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AN ANALYTIC METHOD FOR BOUNDING ψ(x)

JAN BÜTHE

Abstract. In this paper we present an analytic algorithm which calculates
almost sharp bounds for the normalized remainder term (t − ψ(t))/

√
t for

t ≤ x in expected run time O(x1/2+ε) for every ε > 0. The method has been
implemented and used to calculate such bounds for t ≤ 1019. In particular,
these imply that li(x)− π(x) is positive for 2 ≤ x ≤ 1019.

1. Introduction and statement of results

This paper concerns the problem of calculating limited range approximations to
the Chebyshev function

ψ(x) =
∑

pm≤x

log(p) = x+ o(x).

More precisely, we are interested in calculating almost sharp bounds for the nor-
malized error term

(1.1) Rψ(t) =
t− ψ(t)√

t

in the prime number theorem for ψ(t) in finite intervals [x, Lx]. So far, such cal-
culations seem to have been based on tabulating prime numbers (see e.g. [12–14]),
whereas bounds for unlimited ranges are usually derived analytically (see e.g.

[3, 4, 13–16]). The elementary approach leads to a run time of Õ(x) for fixed L

and x → ∞, where f(x) = Õ(g(x)) means there exists an A such that f(x) =
O(g(x) log(x)A). In this paper we present an analytic algorithm for this task,
which satisfies the assertion of the following theorem.

Theorem 1. For every triple (L, δ, θ) ∈ (1,∞)× (0,∞)× (0, 1/2], there exist effec-
tively computable constants C1 = C1(L, θ, δ) and C2 = C2(L, θ, δ) and an algorithm
which takes x ≥ 2 and the zeros ρ of the Riemann zeta function with 0 < �(ρ) ≤
C1x

θ
√
log x with an accuracy of x−C2 as input, performs Õ([1+Ne(C1x

θ
√
log x)]xθ)

arithmetic operations on Õ(xθ) variables of size C2 log x, where Ne(T ) denotes the
number of zeros with 0 < �(ρ) ≤ T violating the Riemann Hypothesis, and outputs
numbers M+

L (x) and M−
L (x) satisfying

(1.2) sup
x≤t≤Lx

± t− ψ(t)√
t

≤ ±M±
L (x) ≤ sup

x≤t≤Lx
± t− ψ(t)√

t
+ δx1/2−θ,

where pluses and minuses are to be taken correspondingly.
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If L is sufficiently large, the Riemann Hypothesis (RH) implies ([9, 15.2.1,
Ex. 2b)])

(1.3) lim inf
x→∞

sup
x≤t≤Lx

± t− ψ(t)√
t

> 0.

Furthermore, the expected run time for calculating zeros of the zeta function with
imaginary part up to T within an accuracy of T−c for any c > 0 is O(T 1+ε) for
every ε > 0, assuming RH and simplicity of the zeros (see [10]). So if we take
θ = 1/2 and δ sufficiently small, the algorithm calculates almost sharp bounds for
Rψ(x) in [x, Lx] in expected run time O(x1/2+ε) for every ε > 0.

The algorithm has been implemented and used to calculate analytic bounds for
x ≤ 1019, using the zeros with imaginary part up to 1011, whose calculation has
been reported in [5]. The calculated bounds also give rise to improved bounds for
the functions

(1.4) π(x) =
∑
p≤x

1, ϑ(x) =
∑
p≤x

log(p), and π∗(x) =
∑
k≥1

π(x1/k)

k
.

The numerical results are summarized in the following theorem.

Theorem 2. The following estimates hold:

|x− ψ(x)| ≤ 0.94
√
x for 11 < x ≤ 1019,(1.5)

x− ϑ(x) ≤ 1.95
√
x for 1423 ≤ x ≤ 1019,(1.6)

x− ϑ(x) > 0.05
√
x for 1 ≤ x ≤ 1019,(1.7)

|li(x)− π∗(x)| <
√
x

log x
for 2 ≤ x ≤ 1019,(1.8)

li(x)− π(x) ≤
√
x

log(x)

(
1.95 +

3.9

log x
+

19.5

log(x)2

)
for 2 ≤ x ≤ 1019,(1.9)

li(x)− π(x) > 0 for 2 ≤ x ≤ 1019.(1.10)

In particular, this gives a new lower bound for the Skewes number, the number
xs ∈ [2,∞) where the first sign change of li(x) − π(x) occurs. The last published
lower bound appears to be xs ≥ 1.2×1017 in [12]. Furthermore, in an earlier paper
[17] the second author claims to have verified xs ≥ 1018 but no further explanation
is given. In total, the calculations took about 1, 200 hours on a 2.27 GHz Intel
Xeon X7560 CPU.

2. Notation

In addition to the usual Landau O and Vinogradov 	 notation, we frequently
use Turing’s big theta notation: g(t) = Θ(f(t)) for t ∈ U ⇔ g(t) ≤ |f(t)| for t ∈ U .
Furthermore, the notation f(t) � g(t) is used for f(t) 	 g(t) and g(t) 	 f(t).
Finally, f±(t) := limh↘0 f(t± h) denotes the limit from the right, respectively left.

3. Description of the method

The basic idea of the method presented in this paper is to use an explicit formula
to bound ψ(t) at sufficiently many well-distributed points in [x, Lx] which are then
extended to the whole interval by interpolation.



BOUNDING ψ(x) ANALYTICALLY 1993

To illustrate the first task recall the well-known approximate version of the von
Mangoldt explicit formula

(3.1) ψ(x) = x−
∑

|�(ρ)|<T

xρ

ρ
− log 2π − 1

2
log(1− x−2) +O

( x
T

log(x)2
)

for T 	 x, where the sum is taken over the non-trivial zeros of the Riemann
zeta function. Using this formula, approximating Rψ(t) within an accuracy of

O(x1/2−θ) can be done by calculating the contribution of zeros with imaginary part
up to T = Cxθ log(x)2. Extending these bounds to [x, Lx] with an error of size
O(x1/2−θ) can be achieved by calculating approximations at O(xθ) well-distributed
points in [x, Lx], since if ξ ∈ [x, Lx] and 0 < y 	 x1−θ, then

Rψ(ξ + y)−Rψ(ξ) =
ξ + y − (1 +O(x−θ))ξ√

ξ + y
− ψ(ξ + y)− (1 +O(x−θ))ψ(ξ)√

ξ + y

= O(x1/2−θ) +O(x−θ−1/2)ψ(ξ) +O(x−1/2)(ψ(ξ + y)− ψ(ξ))

= O(x1/2−θ)

by the prime number theorem and the Brun-Titchmarsh inequality.
If the approximations are calculated by directly evaluating the sum over zeros in

(3.1) this leads to a run time of Õ(x2θ), which outperforms the naive method only
for θ < 1/2. This can be improved by using techniques for multiple evaluations of
trigonometric sums, such as the Odlyzko-Schönhage algorithm. These allow one to
evaluate the contribution of zeros on the critical to the sum in (3.1) on geometric

progressions of length T in run time Õ(T ) = Õ(xθ), reducing the run time of the

algorithm to Õ(xθ).
In principle one could use an explicit version of (3.1), but we rather use a con-

tinuous approximation to ψ(x) from [2] for which a similar explicit formula exists.
This decreases the truncation bound in the sum over zeros to T = C ′xθ

√
log x,

saving a factor log(x)3/2. Also, we rather use a simpler FFT method from [5] in
place of the Odlyzko-Schönhage algorithm for multiple evaluation of trigonometric
sums.

3.1. Bounding ψ(x) analytically. Let

ψ0(x) =
1

2

∑
pm<x

log(p) +
1

2

∑
pm≤x

log(p)

denote the normalized Chebyshev function. We intend to bound ψ(x) in terms of
the modified Chebyshev function

(3.2) ψc,ε(x) = ψ0(x) +
∑

e−εx<pm<eεx

1

m
Mx,c,ε(p

m)

introduced in [2], where

(3.3) Mx,c,ε(t) =
log t

λc,ε

[
χ∗
[x,exp(ε)x](t)

∫ log(t/x)

−ε

ηc,ε(τ )e
−τ/2 dτ

− χ∗
[exp(−ε)x,x](t)

∫ ε

log(t/x)

ηc,ε(τ )e
−τ/2 dτ,

]
,
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χ∗
A denoting the normalized characteristic function which takes the value 1/2 on

the boundary of A,

(3.4) ηc,ε(τ ) =
c

ε sinh(c)
I0(c

√
1− (τ/ε)2),

I0(y) =
∑∞

n=0(y/2)
2n/(n!)2 denoting the 0th modified Bessel function of the first

kind, and λc,ε =
∫ ε

−ε
ηc,ε(τ )e

τ/2 dτ .

The function ψc,ε(x) is a continuous approximation to ψ(x) and we review some
of its properties. The first result provides bounds for ψ(x) in terms of ψc,ε.

Proposition 1 ([2, Proposition 4]). Let

μc(t) =

⎧⎪⎨
⎪⎩
−
∫ t

−∞ ηc,1(τ ) dτ, t < 0,

−μc(−t), t > 0,

0, t = 0,

and let

νc(t) =

∫ t

−∞
μc(τ ) dτ.

Furthermore, let 0 ≤ α < 1, x > 100, and let 0 < ε < 10−2, such that

B =
εxe−ε|νc(α)|
2(μc)+(α)

> 1

holds. We define

A(x, c, ε, α) = e2ε log(eεx)
[2ε x |νc(α)|

logB
+ 2.01ε

√
x+

1

2
log log(2x2)

]
.

Then we have
ψ(e−αεx) ≤ ψc,ε(x) +A(x, c, ε, α)

and
ψ(eαεx) ≥ ψc,ε(x)−A(x, c, ε, α).

The modified Chebyshev function satisfies a similar explicit formula as ψ(x)
but the sum over zeros converges absolutely and is therefore more accessible to
numerical calculations using a subset of the zeros of ζ(s). For the purpose of this
paper, the following approximate version will suffice.

Proposition 2. Let x ≥ 10, 0 < ε ≤ 10−4 and let

(3.5) �c,ε(t) =
c

sinh c

sinh(
√
c2 − (εt)2)√

c2 − (εt)2

denote Logan’s function [7]. Then we have

(3.6) x− ψc,ε(x) =
1

�c,ε(i/2)

∑
ρ

�c,ε(
ρ
i −

1
2i )

ρ
xρ +Θ(2).

Proof. This is a corollary of [2, Proposition 2]: since �c,ε(−z) = �c,ε(z) we get∣∣∣∣∣
∑
ρ

�c,ε(
ρ
i −

1
2i )

ρ

∣∣∣∣∣ = 1

2

∣∣∣∣∣
∑
ρ

�c,ε(
ρ
i −

1
2i )

ρ(1− ρ)

∣∣∣∣∣ ≤ �c,ε(i/2)

2

∑
ρ

�(ρ)−2 < 0.025 �c,ε(i/2)

using the bijection ρ �→ 1−ρ of non-trivial zeros and [13, Lemma 17]. Furthermore,
we have γ/2+ 1+ log(π)/2 ≤ 1.87, − log(1− x−2)/2 ≤ 0.006 and 8ε|log ε| ≤ 0.008,
so the assertion follows. �
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We have the following tail bounds for truncating the sum over zeros.

Proposition 3 ([2, Proposition 3]). Let x > 1, 0 < ε ≤ 10−3 and c ≥ 3. Then we
have

(3.7)
∑

|�(ρ)|> c
ε

∣∣∣∣�c,ε(
ρ
i −

1
2i ) x

ρ

�c,ε(i/2) ρ

∣∣∣∣ ≤ 0.16
x+ 1

sinh(c)
e0.71

√
cε log(3c) log

( c
ε

)
.

Furthermore, if a ∈ (0, 1) such that a c
ε ≥ 103 holds, and if the Riemann Hypoth-

esis holds for all zeros with imaginary part in (acε ,
c
ε ], then we have

(3.8)
∑

ac
ε <|�(ρ)|≤ c

ε

∣∣∣∣�c,ε(
ρ
i −

1
2i ) x

ρ

�c,ε(i/2) ρ

∣∣∣∣ ≤ 1 + 11cε

πca2
log
( c
ε

)cosh(c√1− a2)

sinh(c)

√
x.

Remark 1. It should be demonstrated that it is indeed more efficient to approximate
ψ(x) this way. Calculating ψ(x) within an accuracy of O(xδ) via the modified
Chebyshev function can be done by choosing

ε = xδ−1 log(x)1/2 and c = (1− δ) log(x) + 2 log log(x).

Since

|νc(0)| ∼
1√
2πc

for c → ∞ (see [2, Proposition 5]), Proposition 1 gives

ψ(x)− ψc,ε(x) 	 xδ

and from Propositions 2 and 3 we get

ψc,ε(x)− x =
1

�c,ε(i/2)

∑
|�(ρ)|<T

�c,ε(
ρ
i −

1
2i )

ρ
xρ +O(xδ)

with T = c/ε ∼ (1− δ)x1−δ
√
log x. If the same zeros are used in the von Mangoldt

explicit formula, the standard estimate (3.1) gives an error term which is larger by
a factor of size � log(x)3/2.

3.2. Interpolating bounds for ψ(x). Next, we give an estimate for the interpo-
lation error. For simplicity, we assume that t − ψ(t) changes sign in [x, Lx], or to
be more precise: we assume the upper, respectively, lower, bound for Rψ(t) to be
positive, respectively negative. This is implied by RH if L is sufficiently large and
has been the case in all practical applications.

Proposition 4. Let 109 ≤ a < b and let

a = x0 < x1 < · · · < xn = b

be a dissection of [a, b], whose maximal step size

Δ = max{xk − xk−1 | k = 1, . . . , n}
satisfies 10 ≤ Δ ≤ 10−5a. Then the following assertions hold:

(1) Let M > 0 satisfy
xk − ψ(xk)√

xk
≤ M

for k = 0, 1, . . . , n. Then

y − ψ(y)
√
y

≤ 1.001

[
M +

log a√
a

(
Δ

logΔ
+ log log(a2)

)]
holds for all y ∈ [a, b].
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(2) Let m < 0 satisfy
xk − ψ(xk)√

xk
≥ m

for k = 0, 1, . . . , n. Then

y − ψ(y)
√
y

≥ 1.001

[
m− log a√

a

(
Δ

logΔ
+ log log(a2)

)]
holds for all y ∈ [a, b].

Proof. We start by proving

(3.9) ψ(x)− ψ(x− y) ≤ log(x)

(
1.0001

Δ

logΔ
+ log log(x2)

)

for x ≥ a ≥ 109 and 0 ≤ y ≤ Δ
2 . Since Δ

logΔ ≥ 10
log 10 > 4 we may assume y ≥ 3.

The Brun-Titchmarsh inequality, as stated in [8], and the trivial estimate

#{p | pm ∈ [X − Y,X]} ≤ 2
Y

m
X1/m + 1,

which holds for 0 < 2Y < X, yield

ψ(x)− ψ(x− y) ≤ log(x)
∑

x−y≤pm≤x

1

m

≤ log(x)

⎛
⎝ 2y

log y
+

�2 log x�∑
m=2

(
2

y

m2
x1/m−1 +

1

m

)⎞⎠ .

Since
�2 log x�∑
m=2

1

m
≤
∫ 2 log x

1

dt

t
≤ log log(x2)

and
�2 log x�∑
m=2

2
y

m2
x1/m−1 ≤ y

2
√
x
+

2y

x2/3

∫ ∞

2

dt

t2

≤ y√
x

(1
2
+ x−1/6

)
< 0.6

y√
x
≤ 0.0002

y

log y
,

this implies (3.9) since y �→ y
log y increases monotonically for y > e.

Now let x ∈ {xk}nk=1 and let 0 ≤ y ≤ Δ/2. Then we have

(3.10)
x− y − ψ(x− y)√

x− y
=

x− ψ(x)√
x− y

+
ψ(x)− ψ(x− y)√

x− y
− y√

x− y
.

Now if m < 0 and M > 0 satisfy the conditions in the theorem, then

1.001m ≤
√
x√

x− y
m ≤ x− ψ(x)√

x− y
≤

√
x√

x− y
M ≤ 1.001M.

Furthermore (3.9) gives

0 ≤ ψ(x)− ψ(x− y)√
x− y

≤ log x√
x− y

(
1.0001

Δ

logΔ
+ log log(x2)

)

≤ 1.001
log a√

a

(
Δ

logΔ
+ log log(a2)

)
.
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Since

0 ≤ y√
x− y

≤ 1.0001
Δ√
a
≤ 1.001

log(a)Δ√
a logΔ

the bound (3.10) yields

1.001

(
m− log a√

a

( Δ

logΔ
+ log log(a2)

))
≤ x− y − ψ(x− y)√

x− y

≤ 1.001

(
M +

log a√
a

( Δ

logΔ
+ log log(a2)

))
.

The estimates

1.001

(
m− log a√

a

( Δ

logΔ
+ log log(a2)

))
≤ x+ y − ψ(x+ y)√

x+ y

≤ 1.001

(
M +

log a√
a

( Δ

logΔ
+ log log(a2)

))

for x ∈ {xk}n−1
k=0 and 0 ≤ y ≤ Δ/2 are proven in an analogous way. �

3.3. Fundamental theorem. We can now state the fundamental theorem for the
analytic method, which reduces the problem of bounding Rψ(t) on [x, Lx] to effi-
ciently approximating ψc,ε(t) at finitely many points. This is then dealt with in the
next section.

Theorem 3. Let 0 < ε < 10−4 and let 0 ≤ α ≤ 1 satisfy

ε x νc(α)

2(μc)+(α)
> 10.

Furthermore, let eαε109 ≤ a < b and let

a = x0 < x1 < · · · < xn = b

be a dissection of [a, b] whose maximal step size

Δ = max{|xk − xk−1| | k = 1, . . . , n}
satisfies 10 ≤ Δ ≤ 10−5a.

We define the error terms

E1 = 1.001α ε
√
b,

E2 = 2.02 log(b)

(
ε
√
b |νc(α)| log

( ε b |νc(α)|
2(μc)+(α)

)−1

+ ε+
log log(2a2)

4
√
a

)

and

E3 = 1.001
log a√

a

(
Δ

logΔ
+ log log(a2)

)
.

Then the following assertions hold:

(1) Let M > 0 satisfy
xk − ψc,ε(xk)√

xk
≤ M

for k = 0, 1, . . . , n. Then

y − ψ(y)
√
y

≤ 1.01 (M + E1 + E2 + E3)

holds for all y ∈ [eαεa, b].
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(2) Let m < 0 satisfy
xk − ψc,ε(xk)√

xk
≥ m

for k = 0, 1, . . . , n. Then

y − ψ(y)
√
y

≥ 1.01 (m− E1 − E2 − E3)

holds for all y ∈ [a, e−αεb].

Proof. We start with the proof of the first assertion concerning the upper bound.
Let x̃ = eαεx. Then Proposition 1 yields

x̃k − ψ(x̃k)√
x̃

≤ x̃k − xk√
x̃k

+
xk − ψc,ε(xk)√

x̃k

+
A(xk, c, ε, α)√

x̃k

= 2 sinh(αε/2)
√
xk + e−αε/2 xk − ψc,ε(xk)√

xk
+ e−αε/2A(xk, c, ε, α)√

xk
.

Under the suppositions of the proposition we have

2 sinh(αε/2)
√
xk ≤ E1

and
A(xk, c, ε, α)√

xk
≤ E2.

Therefore,
x̃k − ψ(x̃k)√

x̃k

≤ M + E1 + E2
for k = 0, . . . , n and Proposition 4 yields the desired estimate

y − ψ(y)
√
y

≤ 1.001

(
M + E1 + E2 +

log(ã)√
ã

( Δ̃

log Δ̃
+ log log(ã2)

))

≤ 1.01 (M + E1 + E2 + E3)

for all y ∈ [ã, b̃].
The lower bound estimate follows in an analogous way by using

x̂k − ψ(x̂k)√
x̂k

≥ −2 sinh(αε/2)
√
xk + eαε/2

xk − ψc,ε(xk)√
x

− eαε/2
A(xk, c, ε, α)√

xk
,

where x̂k = e−αεxk. �

4. Evaluation of ψc,ε

We intend to evaluate the sum over zeros,

(4.1)
∑∗

|�(ρ)|<T

�c,ε(ρ/i− 1/2i)

ρ
xρ,

in the explicit formula for ψc,ε for many values of x ∈ [x0, Lx0]. If we take y =
log(x), denote non-trivial zeros of ζ(s) by ρ = β + iγ with β, γ ∈ R, normalize
with the factor e−y/2, and remove possible violations of the RH, we encounter a
trigonometric sum

(4.2) Fψ,T (y) =
∑
|γ|<T
β=1/2

aρe
iyγ ,
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where

aρ =
�c,ε(ρ/i− 1/2i)

ρ
.

Such trigonometric sums can be evaluated efficiently on equidistant grids using
the Fast Fourier Transform (FFT). In this case we can calculate O(T ) values of

Fψ,T (y) using Õ(T ) arithmetic operations on variables of size O(log(T )) (see [10]).
Furthermore, the Fourier transform of F is supported on [−T, T ] so that F (y)
can be recovered from samples F (nπ/β) for some β > T by bandlimited function

interpolation, where a single evaluation can be done in Õ(1) (see [11]).

4.1. Multiple evaluations of trigonometric sums. Let

(4.3) F (y) =

N∑
j=1

aje
iγjy

with γj ∈ R and aj ∈ C. The first author of [5] proposed a simple method, based
on the FFT to evaluate F (y) simultaneously at integer values y ∈ [−Y, Y ]∩Z. The
method is similar to the Odlyzko-Schönhage algorithm [10].

We briefly restate the algorithm and analyze the run time for the application in
mind. The algorithm is based on rounding eiγj onto the next Rth root of unity,
where R = 2r is a power of 2. Let nj ∈ Z such that

δj := γj −
2πnj

R
= Θ

( π

R

)
.

Furthermore, let

P (t) = b0 + · · ·+ bnt
n

be a polynomial approximating f(t) = exp(itπYR ) in [−1, 1]. Then we have

F (y) =

N∑
j=1

aje
2πinjy/Reiyδj

=

N∑
j=1

aje
2πinjy/RP (yδj

R
πY ) + Θ

(∥∥f − P ; C0([−1, 1])
∥∥ N∑

j=1

|aj |
)

for y ∈ [−Y, Y ], where ∥∥g; C0([a, b])
∥∥ := sup

t∈[a,b]

|g(t)|

denotes the supremum norm on [a, b]. Now let

f�(k) =

N∑
j=1

nj≡k mod R

aj

(Rδj
πY

)�
and f̂�(y) =

R∑
k=1

f�(k)e
2πiky/R.

Then we have

N∑
j=1

aje
2πinjy/RP (xδj

R
πY ) =

n∑
�=1

b� y
�

N∑
j=1

ajδ
�
je

2πinjy/R

=

n∑
l=1

b�f̂�(y)y
�
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and all values of f̂� on Z/RZ may be calculated appealing to the FFT. For the
polynomial P we choose the polynomial Pn of degree ≤ n which interpolates f(t)
at the zeros cos( 2k−1

2n+2π), k = 1, 2, . . . , n+1, of the (n+1)th Chebyshev polynomial.
The standard error estimate for polynomial interpolation then gives the bound

(4.4)
∥∥f − Pn; C

0([−1, 1])
∥∥ ≤

(πY
2R

)n+1
√
8

(n+ 1)!
.

We then get the following result.

Proposition 5. Assume in (4.3) that there exist constants B,C ≥ 0 such that
|aj | ≤ BjC for all j, and that γj ∈ [0, 2π), and let D,α > 0. Then there exists
an N0(α,B,C,D) such that for all N, Y ∈ N satisfying N > N0 and log(N)−D ≤
N/Y ≤ log(N)D the algorithm above takes each aj , j = 1, . . . , N, with an accuracy
of N−2α−3 and each γj , j = 1, . . . , N, with an accuracy of N−2α−C−4 as input
and calculates F (y) for all y ∈ [−Y, Y ] ∩ Z within an accuracy of N−α performing

Õ(N) arithmetic operations on Õ(N) variables of size O(logN), where the implied
constants depend on α,B,C, and D only.

Proof. Let R = 2r denote the power of two which is closest to N . Then, in view of
(4.4), we have

(4.5) F (y) =
∑

1≤n≤logN

b�f̂�(y)y
� +O(N−2α)

for every α > 0. It is easily seen from the discrete orthogonality of the Chebyshev
polynomials Tk that b� 	 3n 	 N2, since the coefficients of Tk are bounded by 3k in

absolute value. Furthermore, we have f̂�(y) 	 NC+1/Y � and trivially y� 	 Y �. It

therefore suffices to calculate b� within an accuracy of O(N−2α−C−1), f̂�(y) within
an accuracy of O(Y −�N−2α−2), and y� within an accuracy of O(Y �N−2α−C−3) in
order to calculate F (y) within an accuracy of O(N−2α), which can all be carried

out on variables of size O(logN). The calculation of b� takes Õ(1) arithmetic

operations. For the calculation of f̂� it suffices if the input variables aj and γj are

given within an accuracy of N−2α−3, respectively N−2α−C−4, and all values f̂�(y)

are calculated via FFT performing Õ(N) arithmetic operations on Õ(N) variables.

Calculating F (y) for a single value of y then takes Õ(1) arithmetic operations, so
the assertion follows. �

4.2. Bandlimited function interpolation. The method outlined in the preced-
ing section is sufficient to obtain an algorithm satisfying Theorem 1. But for prac-
tical applications it can be necessary to reduce the memory requirement of the
algorithm by sub-dividing the sum over zeros. Then the number of evaluations
is much larger than the number of summands in the trigonometric sum and it is
favorable to calculate sufficiently many samples of the trigonometric sum to obtain
intermediate values by bandlimited function interpolation instead of repeatedly ap-
plying the method from the previous section.

We recall the interpolation formula from [11] which is a modification of the
well-known Shannon-Nyquist-Whittacker interpolation formula and give an explicit
estimate for truncating the infinite sum.
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Proposition 6. Let

F (y) =

N∑
j=1

aje
iγjy,

where γj ∈ R and let τ = maxj{|γj |}. If β, λ and ε satisfy the inequalities

τ ≤ λ− ε < λ+ ε ≤ β,

then we have

(4.6) F (y) =
λ

β

∑
n∈Z

F
(πn
β

) sin(λ(y − πn
β ))

λ(y − πn
β )

�c,ε
(
y − πn

β
).

Furthermore, if A =
∑N

j=1 |aj |, then we have

(4.7)

∣∣∣∣∣∣∣
λ

β

∑
|y−πn

β |> c
ε

F
(πn
β

) sin(λ(y − πn
β ))

λ(y − πn
β )

�c,ε
(
y − πn

β

)
∣∣∣∣∣∣∣

≤ 2A

sinh(c)

(
log
(
e(c+ 1)

)
π

+
2ε

β

)
.

Proof. The proof of (4.6) is outlined in [11], so we only prove the bound (4.7). We
start by estimating the contribution of summands with

y − nπ

β
>

c

ε

to (4.6). Using the bounds∣∣∣∣ sin(x)x

∣∣∣∣ ≤ 1

x
, |�c,1(y)| ≤

c

sinh(c)
min

{
1,

1

|y| − c

}
, and |F (t)| ≤ A,

which hold for x �= 0, y > c and t ∈ R, we get

λ

β

∑
y−nπ

β > c
ε

∣∣∣∣∣F (πnβ ) sin(λ(y − πn
β ))

λ(y − πn
β )

�c,ε
(
y − πn

β
)

∣∣∣∣∣
≤ Ac

β sinh(c)

⎡
⎢⎣ε
c

( β

πε
+ 1

)
+

∑
y−nπ

β > c+1
ε

1

y − nπ
β

1

ε(y − nπ
β )− c

⎤
⎥⎦

≤ Ac

β sinh(c)

[
2ε

c
+

β

πc
+

∫ β
π (y− c+1

ε )

−∞

dt

(y − π
β t)(ε(y −

π
β t)− c)

]

=
A

sinh(c)

[
2ε

β
+

1

π
log
(
π(c+ 1)

)]
.

An analogous calculation gives the same estimate for the contribution of sum-
mands with y − nπ

β < − c
ε . �
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5. Run time analysis

5.1. Proof of Theorem 1. Let L > 1, δ > 0 and θ ∈ [1/2, 1). We may assume x0

to be sufficiently large, since the task can always be carried out trivially using the
Eratosthenes sieve in finite ranges. For simplicity we focus on proving the assertion
concerning the upper bound M+

L (x0). The considerations for M−
L (x0) are almost

the same.
We first address the problem of bounding ψ(t) in I = [x0, Lx0]. Let

(5.1) ψ̃c,ε(x) = x−
∑∗

|γ|≤c/ε

�c,ε(
ρ
i −

1
2i ) x

ρ

�c,ε(i/2) ρ
,

and let η1 < θ. If we assume xη1−1
0 < ε < x−η1

0 and take c = θ log x0 + log log x0 +
log log log x0 − log(δ/40), then Propositions 2 and 3 give the bound

(5.2)
∣∣∣ψc,ε(t)− ψ̃c,ε(t)

∣∣∣ ≤ 2 + eo(1)
δ

40
x1−θ
0 <

δ

20
x1−θ
0

for t ∈ I and x0 sufficiently large. Consequently, we may take ε = η2x
−θ
0

√
log x0

for every η2 > 0, and since (μc)+(0) = 1/2 and |νc(0)| ∼ (2πc)−1/2, we may achieve

(5.3) |ψ(t)− ψc,ε(t)| ≤ C(θ)η2x
1−θ
0 <

δ

20
x1−θ
0

for t ∈ I by use of Proposition 1. Now assume we may calculate t− ψ̃c,ε(t) for t ∈ I

within an accuracy < δx1−θ
0 /20 and denote this approximation by R(t). Then we

get

(5.4)
R(t)√

t
− 3δ

20
x
1/2−θ
0 ≤ t− ψ(t)√

t
≤ R(t)√

t
+

3δ

20
x
1/2−θ
0

for t ∈ I which we intend to interpolate. We cannot use Proposition 4 directly since
we assumed the bounds to have opposite sign and since this would also give a slightly
weaker result where applicable. Instead we estimate trivially, which increases the
number of grid points by a factor log x0. Let S ⊂ I be a finite subset satisfying
dist({s}, S \ {s}) ≤ η3x

1−θ
0 / log(x0) for all s ∈ S ∪ {x0, 2x0}. Now let s ∈ S,

s± t ∈ I and |t| ≤ η3x
1−θ
0 / log(x0), where η3 is sufficiently small. Then estimating

as in (3.10) gives

(5.5)
(s± t)− ψ(s± t)√

s± t
=

s− ψ(s)√
s

(1 +O(x−θ
0 )) +

δ

20
x1/2−θ

for x0 sufficiently large. Now let

(5.6) M0 = max
t∈I

t− ψ(t)√
t

.

Then in view of (5.4) the approximation R(s)/
√
s yields an upper bound M1 sat-

isfying

(5.7)
s− ψ(s)√

s
≤ M1 ≤ M0 +

3δ

20
x
1/2−θ
0

for s ∈ S. By (5.5) this extends to the bound

(5.8)
t− ψ(t)√

t
≤ M1(1 +O(x−θ

0 )) +
δ

20
x1/2−θ ≤ M0 + δx1−θ

0

for t ∈ I, since M0 = o(
√
x0) for x0 → ∞.
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It remains to analyze the run time for evaluating R(s) on such a set S. We may

take S = {exp(y0+kh) | k ∈ Z}∩I, where y0 = log(
√
Lx0) and h = η4x

−θ
0 / log(x0).

We take T = c/ε ∼ C(δ, θ)xθ
√
log x in (4.2) and consider the trigonometric sum

F (y) = Fψ,T (y0+yh) which we intend to evaluate within an accuracy of δx−θ
0 /40 for

y ∈ [−Y, Y ] ∩ Z, where Y = max{|k| | exp(y0 + kh) ∈ I}. If x0 is sufficiently large,
then F (y) satisfies the suppositions of Proposition 5 (after reducing γh modulo 2π

and evaluating aρe
iγy0 in (4.1), which is done in Õ(xθ)) with B = 1, C = 0 and

D = 1. We have N � (xθ
0 log(x0)

3/2) and Y � (xθ
0 log(x0)), so we may evaluate

F (y) within an accuracy of N−2θ using Õ(N) = Õ(xθ) arithmetic operations on

Õ(xθ) variables of size O(log x), where the implied constants only depend on L, θ
and δ. Furthermore, we may evaluate the contribution of a single zero violating the
Riemann Hypothesis to the explicit formula within sufficient accuracy performing
Õ(xθ) arithmetic operations on variables of size O(log x). For x0 sufficiently large,
this yields the desired accuracy and we can recover the values R(s)/

√
s with an

error < δx1/2−θ/20. �

5.2. Reducing the memory requirement. One may reduce the space require-
ment of the algorithm by splitting the sum over zeros, applying the method from
section 4.1 to the partial sums and using bandlimited function interpolation to cal-
culate intermediate values. One then does not evaluate the full trigonometric sum
anymore but rather calculates upper and lower bounds for the partial sums which
are subsequently used to calculate bounds for the full trigonometric sum.

More precisely, let (L, δ, θ) be an admissible triple in Theorem 1. Then we
proceed as in the proof of Theorem 1, but bound Fψ,T in the following way. Let
N = �xη�, let ρn = 1/2+iγn be an enumeration of the zeros in the upper half-plane
satisfying RH ordered by increasing absolute value and define

(5.9) Fk(y) = e−iyτk
∑

kN<n≤(k+1)N

aρn
eiyγ ,

where τk = (γ(k+1)N − γkN+1)/2. Since γn � n/ log n the functions Fk have band-

width 	 xγ and can thus be recovered from samples Fk(h�), where h � x−η. In
view of Proposition 6 it thus suffices to calculate O(xη) samples which by Propo-

sition 5 can be done performing Õ(xη) arithmetic operations on Õ(xη) variables
of size O(log x). Now for each k with γ(k+1)N ≤ T = C1(L, δ, θ)x

θ
√
log x the re-

quired Õ(xθ) evaluations can be done in Õ(xθ) using the interpolation formula from
Proposition 6. For each k only the maximal and minimal values of �eiyτkFk(y) are
stored, from which one recovers upper and lower bounds for �Fψ,T (y). There are

Õ(xθ−η) values k to be considered, so in total the algorithm performs Õ(x2θ−η)

arithmetic operations on Õ(xη) variables of size O(log x).
It should be noted that the additional error from splitting the sum over zeros

could be avoided by adapting the method from [6] to this problem. This way one
would split both the trigonometric sum and the interval in question and use direct
evaluation combined with bandlimited function interpolation on every subinterval.
For the calculations reported in this paper this additional error was rather small
(less than 1% of the calculated bounds) and the author did not try out this method.
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6. Numerical results

The algorithm has been implemented for L = 2, θ = 1/2 and variable δ and used
to calculate analytic bounds in the range between 1010 and 1019.

Function evaluations have been done using the multi-precision libraryMPFR and
the crucial calculations have been carried out using a 64-bit fixed point arithmetic.

The calculations used the zeros with imaginary part up to 1011 whose calculation
has been reported in [5] and which were given within an accuracy of 2−64. The
amount of memory was limited to 340 GB which required a sub-division of the sum
over zeros for x ≥ 4 × 1014, the maximal amount of summands being 1.25 × 1010.
For the largest calculation, concerning the interval [5.12 × 1018, 1.024 × 1019] the
sum was divided into 13 pieces. This calculation took 290 hours on a 2.27 GHz Intel
Xeon X7560 CPU. The run time could have been reduced further by parallelizing
the interpolation routine, which accounted for half of the computing time. In total,
the calculations took less than 1, 200 CPU hours.

The largest value of a partial sum

(6.1)
1

�c,ε(i/2)

∑
|�(ρ)|<T

�c,ε(
ρ
i −

1
2i )

ρ
xρ−1/2

in the explicit formula for the normalized remainder term (t−ψc,ε(t))/
√
t that oc-

curred in the calculations was 0.83545670 . . . at x = 36219716654216.6 . . . with c =
26, ε=1.7×10−8 and T =917, 647, 060 and the smallest value was −0.783738372378
at x=1325006525152927089 . . . with c=31, ε=2.5× 1010 and T =3, 221, 225, 472.
The program aims to calculate the sum over zeros within an accuracy of 10−10.
This does not include round-off errors, which could be larger but can still be shown
to be bounded by 0.016 in these calculations [1]. In addition, the extremal values
have been counter-checked by direct evaluation of the sums in question and the
largest deviation was < 6 × 10−12. A complete list of parameters and calculated
values is given in the appendix to [1].

The calculated bounds are listed in Table 1. In addition the bounds

(6.2) −0.8 ≤ Rψ(t) ≤ 0.81

for 100 ≤ t ≤ 5× 1010 have been calculated using the Eratosthenes sieve. Together
these imply the bound (1.5), where the validity for 11 < t < 100 is easily checked
by direct evaluation.

6.1. Bounds for π(x), π∗(x), and ϑ(x). We provide several elementary lemmas
for deriving the bounds in Theorem 2 from the calculated bounds for ψ(x).

Lemma 1. Let 1 < a < b and suppose

(6.3) c ≤ x− ψ(x)√
x

≤ C

holds for x ∈ [a, b]. Then

(6.4)
x− ϑ(x)√

x
≤ C + 1− c x−1/4 + 1.03883

x1/3 + x1/5 + 2 log(x) x1/13

√
x

and

(6.5)
x− ϑ(x)√

x
≥ c+ 1− C x−1/4

hold for x ∈ [a2, b].
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Table 1. Upper and lower bounds M±
ψ (x) for t−ψ(t)√

t
in [x, 2x]

x M−
ψ (x) M+

ψ (x) x M−
ψ (x) M+

ψ (x)

1010 −.77 .85 1012 −.80 .81
2× 1010 −.75 .64 2× 1012 −.79 .76
4× 1010 −.73 .80 4× 1012 −.73 .73
8× 1010 −.80 .86 8× 1012 −.80 .76
16× 1010 −.88 .68 16× 1012 −.80 .68
32× 1010 −.88 .78 32× 1012 −.67 .93
64× 1010 −.66 .74 64× 1012 −.78 .77

x M−
ψ (x) M+

ψ (x) x M−
ψ (x) M+

ψ (x)

1014 −.79 .72 1016 −.88 .74
2× 1014 −.60 .76 2× 1016 −.87 .70
4× 1014 −.65 .73 4× 1016 −.65 .73
8× 1014 −.81 .88 8× 1016 −.82 .77
16× 1014 −.66 .86 16× 1016 −.71 .92
32× 1014 −.74 .86 32× 1016 −.78 .71
64× 1014 −.73 .66 64× 1016 −.94 .82

128× 1016 −.94 .75
256× 1016 −.82 .86
512× 1016 −.83 .94

Proof. We need to bound ϑ(x) in terms of ψ(t). To this end we use

(6.6) ϑ(x) =

∞∑
k=1

μ(k)ψ(x1/k) =

�2 log x�∑
k=1

μ(k)ψ(x1/k),

and the bounds

ψ(x) ≤ x log x for x ≥ 1,(6.7)

ψ(x) < 1.03883x for x > 0,(6.8)

and

ψ(x) ≥ 0.82x for x ≥ 100.(6.9)

The first bound is trivial, the second is proven in [14, Theorem 12] and the third
bound follows from [14, Theorem 10]. Now, since

∑n
k=4 μ(k) ≤ 0 for n < 39 and

since ψ(x1/k) decreases monotonously with increasing k, we get

ϑ(x) ≤ ψ(x)− ψ(
√
x)− ψ(x1/3) +

�2 log x�∑
n=39

ψ(x1/n)

≤ ψ(x)− ψ(
√
x)− 0.82x1/3 +

2

39
x1/39 log(x)2
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from (6.6) for x ≥ 106, where we used (6.7) and (6.9) on the second line. The term
−0.82x1/3 + 2

39 x
1/39 log(x)2 is easily seen to be negative for x ≥ 106, so we get

(6.10) ϑ(x) ≤ ψ(x)− ψ(
√
x),

first for x ≥ 106, and then by directly checking the remaining values even for x ≥ 0.
For the lower bound we proceed in a similar way, using

∑n
k=6 μ(k) ≥ 0 for n < 13,

which gives

ϑ(x) ≥ ψ(x)− ψ(
√
x)− ψ(x1/3)− ψ(x1/5)−

�2 log x�∑
n=13

ψ(x1/n)

≥ ψ(x)− ψ(
√
x)− 1.03883 (x1/3 + x1/5 + 2 log(x)x1/13)(6.11)

for x ≥ 1, where we used (6.8) on the second line. Putting ϑ(x) = ψ(x)−ψ(
√
x) +

r(x), the inequalities (6.5) and (6.4) now easily follow by inserting (6.10), respec-
tively (6.11), and (6.3), into

x− ϑ(x)

x
=

x− ψ(x)

x
+ 1− x−1/4

√
x− ψ(

√
x)

x1/4
− r(x)√

x
.

�

In order to prove (1.6) and (1.7) we first apply Lemma 1 with a = 100, b =
5 × 1010 and −c = C = 0.81, which gives (1.6) and (1.7) for 107 ≤ x ≤ 5 × 1010.
Switching the parameters to b = 32 × 1012 and −c = C = 0.88 extends them to
5 × 108 ≤ x ≤ 32 × 1012 and taking b = 1019 and −c = C = 0.94 gives them for
32× 1012 ≤ x ≤ 1019. For the remaining values smaller than 107 the bounds have
been verified by a direct computation.

Lemma 2. Let b > 107, 12 < a < b, let c < 0 and C > 0 satisfy

(6.12) c ≤ x− ψ(x)√
x

≤ C

for all x ∈ [a, b], and let

A = π∗(a)− li(a) +
a− ψ(a)

log a
.

Then we have

li(x)− π∗(x)√
x/ log x

≤ x− ψ(x)√
x

+
2C

log x

(
1 +

5

log x

)
+A

log x√
x

and
li(x)− π∗(x)√

x/ log x
≥ x− ψ(x)√

x
+

2c

log x

(
1 +

5

log x

)
+A

log x√
x

for all x ∈ [max{a, 107}, b].

Proof. Partial summation gives

(6.13) π∗(x)− π∗(a) = li(x)− li(a)− x− ψ(x)

log x
+

a− ψ(a)

log a
−
∫ x

a

t− ψ(t)

t log(t)2
dt.

It thus suffices to prove

(6.14) 0 ≤
∫ x

a

dt√
t log(t)2

≤ 2

√
x

log(x)2

(
1 +

5

log x

)
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for a ≥ 12 and x ≥ 107. Applying the substitution u = log t gives∫ x

a

dt√
t log(t)2

=

∫ log x

log a

eu/2

u2
du

=

∫ log a+i∞

log a

eu/2

u2
du−

∫ log x+i∞

log x

eu/2

u2
du.

For any α > 0 we get

(6.15) e−α/2

∫ α+i∞

α

eu/2

u2
du = − 2

α2
− 8

α3
+ 24i

∫ ∞

0

eit/2

(α+ it)4
dt

by repeated integration by parts. Here, the last integral on the right-hand side is
bounded in absolute value by∫ α

0

dt

α4
+

∫ ∞

α

dt

t4
=

4

3α3
,

and we get ∫ α+i∞

α

eu/2

u2
du = −2

eα/2

α2

(
1 +

4

α
+Θ

( 16
α2

))
.

Thus, the integral on the left-hand side is negative for α ≥ log(12). Furthermore,
we have 16

α ≤ 1 for α ≥ log(107) so we get (6.14). �

Choosing a = 100 in Lemma 2 and using the bounds from (6.2) and Table 1 gives
the bounds listed in Table 2. Similarly, one obtains the bound (1.8) for x ≥ 107

and the remaining values can again be checked by a direct computation.

Lemma 3. Let b > 107, 12 < a < b, c ≤ 0 and C ≥ 0 such that

(6.16) c ≤ x− ϑ(x)√
x

≤ C

holds for all x ∈ [a, b], and let

A = π(a)− li(a) +
a− ϑ(a)

log a
.

Then we have

li(x)− π(x)√
x/ log x

≤ x− ϑ(x)√
x

+
2C

log x

(
1 +

5

log x

)
+A

log x√
x

and

li(x)− π(x)√
x/ log x

≥ x− ϑ(x)√
x

+
2c

log x

(
1 +

5

log x

)
+A

log x√
x

for all x ∈ [max{a, 107}, b]. Furthermore, the implication

t− ϑ(t) > 0 for 2 ≤ t ≤ T ⇒ li(t)− π(t) > 0 for 2 ≤ t ≤ T

holds.
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Table 2. Upper and lower bounds M±
π∗(x) for (li(t)− π∗(t)) log t√

t
in [x, 2x].

x M−
π∗(x) M+

π∗(x) x M−
π∗(x) M+

π∗(x)
1010 −.87 .95 1012 −.88 .89

2× 1010 −.84 .73 2× 1012 −.87 .84
4× 1010 −.82 .89 4× 1012 −.81 .81
8× 1010 −.89 .95 8× 1012 −.87 .84
16× 1010 −.97 .76 16× 1012 −.87 .76
32× 1010 −.96 .86 32× 1012 −.74 1
64× 1010 −.74 .82 64× 1012 −.85 .84

x M−
π∗(x) M+

π∗(x) x M−
π∗(x) M+

π∗(x)
1014 −.86 .79 1016 −.94 .80

2× 1014 −.67 .83 2× 1016 −.93 .76
4× 1014 −.72 .80 4× 1016 −.71 .79
8× 1014 −.87 .95 8× 1016 −.88 .83
16× 1014 −.72 .93 16× 1016 −.77 .98
32× 1014 −.80 .92 32× 1016 −.84 .77
64× 1014 −.79 .72 64× 1016 −1 .88

128× 1016 −1 .80
256× 1016 −.87 .91
512× 1016 −.88 .99

Proof. The first assertion follows from

(6.17) π(x)− π(a) = li(x)− li(a)− x− ϑ(x)

log x
+

a− ϑ(a)

log a
−
∫ x

a

t− ϑ(t)

t log(t)2
dt

in the same way as in the proof of Lemma 2. The second part is well-known and
follows, e.g., by taking a = 10 in (6.17) since

π(10)− li(10) +
10− ϑ(10)

log(10)
> 0.1.

�

Choosing a = 1, 500 in Lemma 3 and using (1.6) gives (1.9) for 107 ≤ x ≤ 1019

and the remaining values have again been checked directly. The bound (1.10)
follows from (1.7) and [14, Theorem 19].
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