this basis is known to be poorly localized. However, the
B-spline basis is well-localized, with elements having support which is not only
compact, but stationary in the sense that it shrinks with the spacing of the break-
points.

We are concerned with an analogous localization problem for radial basis func-
tions:

Is there a basis for S(X) where the various elements exhibit a fast
rate of stationary decay?

If an alternative basis is available for which the interpolation matrices are sparse,
we say the basis is well-localized. For the Matérn and surface-spline kernels, the
Lagrange function χη is well-localized in a neighborhood of η where the points from
X are distributed quasi-uniformly. If this is not the case, for instance if η occurs
near to the boundary of the convex hull of X, localization is lost.

This issue can be circumvented by using only the Lagrange basis elements χξ

that have centers ξ in a subset Ξ ⊂ X, where Ξ is chosen from X so that the
Lagrange functions χξ, ξ ∈ Ξ, are localized. Using these elements we may define
VΞ := spanξ∈Ξχξ, which is of course a subspace of S(X). To avoid a possible point
of confusion, we emphasize that VΞ 	= S(Ξ). The former space requires all basis
functions centered in X for its construction; the latter, only those in Ξ.

After this initial streamlining, it is important to note that even though χξ,
ξ ∈ Ξ, is spatially localized, its construction still requires all of the points in
X. Thus finding the χξ’s is computationally expensive. In [8], local Lagrange
functions {bξ}ξ∈Ξ were introduced. Constructing them is done by first choosing
points Υ(ξ) ⊂ X in a small neighborhood of ξ ∈ Ξ, and then finding the Lagrange
function bξ ∈ S(Υ(ξ)) ⊂ S(X). Since Υ(ξ) will contain many fewer points than X,

it will be much less expensive to find bξ. Finally, we define ṼΞ = spanξ∈Ξbξ, which

is a subspace of S(X). We remark that χξ 	= bξ and VΞ 	= ṼΞ. However, they are
close—a fact that will prove important in what follows.

We now turn to the connection between the set Ω and the spaces described
above. At the start, we are given a quasi-uniform set Ξ ⊂ Ω. The enlarged set X is
not given. Rather, an extension is constructed from Ξ, using a method—described
in Section 2.3—that preserves the key geometric properties of Ξ. The extension,

which will be denoted by Ξ̃ later (instead of X), is contained in a bounded region

Ω̃ that contains Ω and is roughly speaking about twice the size of Ω. It is for this

setup that we get estimates of the form (1.1) for s ∈ VΞ or ṼΞ. (See Theorem 5.1.)

1.1. Overview and outline. We begin by giving a basic explanation and back-
ground on RBFs used in this article. This is done in Section 2.

In Section 3, we introduce the Lagrange basis (the functions generating the space
VΞ) and provide estimates that control the Sobolev norm (i.e., W σ

p (Ω)) of a function
in VΞ by the �p norm on the Lagrange coefficients and in addition by the Lp norm
of s. That is, for s =

∑
ξ∈Ξ aξχξ we show

‖s‖Wσ
p (Ω) ≤ C(#Ξ)1/p−σ/d‖(aξ)ξ∈Ξ‖�p(Ξ) and ‖s‖Wσ

p (Ω) ≤ C(#Ξ)−σ/d‖s‖Lp(Ω).

Such a result has not appeared previously.
Section 4 introduces the other stable basis considered in this paper: the local

Lagrange basis, which generates the space ṼΞ. We give sufficient conditions to
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prove existence and stability of such a basis. We give estimates that control the

Sobolev norm (i.e., W σ
p (Ω)) of a function in ṼΞ by the �p norm on the local La-

grange coefficients and by the Lp norm of the function. This result is presented
in Theorem 4.10. Next we compare the sequence norm with the Lp norm of an

expansion s =
∑

ξ∈Ξ aξχξ ∈ VΞ or s =
∑

ξ∈Ξ aξχξ ∈ ṼΞ over the domain Ω. We
thus obtain

‖(aξ)ξ∈Ξ‖�p(Ξ) ∼ C(#Ξ)−1/p‖s‖Lp(Ω).

In the final section we give our main inverse estimates. For s ∈ ṼΞ we have

‖s‖Wσ
p (Ω) ≤ C(#Ξ)−σ/d‖s‖Lp(Ω),

and we use this to demonstrate trace estimates for that space.

2. Background: RBF approximation on bounded domains

We begin by describing the basic elements used in this article, starting with geo-
metric properties of point sets, a discussion of the the underlying domain, smooth-
ness spaces on the domain, and finishing with some background about the radial
basis functions which we use.

2.1. Point sets. Given a set D ⊂ Rd and a discrete, possibly infinite, set X ⊂ D,
we define its fill distance (or mesh norm) h, the separation radius q and the mesh
ratio ρ to be:
(2.1)

h(X,D) := sup
x∈D

dist(x,X), q(X) :=
1

2
inf
ξ∈X

dist(ξ,X\{ξ}), ρ(X,D) :=
h(X,D)

q(X)
,

where in defining ρ(X,D) we assume that q(X) > 0.
When there is no chance of confusion, we drop dependence in these parameters

on X and D (referring simply to h, q and ρ).

Remark 2.1. A finite fill distance h guarantees that the set D is covered by the
family of balls B(ξ, h) := {x ∈ D | dist(x, ξ) < h}, ξ ∈ X. A positive separation
radius q guarantees that B(ξ, q)∩B(ζ, q) = {} for distinct ζ, ξ ∈ Ξ. The mesh ratio,
which automatically satisfies ρ ≥ 1, measures the uniformity of the distribution of
X in D. The larger ρ(X,D) is, the less uniform the distribution is. If ρ is finite,
then we say that the point set X is quasi-uniformly distributed (in D), or simply
that X is quasi-uniform.

Note that, for a compact subset D and a nonempty, finite subset X ⊂ D, the
fill distance and separation radius are both positive and finite 0 < q < h < ∞.
Consequently, ρ is finite, too.

Many of the results in this article depend in some way on the geometry of the
point set X; often this emerges in an estimate, where a constant depends on ρ.
In most cases, (as one may expect) the strength of the estimate degrades as ρ
increases. Throughout the paper, we have attempted make this control explicit, by
factoring, whenever possible, the constant into a part which is totally independent
of the point set, and another, which is a function of ρ.
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It is often useful to estimate certain sums over X. Assume that q(X) > 0. If
f : [0,∞) → [0,∞) is a positive, decreasing, continuous function, then

(2.2)
∑
ζ∈X

f(dist(ζ, ξ)) ≤ f(0) + C

∞∑
n=1

nd−1f(nq),

where C depends only on the spatial dimension d. This is easily established by
introducing annuli centered at ξ, with inside radius nq and outside radius (n+1)q,
n ≥ 1. The number of points contained in each annulus is proportional to nd−1,
and the contribution to the sum from each n, n ≥ 1, is less than nd−1f(nq). Hence,
(2.2) holds.

2.2. The domain Ω. We now consider a bounded region Ω ⊂ Rd containing a
finite point set Ξ with h = h(Ξ,Ω) and q = q(Ξ) as defined above. This presents
two challenges.

The first concerns Ξ—although we may expect it to be finely sampled (often
referred to as sufficiently dense, meaning that h(Ξ,Ω) is small) in Ω, it will not be
so in a neighborhood of Ω. To construct the localized bases to be used in what
follows, we need a larger set X ⊂ Rd so that X ∩Ω = Ξ. In other words, we require
some extra points to lie outside of Ω (in fact, when working with local Lagrange
functions bξ, it suffices to consider only a very small extension Υ ⊂ {x ∈ Rd |
dist(x,Ω) < Kh| log h|}). See Figure 1 for an illustration of this. This assumption
is in place to guarantee decay of the basis functions; in other words, it is only a
tool for guaranteeing the decay of χξ or bξ, and is not otherwise important for the
stability estimate. It would be quite reasonable to be ‘given’ initially only the set
Ξ ⊂ Ω and to use this to construct X. In Lemma 2.2 below we demonstrate how
to extend a given set of centers Ξ ⊂ Ω in a controlled way to obtain a satisfactory
set X.

The second challenge concerns the domain Ω. For estimates relating ‖a‖�p and
the Lp norm of expansions ‖

∑
ξ aξbξ‖ or ‖

∑
ξ aξχξ‖ the boundary becomes more

important. The extra assumption we make on Ω, in force throughout the article,
is that Ω satisfies an interior cone condition (see Appendix A for a discussion).

2.3. Extending points. Given Ω and Ξ ⊂ Ω, we wish to find an extension Ξext ⊃
Ξ dense in Rd so that the separation radius does not decrease and the fill distance is
controlled (and, consequently, ρ does not increase). A simple constructive example
is the following.

Lemma 2.2. Suppose Ξ ⊂ Ω has fill distance h(Ξ,Ω) = h and separation radius
q(Ξ) = q. Then there is a discrete set Ξext so that Ξext ∩ Ω = Ξ, q(Ξext) = q, and

h(Ξext,R
d) = h(

√
d/2 + 2).

Proof. We proceed as follows: let Ξext = Ξ ∪ {ζ ∈ hZd | dist(ζ,Ω) ≥ h}. We note

that h(hZd,Rd) =
√
d
2 h and q(hZd) = h. It follows immediately that q(Ξext) = q. If

x ∈ Rd is within (
√
d
2 +1)h of Ω, then dist(x,Ξ) ≤ (

√
d
2 +2)h. On the other hand, if

x ∈ Rd satisfies dist(x,Ω) > (
√
d
2 +1)h, then there is ζ ∈ hZd with dist(x, ζ) <

√
d
2 h

so that dist(ζ,Ω) > h (and ζ is therefore in Ξext). �

Remark 2.3. We note that other extensions exist which do not increase h. For
example, [15, Lemma 5.1] extends points so that h(Ξext,R

d) = h and q(Ξext) =
min(q, h/2). As an expository convenience, we use an extension Ξext of Ξ to Rd
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Figure 1. This image shows the domain Ω (the region inside the
cardioid) with a set of points Ξ ⊂ Ω indicated with •. The dotted
line segment indicates h—the greatest distance between a point of
Ω and one of Ξ. The solid line segment indicates 2q, the nearest
neighbor distance in Ξ. The elements in the extended point set

Ξ̃ \ Ξ are denoted with a square—these are the centers used to
construct χξ (discussed in Section 3). The points � denote the
points of Υ, which are used to construct bξ (this is done in Sec-
tion 4).

which does not increase h. In practice, an extension could be used which might
not precisely preserve the geometry of the point set (such as the elementary one
in Lemma 2.2). This will not change the results in this paper, other than by
modifying slightly the constants. We leave it to the reader to make the (very
simple) modifications necessary to treat other extensions (which would increase h
and ρ).

We construct the extended point set in an extended neighborhood

(2.3) Ξ̃ := Ξext ∩ Ω̃, where Ω̃ := {x ∈ Rd | dist(x,Ω) ≤ diam(Ω)}
and where Ξext is constructed according to the method of Remark 2.3.

2.4. Smoothness spaces on Ω. In order to present a suitably robust family of
inverse estimates, we employ a scale of spaces depending on a positive, occasionally
fractional, smoothness parameter; as in [1], for integer values of this parameter, we
use the conventional Sobolev spaces, while for fractional values we use fractional
spaces, which involve a Hölder-like seminorm.
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For a domain Ω ⊂ Rd, the integer order Sobolev space is defined in the conven-
tional way. For 1 ≤ p < ∞ and m ∈ N, we have the seminorm and norm

|u|pWm
p (Ω) :=

∑
|α|=m

(
m
α

)∫
Ω

|Dαu(x)|p dx, ‖u‖pWm
p (Ω) :=

m∑
k=0

(
m
k

)
|u|p

Wk
p (Ω)

.

Note that for the first expression (the Sobolev seminorm), we use the binomial
coefficient with multi-integers (mα ) = m!

α1!...αd!
while for the second we use a standard

binomial coefficient (mk ) = m!
k!(m−k)! . Although other weights would give equivalent

norms, resulting in the same Sobolev spaces equipped with the same topology, these
choices of coefficients will be necessary to obtain the specific reproducing kernels
we desire (see Sections 2.5.1 and 2.5.2).

For fractional orders σ = m + δ /∈ N with 0 < δ < 1 the norm for W σ
p (Ω) is

obtained from ‖u‖pWσ
p (Ω) := ‖u‖pWm

p (Ω) + |u|pWσ
p (Ω), where we add the Slobodeckij

seminorm

|u|pWσ
p (Ω) :=

∑
|α|=m

∫
Ω

∫
Ω

|Dαu(x)−Dαu(y)|p
|x− y|d+pδ

dxdy.

We note that when σ = m+δ is fractional3, W σ
p (Ω) is the Besov space Bσ

p,p(Ω) (this

is [5, Theorem 6.7]). In particular, W σ
p (Ω) = Bσ

p,p(Ω) = [Wm
p (Ω),Wm+1

p (Ω)]δ,p
serves as the [δ, p] (real) interpolation space between Wm

p (Ω) and Wm+1
p (Ω) (see

[30, 1.6.2] for a definition and basic results).
Of particular importance is the fact that, for 2 ≤ p < ∞ and m ∈ N, we have

the continuous embedding Wm
2 (Ω) ⊂ W s

p (Ω) for all s ≤ m− (d/2− d/p).
Throughout the paper, we make the (not unusual) modification Wm

∞(Ω) =
Cm(Ω) when p = ∞ and m ∈ N. For fractional order spaces when p = ∞
(discussed in Section 5), we use the Hölder space Cs(Ω), for which the semi-

norm max|α|=�s� supx,y∈Ω
|Dαu(x)−Dαu(y)|p

|x−y|δ is finite for δ = s − �s�. In this case,

Wm
2 (Ω) ⊂ Cs(Ω) for all s < m− d/2.

2.4.1. Scaling and fractional Sobolev spaces. For an open set O ⊂ Rd, let us in-
troduce the notation OR := {x | x/R ∈ O}. The following lemma shows how the
fractional Sobolev seminorm scales with R.

Lemma 2.4. Suppose 1 ≤ p ≤ ∞, s ∈ [0,∞) and u ∈ W s
p (OR). Let U : O → C :

x �→ u(Rx). Then

|u|W s
p (OR) = CRd/p−s|U |W s

p (O).

Proof. We consider the case 1 ≤ p < ∞ and s = k + δ, 0 < δ < 1, since the cases
where s is an integer and p = ∞ follow similarly, but are much easier. For RX = x,
the chain rule gives us Dαu(x) = R−|α|U(X) and

|u|pW s
p (OR) = Rd−pδ−pk

∑
|α|=k

∫
O

∫
O

|DαU(X)−DαU(Y )|p
|X − Y |d+pδ

dY dX

= Rd−ps|U |pW s
p (O). �

3When σ = m is an integer, we have Wm
2 (Ω) = Bm

2,2(Ω), although Wm
p (Ω) � Bm

p,p(Ω) for

p > 2 and Wm
p (Ω) � Bm

p,p(Ω) for p < 2.
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2.4.2. Subadditivity and fractional Sobolev spaces. Carstensen and Faermann [2]
have pointed out that the pth power |u|pWσ

p (Ω) of the fractional Sobolev seminorm

fails to be subadditive. This is in contrast to the (pth power) integral order semi-
norms, which are obtained from integrals of nonnegative functions, and are easily
seen to be subadditive.

The following lemma is a modification of a result of Faermann ([7, Lemma 3.1])
which we use as a tool to treat the issue of nonsubadditivity. This will be used in
what follows.

Lemma 2.5. Suppose V = {ṽj | j ∈ N} is a countable family of subsets ṽj ⊂ Ω
covering Ω with finite overlap: i.e., Ω ⊂

⋃
j∈N ṽj and there is M > 0 so that

maxx∈Ω

∑
j∈N χṽj (x) ≤ M . Suppose further that there exist sets vj ⊃ ṽj so that the

complements wj := Ω \ vj each are a fixed positive distance from the corresponding
sets ṽj : i.e., there is H > 0 so that for every j ∈ N , infx∈ṽj ,y∈wj

|x− y| ≥ H.
Let 1 ≤ p < ∞ and s ∈ (0,∞) \ N with k = �s� and δ = s− �s�. Then for any

u ∈ W s
p (Ω) we have

(2.4) ‖u‖pW s
p (Ω) ≤

⎛⎝∑
j∈N

|u|pW s
p (vj)

⎞⎠+ CMH−pδ‖u‖p
Wk

p (Ω)
.

Proof. By subadditivity of the outer integral, we have that

|u|pW s
p (Ω) ≤

∑
|α|=k

∑
j∈N

∫
ṽj

∫
Ω

|Dαu(x)−Dαu(y)|p
|x− y|d+pδ

dydx.

For fixed α and j, the fact that vj∪wj = Ω permits us to bound the double integral∫
ṽj

∫
Ω

|Dαu(x)−Dαu(y)|p
|x−y|d+pδ dydx by∫

ṽj

∫
vj

|Dαu(x)−Dαu(y)|p
|x− y|d+pδ

dydx+

∫
ṽj

∫
wj

|Dαu(x)−Dαu(y)|p
|x− y|d+pδ

dydx.

Summing over the first terms gives the bound
∑

j∈N |u|pW s
p (vj)

, since ṽj ⊂ vj , and

so this gives the first part of the right-hand side of (2.4).
Consider the sum of the second terms. Applying the quasi-triangle inequality

(a + b)p ≤ Cp(a
p + bp) to the numerator |Dαu(x) −Dαu(y)|p, we can control the

double integral
∫
ṽj

∫
wj

|Dαu(x)−Dαu(y)|p
|x−y|d+pδ dydx by

Cp

(∫
ṽj

∫
wj

|Dαu(x)|p
|x− y|d+pδ

dydx+

∫
ṽj

∫
wj

|Dαu(y)|p
|x− y|d+pδ

dydx

)
=: Jj,1 + Jj,2.

We have that
⋃

j∈N (ṽj ×wj) ⊂ {(x, y) ∈ Ω2 | |x− y| > H}. By symmetry, we have

also that
⋃

j∈N (wj × ṽj) ⊂ {(x, y) ∈ Ω2 | |x − y| > H}. Using the finite overlap,
we have that ∑

j∈N χ[ṽj×wj ]∑
j∈N χ[wj×ṽj ]

}
≤ Mχ{(x,y)∈Ω2||x−y|>H}.

Consequently, for any nonnegative, integrable g : Ω× Ω → R, we have∑
j∈N

∫
ṽj

∫
wj

g(x, y)dxdy∑
j∈N

∫
wj

∫
ṽj
g(x, y)dxdy

}
≤ M

∫
{(x,y)∈Ω2||x−y|>H}

g(x, y)dxdy
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as well. Setting g(x, y) = |Dαu(x)|p
|x−y|d+pδ and applying Fubini–Tonelli allows us to control∑

j∈N (Jj,1 + Jj,2) by∑
j∈N

(Jj,1 + Jj,2) ≤ 2M

∫
{(x,y)∈Ω2||x−y|>H}

|Dαu(x)|p
|x− y|d+pδ

dxdy

≤ CMH−pδ

∫
Ω

|Dαu(x)|pdx.

(For the last estimate, we have used the fact that
∫
|x−y|>H

1
|x−y|d+pδ dy ≤ CpδH

−pd

for all x.) �
2.5. Radial basis functions. There are two families of radial basis functions con-
sidered in this article: the Matérn functions and the surface splines. Both families
(under the right conditions) admit exponentially decaying basis functions; this is
mentioned in Section 3.1. They also admit rapidly constructed localized basis func-
tions (having polynomial decay); this is demonstrated in Sections 4.3.1 and 4.3.2.
The results we present in Sections 5 hold for these families.

Two features common to both families are:

(1) For any finite set of points Ξ ⊂ Rd the interpolation problem is well posed.
This means that for any data (ξ, yξ)ξ∈Ξ, there exists a unique interpolant
s generated by the RBF.

(2) The RBF is a reproducing kernel for a (semi-)Hilbert space, called the
native space, and the unique interpolant to (ξ, yξ)ξ∈Ξ is the best interpolant
in this space: it has the least (semi-)norm among all interpolants to the
data.

We include both families (which are in some ways quite similar) because both
are often in use, practically. The first is prized for the RBF’s rapid decay and
strict positive definiteness; the second is included for its dilation invariance and
its historical significance. Of course, there are many other prominent families of
RBFs, each with its own distinguishing features (some are infinitely smooth, some
are compactly supported, etc.). Rather than give a broad overview, we introduce
the specific families employed in this paper and direct the interested reader to [32]
for a comprehensive introduction to RBF theory. At this point it is unclear if the
algorithm for constructing localized bases works for other families; the arguments
we employ rely heavily on the RBF’s role as the fundamental solution to an elliptic
partial differential operator.

2.5.1. Matérn kernels. The Matérn function of order m > d/2 is defined as

(2.5) κm : Rd → R : x �→ CKm−d/2(|x|) |x|m−d/2.

Here C is a constant depending on m and d, and Kν is a Bessel function of the
second kind.

The Matérn function is positive definite, which means that for every finite set
X ⊂ Rd, the collocation matrix

KX := (κm(ξ − ζ))ξ,ζ∈X

is strictly positive definite.
The guaranteed invertibility of KX is of use in solving interpolation problems;

given y ∈ RX , one finds a ∈ RX so that KXa = y. It follows that
∑

ξ∈X aξκm(·−ξ)

is the unique interpolant to (ξ, yξ)ξ∈X in S(X) := spanξ∈Xκm(· − ξ).
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It is the reproducing kernel for the Hilbert space N (κm) = Wm
2 (Rd) equipped

with the (standard) inner product

〈f, g〉Wm
2 (Rd) =

∫
Rd

m∑
j=0

(
m
j

)
〈Djf(x), Djg(x)〉dx

=
∑

|β|≤m

(
m
|β|

)(
|β|
β

)∫
Rd

Dβf(x)Dβg(x)dx,

where Djf is the tensor (i.e., the j-dimensional array) of partial derivatives of order
j. Being the reproducing kernel means simply that f(x) = 〈f, κm(x − ·)〉Wm

2 (Rd)

for all x ∈ Rd and all f ∈ Wm
2 (Rd). It can be shown that among all functions

interpolating the data (ξ, yξ)ξ∈X , the interpolant
∑

ξ∈X aξκm(· − ξ) (i.e., where a

is the solution of KXa = y) has the smallest Wm
2 (Rd) norm.

2.5.2. Surface splines. For m > d/2, the surface spline is

(2.6) φm : Rd → R : x �→ C

{
|x|2m−d, d is odd,

|x|2m−d log |x|, d is even.

The surface spline of orderm is conditionally positive definite (CPD) with respect
to Πm−1, the space of polynomials of degree m− 1. This means that the quadratic
form RX → R : a �→ 〈a,KXa〉 =

∑
ξ∈X

∑
ζ∈X φm(ξ − ζ)aξaζ is positive for every

finite set X ⊂ Rd and for all nonzero a ∈ RX which satisfy
∑

ξ∈X aξp(ξ) = 0 for

all p ∈ Πm−1. (In other words, it is positive definite on a subspace of RX of finite
codimension; namely, the annihilator of Πm−1 |X .)

One may solve interpolation problems using the finite dimensional space

S(X) :=

⎧⎨⎩∑
ξ∈X

aξφm(· − ξ) |
∑
ξ

aξp(ξ) = 0 for all p ∈ Πm−1

⎫⎬⎭+Πm−1

provided that data sites X are unisolvent: i.e., so that if p ∈ Πm−1 satisfies p(ξ) = 0
for all ξ ∈ X, then p = 0. Let {p1, . . . , pN} be a basis for Πm−1 and construct the
#X×N Vandermonde matrix Φ = (pj(ξ))ξ∈X, j=1,...,N . For data y ∈ RX one finds
a ∈ RX and c ∈ RN so that (

KX Φ
ΦT 0

)(
a
c

)
=

(
y
0

)
.

It follows that sX :=
∑

ξ∈X aξφm(· − ξ) +
∑N

j=1 cjpj is the unique interpolant to

(ξ, yξ)ξ∈X in S(X).
The surface spline φm is the reproducing kernel for the semi-Hilbert space

D−mL2 = {f ∈ C(Rd) | ∀|α| = m, Dαf ∈ L2(R
d)}

(sometimes called the Beppo–Levi space), which is a semi-Hilbert space (a vector
space having a semidefinite inner product with nullspace Πm−1, so that the quo-
tient D−mL2/Πm−1 is a Hilbert space). The space D−mL2 is endowed with the
semidefinite product

〈f, g〉D−mL2
=

∫
Rd

〈Dmf(x), Dmg(x)〉dx =
∑
β=m

(
m
β

)∫
Rd

Dβf(x)Dβg(x)dx.
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Although φm /∈ D−mL2 (its mth derivatives behave, roughly, like O(|x|m−d),
which is not square integrable, since 2m > d), with a little effort, one may show that
the spaces S(X) are contained in D−mL2. The RBF φm is its reproducing kernel in
the sense that for X ⊂ Rd and two functions f1, f2 ∈ D−mL2 where f2 has the form
f2 =

∑
ξ∈X aξφ(· − ξ) + p ∈ S(X) we have 〈f1, f2〉D−mL2

=
∑

ξ∈X aξf1(ξ). The
interested reader will find a material on surface splines and conditionally positive
definite RBFs in [32, Chapter 8].

As in the case of Matérn kernels, the unique interpolant residing in S(X) has
the smallest D−mL2 seminorm among all interpolants to the data (ξ, yξ)ξ∈X .

2.5.3. Labeling kernels. In most cases in this article, the Matérn and surface spline
RBFs exhibit similar behaviors. Because our results often depend only on a single
parameter m indexing the RBF, we use the abbreviated notation km to stand for
either κm or φm.

In both cases, the function km has Lp smoothness less than 2m− d+ d/p (i.e.,
for any bounded set Ω, km ∈ W σ

p (Ω) for all σ < 2m− d+ d/p). It follows that any
finite linear combination of shifts of km has the same regularity. Denote the space
of such linear combinations as

S(X) :=

{
spanξ∈Xκm(· − ξ), km = κm,{∑

ξ∈X aξφm(· − ξ) |
∑

ξ aξp(ξ) = 0 ∀p ∈ Πm−1

}
+Πm−1, km = φm.

Then we have

S(X) ⊂ W σ
p (Ω) for all σ < 2m− d(1− 1/p).

Likewise, we let N (km) represent either of the two native spaces: Wm
2 (Rd) or

D−mL2(R
d). We note that both satisfy the continuous embedding Wm

2 (Rd) ⊂
N (km) ⊂ Wm

2,loc(R
d). In this case, the functions in the native space have a lower

Lp regularity, with

N (km) ⊂
{
W s

p (Ω) for s ≤ m− (d/2− d/p)+, 1 ≤ p < ∞,

Cs(Ω) for s < m− d/2.

3. Lagrange functions and first Bernstein inequalities

In this section we investigate some further results about the RBF km; namely, we
consider analytic properties of the Lagrange functions. These have been presented
in [17], but we explain them below for the sake of completeness.

After this we give a first class of Bernstein estimates, valid for linear combinations
of Lagrange functions.

3.1. Lagrange functions. For a finite X ⊂ Rd, there exists a family of (uniquely
defined) functions (χξ)ξ∈X satisfying χξ ∈ S(X) and χξ(ζ) = δ(ξ, ζ) for all ζ ∈
X. We may take the N (km) inner product of two Lagrange functions χξ, χζ ∈
S(X), noting that they have the form χξ =

∑
η∈X Aη,ξkm(· − η) + p and χζ =∑

η∈X Aη,ζkm(· − η) + p̃ (in the case of Matérn functions km = κm, we have p =

p̃ = 0), to obtain
(3.1)
〈χξ, χζ〉N (km) =

〈
χξ,

∑
η∈XAη,ζkm(· − η) + p̃

〉
N (k)

=
∑

η∈X Aη,ζχξ(η) = Aξ,ζ .
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Lagrange function coefficients. We can make the following ‘bump estimate’ which
uses a bump function ψξ,q = ψ( ·−ξ

q ) : Rd → [0, 1] that is compactly supported in

B(ξ, q) and satisfies ψξ,q(ξ) = 1 on a neighborhood of q. We have

(3.2) ‖χξ‖N (km) ≤ ‖ψξ,q‖N (km) ≤ C‖ψξ,q‖Wm
2 (Rd) ≤ Cq

d
2−m.

This follows because χξ is the best interpolant to ζ → δ(ξ, ζ). As a consequence,
Lagrange coefficients are uniformly bounded:

(3.3) |Aξ,ζ | = |〈χξ, χζ〉N (k)| ≤ Cqd−2m.

Better decay. For the kernels considered in this article, and more generally for the
framework given in [17] and [18], to get desired estimates for Lagrange functions
over a compact region Ω ⊂ Rd the interpolatory conditions must be satisfied on a
point set that is suitably dense in a fairly large neighborhood of Ω. To handle this,

we use the quasi-uniform extension Ξ̃ developed in Section 2.2. This brings us to
the definition of VΞ.

Definition 3.1. For a compact set Ω ⊂ Rd and a finite subset Ξ ⊂ Ω, let Ξ̃ be the
extension to {x ∈ Rd | dist(x,Ω) ≤ diam(Ω)} given in (2.3) in Section 2.3. Then

for the system of Lagrange functions (χξ)ξ∈˜Ξ generated by km over Ξ̃, let

VΞ := span{χξ | ξ ∈ Ξ}.

In particular VΞ ⊂ S(Ξ̃).
For ξ in the original set Ξ, we have the improved estimates:

(3.4) ‖χξ‖Wm
2 (Rd\B(ξ,R)) ≤ Cqd/2−mexp

(
−μ

R

h

)
for all 0 < R < dist(ξ, ∂Ω).

This is demonstrated in Appendix A, specifically in Lemma A.3. This leads to
improved estimates. For ξ ∈ Ξ and all x ∈ Ω,

(3.5) |χξ(x)| ≤ Cρm−d/2exp

(
−μ

|x− ξ|
h

)
.

Likewise, for ξ, ζ ∈ Ξ,

(3.6) |Aξ,ζ | ≤ Cqd−2mexp

(
−ν

|ξ − ζ|
h

)
.

3.2. Stability of the Lagrange-function basis for VΞ on Ω. Recall that VΞ =

span{χξ}ξ∈Ξ, where Ξ is a subset of all of the centers in Ξ̃. We begin by defining the
operator T : CΞ → VΞ by Ta =

∑
ξ∈Ξ aξχξ =: s. In other words, T is the synthesis

operator, which takes a set of coefficients {aξ}ξ∈Ξ and outputs a function s ∈ VΞ.
Because the basis in consideration is the Lagrange basis, the coefficients satisfy
Ta(ξ) = s(ξ) = aξ for ξ ∈ Ξ and therefore, for the basis {χξ}ξ∈Ξ, the operator T is
an interpolation operator.

If we use the �p(Ξ) norm for CΞ and Lp(Ω) for VΞ, then the stability of the basis,
relative to these norms, is measured by comparing ‖a‖�p(Ξ) and ‖s‖Lp(Ω). We show
this with the following proposition, which indicates that if s ∈ VΞ is small (relative
to Lp(Ω)), then its coefficients are small in �p(Ξ) (and likewise, if the coefficients
of s are small in �p(Ξ), so too is the norm of s ∈ Lp(Ω)).
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Proposition 3.2 (Lagrange Basis Stability). There exists a constant h0 = h0(m, d),
so that for Ξ ⊂ Ω satisfying h(Ξ,Ω) < h0 and 1 ≤ p ≤ ∞, we have constants
c1 = c1(m, ρ,Ω) > 0 and c2 = c2(m,Ω) so that

(3.7) c1 ‖a‖�p(Ξ) ≤ q−d/p‖
∑

ξ∈Ξ aξχξ‖Lp(Ω) ≤ c2ρ
m+d/p ‖a‖�p(Ξ) .

We remark that the dependence in the lower constant c1 on ρ can be made
explicit. This is worked out in Lemma B.6.

Proof. The proof is given in Appendix B. Lemma B.1 provides the upper bound
and Lemma B.6 gives the lower bound. �

Another way to think of this inequality is as an Lp(Ω) Marcinkiewicz-Zygmund
(MZ) inequality. Such inequalities are used to relate the L1 norm of a trigonometric
polynomial to the �1 norm of the polynomial evaluated on some fixed, finite set.
MZ inequalities have also been developed for spherical polynomials on Sd [23].
For spherical polynomials in Sd, there is another type of inequality, a Nikolskii

inequality. On Sd, these have the form ‖S‖Lp
≤ CLd( 1

r−
1
p )+‖S‖Lr(Sd), for any

degree L spherical polynomial. Our result below establishes such an inequality for
VΞ.

Corollary 3.3 (Nikolskii Inequality). With the assumptions and notation of Propo-
sition 3.2, and with 1 ≤ p, r ≤ ∞, we have that

(3.8) ‖s‖Lp(Ω) ≤ Cq−d( 1
r−

1
p )+‖s‖Lr(Ω), s ∈ VΞ,

with C = C(m, ρ,Ω, p, r).

Proof. Recall that, for a ∈ CΞ, ‖a‖�p(Ξ) ≤ N ( 1
p−

1
r )+‖a‖�r(Ξ), where N = #Ξ. Since

N ∼ q−d, this inequality implies that ‖a‖�p(Ξ) ≤ CΩ,r,pq
−d( 1

p−
1
r )+‖a‖�r(Ξ). From

this and (3.7), we thus have

‖s‖Lp(Ω) ≤ Cρ,m,Ω,p,rq
d
(

1
p−( 1

p−
1
r )+

)
‖a‖�r(Ξ) ≤ Cρ,m,Ω,p,rq

d
(

1
p−

1
r−( 1

p−
1
r )+

)
‖s‖Lr(Ω).

The result follows from the identity x− (x)+ = −(−x)+. �

3.3. Bernstein type estimates for (full) Lagrange functions. In this section
we will provide a Bernstein (or inverse) theorem relating Sobolev norms of functions
in VΞ to the corresponding �p norms on the coefficients. This is the key to controlling
the Sobolev norm of the function in VΞ by its Lp(Ω) norm.

Before proceeding, we first prove two lemmas.

Lemma 3.4. Let 1 ≤ p ≤ ∞, s > d/2 and 0 ≤ σ ≤ s. Suppose O is a fixed open set
with Lipschitz boundary and as before OR = {x | x/R ∈ O}. Suppose further that
W s

2 (O) is embedded continuously in W σ
p (O) (where we take Cσ in case p = ∞).

Then there is a constant C depending on O, p, s and σ so that if U ∈ W σ
p (O) and

if the set X of zeros of U in O are sufficiently dense that h(X,O) < 1 and Lemma
A.1 applies, then for u(x) = U(x/R), we have

|u|Wσ
p (OR) ≤ CRs−σ+d/p−d/2|u|W s

2 (OR).
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Proof. Lemma 2.4 shows that |u|Wσ
p (OR) = Rd/p−σ|U |Wσ

p (O). Because ‖U‖Wσ
p (O) ≤

C‖U‖W s
2 (O), we have that

|u|Wσ
p (OR) ≤ CRd/p−σ‖U‖W s

2 (O) = CRd/p−σ

⎛⎝ k∑
j=0

(
k
j

)
|U |2

W j
2 (O)

+ |U |2W s
2 (O)

⎞⎠1/2

(in case s is fractional; we leave the necessary modification to the reader in case
s ∈ N). We now apply the zeros estimate [26, Theorem 4.2] to each term on the
right-hand side, obtaining

|u|Wσ
p (OR) = CRd/p−σ|U |W s

2 (O),

since |U |2
W j

2 (O)
≤ Ch2(s−j)|U |2W s

2 (O) for all j. Applying Lemma 2.4 again, (this time

with p = 2), yields the desired estimate. �
Lemma 3.5. Suppose Ξ is sufficiently dense (meaning h(Ξ,Ω) ≤ h0 for a constant
h0 = h0(d,m) > 0) and η ∈ Ξ. Decompose Ξ into disjoint annuli Ξ =

⋃∞
j=0 Ξj(η):

where Ξj(η) := {ζ ∈ Ξ | 2j−1h ≤ dist(ζ, η) ≤ 2jh} for j > 0 and Ξ0(η) := {ζ ∈ Ξ |
0 ≤ dist(ζ, η) ≤ h}.

We have, for 2 ≤ p < ∞ and 0 ≤ σ ≤ m− d/2 + d/p that∥∥∑
ξ∈Ξaξχξ

∥∥p
Wσ

p (B(η,3h))

≤ Cρp(m+d/2)−dhd−pσ
∞∑
j=0

2j(d+1)(p−1)e−νp2j−1 ∑
ξ∈Ξj(η)

|aξ|p
(3.9)

with C = C(p, σ,m, d) and ν = ν(m, d).

Proof. Repeatedly applying the quasi-triangle inequality

‖a+ b‖p ≤ 2p−1(‖a‖p + ‖b‖p)
to this sum gives∥∥∑

ξ∈Ξ

aξχξ

∥∥p
Wσ

p (B(η,3h))
≤

∞∑
j=0

2(j+1)(p−1)
∥∥ ∑

ξ∈Ξj(η)

aξχξ(x)
∥∥p
Wσ

p (B(η,3h))
.

Observe that #Ξj(η) ≤ ωdρ
d2jd (where the constant ωd depends on d), so the gen-

eralization of the above quasi-triangle inequality ‖
∑n

j=1 aj‖p ≤ np−1
∑n

j=1 ‖aj‖p
gives
(3.10)∥∥∑

ξ∈Ξ

aξχξ

∥∥p
Wσ

p (B(η,3h))
≤

∞∑
j=0

2(j+1)(p−1)(ωdρ
d2jd)p−1

∑
ξ∈Ξj(η)

|aξ|p ‖χξ‖pWσ
p (B(η,3h)) .

For dist(ξ, η) = R sufficiently large, we have the inclusion

B(η, 3h) ⊂ Ω̃ \B(ξ, R− 3h).

Applying the zeros lemma [25, Theorem 1.1] gives

‖χξ‖Wσ
p (B(η,3h)) ≤ ‖χξ‖Wσ

p (˜Ω\B(ξ,R−3h)) ≤ Ch
m−σ−(

d
2−d

p )+ ‖χξ‖Wm
2 (˜Ω\B(ξ,R−3h)) .

Applying the energy estimate (3.4) and noting that d/2− d/p ≥ 0 gives us

‖χξ‖Wσ
p (B(η,3h)) ≤ Chm−σ−(d/2−d/p)+qd/2−me−νR/h = Cρm−d/2hd/p−σe−νR/h.
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We note that for ξ in the annular set Ξj(η), dist(ξ, η) = R ≥ h2j−1, so e−νR/h ≤
e−

ν
2 2

j

. Applying this to (3.10) gives

∥∥∑
ξ∈Ξ

aξχξ

∥∥p
Wσ

p (B(η,3h))
(3.11)

≤ Cωp−1
d ρp(m−d/2)+d(p−1)

∞∑
j=0

2j(d+1)(p−1)
∑

ξ∈Ξj(η)

|aξ|phd−pσe−
ν
2 p2

j

≤ Cρp(m+d/2)−dhd−pσ
∞∑
j=0

2j(d+1)(p−1)e−
ν
2 p2

j ∑
ξ∈Ξj(η)

|aξ|p. �

Note that when p = ∞, we use only integer smoothness σ = k ∈ Z and the
standard space Ck(Ω) of k times integral functions over Ω.

Theorem 3.6. For a sufficiently dense set Ξ (meaning h(Ξ,Ω) ≤ h0 for a constant
h0 = h0(d,m) > 0) we have, for 0 ≤ σ ≤ m − (d/2 − d/p)+ when 1 ≤ p < ∞ (or
σ ∈ N with 0 ≤ σ < m− d/2 if p = ∞),

(3.12)
∥∥∑

ξ∈Ξaξχξ

∥∥
Wσ

p (Ω)
≤ Cρm+d/2+d/phd/p−σ ‖a‖�p(Ξ)

with C = C(p, σ,m, d).

Proof. This is handled in four cases: p = ∞, 2 ≤ p < ∞, p = 1 and 1 < p < 2.

Case 1: p = ∞. If σ ∈ Z, we simply need to bound max|α|=σ

∑
ξ∈˜Ξ ‖Dαχξ‖∞. To

do this, consider a point x ∈ Ω and a ball B(x, r) ⊂ Ω̃ with r = hmax(16m2, 1/h1)
and h1 is the constant from the zeros Lemma A.1. In this case, we use a Bramble-
Hilbert argument involving the averaged Taylor polynomial Qmχξ of degree m− 1
described in Brenner-Scott [1]. The estimate

‖DαQmχξ‖L∞(B(x,r)) ≤ Crm−|α|−d/2|χξ|Wm
2 (B(x,r))

holds by applying [17, (3.9)]. In order to bound ‖Dα(χξ − Qmχξ)‖L∞(B(x,r)),
we use Lemma 2.4 (with U((y − ξ)/r)) = χξ(y) − Qmχξ(y) and the embedding

W
m−|α|
2 (B(0, 1)) ⊂ C(B(0, 1)) to obtain

|(χξ −Qmχξ)|C|α|(B(x,r)) ≤ Cr−|α||U |C|α|(B(0,1)) ≤ Cr−|α||U |Wm
2 (B(0,1)).

Rescaling gives the estimate

‖Dα(χξ −Qmχξ)‖L∞(B(x,r)) ≤ Cr−|α|

⎛⎝ m∑
j=0

r2j−d

(
m
j

)
|χξ −Qmχξ|2W j

2 (B(x,r))

⎞⎠ .

Each seminorm in this last expression can be estimated by the Bramble-Hilbert
Lemma, allowing us to bound the above by Crm−|α|−d/2|χξ|Wm

2 (B(x,r)). Together

with the estimate on D|α|Qmχξ, and recalling that r = Kh, we have

|Dαχξ(x)| ≤ ‖DαQmχξ‖L∞(B(x,r)) + ‖Dα(χξ −Qmχξ)‖L∞(B(x,r))

≤ Chm−|α|−d/2|χξ|Wm
2 (B(x,r)).

From here, we apply the energy estimate (3.4) to obtain

(3.13) |Dαχξ(x)| ≤ Chm−|α|−d
2 q

d
2−me−ν

|x−ξ|
h = Cρm−d

2 h−|α|e−ν
|x−ξ|

h .
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The sum over Ξ can be carried out over annular regions Ξj(x) = {ξ ∈ Ξ | jh ≤
dist(ξ, x) < (j + 1)h}. This leaves

∞∑
j=0

∑
ξ∈Ξj(x)

|Dαχξ(x)| ≤ Cρm−d
2 h−|α|

∞∑
j=0

∑
ξ∈Ξj(x)

e−ν |x−ξ|
h

≤ Cρm−d
2 h−|α|

∞∑
j=0

ρd(j + 1)de−νj

≤ Cρm+
d
2 h−|α|.

In the last inequality, we use the fact that the sum
∑∞

j=0(j+1)de−νj = C depends

on d and m (but not ρ).

Case 2: 2 ≤ p < ∞. We treat this case in two stages. At first, we consider
σ = k ∈ N, treating fractional Sobolev exponents for later.

Case 2i: σ = k ∈ N. By subadditivity, the Sobolev norm may be taken over
overlapping balls∥∥∑

ξ∈Ξ

aξχξ

∥∥p
Wk

p (Ω)
≤
∑
η∈Ξ

∥∥∑
ξ∈Ξ

aξχξ(x)
∥∥p
Wk

p (B(η,h))
.

Applying Lemma 3.5 to the norm over each ball B(η, h) ⊂ B(η, 3h). gives∥∥∑
ξ∈Ξ

aξχξ

∥∥p
Wk

p (Ω)
≤ Cρpm+pd/2−dhd−pσ

∞∑
j=0

2j(d+1)(p−1)e−νp2j−1 ∑
η∈Ξ

∑
ξ∈Ξj(η)

|aξ|p.

We may exchange summation between ξ and η, noting that η ∈ Ξj(ξ) iff ξ ∈
Ξj(η). This implies the estimate

∑
η∈Ξ

∑
ξ∈Ξj(η)

|aξ|p =
∑

ξ∈Ξ

∑
η∈Ξj(ξ)

|aξ|p ≤
ωdρ

d2jd
∑

ξ∈Ξ |aξ|p. Consequently,
(3.14)∥∥∑

ξ∈Ξ

aξχξ

∥∥p
Wk

p (Ω)
≤ Cωp−1

d ρp(m+d/2)h−pk+d

( ∞∑
j=0

2j(d+1)pe−
ν
2 p2

j

)∑
ξ∈Ξ

|aξ|p.

The result follows by summing the series and taking the pth root.

Case 2ii: σ /∈ N. Let σ = k + δ with 0 < δ < 1, and employ Lemma 2.5, using the
neighborhoods {B(η, h) ∩ Ω | η ∈ Ξ} as {ṽj | j ∈ N} and {B(η, 3h) ∩ Ω | η ∈ Ξ}
for {vj | j ∈ N}. Note that for this choice of cover, M ≤ Cρd. Indeed, for
any x ∈ Ω, enumerate the centers {ξ ∈ Ξ | dist(ξ, x) < h} as ξ1, . . . , ξn. Then
x ∈ B(ξj , h) for each j = 1, . . . , n. Because the balls B(ξj , q) are disjoint, it follows
that n(cd,1q

d) = vol(
⋃n

j=1 B(xj , q) ∩ B(x, h)) ≤ cd,2h
d, so n ≤ Cd(h/q)

d. (Here

cd,2h
d is the volume of the ball of radius h, and cd,1q

d is the volume of the portion
in B(x, h) of any ball which is centered in B(x, h).) This guarantees that∥∥∑

ξ∈Ξ

aξχξ

∥∥p
Wσ

p (Ω)
≤
∑
η∈Ξ

∥∥∑
ξ∈Ξ

aξχξ

∥∥p
Wσ

p (B(η,3h))
+ Cρdh−pδ‖

∑
ξ∈Ξ

aξχξ

∥∥p
Wk

p (Ω)
.

We apply (3.14) to bound the second term, which gives

Cρdh−pδ‖
∑
ξ∈Ξ

aξχξ

∥∥p
Wk

p (Ω)
≤ Cρp(m+d/2)+dh−pk+d−pδ|aξ|p.
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The first term is handled precisely as the integer case σ = k, which has been
discussed above, leaving∑

η∈Ξ

∥∥∑
ξ∈Ξ

aξχξ

∥∥p
Wσ

p (B(η,3h))
≤ Cρp(m+d/2)hd/p−σ ‖a‖�p(Ξ) .

Case 3. We again consider the proof in two steps, first for the case of integer
smoothness, where the Sobolev norm is subadditive on sets, and then in the frac-
tional case, where we can apply Lemma 2.5.4

As an initial simplification, note that the triangle inequality gives ‖s‖Wσ
1 (Ω) ≤

‖a‖�1(Ξ)(maxξ∈Ξ ‖χξ‖Wσ
1 (Ω)), so we need only to consider the size of ‖χξ‖Wσ

1 (Ω).

Case 3i: σ = k ∈ N. We proceed, as in Case 2, by first considering σ = k ∈ N

and using subadditivity of the norm. For any integer K, we have ‖χξ‖Wk
1 (Ω) ≤

‖χξ‖Wk
1 (B(ξ,Kh)) + ‖χξ‖Wk

1 (Ω\B(ξ,Kh)).

The first term satisfies ‖χξ‖Wk
1 (B(ξ,Kh)) ≤ ωd(Kh)d/2‖χξ‖Wk

2 (B(ξ,Kh)). For K

sufficiently large (a constant depending only on d), the zeros estimate [26, Theorem
4.2] gives

(3.15) ‖χξ‖Wk
1 (B(ξ,Kh)) ≤ ωd(Kh)d/2hm−k‖χξ‖Wm

2 (˜Ω) ≤ CKd/2ρm−d/2hd−k.

The second term may be controlled by decomposing Ω \B(ξ,Kh) =
⋃∞

�=K A� in
annuli (i.e., by taking A� := {x ∈ Ω | �h ≤ dist(x, ξ) ≤ (� + 1)h}). Subadditivity
gives

‖χξ‖Wk
1 (Ω\B(ξ,Kh)) ≤

∞∑
�=K

‖χξ‖Wk
1 (A�)

≤
∞∑

�=K

(vol(A�))
1/2‖χξ‖Wk

2 (A�)

≤
∞∑

�=K

C((�+ 1)h)d/2hm−σ‖χξ‖Wm
2 (A�).

In the final line we have applied the zeros estimate (and simultaneously estimated
the volume of the annulus A�). At this point, we can apply the energy estimate
(3.4) to obtain

(3.16) ‖χξ‖Wk
1 (Ω\B(ξ,Kh)) ≤

∞∑
�=K

C((�+1)h)d/2hm−σqd/2−me−ν� ≤ Cρm−d/2hd−σ.

Combining (3.16) with (3.15), gives the desired result for σ = k ∈ N.

Case 3ii: σ /∈ N. To handle the fractional case σ = k+δ, we apply Lemma 2.5, with
an initial decomposition ṽ1 = B(ξ,Kh), ṽ2 = Ω\B(ξ,Kh), v1 = B(ξ, (K+1)h) and
v2 = Ω \B(ξ, (K − 1)h). Observe that these are disjoint, so the overlap constant is
M = 1. Thus we have

|χξ|Wσ
1 (Ω) ≤ |χξ|Wσ

1 (B(ξ,(K+1)h)) + |χξ|Wσ
1 (Ω\B(ξ,(K−1)h)) + Ch−δ‖χξ‖Wk

1 (Ω).

4In this case, because 0 ≤ σ ≤ m, one could just as easily adopt the strategy of proving the
result for the extrema σ = 0 and σ = m, and then using interpolation of operators to bound the
synthesis operator T : �1(Ξ) → Wσ

1 (Ω), noting that Wσ
1 (Ω) is the (σ/m, 1) interpolation space

between L1(Ω) and Wm
1 (Ω).
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We can further decompose the middle term |χξ|Wσ
1 (Ω\B(ξ,(K−1)h)) in annuli by ap-

plying Lemma 2.5 a second time. This time, we let ṽ� := {x ∈ Ω | 2�(K − 1)h ≤
dist(x, ξ) < 2�+1(K − 1)h} for � = 0, 1, . . . . The annuli {ṽ� | � ∈ N} partition
Ω \B(ξ, (K − 1)h), so the overlap constant M is M = 1; in fact, we need only the
first �0 = 1 + log2(diam(Ω)/(K − 1)h) annuli.

Define the neighborhoods of ṽ� as v� := {x ∈ Ω | 2�−1(K − 1)h ≤ dist(x, ξ) <
2�+2(K − 1)h}. The sets w� = Ω \ v� satisfy dist(ṽ�, w�) ≥ 1

2 (K − 1)h ≥ h. Lemma
2.5 shows that

|χξ|Wσ
1 (Ω\B(ξ,(K−1)h)) ≤

(
�0∑
�=0

|χξ|Wσ
1 (v�)

)
+ Ch−δ‖χξ‖Wk

1 (Ω).

Since ‖χξ‖Wσ
1 (Ω) = ‖χξ‖Wk

1 (Ω) + |χξ|Wσ
1 (Ω) and h < 1, this leaves

(3.17) ‖χξ‖Wσ
1 (Ω) ≤ |χξ|Wσ

1 (B(ξ,(K+1)h)) +

(
�0∑
�=0

|χξ|Wσ
1 (v�)

)
+ Ch−δ‖χξ‖Wk

1 (Ω),

which we must estimate.
Estimating the third term in (3.17): The final term is easiest to control: Case 3i

gives the estimate

(3.18) h−δ‖χξ‖Wk
1 (Ω) ≤ Cρm−d/2hd−k−δ.

Estimating the first term in (3.17): The first term in (3.17) is controlled in a
similar way to (3.15). Begin by settingR := (K+1)h, u = χξ(·−ξ) and U = u(R(·)).
Applying Lemma 3.4 with O = B(0, 1) gives

|χξ|Wσ
1 (B(ξ,(K+1)h)) = |u|Wσ

1 (B(0,R))

≤ CRd/2+m−σ|u|Wm
2 (B(0,R))

= Chd/2+m−σ|χξ|Wm
2 (B(ξ,(K+1)h)).

The bump estimate (3.2) then gives

|χξ|Wσ
1 (B(ξ,(K+1)h)) ≤ Chd/2+m−σ|χξ|Wm

2 (˜Ω)

≤ Chd/2+m−σqd/2−m

≤ Cρm−d/2hd−σ.

(3.19)

Estimating the middle term in (3.17): To handle the series appearing in (3.17),
we proceed as in the last paragraph, applying, for each �, Lemma 3.4 , now with u =
χξ(·−ξ), R = 2�+2(K−1)h and U = u(R·). In this case O = B(0, 1)\B(0, 1/8). The
scaling lemma uses the embedding W σ

2 (O) ⊂ W σ
1 (O) which incurs an embedding

constant C which is independent of �. Namely,

|χξ|Wσ
1 (v�) = |u|Wσ

1 (OR)

≤ CRd/2+m−σ|u|Wm
2 (OR)

= C(2�+2(K − 1))d/2+m−σhd/2+m−σ‖χξ‖Wm
2 (v�).

Since v� is contained in Ω̃ \B(ξ, 2�−1(K − 1)h), we have

|χξ|Wσ
1 (v�) ≤ C2�(d/2+m−σ)hd/2+m−σ‖χξ‖Wm

2 (˜Ω\B(v�)
.
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Now we apply the energy estimate (3.4) which gives

|χξ|Wσ
1 (v�) ≤ C2�(d/2+m−σ)hd/2+m−σqd/2−me−μ(K−1)2�−1

.

Observing that the infinite series
∑∞

�=0(2
�(d/2+m−σ)e−μ(K−1)2�−1

converges to a
constant depending only on d and m, we can bound the middle term:

(3.20)

(
�0∑
�=0

|χξ|Wσ
1 (v�)

)
≤ Chm+d/2−σqd/2−m = Cρm−d/2hd−σ.

The case p = 1 follows from the estimates (3.19), (3.20), (3.18) and (3.17).

Case 4: 1 < p < 2. In this case, we use Riesz-Thorin to estimate the norm of the
operator T : �p(Ξ) → W σ

p (Ω), where T is the synthesis operator Ta =
∑

ξ∈Ξ aξχξ

(i.e., the linear map which takes coordinate space CΞ into the vector space VΞ).
Letting θ = 2( 1p − 1

2 ) (so that 1
p = θ1 + (1− θ) 12 ) gives

‖
∑
ξ∈Ξ

aξχξ‖Wσ
p (Ω) ≤

(
Cρm−d/2hd−σ

)θ (
Cρm−d/2hd/2−σ

)1−θ

‖a‖�p(Ξ)

≤ Cρm−d/2hd/p−σ‖a‖�p(Ξ). �
Using Proposition 3.2, we may replace the discrete norm ‖a‖�p(Ξ) by its equiva-

lent h−d/p‖s‖Lp
, and so obtain an Lp version of Theorem 3.6.

Corollary 3.7. With the assumptions of Theorem 3.6, we have

(3.21)
∥∥∑

ξ∈Ξaξχξ

∥∥
Wσ

p (Ω)
≤ Ch−σ

∥∥∑
ξ∈Ξaξχξ

∥∥
Lp(Ω)

with C = C(p, σ,m, ρ,Ω).

Explicit dependence of C on ρ can be obtained from (3.12) and Lemma B.6.

4. Local Lagrange functions

We now consider a new class of functions bξ ∈ S(Ξ̃), ξ ∈ Ξ, constructed in a

local and cost-effective way, employing only a small set of centers in Ξ̃ that are near
ξ. For each ξ ∈ Ξ, this small set is called the local footprint of ξ and denoted by

Υ(ξ) ⊂ Ξ̃ (see Definition 4.1). Each bξ is a Lagrange interpolant, centered at ξ, for
points in Υ(ξ). The set Υ(ξ) is chosen to give bξ fast decay away from ξ, although
not exponential decay. The size of the footprint is controlled by a parameter K > 0.

Unlike the full Lagrange functions, the local versions do not satisfy interpolatory

conditions throughout Ξ̃. There is no guarantee that they will have zeros outside of
the set Υ(ξ)—as a result the operator Ta =

∑
ξ∈Ξ aξbξ does not satisfy Ta(ξ) = aξ.

It is only a quasi-interpolant (approximation on the sphere with this operator was
considered in [8]).

As in [8] the analysis of this new basis is considered in two steps. First, an
intermediate basis function χ̃ξ is constructed and studied: the truncated Lagrange
function. These functions employ the same footprint as bξ (i.e., they are members
of S(Υ(ξ))) but their construction is global rather than local. This topic is consid-
ered in Section 4.2. Then, a comparison is made between the truncated Lagrange
function and the local Lagrange function. The error between local and truncated
Lagrange functions is controlled by the size of the coefficients in the representation
of bξ − χ̃ξ using the standard (kernel) basis for S(Υ(ξ)). This is considered in
Section 4.3.
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4.1. Footprint and local Lagrange function.

Definition 4.1. For a compact set Ω ⊂ Rd and a finite subset Ξ ⊂ Ω, let Ξ̃ be the
extension to {x ∈ Rd | dist(x,Ω) ≤ diam(Ω)} given in Section 2.3. For a positive

parameter K, define Υ(ξ) := {ζ ∈ Ξ̃ | |ξ − ζ| ≤ Kh| log h|} for each ξ ∈ Ξ. Then
for the system of local Lagrange functions (bξ)ξ∈˜Ξ, where each bξ is the Lagrange

function centered at ξ, generated by km over Υ(ξ), let

ṼΞ := span{bξ | ξ ∈ Ξ}.

Note in particular that ṼΞ ⊂ S(Ξ̃). Indeed, it is contained in a slight expansion

of S(Ξ). Namely, ṼΞ ⊂ S(Υ ), where Υ :=
⋃

ξ∈Ξ Υ(ξ) ⊂ {ξ ∈ Ξ̃ | dist(ξ,Ω) ≤
Kh| log h|}.

The construction of each bξ depends only on its nearby neighbors in Υ(ξ), so

the majority of points in Ξ̃ are unnecessary from a computational point of view.
However, the (analytic properties of) full Lagrange functions χξ generated by km
over Ξ̃ will still be of use in proving theorems, so we will continue to refer to the

extended set Ξ̃, even though much of it plays no role in the construction of the
functions bξ.

In our main result, we make use of the following:

Let (χξ)ξ∈Ξ be the family of ‘full’ Lagrange functions constructed

by km using the extended point set Ξ̃. For any J > 0, the family
(bξ)ξ∈Ξ satisfies

(4.1) ‖χξ − bξ‖Wσ
p (Ω) � hJ for all ξ ∈ Ξ.

To obtain this result, we show that for a given J there is a K > 0, which governs
the size of the footprint, ensuring that ‖χξ − bξ‖∞ = O(hJ) holds. The value of K
depends linearly on J , as well as some fixed constants involving m and d.

In the following two sections, we show that this result holds for Matérn (in
Lemma 4.7) and surface spline radial basis functions (in Lemma 4.9). Specifically,
this holds for any prescribed value of J , where J depends linearly on K, as given
in Definition 4.1.

4.2. Intermediate construction: Truncated Lagrange functions. For a (full)

Lagrange function χξ =
∑

ζ∈˜Ξ Aξ,ζk(·, ζ) + p ∈ S(Ξ̃) on the point set Ξ̃, the trun-

cated Lagrange function χ̃ξ :=
∑

ζ∈Υ(ξ) Ãξ,ζk(·, ζ) + p is a function in S(Υ(ξ))

obtained by omitting the coefficients outside of Υ(ξ) and slightly modifying the
remaining coefficients Aξ = (Aξ,ζ). (For positive definite kernels, no modification
is necessary, and the construction is quite simple.)

The cost of truncating can be measured using the norm of the omitted coefficients
(the tail).

Lemma 4.2. Let K > (4m − 2d)/ν and for each ξ ∈ Ξ, let Υ(ξ) = {ζ ∈ Ξ̃ |
|ξ − ζ| ≤ Kh| log h|}. Then∑

ζ∈˜Ξ\Υ(ξ)

|Aξ,ζ | ≤ Cρ2mhKν/2+d−2m

with C = C(m, d).
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Proof. The inequality (3.6) guarantees that the tail of the coefficients obey∑
ζ∈˜Ξ\Υ(ξ)

|Aξ,ζ | ≤ Cqd−2m
∑

|ξ−ζ|≥Kh| log h|
exp

(
−ν

dist(ξ, ζ)

h

)
.

By observing that for ζ ∈ Ξ̃ \ Υ(ξ), we have qd ≤ Cvol
(
B(ζ, q) \ B(ξ,Kh| log h|)

)
with a constant C that depends only on the spatial dimension d. (Note that for most
ζ, the above set is simply B(ζ, q), while for those ζ which are near the boundary of
B(ξ,Kh| logh|) the set contains a half-ball), we can control the above sum by an
integral, namely∑

ζ∈˜Ξ\Υ(ξ)

|Aξ,ζ | ≤ Cqd−2m
∑

|ξ−ζ|≥Kh| log h|
exp

(
−ν

|ξ − ζ|
h

)

≤ Cq−2m
∑

|ξ−ζ|≥Kh| log h|

∫
y∈B̃(ξ,q)

exp

(
−ν

|ξ − ζ|
h

)
dy

≤ Cq−2m

∫
y∈Rd\B(ξ,Kh| log h|)

exp

(
−ν

|ξ − ζ|
h

)
dy.(4.2)

(Here we employ the sets B̃(ξ, q) := B(ξ, q) \ B(ξ,Kh| logh|), which contain at
least half volume of B(ξ, q).) In the final inequality, we have used the fact that
the sets B(ζ, q) \ B(ξ,Kh| logh|) are disjoint and that for y ∈ B(ζ, q), dist(ξ, y) ≤
dist(ξ, ζ) + q ≤ dist(ξ, ζ) + h, which implies −dist(ξ, ζ) ≤ −dist(ξ, y) + h (leading
to a small increase in the constant; a factor of eν).

Applying a polar change of variables in the final integral gives the inequality∑
ζ∈˜Ξ\Υ(ξ)

|Aξ,ζ | ≤ Cq−2m

∫ ∞

Kh| log h|
exp

(
−ν

r

h

)
rd−1dr.

We simplify this estimate by splitting ν = ν/2 + ν/2 and writing∑
ζ∈˜Ξ\Υ(ξ)

|Aξ,ζ | ≤ Chdq−2m

(∫ ∞

K| log h|
rd−1 exp

(
−K| log h|ν

2

)
exp

(
−r

ν

2

)
dr

)

≤ Chdq−2mhKν/2 = Cρ2mhKν/2+d−2m.

The lemma follows. �

4.2.1. Bounds for truncated functions: Matérn functions. Let ‖ · ‖Z be a norm on

S(Ξ̃) for which a universal constant Γ exists so that supz∈Ω ‖km(·−z)‖Z ≤ Γ. Since
‖km(· − z)‖Z is finite and bounded independent of z, we have

(4.3) ‖χξ − χ̃ξ‖Z ≤ Γ
∑

ζ∈˜Ξ\Υ(ξ)

|Aξ,ζ | ≤ CΓρ2mhKν/2−2m+d.

In particular, we have the following.

Lemma 4.3. Let m > d/2 and consider the Matérn radial basis function km = κm

described in (2.5). For 1 ≤ p < ∞ and σ < 2m− d+ d
p we have

‖χξ − χ̃ξ‖Wσ
p (Rd) ≤

∑
ζ∈X\Υ(ξ)

|Aξ,ζ | ‖κm(·, ζ)‖Wσ
p (Rd) ≤ Cρ2mhKν/2+d−2m

with C = C(m, d).
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For p = ∞, the above result holds for the Hölder space W σ
∞(Rd) replaced with

Cσ(Rd).

Proof. By examination of (2.5), we see that κm ∈ W τ
p (R

d) for 1 ≤ p < ∞ and

τ < 2m− d+ d/p, while for p = ∞, κm ∈ Cτ (Rd) with τ < 2m− d. In either case,
the smoothness norm is translation invariant, so it follows that

‖κm(· − z)‖W τ
p (Rd) ≤ Cτ,p and ‖κm(· − z)‖Cτ (Rd) ≤ Cτ,∞

hold. The result follows from (4.3). �

4.2.2. Bounds for truncated functions: Surface splines. When km = φm (i.e., a
surface spline, and therefore conditionally positive definite), the argument of the
previous section is a little more complicated. Given a Lagrange function χξ =∑

ζ∈X Aζ,ξkm(·, ζ) + p, simply truncating coefficients does not yield a function

in S(Υ(ξ)). That is, (Aζ,ξ)ζ∈Υ(ξ) does not necessarily satisfy the side condition∑
ζ∈Υ(ξ) Aζ,ξp(ζ) = 0 for all p ∈ Πm−1.

The result for restricted surface splines on even dimensional spheres (S2n) has
been developed in [8, Proposition 6.1]. We now present a similar estimate for surface
splines on Rd where the truncated Lagrange function is corrected by perturbing its
coefficients slightly. This is done by using the orthogonal projector having range
⊥ (Πm−1

∣∣
Υ(ξ) ). Keeping this perturbation small is essential to our later results,

so we must estimate it. We use the following result about Gram matrices for
polynomials sampled on finite point sets.

Gram matrices for polynomials restricted to point sets. Let N = dimΠm−1 and
consider X ⊂ Rd a finite point set. For a basis {p1, . . . , pN} of Πm−1, denote
by ΦX the (Vandermonde-type) matrix with N columns and #X rows whose jth
column is pj restricted to X. In other words,

(4.4) ΦX ∈ M(#X)×N (R) with (ΦX)ξ,j = pj(ξ).

Lemma 4.4. For every m ∈ N, and any radius r > 0, point x ∈ Rd and point set
X ⊂ B(x, r) with fill distance h ≤ h0r, where h0 = h0(m), the inverse of the Gram
matrix GX = ΦT

XΦX ∈ MN×N (R) has norm bounded by

‖G−1
X ‖2→2 ≤ Cr−2(m−1)

with C = C(m, d).

Proof. From [32, Theorem 3.8 and Corollary 3.11], we have that if X ⊂ B(x, r) has
fill distance h ≤ h0r, then X is a norming set for B(x, r) with norming constant 2.
(Here h0 = cm−1, from [32, Corollary 3.11].) This means that for every p ∈ Πm−1,
‖p‖L∞(B(x,r)) ≤ 2‖p |X ‖�∞(X).

The norm of the Gram matrix can be controlled by

‖G−1
X ‖2→2 = ( min

‖a‖=1
〈GXa, a〉)−1 and 〈GXa, a〉 = ‖ΦXa‖2�2(X) = ‖RXV a‖2�2(X),

where V a :=
∑N

j=1 ajpj and RX is the restriction operator RXV a =
∑N

j=1 ajpj |X .
For h sufficiently small, the norming set property ensures that

‖p‖L∞(B(x,r)) ≤ 2‖RXp‖�∞(X) ≤ 2‖RXp‖�2(X).
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On the other hand, we have the following growth properties of polynomials Πm−1:
there exists a constant Cm > 0 so that for every 0 < r < 1, ‖p‖L∞(B(x,1)) ≤
Cmr−(m−1)‖p‖L∞(B(x,r)). Returning to the basis (p1, . . . , pN ), we have

‖a‖�2(N) ≤ Cm,d‖
N∑
j=1

ajpj‖L∞(B(x,1)) ≤ Cm,d

(
1

r

)m−1

‖
N∑
j=1

ajpj‖L∞(B(x,r)).

This gives ‖a‖�2(N) ≤ Cr−(m−1)‖
∑N

j=1 ajpj |X ‖�2(X), and the result follows. �

A bound similar to this for Sd−1 using spaces of spherical harmonics in place of
Πm−1 has been demonstrated in [8, Lemma 6.4], while [15] gives general conditions
for the auxiliary space of a CPD kernel.

Modifying coefficients. We use the matrix ΦΥ(ξ) to construct the orthogonal projec-

tor P = ΦΥ(ξ)(Φ
T
Υ(ξ)ΦΥ(ξ))

−1ΦT
Υ(ξ), which has range Π

∣∣
Υ(ξ) and kernel ⊥(Π

∣∣
Υ(ξ) ).

For a fixed ξ, denote the truncated coefficients (Aζ,ξ)ζ∈Υ(ξ) ∈ RΥ(ξ) by Aξ. In order

to satisfy the side conditions, we generate the modified coefficients Ãξ = (Ãζ,ξ) ∈
RΥ(ξ) via

Ãξ = Aξ − PAξ.

In other words, Ãξ is the orthogonal projection of Aξ onto ⊥ (Π
∣∣
Υ(ξ) ). Define the

‘truncated’ Lagrange function as

χ̃ξ :=
∑

ζ∈Υ(ξ)

Ãζ,ξφm(· − ζ) + p.

Lemma 4.5. Let m > d/2 and consider the surface spline radial basis function
km = φm described in (2.6). For sufficiently small h we have

(4.5) ‖A− Ã‖�2(Υ(ξ)) ≤ Cρ2mhKν/2+1−3m+d| log h|1−m

with C = C(m, d).

Proof. Using Aξ − Ãξ = PAξ and P = ΦΥ(ξ)G
−1
Υ(ξ)Φ

T
Υ(ξ), we can estimate the �2

norm of the difference of the coefficients as

‖Aξ − Ãξ‖�2(Υ(ξ)) = 〈ΦT
Υ(ξ)Aξ,G

−1
Υ(ξ)Φ

T
Υ(ξ)Aξ〉1/2 ≤ ‖G−1

Υ(ξ)‖
1/2
2→2‖ΦT

Υ(ξ)Aξ‖�2(N).

Since
∑

ζ∈˜Ξ Aζ,ξp(ξ) = 0 for all polynomials p ∈ Πm−1, we have ΦT
Υ(ξ)Aξ =

−
(∑

ζ∈˜Ξ\Υ(ξ) Aζ,ξpj(ζ)
)N
j=1

.

Applying the estimate (2.2), the �2(N) norm of ΦTA is controlled by

‖ΦT
Υ(ξ)Aξ‖�2(N) ≤ ‖ΦT

Υ(ξ)Aξ‖�1(N) ≤
N∑
j=1

∣∣∣∣∣∣
∑

ζ∈˜Ξ\Υ(ξ)

Aζ,ξpj(ζ)

∣∣∣∣∣∣
≤

∑
ζ∈˜Ξ\Υ(ξ)

|Aζ,ξ|
N∑
j=1

|pj(ζ)|.
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In the first estimate we use the inequality
∑

|cj |2 ≤ (
∑

|cj |)2. Applying Hölder’s
inequality and (3.6) to the right-hand side gives

‖ΦT
Υ(ξ)Aξ‖�2(N) ≤ N

∑
ζ∈˜Ξ\Υ(ξ)

( max
j=1,...,N

|pj(ζ)|) |Aζ,ξ|

≤ Cqd−2m
∑

ζ∈˜Ξ\Υ(ξ)

( max
j=1,...,N

|pj(ζ)|)exp
(
−ν

dist(ξ, ζ)

h

)
,

where we have absorbed N (recall that N = dimΠm−1 depends on m and d) into
the constant C.

We now recall the argument in (4.2) which allows us to estimate the above sum
by an integral:

‖ΦT
Υ(ξ)Aξ‖�2(N) ≤ Cq−2m

∫ ∞

Kh log h

max
j=1,...,N

(
‖pj‖

L∞

(
B(ξ,z)

)) e−νz/hdz

≤ Cq−2m

∫ ∞

Kh log h

max(1, zm−1)e−νz/hdz

≤ Cρ2mhKν/2+d−2m.(4.6)

In (4.6) we have used a change to polar coordinates, as in Lemma 4.2.
Estimate (4.5) follows by combining Lemma 4.4 (using r = Kh| log h|) with

(4.6). �

As in the positive definite case, we are able to control the truncation error
measured in suitable smoothness norms—the only requirement is that the kernel is
bounded. In the conditionally positive definite case, the kernel may be unbounded,
so we measure the norm over the bounded region Ω. Specifically, the surface spline
φm ∈ W σ

p,loc(R
d) for all σ < 2m−d+ d

p (as well as Cσ
loc(R

d) for σ < 2m−d). There

is Γ < ∞ (depending on σ, p, m and Ω) so that for ζ ∈ Ω̃, ‖φm(· − ζ)‖Wσ
p (Ω) ≤ Γ.

Lemma 4.6. For 1 ≤ p < ∞ and σ < 2m− d+ d
p ,

‖χ̃ξ − χξ‖Wσ
p (Ω) ≤ Cρ2m+d/2hKν/2+1−3m+d| log h|d/2+1−m

with C = C(σ,m, p,Ω).
A similar result holds for p = ∞, replacing W σ

p (Ω) by Cσ(Ω) for σ < 2m− d.

Proof. The Sobolev estimate holds by considering

‖χ̃ξ − χξ‖Wσ
p (Ω) ≤

∑
ζ∈Υ(ξ)

|Aξ,ζ − Ãξ,ζ |‖φm(· − ζ)‖Wσ
p (Ω)

+
∑

ζ /∈Υ(ξ)

|Aξ,ζ |‖φm(· − ζ)‖Wσ
p (Ω).

The first term can be bounded by introducing the constant

Γ := max
ζ∈˜Ω

‖φm(· − ζ)‖Wσ
p (Ω) < ∞,
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which gives
∑

ζ∈Υ(ξ) |Aξ,ζ−Ãξ,ζ |‖φm(·−ζ)‖Wσ
p (Ω) ≤ Γ‖Aξ−Ãξ‖�1(Υ(ξ)). Employing

(4.5) yields∑
ζ∈Υ(ξ)

|Aξ,ζ − Ãξ,ζ |‖φm(· − ζ)‖Wσ
p (Ω) ≤ CΓρ2mh

Kν
2 +1−3m+d| log h|1−m(#Υ(ξ))

d
2

≤ CΓρ2m+d/2h
Kν
2 +1−3m+d| log h|1−m+ d

2 .

For the second inequality we have used the estimate #Υ(ξ) ≤ Cρd| log h|d.
The second term

∑
ζ /∈Υ(ξ) |Aξ,ζ |‖φm(· − ζ)‖Wσ

p (Ω) ≤ Γ
∑

ζ /∈Υ(ξ) |Aξ,ζ | is treated

with Lemma 4.2 to obtain
∑

ζ /∈Υ(ξ) |Aξ,ζ |‖φm(·−ζ)‖Wσ
p (Ω) ≤ CΓρ2mh

Kν
2 −2m+d. �

4.3. Local Lagrange functions. In this section we consider a locally constructed
function bξ. Our main goal is to show that for Ξ ⊂ Ω, there exist functions bξ

defined on Rd, so that ‖
∑

ξ∈Ξ aξbξ‖Wσ
p (Ω) ≤ Ch

d
p−σ‖a‖�p(Ξ).

At this point, a standard argument bounds the error between bξ and χ̃ξ (this
argument is essentially the same one used on the sphere in [8]). This works by
measuring the size of bξ − χ̃ξ ∈ S(Υ(ξ)).

4.3.1. Bounds for local Lagrange functions: Matérn functions. For the positive def-
inite case, the argument is fairly elementary. For ζ ∈ Υ(ξ), let yζ := bξ(ζ)− χ̃ξ(ζ).
Observe that bξ−χ̃ξ =

∑
ζ∈Υ(ξ) aζkm(·−ζ) ∈ S(Υ(ξ)), where a = (aζ) and y = (yζ)

are related by KΥ(ξ)a = y. The matrix (KΥ(ξ))
−1 has entries (Aζ,η)ζ,η∈Υ(ξ).

For a kernel of order m, the entries of the matrix A = (Aζ,η)ζ,η∈Υ(ξ) can be

estimated by (3.3): |Aζ,η| ≤ Cqd−2m. It follows that (KΥ(ξ))
−1 has �1 matrix norm∥∥∥(KΥ(ξ)

)−1
∥∥∥
1→1

≤ C(#Υ(ξ))qd−2m ≤ Cρ2m| log h|dhd−2m.

(Here we have used the estimate #Υ(ξ) ≤ Cρd| log h|d.) Consequently ‖y‖1 ≤
(#Υ(ξ))‖y‖∞.

Because yζ = χξ(ζ)− χ̃ξ(ζ) for ζ ∈ Υ(ξ) and ‖χξ − χ̃ξ‖∞ ≤ C‖χξ − χ̃ξ‖Wm
2 (Rd)

we have∑
ζ∈Υ(ξ)

|aζ | ≤
∥∥∥(KΥ(ξ)

)−1
∥∥∥
1→1

‖y‖1 ≤ Cρ2m+dhd−2m| log h|2d‖χξ − χ̃ξ‖Wm
2 (Rd).

For a generic norm ‖·‖Z for which maxz∈˜Ω ‖km(·−z)‖Z ≤ Γ we have ‖bξ−χ̃ξ‖Z ≤
Γ
∑

ζ |aζ |. We now have the counterpart to Lemma 4.3, which shows that (4.1) holds
for Matérn kernels.

Lemma 4.7. For km = κm and for 1 ≤ p ≤ ∞ and σ < 2m− d+ d/p we have

(4.7) ‖bξ − χξ‖Wσ
p (Rd) ≤ Cρ4m+dhKν/2+2d−4m| log h|2d

with C = C(m, d).

Setting | log h|2d ≤ Ch−1 (either by finding a sufficiently small h∗ so that this
holds for h < h∗, or by increasing the constant, or both), and by employing a simple
interpolation inequality, we have

(4.8) ‖bξ − χξ‖Wσ
p (Rd) ≤ Cρ4m+dhJ , J = Kν/2 + 2d− 4m− 1.
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4.3.2. Bounds for local Lagrange functions: Surface splines. As in the previous
section, we are guided by the estimates for local Lagrange functions on the sphere
[8, Proposition 5.2].

In this case we have χ̃ξ − bξ =
∑

ζ∈Υ(ξ) aζφm(· − ζ) +
∑N

j=1 cjpj ∈ S(Υ(ξ)).

The vectors a = (aζ)ζ∈Υ(ξ) and c = (cj)j=1,...,N are related to y = (yζ)ζ∈Υ(ξ) =
(χ̃ζ − bζ)ζ∈Υ(ξ) by (

KΥ(ξ) Φ
ΦT 0N×N

)(
a
c

)
=

(
y

0N×1

)
,

where KΥ(ξ) is the collocation matrix and Φ is the Vandermonde matrix introduced
in (4.4). The norms of a and c can be controlled by ‖y‖�2(Υ(ξ)). This is demon-

strated in [8, Proposition 5.2], which shows that ‖a‖�2(Υ(ξ)) ≤ ϑ−1‖y‖�2(Υ(ξ)) where

ϑ is the minimal positive eigenvalue of P⊥KΥ(ξ)P
⊥. Recall that P⊥ = Id − P ,

P = Φ(ΦTΦ)−1ΦT is the projector introduced in Section 4.2.2.
We make the following observation, which is [8, Proposition 5.2]:

‖a‖�2(Υ(ξ)) ≤ ϑ−1‖y‖�2(Υ(ξ)),(4.9)

‖c‖�2(N) ≤ 2 max
η,ζ∈Υ(ξ)

|φm(η − ζ)|‖G−1
Υ(ξ)‖

1/2ϑ−1(#Υ(ξ))‖y‖�2(Υ(ξ)).(4.10)

It is possible to estimate the size of ϑ by considering the matrix of kernel coefficients

for the Lagrange functions bη,Υ(ξ) =
∑

ζ∈Υ(ξ) Aζ,ηkm(·, ζ) +
∑N

j=1 Bj,ηφj .

Lemma 4.8. For ϑ, the minimal positive eigenvalue of P⊥KΥ(ξ)P
⊥, we have

ϑ−1 = ‖A‖2→2, where A = (Aζ,η)ζ,η∈Υ(ξ) is the matrix of kernel coefficients for
the Lagrange functions in S(Υ(ξ)).

Proof. Writing B = (Bj,η)j=1,...,N
η∈Υ(ξ)

it follows that KΥ(ξ)A+ΦB = Id. From this we

have P⊥ = P⊥KΥ(ξ)A and kerA ⊂ kerP⊥. On the other hand, each column of A
satisfies the side condition

∑
η∈Υ(ξ) Aζ,ηp(η) = 0 for all p ∈ Π, so ranA ⊂ ranP⊥.

From this it follows that kerA = kerP⊥ and ranA = ranP⊥.
Because P⊥A = A we have P⊥ = P⊥KΥ(ξ)A = P⊥KΥ(ξ)P

⊥A, and the nonzero

spectrum of A is the reciprocal of the nonzero spectrum of P⊥KΥ(ξ)P
⊥. In other

words, ϑ−1 = maxλ∈σ(A) |λ|. �

Applying Gershgorin’s theorem to A, whose entries are Aζ,η = 〈bζ,Υ(ξ), bη,Υ(ξ)〉
and therefore satisfy |Aζ,η| ≤ Cqd−2m, we have ϑ−1 ≤ C

(
1 + #

(
Υ(ξ)

))
qd−2m. By

(4.9) we have

(4.11) ‖a‖�2(Υ(ξ)) ≤ Cρ2mhd−2m| log h|d‖y‖�2(Υ(ξ)).

We will apply (4.10) to estimate ‖c‖�2(N), noting that Lemma 4.4 ensures hat

‖G−1
Υ(ξ)‖1/2 ≤ C(Kh| log h|)−(m−1). We have shown in the previous paragraph that

ϑ−1 ≤ Cρ2mhd−2m| log h|d and a counting argument gives (#Υ(ξ)) ≤ Cρ2m| log h|d.
Thus the right-hand side of (4.10) can be estimated as

2 max
η,ζ∈Υ(ξ)

|φm(η − ζ)|‖G−1
Υ(ξ)‖

1/2ϑ−1(#Υ(ξ))‖y‖�2(Υ(ξ))

≤ C(2Kh| log h|)2m−d
(
(Kh| log h|)−(m−1)

) (
ρ2mhd−2m| log h|d

)
(ρd| log h|d).
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Applying (4.10) gives

(4.12) ‖c‖�2(N) ≤ Cρ2m+dh−(m−1)| log h|m+1+d‖y‖�2(Υ(ξ)).

We are now in a position to prove that (4.1) holds for surface splines.

Lemma 4.9. Let km = φm, the surface spline RBF on Rd, and let J > 0. For Ξ ⊂
Ω, form the local Lagrange functions bξ ∈ Υ(ξ), with Υ(ξ) = Ξ̃ ∩ B(ξ,Kh| log h|),
where J = K ν

2 − 5m + d + 1. Then for 1 ≤ p ≤ ∞ and σ < 2m − d + d
p , and for

sufficiently small h,
‖bξ − χξ‖Wσ

p (Ω) ≤ Cρ4m+2dhJ

with C = C(σ,m, p,Ω).

Proof. We use the triangle inequality ‖bξ − χξ‖Wσ
p (Ω) ≤ ‖bξ − χ̃ξ‖Wσ

p (Ω)+

‖χ̃ξ − χξ‖Wσ
p (Ω), noting that the second term has been estimated in Lemma 4.5,

and that the first can be controlled as

‖bξ−χ̃ξ‖Wσ
p (Ω) ≤ ‖a‖�1(Υ(ξ)) max

z∈Υ(ξ)
‖φm(·−z)‖Wσ

p (Ω)+‖c‖�1(N) max
1≤j≤N

‖pj(·)‖Wσ
p (Ω).

From (4.11) we have ‖a‖�1(Υ(ξ)) ≤
√
#Υ(ξ)‖a‖�2(Υ(ξ)) and counting argument gives

#Υ(ξ) ≤ Cm,dρ
d| log h|d, so

‖a‖�1(Υ(ξ)) ≤ Cρ2m+d/2hd−2m| log h|3d/2‖y‖�∞(Υ(ξ))

≤ Cρ4m+dhKν/2−5m+2d+1| log h|2d−(m−1),

where we have employed the result of Lemma 4.6 and the embedding Wm
2 ⊂ L∞

to estimate

‖y‖�∞(Υ(ξ)) ≤ ‖bξ − χ̃ξ‖L∞(B(ξ,Kh| log h|)) ≤ Cd,mρ2m+ d
2 h

Kν
2 +1−3m+d| log h|1−m+ d

2 .

Similarly, from (4.12), we have

‖c‖�1(N) ≤ Cρ2m+d+d/2h−(m−1)| log h|m+1+d+d/2‖y‖�∞(Υ(ξ))

≤ Cρ4m+2dhKν/2−4m+2+d| log h|2+2d.

Because maxz∈Υ(ξ) ‖φm(· − z)‖Wσ
p (Ω) and max1≤j≤N ‖φj(·)‖Wσ

p (Ω) are bounded by

a constant Γ which depends only on Ω, m, p and σ, we have

‖bξ − χξ‖Wσ
p (Ω) ≤ ΓCρ4m+2dhKν/2−5m+1+d| log h|2+2d.

The lemma follows for h sufficiently small that | log h|2d+2 < h−1. �

4.4. Bernstein type estimate for local Lagrange functions. In this section

we discuss the local Lagrange (bξ) functions generated by km and the centers Ξ̃.
We develop partial Bernstein inequalities similar to (3.12), where for functions∑

ξ∈Ξ aξbξ ∈ ṼΞ, smoothness norms ‖s‖Wσ
p

are controlled by an �p norm on the

coefficients: ‖a‖�p(Ξ).

Theorem 4.10. Consider the family of local Lagrange functions generated with
K > 10m−2

ν . For 0 ≤ σ ≤ m − (d/2 − d/p)+ when 1 ≤ p < ∞ (or σ ∈ N and
0 ≤ σ < m− d/2 when p = ∞), we have

(4.13)

∥∥∥∥∑
ξ∈Ξ

aξbξ

∥∥∥∥
Wσ

p (Ω)

≤ Cρ4m+3dhd/p−σ‖a‖�p(Ξ),

where C = C(σ, p,m,Ω).
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Proof. We start with the basic splitting

s :=
∑
ξ∈Ξ

aξbξ =

(∑
ξ∈Ξ

aξχξ

)
+

(∑
ξ∈Ξ

aξ(bξ − χξ)

)
=: G+B.

Applying the Sobolev norm gives ‖s‖Wσ
p (Ω) ≤ ‖G‖Wσ

p (Ω)+‖B‖Wσ
p (Ω). From (3.12),

we have

‖G‖Wσ
p (Ω) ≤ Cρm+d/2+d/phd/p−σ‖a‖�p(Ξ) ≤ Cρ4m+3dhd/p−σ‖a‖�p(Ξ).

Taking the Lp norm of B, we have

‖
∑
ξ∈Ξ

aξ(bξ − χξ)‖Wσ
p (Ω) ≤ max

ξ∈Ξ

∥∥bξ − χξ

∥∥
Wσ

p (Ω)

∑
ξ∈Ξ

|aξ|.

We control the �1 norm by using Hölder’s inequality ‖a‖1 ≤ (#Ξ)
p−1
p ‖a‖p and

#Ξ ≤ CΩρ
dh−d. Using Lemma 4.9 (or Lemma 4.7 in case km = κm), we arrive at

the desired inequality
(4.14)

‖
∑

aξ(bξ − χξ)‖Wσ
p (Ω) ≤ Cρ4m+3dhJ−d( p−1

p )‖a‖�p(Ξ) ≤ Cρ4m+3dhd/p−σ‖a‖�p(Ξ)

because the choice of K ensures J ≥ d− σ. The theorem follows. �

For s ∈ ṼΞ = spanξ∈Ξ bξ we may replace the discrete norm ‖a‖�p(Ξ) by its

equivalent h−d/p‖s‖Lp
, as we now show.

Proposition 4.11 (Local Basis Stability and Nikolskii Inequality). For every ρ0 ≥
1 there exists a constant h0 > 0 so that if Ξ ⊂ Ω has fill distance h(Ξ,Ω) ≤ h0

and mesh ratio ρ ≤ ρ0, then the family of local Lagrange functions generated with
K > 10m−2

ν satisfies the bounds

(4.15) c ‖a‖�p(Ξ) ≤ q−d/p‖s‖Lp(Ω) ≤ Cρm+d/p ‖a‖�p(Ξ)

for all s =
∑

ξ∈Ξ aξbξ ∈ ṼΞ, with c = c(ρ,m,Ω) and C = C(Ω,m). In addition, for
1 ≤ p, r ≤ ∞, we have

(4.16) ‖s‖Lp(Ω) ≤ Cq−d( 1
r−

1
p )+‖s‖Lr(Ω)

with C = C(p, r, ρ,m,Ω, ).

Proof. The upper bound follows from the previous theorem, with σ = 0. To obtain
the lower bound, note that

q−d/p‖s‖Lp(Ω) = q−d/p‖
∑
ξ∈Ξ

aξ(bξ − χξ) +
∑
ξ∈Ξ

aξχξ‖Lp(Ω).

Consequently, by (4.1), (3.7) and (4.14), we have

q−d/p‖s‖Lp(Ω) ≥ q−d/p
(
‖
∑

ξ∈Ξaξχξ‖Lp(Ω) − Cρ4m+3dhJ−d( p−1
p )‖a‖�p(Ξ)

)
≥ (c1 − Cρ4m+3dhJ−d)‖a‖�p(Ξ),

where c1 = c1(ρ,Ω,m) is the constant from Proposition 3.2. Let h0 > 0 be such

that c1 − Cρ4m+3dhJ−d
0 ≥ 1

2c1. This guarantees the same holds for all 0 < h ≤ h0.
The proof of the Nikolskii inequality is, mutatis mutandis, that of Corollary 3.3. �
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5. Main results and corollaries

At this point we can prove the inverse inequality for local Lagrange functions in

ṼΞ.

Theorem 5.1. Suppose Ω ⊂ Rd is a bounded Lipschitz region. For m > d/2
and for every ρ0 > 0 there exists a constant h0 > 0, so that if Ξ ⊂ Ω has mesh

ratio ρ ≤ ρ0, fill distance h ≤ h0, and if Ξ̃ ⊂ Ω̃ is a suitable extension of Ξ (as

mentioned in Remark 2.3), then for all s =
∑

ξ∈Ξ aξbξ ∈ ṼΞ the following holds.

For 1 ≤ p < ∞ and all 0 ≤ σ ≤ m − (d/2 − d/p)+, or for p = ∞ and an integer
σ < m− d/2, we have

‖s‖Wσ
p (Ω) ≤ Ch−σ‖s‖Lp(Ω)

with C = C(m, ρ,Ω).

Proof. This is an immediate combination of Theorem 4.10 and Proposition 4.11. �

5.1. Restriction to the boundary. Immediate applications of Theorem 5.1 are

the following ‘trace’ estimates. (Since the elements of ṼΞ are continuous, it is
appropriate to consider these results about restriction to the boundary.) To make
sense of these, we first need to describe Sobolev spaces on the boundary ∂Ω.

5.1.1. Smoothness spaces on ∂Ω. We use the common tactic of employing a parti-
tion of unity with corresponding changes of variable to flatten the boundary. (As
in [30, 1.11] and [20], for instance.) The details of the partition of unity and change
of variable depends on the smoothness of the boundary, and this influences the
types of Sobolev spaces we can define (namely, the maximum order of smoothness
is governed by the smoothness of the boundary).

For a domain whose boundary is Lipschitz we consider a partition of unity
(ψj)

N
j=1 of ∂Ω, where each ψj : ∂Ω → [0, 1] is Lipschitz, and let (Uj , hj)

N
j=1 be

a corresponding collection of bi-Lipschitz charts so that each Uj is an open set in
∂Ω containing the closure of supp(ψj) and each hj : Uj → Oj ⊂ Rd−1 is a bijective
Lipschitz function. Then for 1 ≤ p < ∞ and 0 < σ ≤ 1, the Sobolev space W σ

p

(
∂Ω

)
consists of functions f ∈ Lp(∂Ω) such that

(5.1) ‖f‖p
Wσ

p

(
∂Ω
) :=

N∑
j=1

‖
(
ψj ◦ (h−1

j )
)(
f ◦ (h−1

j )
)
‖pWσ

p (Oj)

is finite.
For higher orders of smoothness, we simply increase the smoothness of the bound-

ary, and the partition of unity and chart. For σ < M , let (ψj)
N
j=1 be a CM partition

of unity of ∂Ω, and let (Uj , hj)
N
j=1 be a collection CM charts. ThenW σ

p (∂Ω) consists
of functions for which the norm (5.1) is finite.

We note that this transporting of norms from Euclidean space to manifold by way
of partition of unity and pull-back can be carried out for other smoothness spaces.
In particular, it holds as well for the Besov class (see again [30] and [20]). For this
reason, it follows that for fractional σ, W σ

p

(
∂Ω

)
= Bσ

p,p(∂Ω) with equivalence of
norms (as in the Euclidean case).
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5.2. Trace estimates. We may use Theorem 5.1 to obtain the following trace

estimate for functions in ṼΞ. This is nonstandard because the norms of the trace
are bounded by LP norms rather than Sobolev norms.

Corollary 5.2. Under hypotheses of Theorem 5.1, for s ∈ ṼΞ we have, for 1 ≤
p ≤ ∞ and 0 < σ ≤ m− 1/p− (d/2− d/p)+,

‖s‖Wσ
p (∂Ω) ≤ Ch−σ−1/p‖s‖Lp(Ω)

with C = C(m, ρ,Ω).

Proof. For σ > 0 we have that W
σ+1/p
p (Ω) = B

σ+1/p
p,p (Ω) and W σ

p (∂Ω) = Bσ
p,p(∂Ω).

It follows that Tr : W
σ+1/p
p (Ω) → W σ

p (∂Ω) is bounded by the trace theorem (one
will find a suitable one for smooth boundaries in [29, 3.3.3], and for Lipschitz
boundaries in [20, Theorem 2.1]) so

‖s‖Wσ
p (∂Ω) ≤ CΩ‖s‖Wσ+1/p

p (Ω)
≤ CΩ,ρh

−σ−1/p‖s‖Lp(Ω).

The first inequality is from the trace theorem, while the second follows from Lemma
B.6. �

We can get a similar estimate for σ = 0, although this requires a modified trace
result.

Lemma 5.3. Suppose Ω is compact with C1 boundary. For 1 < p < ∞ there is a
constant Cp so that for all u ∈ C1(Ω) and ε > 0 we have

‖u‖Lp(∂Ω) ≤ Cp(ε
−q/p‖u‖pLp(Ω) + ε‖u‖pW 1

p (Ω))

with q = p
p−1 .

Proof. Note that in this case, we consider Sobolev norms over Ω, so for the norms on
the right-hand side, we make use of the definition given in Section 2.4. The Lp(∂Ω)
norm on the left is with respect to surface measure, but this can be estimated in a
standard way (by partition of unity and change of variables).

We begin by proving a trace result for Ω = Rd
+ = Rd−1× [0,∞). For u ∈ C1(Rd

+)

having compact support and x′ ∈ Rd−1, let rx′ be the first positive zero of t �→
|u(x′, t)|. Then∣∣u(x′, 0)

∣∣p ≤
∫ rx′

0

∂d|u(x′, xd)|pdxd

≤ p

∫ ∞

0

|u(x′, xd)|p−1 |∂d(u(x′, xd))|dxd

≤
∫ ∞

0

C(ε)|u(x′, xd)|(p−1) p
p−1 + ε|∂d(u(x′, xd))|pdxd.

The last line uses Young’s inequality ab ≤ C(ε)aq + εbp with C(ε) = q−1(εp)−q/p.
Integrating this over Rd−1, we have

(5.2) ‖u‖p
Lp(Rd−1)

≤ Cpε
−q/p‖u‖p

Lp(Rd
+)

+ ε‖u‖p
W 1

p (R
d
+)
.

Now let (Ψj)
N
j=1 be a finite collection of nonnegative, compactly supported, C1

functions so that
∑

Ψj = 1 in a small neighborhood of ∂Ω. Let (Uj)
N
j=1 denote a

corresponding collection of open sets so that supp(Ψ)j ⊂ Uj and so that there is
hj : Uj → B(0, εj), an open ball in Rd.
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For f ∈ C1(Ω) and 1 ≤ j ≤ N , the product Ψjf is compactly supported and

(extending by 0) we have uj := (Ψjf) ◦ (h−1
j ) ∈ C1(R

d
+). Applying (5.2) to (Ψjf) ◦

h−1
j gives ‖uj‖pLp(Rd−1)

≤ Cpε
−q/p‖uj‖pLp(Rd)

+ε‖uj‖pW 1
p (R

d)
. Because Ψj and h−1

j are

C1 over compact sets, their norms can be bounded independent of j. By applying
chain and product rules, it follows that

(5.3)

N∑
j=1

‖uj‖pLp(Rd−1)
≤ Cp,q

(
ε−q/p‖u‖pLp(Ω) + ε‖u‖pW 1

p (Ω)

)
with an increased constant which depends on max1≤j≤N ‖(hj)

−1‖
C1

(
h−1
j (supp(Ψj))−

)
and max1≤j≤N ‖Ψj‖C1(Rd) as well as that of (5.2) . Because (Ψj|∂Ω

) is a partition

of unity for ∂Ω, the left-hand side of (5.3) controls the Lp norm of u|∂Ω
, which gives

the ε-modified trace inequality

‖u‖pLp(∂Ω) ≤ Cp,q(ε
−q/p‖u‖pLp(Ω) + ε‖u‖pW 1

p (Ω)). �

Corollary 5.4. Let Ω be a bounded domain with C1 boundary and assume the

hypotheses of Theorem 5.1. For s ∈ ṼΞ, for 1 ≤ p ≤ ∞ and for 1 + (d/2 − d/p)+
≤ m, we have that

‖s‖Lp(∂Ω) ≤ Ch−1/p‖s‖Lp(Ω)

with C = C(p, ρ,m,Ω).

Proof. For p = 1 the theorem follows directly from the boundedness of trace from
W 1

1 (Ω) to L1(∂Ω) (see [6, Theorem 1, Chapter 5.5]) and by repeating the argument
of Theorem B.6.

For 1 < p < ∞, we apply Lemma 5.3 with ε = hp−1 (so that ε−q/p = h− p−1
p−1 )

followed by Theorem B.6. Thus,

‖s‖pLp(∂Ω) ≤ C(h−1‖s‖pLp(Ω) + hp−1‖s‖pW 1
p (Ω))

≤ C(h−1‖s‖pLp(Ω) + h−1‖s‖pLp(Ω))

and the result follows by taking the pth root. �

Appendix A. Energy and pointwise bounds on the Lagrange function

In this section, we show that Lagrange functions for surface splines and Matérn
kernels satisfy decay estimates as in Section 3.1.

We say that Ω satisfies an interior cone condition if there are constants ϕ ∈
(0, π/2) and 0 < R < ∞ so that for every x ∈ Ω there is a cone C�n = {y | |y − x| ≤
R, n · ( y−x

|y−x| ) ≥ cosϕ} opening in the direction determined by the unit vector �n so

that C�n ⊂ Ω.
We recall the zeros estimate [18, Theorem A.11] for a bounded region Ω with

Lipschitz boundary (the version we cite is a streamlined modification of an earlier
estimate given in [25, Theorem 2.12]).

Lemma A.1 (Zeros estimate). Let 1 ≤ p ≤ ∞ and m > d/p (when p = 1 we may
have m ≥ d/p). Suppose Ω satisfies a cone condition with aperture ϕ and radius
R. Then there are constants h1 (depending on m and ϕ) and Λ (depending on
m, d, p, ϕ) so that if X ⊂ Ω has fill distance h ≤ h1R and if u ∈ Wm

p (Ω) satisfies
u |X = 0, then

‖u‖Wk
p (Ω) ≤ Λhm−k‖u‖Wm

p (Ω)
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and

‖u‖L∞(Ω) ≤ Λhm−d/p‖u‖Wm
p (Ω).

An important feature of this lemma is that the density h is controlled by the
cone radius R, but the constant Λ does not depend on R. This allows a comparison
of results across sets which are geometrically related. For example, annuli B(x, r2)\
B(x, r1) satisfy cone conditions with aperture ϕ independent of r2 and r1, and with
cone radius equal to half the thickness r2−r1

2 . Thus, the above result holds for
any point set with h ≤ h1(r2 − r1)/2. With almost no modification, this result
extends to balls B(x, r) (where h ≤ h1r) and complements of balls (where there is
not restriction on h).

Consider now the annulus a(ξ, r, t) := {x ∈ Rd | r − t < |x − ξ| ≤ r}. Apply-
ing Lemma A.1 with p = 2 and k = m − 1, we estimate the Sobolev norm5 as
‖u‖2Wm

2 (a) ≤ |u|2Wm
2 (a) +mΛ2h2‖u‖2

Wm−1
2 (a)

which, after rearranging terms, implies

that ‖u‖2Wm
2 (a) ≤ 1

1−mΛ2h2 |u|2Wm
2 (a) for u vanishing on X ⊂ a with h ≤ h1t/2. In

short, if h ≤ min
(
h1t
2 , h2

)
with

(A.1) h2 := (
√
2mΛ)−1,

then

(A.2) |u|Wk
2 (a) ≤ ‖u‖Wk

2 (a) ≤ Λhm−k‖u‖Wm
2 (a) ≤ 2Λhm−k|u|Wm

2 (a)

for u vanishing on X.

Lemma A.2. Suppose m > d/2. There is a constant ν = ν(m, d) with ν < 1 such
that if X ⊂ Rd is a finite point set, a = a(ξ, r, t) is the annulus of outer radius
r, width t and center ξ ∈ X, and X0 = X ∩ a has fill distance h = h(X0, a) ≤
min

(
h1t
2 , h2

)
, then:

• the Matérn Lagrange function χξ ∈ span {κm(· − ζ) | ζ ∈ X} satisfies

‖χξ‖
Wm

2

(
Rd\B(ξ,r)

) ≤ ν‖χξ‖
Wm

2

(
Rd\B(ξ,r−t)

);
• the Lagrange function χξ ∈ S(φm, X) for the order m surface spline satisfies

|χξ|
Wm

2

(
Rd\B(ξ,r)

) ≤ ν|χξ|
Wm

2

(
Rd\B(ξ,r−t)

).
Proof. In either case, the function km is the reproducing kernel for a (semi-)Hilbert
space (described in Sections 2.5.1 and 2.5.2), and we use the notation [u]m,Y to
denote ‖u‖Wm

2 (Y ) or |u|Wm
2 (Y ), respectively.

Let τ : R → [0, 1] be a smooth cut-off function supported on the interval (−∞, 1)
equaling 1 on (−∞, 0]. For r > t, we define τξ,r,t : Rd → R as τξ,r,t(x) =
τ
(
1
t (|x − ξ| − (r − t)

)
, and note that it is a smooth function supported in the

ball B(ξ, r), and equals 1 in B(ξ, r − t). By the chain rule, there is a bound
‖Dβτξ,r,t‖∞ ≤ Ct−|β| which is independent of r.

Both χξ and τξ,r,tχξ are Lagrange functions on X. Thus [χξ]m ≤ [τξ,r,tχξ]m.
Using the additivity of [·]m, and noting that the Lagrange functions are identical
on B(ξ, r − t) while τξ,r,t vanishes outside B(ξ, r), we have

[χξ]
2
m ≤ [τξ,r,tχξ]

2
m −→ [χξ]

2
m,Rd\B(ξ,r−t) ≤ [τξ,r,tχξ]

2
m,a(ξ,r,t).

5Recall that we use the Sobolev norm as defined in Section 2.4—in particular, the kth order
partial derivatives are weighted by (mk ).
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By using Hölder’s inequality in conjunction with the product rule, we have∫
a

|Dα
(
τξ,r,t(x)χξ(x)

)
|2dx =

∫
a

|
∑
β≤α

(
α
β

)
Dα−βτξ,r,t(x)D

βχξ(x)|2dx

≤ C
∑
β≤α

t−2|α−β|
∫
a

|Dβχξ(x)
)
|2dx

≤ C
∑
β≤α

h−2(|α|−|β|)
∫
a

|Dβχξ(x)
)
|2dx.(A.3)

In the last line we have t−|α−β| = t−|α|+|β| ≤ h
|α|−|β|
0 h−|α|+|β| which follows

from the fact that β ≤ α. Applying (A.2) to (A.3) gives, for each β ≤ α,∫
a
|Dβχξ(x)

)
|2dx ≤ C2h2(m−|β|)‖χξ‖Wm

2 (a). This yields the inequality

[τξ,r,tχξ]
2
m,Rd\B(ξ,r−t) ≤ C

∑
|α|=m

∑
β≤α

(
α
β

)(
h−2|α|+2|β|)C2h2(m−|β|)|χξ|2Wm

2 (a).

Canceling powers of h and collecting constants which depend only on m and d, we
have

[χξ]
2
m,Rd\B(ξ,r−t) ≤ [τξ,r,tχξ]

2
m,Rd\B(ξ,r−t) ≤ C[χξ]

2
m,a.

Finally, we note that [χξ]
2
m,a = [χξ]

2
m,Rd\B(ξ,r−t) − [χξ]

2
m,Rd\B(ξ,r) which yields

[χξ]
2
m,Rd\B(ξ,r) ≤

C − 1

C
[χξ]

2
m,Rd\B(ξ,r−t)

and the lemma follows with ν =
√

C−1
C < 1. �

We may now iterate Lemma A.2 to get control of the ‘energy’ of the tail of the
Lagrange functions.

Lemma A.3. Suppose D ⊂ Rd is bounded, and X ⊂ D is a finite point set
with fill distance satisfying h(X,D) ≤ h2. There is μ = μ(m, d) > 0 so that for
R < dist(ξ, ∂D):

• the Matérn Lagrange function χξ ∈ span {κm(· − ζ) | ζ ∈ X} satisfies

‖χξ‖
Wm

2

(
Rd\B(ξ,R)

) ≤ Cqd/2−m exp

(
−μ

R

h

)
;

• the Lagrange function χξ ∈ S(φm, X) for the order m surface spline satisfies

|χξ|
Wm

2

(
Rd\B(ξ,R)

) ≤ Cqd/2−m exp

(
−μ

R

h

)
;

Proof. Setting t = 4h/h1 (where h1 is the constant appearing in Lemma A.1),
consider, for r ≤ dist(ξ, ∂D), an annulus a(ξ, r, t) and the restricted point set
X0 = X ∩ a(ξ, r, t). The slightly smaller, inner annulus a(ξ, r − h, t − 2h) has the
property that for every x ∈ a(ξ, r−h, t− 2h), there is ζ ∈ X0 so that dist(x, ζ) ≤ h
(since in that case dist(x,X0) = dist(x,X)). It follows that h(X0, a(ξ, r, t)) ≤ 2h
and therefore h(X0, a(ξ, r, t)) ≤ h1t

2 .
Now letting n = �R/t�, by Lemma A.2 we have that

|χξ|
Wm

2

(
Rd\B(ξ,R)

) ≤ ν|χξ|
Wm

2

(
Rd\B(ξ,R−t)

) ≤ · · · ≤ νn|χξ|
Wm

2

(
Rd
)
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and the last expression can be bounded by ν−1ν
h0R
4h |χξ|Wm

2

(
Rd
). By the ‘bump

estimate’ (3.2), we have that |χξ|
Wm

2

(
Rd
) ≤ Cqd/2−m, so the lemma follows with

μ = −h0

4 log(ν), which is positive since ν < 1. �

Note that if Ω ⊂ Rd is compact, then Ω̃ = {x ∈ Rd | dist(x,Ω) ≤ diam(Ω)}
automatically satisfies a cone condition (with radius R = diam(Ω) and aperture

independent of Ω). Thus, the result (3.4) follows withD = Ω̃, X = Ξ̃, h0 = h0(d,m)
and ξ ∈ Ξ.

Because x ∈ Ω, ξ ∈ Ξ implies R = |ξ − x| ≤ dist(ξ, ∂Ω), we can apply the
second part of the zeros estimate Lemma A.1 to Lemma A.3 to obtain the pointwise
estimate (3.5)
(A.4)

|χξ(x)| ≤ Chm−d/2‖χξ‖Wm
2 (Rd\B(ξ,dist(ξ,x))) ≤ Cρm−d/2exp

(
−μ

dist(x, ξ)

h

)
.

Note that in the second inequality we have written hm−d/2qd/2−m = ρm−d/2.

Appendix B. Stability bounds for the Lagrange function

We now demonstrate that the family of Lagrange functions for suitable kernels
over a domain Ω satisfy stability bounds of the form (3.7). This was demonstrated
in [16, Proposition 3.6 and Theorem 3.7]; we follow the argument presented there,
with modifications for dealing with a suitably bounded Euclidean domain, and to
obtain a necessary refinement: that the threshold fill distance h0 depends only on
m and d (and not on ρ or Ω).

Lemma B.1. Suppose Ω is a bounded domain and Ξ ⊂ Ω is a finite subset with fill
distance h ≤ h2, where h2 = h2(m, d) is the constant given in (A.1). There exists
a constant c2 = c2(m, d) so that the family of functions (χξ)ξ∈Ξ have the property
that for s =

∑
ξ∈Ξ aξχξ,

‖s‖p ≤ c2ρ
m+d/2qd/p‖a‖�p(Ξ)

holds.

Proof. For p = ∞, inequality (A.4) leads to a bound on the Lebesgue constant L
for the χξ’s over Ω:

(B.1) L := sup
x∈Ω

(∑
ξ∈Ξ|χξ(x)|

)
< Cρm+d/2, C = C(m, d).

Indeed, for fixed x ∈ Ω we note that
∑

ξ∈Ξ |χξ(x)| ≤ Cρm−d/2
∑

ξ∈Ξ e−μ
dist(x,ξ)

h . By

estimating in annuli, using sets An := {ξ ∈ Ξ | h(n − 1) < |x − ξ| ≤ hn} having

#An ≤ C
(

hn
q

)d

, we have that

∑
ξ∈Ξ

|χξ(x)| ≤ Cρm−d/2
(
1 +

∞∑
n=1

ρdnde−μn
)
< Cρm+d/2,

where the constant C = C(m, d) is independent of Ξ. Taking the supremum then
yields (B.1). It follows that

‖s‖L∞(Ω) ≤ L‖s|Ξ‖�∞(Ξ) = L‖a‖�∞(Ξ).
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For p = 1, we have∫
Ω

|s(x)|dx ≤
∑
ξ∈Ξ

|aξ|
∫
Ω

|χξ(x)|dx ≤ Chd‖a‖�1(Ξ).

Here we have used the fact that ‖χξ‖1 ≤ Cρm−d/2hd ≤ Cρm+d/2qd, which follows
by integrating (A.4). A standard application of operator interpolation proves the
other cases. �

Preliminary estimates. Because Ω satisfies a cone condition with aperture ϕ and
radius R, there is a constant α (depending only on d and ϕ) so that for all x ∈ Ω,

αrd ≤ vol(B(x, r) ∩ Ω)

for r ≤ R (the radius of the cone condition). Similarly, we have that there is a
constant K (depending only on d and ϕ) so that

(B.2) #
(
Ξ ∩B(x, r)

)
≤ K(r/q)d.

We can use a simple modification of the zeros lemma [16, Lemma 7.1] valid for
balls, which states that there exists a constant h3 > 0 depending only on m and d
so that for h ≤ h3, the Hölder-like condition

|χξ(x)− χξ(y)| ≤ Cρm−d/2

(
|x− y|

q

)ε

holds for 0 < ε < m− d/2 and with a constant C = C(d,m).

Remark B.2. For the remainder of this appendix, we assume Ξ is sufficiently dense
such that h(Ξ,Ω) ≤ h0 := min(h2, h3). We note that h0 depends only on d and m
(because this is true for h2 and h3).

This permits us to understand the structure of χξ around the centers ζ ∈ Ξ.
Namely, because χξ(ξ) = 1,

χξ(x) ≥
2

3
for x in B(ξ, γq)

whenever γε ≤ 1/(3Cρm−d/2). For the off-center case (i.e., when ζ 	= ξ),

(B.3) |χζ(x)| ≤ Cρm−d/2γε for x in B(ξ, γq)

with a constant C = C(d,m).
Now fix 0 < γ ≤ 1/(3Cρm−d/2)1/ε and define Bξ := Ω∩B(ξ, γq). The above esti-

mate guarantees that α(γq)d ≤ vol(Bξ), from which α(γq)d
(
2
3

)p ≤
∫
Bξ

|χξ(x)|pdx,
implies

α(γq)d
(
2

3

)p∑
ξ∈Ξ

|aξ|p ≤
∑
ξ∈Ξ

∫
Bξ

|aξχξ(x)|pdx.

This is the starting point for the corresponding lower bound to Lemma B.1, since
the quasi-triangle inequality (A+ B)p ≤ 2p−1(Ap + Bp) implies that |aξχξ(x)|p ≤
2p−1

(
|
∑

ζ∈Ξ aζχζ(x)|p + |
∑

ζ �=ξ aζχζ(x)|p
)
and so

(B.4)

α(γq)d
(
2

3

)p∑
ξ∈Ξ

|aξ|p ≤ 2p−1
∑
ξ∈Ξ

∫
Bξ

⎛⎝∣∣∣∣∣∣
∑
ζ∈Ξ

aζχζ(x)

∣∣∣∣∣∣
p

+

∣∣∣∣∣∣
∑
ζ �=ξ

aζχζ(x)

∣∣∣∣∣∣
p⎞⎠ dx.
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The desired lower bound is c1q
d/p‖a‖�p(Ξ) ≤ ‖s‖p, so we must estimate the size of

the overestimated ‘off-diagonal’ terms: 2p−1
∑

ξ∈Ξ

∫
Bξ

|
∑

ζ �=ξ aζχζ(x)|pdx.

Controlling the off-diagonal terms. This is done in two stages, by splitting

∑
ξ∈Ξ

∫
Bξ

∣∣∣∣∣∣
∑

{ζ∈Ξ:ζ �=ξ}
aζχζ(x)

∣∣∣∣∣∣
p

dx =
∑
ξ∈Ξ

(Iξ + IIξ),

where the first term Iξ :=
∫
Bξ

∣∣∣∑{ζ∈Ξ: |ζ−ξ|≥Γq} aζχζ(x)
∣∣∣p dx is the ‘far away’ con-

tribution and the second IIξ :=
∫
Bξ

∣∣∣∑{ζ∈Ξ: |ζ−ξ|≤Γq} aζχζ(x)
∣∣∣p dx is the nearby

contribution. These depend on an (as yet) undetermined parameter Γ > 0. First we
use the exponential decay of (A.4) to control the far away portion of the off-diagonal
part, Then we use the Hölder estimates (B.3) to bound the nearby portion.

Lemma B.3. For every p ∈ [1,∞) there is a function F : (0,∞) → R satisfying
limt→∞ F (t) = 0 so that for every Γ > 0, we have the inequality

∑
ξ∈Ξ

∫
Bξ

∣∣∣∣∣∣
∑

{ζ∈Ξ: |ζ−ξ|≥Γq}
aζχζ(x)

∣∣∣∣∣∣
p

dx ≤ F (Γ)(γq)dρp(m−d
2 )‖a‖p�p(Ξ)

holds with F (Γ) ≤ C̃e−
μ
2 pΓ with C̃ = C̃(m, d, p) and μ = μ(d,m) the constant from

(3.4).

Proof. We sum over the nonoverlapping dyadic regions

Ωk := Ωk(ξ) := {ζ ∈ Ξ | Γ2kq ≤ dist(ξ, ζ) ≤ Γ2k+1q}, k = 0, 1, . . . , Nq,

where 2Nq ∼ diam(Ω)
Γq . This means that, for Mk :=

∫
Bξ

∣∣∣∑ζ∈Ωk
aζχζ(x)

∣∣∣p dx,
Iξ ≤

Nq∑
k=0

2(p−1)(k+1)

∫
Bξ

∣∣∣∣∣∣
∑
ζ∈Ωk

aζχζ(x)

∣∣∣∣∣∣
p

dx =

Nq∑
k=0

2(p−1)(k+1)Mk,

where the above inequality follows by iterating the quasi-triangle inequality

|A+B|p ≤ 2p−1(|A|p + |B|p) to get
∣∣∣∑n

j=1 Aj

∣∣∣p ≤
∑n

j=1 2
j(p−1)|Aj |p.

We now estimate the contribution from each Mk, the portion of IIξ coming
from the dyadic interval Ωk. By using the (generalized quasi-triangle) inequality
|
∑n

j=1Aj |p ≤ np−1
∑

|Aj |p, we have

Mk ≤ (#Ωk)
p−1 ×

∑
ζ∈Ωk

∫
Bξ

|aζχζ(x)|pdx

≤ (#Ωk)
p−1 × max

ζ∈Ωk

‖χζ‖pL1(Bξ)
×

∑
ζ∈Ωk

|aζ |p

≤
(
K(2k+1Γ)d

)p−1
C(γq)dρp(m−d

2 )
(
exp(−μpΓ2k)

) ∑
ζ∈Ωk

|aζ |p.(B.5)

In the final line, we have used the estimates (B.2) and (A.4).
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Multiplying by 2(p−1)(k+1) and summing from 0 to Nq, we obtain (after rear-
ranging some terms and combining constants which depend only on d and p)

Iξ ≤ C(γq)dρp(m−d
2 )

⎛⎝ Nq∑
k=0

(2k(d+1)Γd)p−1 exp(−μpΓ2k)

⎡⎣∑
ζ∈Ωk

|aζ |p
⎤⎦⎞⎠ .

We can now sum over ξ, bounding
∑

ξ∈Ξ Iξ by

C(γq)dρp(m−d
2 )

⎛⎝ Nq∑
k=0

(2k(d+1)Γd)p−1 exp(−μpΓ2k)
∑
ξ∈Ξ

⎡⎣∑
ζ∈Ωk

|aζ |p
⎤⎦⎞⎠

≤ C(γq)dρp(m−d
2 )

⎛⎝ Nq∑
k=0

(2k(d+1)Γd)p−1 exp(−μpΓ2k)(K(2k+1Γ)d)

⎡⎣∑
ζ∈Ξ

|aζ |p
⎤⎦⎞⎠

≤ C
(γq)dρp(m−d

2 )

Γp

⎛⎝ Nq∑
k=0

(2kΓ)(d+1)p exp(−μpΓ2k)

⎞⎠⎡⎣∑
ζ∈Ξ

|aζ |p
⎤⎦ .

In the second inequality, we have exchanged summation over ξ and ζ. In short, we
have used ∑

ξ∈Ξ

∑
ζ∈Ωk

[|aζ |p] =
∑
ζ∈Ξ

∑
ξ∈Ξ

⎡⎣χΩk(ξ)(ζ)
∑
ζ∈Ωk

|aζ |p
⎤⎦

in conjunction with the estimate #{ξ : ζ ∈ Ωk(ξ)} ≤ K(2k+1Γ)d obtained from
(B.2), since for ζ ∈ Ξ, #{ξ : ζ ∈ Ωk(ξ)} = #Ωk(ζ). In the final inequality, we have

used the fact that 2(k+1)d ≤ 2k(d+1) × 2d+1 and that Γdp = Γ(d+1)p

Γp . We estimate
this with an integral as∑

ξ∈Ξ

Iξ ≤ C

(
Γdp exp(−μpΓ)

+
2

Γp

∫ ∞

Γ

exp
(
−μpr

)
r(d+1)p−1dr

)
(γq)dρp(m−d

2 )‖a‖p�p(Ξ).

Which shows that F (Γ) := C
(
Γdp exp(−μpΓ) + 2

Γp

∫∞
Γ

exp
(
−μpr

)
r(d+1)p−1dr

)
.

The integral term can be bounded by making a change of variable R = rΓ as

2

Γp

∫ ∞

Γ

exp
(
−μpr

)
r(d+1)p−1dr = 2Γdp

∫ ∞

1

exp
(
−μpΓR

)
R(d+1)p−1dR

≤ Cd,p,mΓdp exp(−μpΓ).

Because maxΓ>1 Γ
dp exp(−μ

2 pΓ) ≤ Cd,p,m, the estimate F (Γ) ≤ C̃e−
μ
2 pΓ follows.

�

Lemma B.4. For every p ∈ [1,∞) and every Γ > 0, we have the inequality

∑
ξ∈Ξ

∫
Bξ

∣∣∣∣∣∣
∑

{ζ∈Ξ: ζ �=ξ,|ζ−ξ|≤Γq}
aζχζ(x)

∣∣∣∣∣∣
p

dx ≤ C(Γdγε)p(γq)dρp(m−d
2 )‖a‖p�p(Ξ).
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Proof. Note that #{ζ ∈ Ξ : ζ 	= ξ, |ζ − ξ| ≤ Γq} ≤ KΓd, so by the quasi-triangle
inequality, we have, for each ξ ∈ Ξ,

IIξ ≤
∫
Bξ

(KΓd)p−1
∑

dist(ζ,ξ)≤Γq

|aζχζ(x)|pdx

≤
∫
Bξ

(KΓd)p−1(Cρm−d/2γε)p
∑

dist(ζ,ξ)≤Γq

|aζ |pdx

≤ CΓd(p−1)γεpρp(m−d/2)(γq)d
∑

dist(ζ,ξ)≤Γq

|aζ |p.

In the first inequality we use the estimate on the number of centers (B.2). In the
second inequality, we use the bound (B.3). The third inequality follows from the
simple estimate vol(Bξ) ≤ C(γq)d.

Summing over ξ ∈ Ξ, we obtain:∑
ξ∈Ξ

IIξ ≤ CΓd(p−1)γεp(γq)d
∑
ξ∈Ξ

∑
dist(ζ,ξ)≤Γq

|s(ζ)|p

≤ C
(
Γdγε

)p
(γq)dρp(m−d

2 )‖a‖p�p(Ξ).

The final estimate results by exchanging the two summations, and employing the
fact that #{ξ ∈ Ξ: dist(ζ, ξ) ≤ Γq} ≤ KΓd. This completes the proof of the
lemma. �

Lemma B.5. There exists a constant γ satisfying γ ≥ Cρ
d−2m

2ε (log(ρ))−d/ε with
C(d,m, p, ε), so that

2p−1
∑
ξ∈Ξ

∫
Bξ

∣∣∣∑
ζ �=ξ

aζχζ(x)
∣∣∣pdx ≤ 1

2
α(γq)d

(
2

3

)p∑
ξ∈Ξ

|aξ|p

holds for all a ∈ �p(Ξ) and all p ∈ [1,∞).

Proof. By the quasi-triangle inequality, we have

∑
ξ∈Ξ

∫
Bξ

∣∣∣∑
ζ �=ξ

aζχζ(x)
∣∣∣pdx ≤ 2p−1

⎛⎝∑
ξ∈Ξ

Iξ +
∑
ξ∈Ξ

IIξ

⎞⎠ .

Apply Lemma B.3, and choose Γ so that C̃e−
μ
2 pΓ = 1

4α
(
1
3

)p
ρ−p(m−d

2 ), where C̃
is the constant appearing in Lemma B.3. We note that our choice of Γ guarantees

Γ ≤ Cd,p,m log(ρ). By Lemma B.3, F (Γ) ≤ 1
4α

(
1
3

)p
ρ−p(m−d

2 ), it then follows that

∑
ξ∈Ξ

∫
Bξ

∣∣∣∣∣∣
∑

{ζ∈Ξ: |ζ−ξ|≥Γq}
aζχζ(x)

∣∣∣∣∣∣
p

dx ≤ 4−pα

(
2

3

)p

(γq)d
∑
ξ∈Ξ

|aξ|p.

Now select γ so that the inequalities 0 < γ ≤ 1/(3Cρm−d/2)1/ε (with C from

(B.3)) and C(Γdγε)p ≤ 1
4α

(
2
3

)p
ρ−p(m−d

2 ) (with C from Lemma B.4) both hold.

The problem of choosing γ can be rewritten as γε ≤ ρd/2−m min( 1
3C , Cd,m,pΓ

−d).
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Since Γ−d > Cd,p,m(log(ρ))−d, it suffices to take γε = Cd,m,pρ
d/2−m(log(ρ))−d for

some constant Cd,m,p. For this choice of γ, Lemma B.4 guarantees that

∑
ξ∈Ξ

∫
Bξ

∣∣∣∣∣∣
∑

{ζ∈Ξ: ζ �=ξ,|ζ−ξ|≤Γq}
aζχζ(x)

∣∣∣∣∣∣
p

dx ≤ 4−pα

(
2

3

)p

(γq)d
∑
ξ∈Ξ

|aξ|p

as well.
Thus,

2p−1
∑
ξ∈Ξ

∫
B(ξ,γq)

∣∣∣∑
ζ �=ξ

aζχζ(x)
∣∣∣pdx ≤ 4p−1

∑
ξ∈Ξ

(Iξ + IIξ)

≤
(
1

4
+

1

4

)
α(γq)d

(
2

3

)p∑
ξ∈Ξ

|aξ|p

and the result follows with γ ≥ Cd,m,p,ερ
d−2m

2ε (log(ρ))−d/ε. �

Lemma B.6. Suppose Ω is a bounded domain and Ξ ⊂ Ω is a finite subset with fill
distance h ≤ h0 := min(h2, h3), where h0 = h0(m, d). There exists a constant then
the family of functions (χξ)ξ∈Ξ have the property that for any s =

∑
ξ∈Ξ aξχξ,

c1q
d/p‖a‖�p(Ξ) ≤ ‖s‖p

holds with c1 ≥ Cρ
d(d−2m)

2εp (log(ρ))−
d2

pε with 0 < ε < m− d/2 and C = C(d, p,m, ε).

Proof. Since s(ξ) = aξ, the L∞ case follows immediately with constant 1. For
1 ≤ p < ∞ we use (B.4) and Lemma B.5 to make the estimate

α(γq)d
(
2

3

)p∑
ξ∈Ξ

|aξ|p ≤ 2p−1
∑
ξ∈Ξ

∫
Bξ

⎛⎝∣∣∣∣∣∣
∑
ζ∈Ξ

aζχζ(x)

∣∣∣∣∣∣
p

+

∣∣∣∣∣∣
∑
ζ �=ξ

aζχζ(x)

∣∣∣∣∣∣
p⎞⎠ dx

≤

⎛⎝2p−1
∑
ξ∈Ξ

∫
Bξ

∣∣∣∣∣∣
∑
ζ∈Ξ

aζχζ(x)

∣∣∣∣∣∣
p⎞⎠ dx

+
1

2
α(γq)d

(
2

3

)p∑
ξ∈Ξ

|aξ|p.

Applying
∑

ξ∈Ξ

∫
Bξ

∣∣∣∑ζ∈Ξ aζχζ(x)
∣∣∣p ≤

∫
Ω

∣∣∣∑ζ∈Ξ aζχζ(x)
∣∣∣p dx, the result follows

with

c1 =
1

3
(αγd)1/p ≥ Cd,m,p,ερ

d(d−2m)
2εp (log(ρ))−

d2

pε . �
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