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REGULARITY THEORY AND HIGH ORDER NUMERICAL

METHODS FOR THE (1D)-FRACTIONAL LAPLACIAN

GABRIEL ACOSTA, JUAN PABLO BORTHAGARAY, OSCAR BRUNO,

AND MARTÍN MAAS

Abstract. This paper presents regularity results and associated high order
numerical methods for one-dimensional fractional-Laplacian boundary-value

problems. On the basis of a factorization of solutions as a product of a certain
edge-singular weight ω times a “regular” unknown, a characterization of the
regularity of solutions is obtained in terms of the smoothness of the correspond-
ing right-hand sides. In particular, for right-hand sides which are analytic in a
Bernstein ellipse, analyticity in the same Bernstein ellipse is obtained for the
“regular” unknown. Moreover, a sharp Sobolev regularity result is presented
which completely characterizes the co-domain of the fractional-Laplacian op-
erator in terms of certain weighted Sobolev spaces introduced in (Babuška and
Guo, SIAM J. Numer. Anal. 2002). The present theoretical treatment relies
on a full eigendecomposition for a certain weighted integral operator in terms of
the Gegenbauer polynomial basis. The proposed Gegenbauer-based Nyström
numerical method for the fractional-Laplacian Dirichlet problem, further, is
significantly more accurate and efficient than other algorithms considered pre-
viously. The sharp error estimates presented in this paper indicate that the
proposed algorithm is spectrally accurate, with convergence rates that only
depend on the smoothness of the right-hand side. In particular, convergence is
exponentially fast (resp. faster than any power of the mesh-size) for analytic
(resp. infinitely smooth) right-hand sides. The properties of the algorithm are
illustrated with a variety of numerical results.

1. Introduction

Over the last few years nonlocal models have increasingly impacted upon a num-
ber of important fields in science and technology. The evidence of anomalous diffu-
sion processes, for example, has been found in several physical and social environ-
ments [26, 30], and corresponding transport models have been proposed in various
areas such as electrodiffusion in nerve cells [28] and ground-water solute trans-
port [7]. Nonlocal models have also been proposed in fields such as finance [13, 14]
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and image processing [19, 20]. One of the fundamental nonlocal operators is the
fractional-Laplacian (−Δ)s (0 < s < 1) which, from a probabilistic point of view
corresponds to the infinitesimal generator of a stable Lévy process [38].

The present contribution addresses theoretical questions and puts forth numer-
ical algorithms for the numerical solution of the Dirichlet problem

(1.1)

{
(−Δ)su = f in Ω,

u = 0 in Ωc,

on a bounded one-dimensional domain Ω consisting of a union of a finite number of
intervals (whose closures are assumed mutually disjoint). This approach to enforce-
ment of (nonlocal) boundary conditions in a bounded domain Ω arises naturally
in connection with the long jump random walk approach to the fractional Lapla-
cian [38]. In such random walk processes, jumps of arbitrarily long distances are
allowed. Thus, the payoff of the process, which corresponds to the boundary datum
of the Dirichlet problem, needs to be prescribed in Ωc.

Letting s and n denote a real number (0 < s < 1) and the spatial dimension
(n = 1 throughout this paper), and using the normalization constant [17],

Cn(s) =
22ssΓ(s+ n

2 )

πn/2Γ(1− s)
,

the fractional-Laplacian operator (−Δ)s is given by

(1.2) (−Δ)su(x) = Cn(s) P.V.

ˆ
Rn

u(x)− u(y)

|x− y|n+2s
dy.

Remark 1.1. A number of related operators have been considered in the mathe-
matical literature. Here we mention the so-called spectral fractional-Laplacian Ls,
which is defined in terms of eigenfunctions and eigenvalues (vn, λn) of the standard
Laplacian (−Δ) operator with Dirichlet boundary conditions in ∂Ω: Ls[vn] = λs

nvn.
The operator Ls is different from (−Δ)s since, for example, Ls admits smooth
eigenfunctions (at least for smooth domains) Ω while (−Δ)s does not; see [35].

Remark 1.2. A finite element approach for problems concerning the operator Ls (cf.
Remark 1.1) was proposed in [31] on the basis of extension ideas first introduced
in [12] for the operator (−Δ)s in R

n which were subsequently developed in [9] for
the bounded-domain operator Ls. As far as we know, however, approaches based on
extension theorems have not as yet been proposed for the Dirichlet problem (1.1).

Various numerical methods have been proposed recently for equations associated
with the fractional Laplacian (−Δ)s in bounded domains. Restricting attention to
one-dimensional problems, Huang and Oberman [24] presented a numerical algo-
rithm that combines finite differences with a quadrature rule in an unbounded
domain. Numerical evidence provided in that paper for smooth right-hand sides
(cf. Figure 7(b) therein) indicates convergence to solutions of (1.1) with an order
O(hs), in the infinity norm, as the mesh-size h tends to zero (albeit orders as high
as O(h3−2s) are demonstrated in that contribution for singular right-hand sides f
that make the solution u smooth). Since the order s lies between zero and one,
the O(hs) convergence provided by this algorithm can be quite slow, especially for
small values of s. D’Elia and Gunzburger [16], in turn, proved convergence of order
h1/2 for a finite-element solution of an associated one-dimensional nonlocal oper-
ator that approximates the one-dimensional fractional Laplacian. These authors
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also suggested that an improved solution algorithm, with increased convergence
order, might require explicit consideration of the solution’s boundary singularities.
The contribution [3], finally, studies the regularity of solutions of the Dirichlet
problem (1.1) and it introduces certain graded meshes for integration in one- and
two-dimensional domains. The rigorous error bounds and numerical experiments
provided in [3] demonstrate an accuracy of the order of h1/2| log h| and h| log h|
for all s, in certain weighted Sobolev norms, for solutions obtained by means of
uniform and graded meshes, respectively.

Difficulties in the numerical treatment of the Dirichlet problem (1.1) stem mainly
from the singular character of the solutions of this problem near boundaries. A
recent regularity result in this regards was provided in [32]. In particular, this
contribution establishes the global Hölder regularity of solutions of the general n-
dimensional version of equation (1.1) (n ≥ 1) and it provides a certain boundary
regularity result: the quotient u(x)/ωs(x) remains bounded as x → ∂Ω, where ω
is a smooth function that behaves like dist(x,Ωc) near ∂Ω. This result was then
generalized in [21], where, using pseudo-differential calculus, a certain regularity
result is established in terms of Hörmander μ-spaces: in particular, for the regular
Sobolev spaces Hr(Ω), it is shown that if f ∈ Hr(Ω) for some r > 0, then the
solution u may be written as wsφ + χ, where φ ∈ Hr+s(Ω) and χ ∈ Hr+2s

0 (Ω).
Interior regularity results for the fractional Laplacian and related operators have
also been the object of recent studies [4, 15].

The sharp regularity results put forth in the present contribution, in turn, are
related to but different from those mentioned above. Indeed the present regularity
theorems show that the fractional Laplacian in fact induces a bijection between
certain weighted Sobolev spaces. Using an appropriate version of the Sobolev lemma
put forth in Section 4, these results imply, in particular, that the regular factors in
the decompositions of fractional-Laplacian solutions admit k continuous derivatives
for a certain value of k that depends on the regularity of the right-hand side.
Additionally, this paper establishes the operator regularity in spaces of analytic
functions: denoting by Aρ the space of analytic functions in the Bernstein ellipse
Eρ, the weighted operator Ks(φ) = (−Δ)s(ωsφ) maps Aρ into itself bijectively.
In other words, for a right-hand side which is analytic in a Bernstein ellipse, the
solution is characterized as the product of an analytic function in the same Bernstein
ellipse times an explicit singular weight.

The theoretical treatment presented in this paper is essentially self-contained.
This approach recasts the problem as an integral equation in a bounded domain, and
it proceeds by computing certain singular exponents α that make (−Δ)s(ωαφ(x))
analytic near the boundary for every polynomial φ. As shown in Theorem 3.7 a
infinite sequence of such values of α is given by αn = s+n for all n ≥ 0. Moreover,
Section 3.2 shows that the weighted operator Ks maps polynomials of degree n
into polynomials of degree n, and it provides explicit closed-form expressions for
the images of each polynomial φ.

A certain hypersingular form we present for the operator Ks leads to considera-
tion of a weighted L2 space whereinKs is self-adjoint. In view of the aforementioned
polynomial-mapping properties of the operator Ks it follows that this operator is
diagonal in a basis of orthogonal polynomials with respect to a corresponding inner
product. A related diagonal form was obtained in the recent independent con-
tribution [18] by employing arguments based on Mellin transforms. The diagonal
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form [18] provides, in particular, a family of explicit solutions in the n-dimensional
ball in Rn, which are given by products of the singular term (1− |z|2)s and general
Meijer G-Functions. The diagonalization approach proposed in this paper, which
is restricted to the one-dimensional case, is elementary and is succinctly expressed:
the eigenfunctions are precisely the Gegenbauer polynomials.

This paper is organized as follows: Section 2 casts the problem as an integral
equation, and Section 3 analyzes the boundary singularity and produces a diagonal
form for the single-interval problem. Relying on the Gegenbauer eigenfunctions
and associated expansions found in Section 3, Section 4 presents the aforemen-
tioned Sobolev and analytic regularity results for the solution u, and it includes
a weighted-space version of the Sobolev lemma. Similarly, utilizing Gegenbauer
expansions in conjunction with Nyström discretizations and taking into account
the analytic structure of the edge singularity, Section 5 presents a highly accu-
rate and efficient numerical solver for fractional-Laplacian equations posed on a
union of finitely many one-dimensional intervals. The sharp error estimates pre-
sented in Section 5 indicate that the proposed algorithm is spectrally accurate, with
convergence rates that only depend on the smoothness of the right-hand side. In
particular, convergence is exponentially fast (resp. faster than any power of the
mesh-size) for analytic (resp. infinitely smooth) right-hand sides. A variety of nu-
merical results presented in Section 6 demonstrate the character of the proposed
solver; the new algorithm is significantly more accurate and efficient than those
resulting from previous approaches.

2. Hypersingular bounded-domain formulation

In this section the one-dimensional operator

(2.1) (−Δ)su(x) = C1(s) P.V.

ˆ ∞

−∞
(u(x)− u(x− y)) |y|−1−2sdy

together with Dirichlet boundary conditions outside the bounded domain Ω, is
expressed as an integral over Ω. The Dirichlet problem (1.1) is then identified
with a hypersingular version of Symm’s integral equation; the precise statement is
provided in Lemma 2.3 below. In accordance with Section 1, throughout this paper
we assume the following definition holds.

Definition 2.1. The domain Ω equals a finite union

(2.2) Ω =
M⋃
i=1

(ai, bi)

of open intervals (ai, bi) with disjoint closures. We denote ∂Ω = {a1, b1, . . . , aM , bM}.

Definition 2.2. C2
0 (Ω) will denote, for a given open set Ω ⊂ R, the space of all

functions u ∈ C2(Ω)∩C(R) that vanish outside of Ω. For Ω = (a, b) we will simply
write C2

0 ((a, b)) = C2
0 (a, b).

The following lemma provides a useful expression for the fractional-Laplacian
operator in terms of a certain integro-differential operator. For clarity the result is
first presented in the following lemma for the case Ω = (a, b); the generalization to
domains Ω of the form (2.2) then follows easily in Corollary 2.5.
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Lemma 2.3. Let s ∈ (0, 1), let u ∈ C2
0 (a, b) such that |u′| is integrable in (a, b), let

x ∈ R, x �∈ ∂Ω = {a, b}, and define

(2.3) Cs =
C1(s)

2s(1− 2s)
= −Γ(2s− 1) sin(πs)/π (s �= 1/2).

We then have

— Case s �= 1
2 :

(2.4) (−Δ)su(x) = Cs
d

dx

ˆ b

a

|x− y|1−2s d

dy
u(y)dy.

— Case s = 1
2 :

(2.5) (−Δ)1/2u(x) =
1

π

d

dx

ˆ b

a

ln |x− y| d
dy

u(y)dy.

Proof. We note that, since the support of u = u(x) is contained in [a, b], for each
x ∈ R the support of the translated function u = u(x − y) as a function of y is
contained in the set [x−b, x−a]. Thus, using the decomposition R = [x−b, x−a]∪
(−∞, x− b)∪ (x−a,∞) in (2.1), we obtain the following expression for (−Δ)su(x):
(2.6)

C1(s)

(
P.V.

ˆ x−a

x−b

(u(x)−u(x−y))|y|−1−2sdy+

[ˆ x−b

−∞
dy +

ˆ ∞

x−a

dy

]
u(x)|y|−1−2s

)
.

We consider first the case x �∈ [a, b], for which (2.6) becomes

(2.7) −C1(s)

(
P.V.

ˆ x−a

x−b

u(x− y)|y|−1−2sdy

)
.

Noting that the integrand (2.7) is smooth, integration by parts yields

(2.8)
C1(s)

2s

ˆ x−a

x−b

u′(x− y) sgn(y)|y|−2sdy

(since u(a) = u(b) = 0), and, thus, letting z = x− y we obtain

(2.9) (−Δ)su(x) =
C1(s)

2s

ˆ b

a

sgn(x− z)|x− z|−2su′(z)dz, x �∈ [a, b].

Then, letting

Φs(y) =

{
|y|1−2s/(1− 2s) for s ∈ (0, 1), s �= 1/2,
log |y| for s = 1/2,

noting that

(2.10) sgn(x− z)|x− z|−2s =
∂

∂x
Φs(x− z),

replacing (2.10) in (2.9) and exchanging the x-differentiation and z-integration
yields the desired expressions (2.4) and (2.5). This completes the proof in the
case x �∈ [a, b].

Let us now consider the case x ∈ (a, b). The second term in (2.6) can be com-
puted exactly; we clearly have

(2.11)

[ˆ x−b

−∞
dy +

ˆ ∞

x−a

dy

]
u(x)|y|−1−2s =

[
u(x)

2s
sgn(y)|y|−2s

∣∣∣∣
y=x−a

y=x−b

]
.
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In order to integrate by parts in the P.V. integral in (2.6) consider the set

Dε = [x− b, x− a] \ (−ε, ε).

Then, defining

Qε(x) =

ˆ
Dε

(u(x)− u(x− y)) |y|−1−2sdy

integration by parts yields

Qε(x) = − 1

2s

(
gba(x)− hb

a(x)−
δ2ε
ε2s

−
ˆ
Dε

u′(x− y) sgn(y)|y|−2sdy

)
,

where δε = u(x+ ε) + u(x− ε)− 2u(x), gba(x) = u(x)(|x− a|−2s + |x− b|−2s) and
hb
a(x) = u(a)|x− a|−2s + u(b)|x− b|−2s.
The term hb

a(x) vanishes since u(a) = u(b) = 0. The contribution gba(x), on the
other hand, exactly cancels the boundary terms in equation (2.11). For the values
x ∈ (a, b) under consideration, a Taylor expansion in ε around ε = 0 additionally

tells us that the quotient
δ2ε
ε2s tends to 0 as ε → 0. Therefore, using the change of

variables z = x − y and letting ε → 0 we obtain a principal-value expression valid
for x �= a, x �= b:

(2.12) (−Δ)su(x) =
C1(s)

2s
P.V.

ˆ b

a

sgn(x− z)|x− z|−2su′(z)dz.

Replacing (2.10) in (2.12) then yields (2.4) and (2.5), provided that the derivative
in x can be interchanged with the P.V. integral. This interchange is indeed correct,
as it follows from an application of the following lemma to the function v = u′. The
proof is thus complete. �
Lemma 2.4. Let Ω ⊂ R be as indicated in Definition 2.1 and let v ∈ C1(Ω) such
that v is absolutely integrable over Ω, and let x ∈ Ω. Then the following relation
holds:

(2.13) P.V.

ˆ
Ω

∂

∂x
Φs(x− y)v(y)dy =

∂

∂x

ˆ
Ω

Φs(x− y)v(y)dy.

Proof. See Appendix A.1. �
Corollary 2.5. Given a domain Ω as in Definition (2.1), and with reference to
equation (2.3), for u ∈ C2

0 (Ω) and x �∈ ∂Ω we have

— Case s �= 1
2 :

(2.14) (−Δ)su(x) = Cs
d

dx

M∑
i=1

ˆ bi

ai

|x− y|1−2s d

dy
u(y)dy.

— Case s = 1
2 :

(2.15) (−Δ)1/2u(x) =
1

π

d

dx

M∑
i=1

ˆ bi

ai

ln |x− y| d
dy

u(y)dy

for all x ∈ R \ ∂Ω =
⋃M

i {ai, bi}.

Proof. Given u ∈ C2
0 (Ω) we may write u =

∑M
i ui where, for i = 1, . . . ,M the

function ui = ui(x) equals u(x) for x ∈ (ai, bi) and and it equals zero elsewhere.
In view of Lemma 2.3 the result is valid for each function ui and, by linearity, it is
thus valid for the function u. The proof is complete. �
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Remark 2.6. A point of particular interest arises as we examine the character of
(−Δ)su with u ∈ C2

0 (Ω) for x at or near ∂Ω. Both Lemma 2.3 and its Corollary 2.5
are silent in these regards. For Ω = (a, b), for example, inspection of equation (2.12)
leads one to generally expect that (−Δ)su(x) has an infinite limit as x tends to each
one of the endpoints a or b. But this is not so for all functions u ∈ C2

0 (Ω). Indeed,
as established in Section 3.3, the subclass of functions in C2

0 (Ω) for which there is
a finite limit forms a dense subspace of a relevant weighted L2 space. In fact, a
dense subset of functions exists for which the image of the fractional Laplacian can
be extended as an analytic function in the complete complex x variable plane. But,
even for such functions, definition (2.1) still generically gives (−Δ)su(x) = ±∞ for
x = a and x = b. Results concerning functions whose fractional Laplacian blows
up at the boundary can be found in [1].

The next section concerns the single-interval case (M = 1 in (2.14), (2.15)).
Using translations and dilations the single-interval problem in any given interval
(a1, b1) can be recast as a corresponding problem in any desired open interval
(a, b). For notational convenience two different selections are made at various points
in Section 3, namely (a, b) = (0, 1) in Sections 3.1 and 3.2, and (a, b) = (−1, 1)
in Section 3.3. The conclusions and results can then be easily translated into
corresponding results for general intervals; see for example Corollary 3.15.

3. Boundary singularity and diagonal

form of the single-interval operator

Lemma 2.3 expresses the action of the operator (−Δ)s on elements u of the
space C2

0 (Ω) in terms of the integro-differential operators on the right-hand side
of equations (2.4) and (2.5). A brief consideration of the proof of that lemma
shows that for such representations to be valid it is essential for the function u to
vanish on the boundary, as all functions in C2

0 (a, b) do, by definition. Section 3.1
considers, however, the action under the integral operators on the right-hand side
of equations (2.4) and (2.5) on certain functions u defined on Ω = (a, b) which do
not necessarily vanish at a or b. To do this we study the closely related integral
operators

Ss[u](x) := Cs

ˆ b

a

(
|x− y|1−2s − (b− a)1−2s

)
u(y)dy (s �= 1

2
),(3.1)

S 1
2
[u](x) :=

1

π

ˆ b

a

log

(
|x− y|
b− a

)
u(y)dy,(3.2)

Ts[u](x) :=
∂

∂x
Ss

[
∂

∂y
u(y)

]
(x).(3.3)

Remark 3.1. The addition of the constant term −(b−a)1−2s in the integrand (3.1)
does not have any effect in the definition of Ts: the constant −(b− a)1−2s only re-
sults in the addition of a constant term on the right-hand side of (3.1), which then
yields zero upon the outer differentiation in equation (3.3). The integrand (3.1)
is selected, however, in order to insure that the kernel of Ss (namely, the func-
tion Cs

(
|x− y|1−2s − (b− a)1−2s

)
) tends to the kernel of S 1

2
in (3.2) (the function

1
π log(|x− y|/(b− a))) in the limit as s → 1

2 .
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Remark 3.2. In view of Remark 3.1 and Lemma 2.4, for u ∈ C2(a, b) we additionally
have

(3.4) Ts[u](x) =
C1(s)

2s
P.V.

ˆ b

a

sgn(x− z)|x− z|−2su′(z)dz.

Remark 3.3. The operator Ts coincides with (−Δ)s for functions u that satisfy
the hypothesis of Lemma 2.3, but Ts does not coincide with (−Δ)s for functions u
which, such as those we consider in Section 3.1 below, do not vanish on ∂Ω = {a, b}.

Remark 3.4. The operator S 1
2
coincides with Symm’s integral operator [36], which

is important in the context of electrostatics and acoustics in cases where Dirichlet
boundary conditions are posed on infinitely-thin open plates [11, 29, 36, 40]. The
operator T 1

2
, on the other hand, which may be viewed as a hypersingular version of

the Symms operator S 1
2
, similarly relates to electrostatics and acoustics, in cases

leading to Neumann boundary conditions posed on open-plate geometries. The
operators Ss and Ts in the cases s �= 1

2 can thus be interpreted as generalizations
to fractional powers of classical operators in potential theory; cf. also Remark 3.3.

Restricting attention to Ω = (a, b) = (0, 1) for notational convenience and with-
out loss of generality, Section 3.1 studies the image Ts[uα] of the function

(3.5) uα(y) = yα

with 
α > 0, which is smooth in (0, 1), but which has an algebraic singularity at the
boundary point y = 0. That section shows in particular that, whenever α = s+ n
for some n ∈ N∪{0}, the function Ts[uα](x) can be extended analytically to a region
containing the boundary point x = 0. Building upon this result (and assuming once
again Ω = (a, b) = (0, 1)), Section 3.2, explicitly evaluates the images of functions
of the form v(y) = ys+n(1 − y)s (n ∈ N ∪ {0}), which are singular (not smooth)
at the two boundary points y = 0 and y = 1, under the integral operators Ts and
Ss. The results in Section 3.2 imply, in particular, that the image Ts[v] for such
functions v can be extended analytically to a region containing the interval [0, 1].
Reformulating all of these results in the general interval Ω = (a, b), Section 3.3
then derives the corresponding single-interval diagonal form for weighted operators
naturally induced by Ts and Ss.

3.1. Single-edge singularity. With reference to equations (3.4) and (2.3), and
considering the aforementioned function uα(y) = yα we clearly have

Ts[uα](x) = α(1− 2s)CsN
s
α(x), where

(3.6) Ns
α(x) := P.V.

ˆ 1

0

sgn(x− y)|x− y|−2syα−1dy.

As shown in Theorem 3.7 below (eq. (3.12)), the functions Ns
α and (thus) Ts[uα]

can be expressed in terms of classical special functions whose singular structure is
well known. Leading to the proof of that theorem, in what follows we present a
sequence of two auxiliary lemmas.

Lemma 3.5. Let E = (a, b) ⊂ R, and let C ⊆ C denote an open subset of the
complex plane. Further, let f = f(t, c) be a function defined in E ×C, and assume

1) f is continuous in E × C,
2) f is analytic with respect to c = c1 + ic2 ∈ C for each fixed t ∈ E, and
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3) f is “uniformly integrable over compact subsets of C”, in the sense that for
every compact set K ⊂ C the functions

(3.7) ha(η, c) =

∣∣∣∣
ˆ a+η

a

f(t, c)dt

∣∣∣∣ and hb(η, c) =

∣∣∣∣∣
ˆ b

b−η

f(t, c)dt

∣∣∣∣∣
tend to zero uniformly for c ∈ K as η → 0+. Then the function

F (c) :=

ˆ
E

f(t, c)dt

is analytic throughout C.

Proof. Let K denote a compact subset of C. For each c ∈ K and each n ∈ N we
consider Riemann sums Rh

n(c) for the integral of f in the interval [a + ηn, b − ηn],
where ηn is selected in such a way that ha(ηn, c) ≤ 1/n and hb(ηn, c) ≤ 1/n for all
c ∈ K (which is clearly possible in view of the hypothesis (3.7)). The Riemann sums

are defined by Rh
n(c) = h

∑M
j=1 f(tj , c), with h = (b−a+2ηn)/M and tj+1− tj = h

for all j.
Let n ∈ N be given. In view of the uniform continuity of f(t, c) in the compact

set [a+ηn, b−ηn]×K, the difference between the maximum and minimum of f(t, c)
in each integration subinterval (tj , tj+1) ⊂ [a+ ηn, b − ηn] tends uniformly to zero
for all c ∈ K as the integration mesh-size tends to zero. It follows that a mesh-size
hn can be found for which the approximation error in the corresponding Riemann
sum Rh

n(c) is uniformly small for all c ∈ K:∣∣∣∣∣
ˆ b−ηn

a+ηn

f(t, c)dt−Rh
n(c)

∣∣∣∣∣ < 1

n
for all c ∈ K and for all n ∈ N.

Thus F (c) equals a uniform limit of analytic functions over every compact subset
of C, and therefore F (c) is itself analytic throughout C, as desired. �

Lemma 3.6. Let x ∈ (0, 1) and let g(s, α) = Ns
α(x) be defined by (3.6) for complex

values of s and α satisfying 
s < 1 and 
α > 0. We then have:

(i) For each fixed α such that 
α > 0, g(s, α) is an analytic function of s for

s < 1.

(ii) For each fixed s such that 
s < 1, g(s, α) is an analytic of α for 
α > 0.

In other words, for each fixed x ∈ (0, 1) the function Ns
α(x) is jointly analytic in

the (s, α) domain D = {
s < 1} × {
α > 0} ⊂ C2.

Proof. We express the integral that defines Ns
α as the sum g1(s, α) + g2(s, α) of

two integrals, each one of which contains only one of the two singular points of the
integrand (y = 0 and y = x):

g1 =

ˆ x/2

0

sgn(x−y)|x−y|−2syα−1dy and g2 = P.V.

ˆ 1

x/2

sgn(x−y)|x−y|−2syα−1dy.

Lemma 3.5 tells us that g1 is an analytic function of s and α for (s, α) ∈ D1 =
C× {
α > 0}.

Integration by parts in the g2 term, in turn, yields

(3.8) (1− 2s)g2(s, α) = (1− x)1−2s −
(x
2

)α−2s

− (α− 1)

ˆ 1

x/2

|x− y|1−2syα−2dy.
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But, writing the integral on the right-hand side of (3.8) in the form
´ 1

x/2
=
´ x

x/2
+
´ 1

x

and applying Lemma 3.5 to each one of the resulting integrals shows that the
quantity (1 − 2s)g2(s, α) is an analytic function of s and α for (s, α) ∈ D2 =
C × {α > 0}. In view of the (1− 2s) factor, however, it still remains to be shown
that g2(s, α) is analytic at s = 1/2 as well.

To check that both g2(s, α) and g(s, α) are analytic around s = 1/2 for any fixed

α ∈ {
α > 0}, we first note that since
´ 1

0
1 · yα−1dy is a constant function of x we

may write

g(s, α) =
1

1− 2s

∂

∂x

ˆ 1

0

(
|x− y|1−2s − 1

)
yα−1dy.

But since we have the uniform limit

lim
s→1/2

|x− y|1−2s − 1

1− 2s
=

∂

∂r
|x− y|r

∣∣∣∣
r=0

= log |x− y|

as complex values of s approach s = 1/2, we see that g is in fact continuous and
therefore, by Riemann’s theorem on removable singularities, analytic at s = 1/2 as
well. The proof is now complete. �

Theorem 3.7. Let s ∈ (0, 1) and α > 0. Then Ns
α(x) can be analytically continued

to the unit disc {x : |x| < 1} ⊂ C if and only if either α = s+ n or α = 2s+ n for
some n ∈ N ∪ {0}. In the case α = s+ n, further, we have

(3.9) Ns
s+n(x) =

∞∑
k=0

(2s)k
s− n+ k

xk

k!
,

where for a given complex number z and a given nonnegative integer k,

(3.10) (z)k :=
Γ(z + k)

Γ(z)

denotes the Pochhamer symbol.

Proof. We first assume s < 1
2 (for which the integrand in (3.6) is an element of

L1(0, 1)) and α < 2s (to enable some of the following manipulations); the result for
the full range of s and α will subsequently be established by analytic continuation
in these variables. Writing

Ns
α(x) = x−2s

ˆ 1

0

sgn(x− y)
∣∣∣1− y

x

∣∣∣−2s

yα−1dy,

after a change of variables and some simple calculations for x ∈ (0, 1) we obtain

(3.11) Ns
α(x) = x−2s+α

[ˆ 1

0

(1− r)−2srα−1dr −
ˆ 1

x

1

(r − 1)−2srα−1dr

]
.

It then follows that

(3.12) Ns
α(x) = x−2s+α [B(α, 1− 2s)− B(1− 2s, 2s− α) + Bx(−α+ 2s, 1− 2s)] ,

where

B(a, b) :=

ˆ 1

0

ta−1(1− t)b−1dt =
Γ(a)Γ(b)

Γ(a+ b)
and

Bx(a, b) :=

ˆ x

0

ta−1(1− t)b−1dt = xa
∞∑
k=0

(1− b)k
a+ k

xk

k!

(3.13)
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denote the Beta Function [2, eqns. 6.2.2] and the incomplete Beta function [2, eqns.
6.6.8 and 15.1.1], respectively. Indeed, the first integral in (3.11) equals the first
Beta function on the right-hand side of (3.12) and, after the change of variables
w = 1/r, the second integral is easily seen to equal the difference B(1 − 2s, 2s −
α)− Bx(−α+ 2s, 1− 2s).

In view of (3.12) and the right-hand expressions in equation (3.13) we can now
write
(3.14)

Ns
α(x) = x−2s+α

[
Γ(α)Γ(1− 2s)

Γ(1 + α− 2s)
− Γ(1− 2s)Γ(−α+ 2s)

Γ(1− α)

]
+

∞∑
k=0

(2s)k
2s− α+ k

xk

k!

for all x ∈ (0, 1), 0 < s < 1
2 and 0 < α < 2s. Using Euler’s reflection formula

Γ(z)Γ(1 − z) = π csc(πz) ([2, eq. 6.1.17]), and further trigonometric identities,
equation (3.14) can also be made to read

(3.15) Ns
α(x) = x−2s+αΓ(α)Γ(1− 2s)

Γ(1 + α− 2s)

2 cos(πs) sin(π(α− s))

sin(π(α− 2s))
+

∞∑
k=0

(2s)k
2s− α+ k

xk

k!
.

The required x-analyticity properties of the function Ns
α(x) will be established

by resorting to analytic continuation of the function Ns
α(x) to complex values of

the variables s and α. In view of the special role played by the quantity q = α− 2s
in (3.15), further, it is useful to consider the function Ms

q (x) = Ns
q+2s(x) where

q is defined via the the change of variables α = q + 2s. Then, collecting for each
n ∈ N ∪ {0} all the potentially singular terms in a neighborhood of q = n and
letting G(s) := 2Γ(1− 2s) cos(πs) we obtain

Ms
q (x) = Ns

q+2s(x)

=

[
xq Γ(q + 2s)G(s) sin(π(q + s))

Γ(1 + q) sin(πq)
+

(2s)n
n− q

xn

n!

]
+

∞∑
k=0, k �=n

(2s)k
k − q

xk

k!
.

(3.16)

In order to obtain expressions for Ns
α(x) which manifestly display its analytic

character with respect to x for all required values of s and α, we analytically con-
tinue the function Ms

q to all complex values of q and s for which the corresponding

(s, α) point belongs to the domain D = {(s, α) : 
s < 1} × {
α > 0} ⊂ C2. To do
this we consider the following facts:

(1) Since Γ(z) is a never-vanishing function of z whose only singularities are
simple poles at the nonpositive integers z = −n (n ∈ N ∪ {0}), and since,
as a consequence, 1/Γ(z) is an entire function of z which only vanishes at
nonpositive integer values of z, the quotient Γ(α)/Γ(1+α− 2s) is analytic
and nonzero for (s, α) ∈ D.

(2) The function G(s) that appears on the right-hand side of (3.16) (s �= 1/2)
can be continued analytically to the domain 
s < 1 with the valueG(1/2) =
π. Further, this function does not vanish for any s with 0 < 
s < 1.

(3) For fixed s ∈ C the quotient sin(π(α − s))/ sin(π(α − 2s)) = sin(π(q +
s))/ sin(πq) is a meromorphic function of q, whose singularities are simple
poles at the integer values q = n ∈ Z with corresponding residues given by
(−1)n sin(π(q + s))/π. Further, for s �∈ Z the quotient vanishes if and only
if q = n− s (or equivalently, α = s+ n) for some n ∈ Z.
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(4) For each x in the unit disc {x ∈ C : |x| < 1} the infinite series on
the right-hand side of (3.15) converges uniformly over compact subsets of
D \ {α = 2s+ n, n ∈ N ∪ {0}}. This is easily checked by using the asymp-
totic relation [2, 6.1.46] limk→∞ k1−2s(2s)k/k! = 1/Γ(2s), and taking into
account that the functions s → (2s)k and s → 1/Γ(2s) are entire and, thus,
finite-valued for each s ∈ C and each k ∈ N ∪ {0}.

(5) For each fixed s ∈ C and each x ∈ C with |x| < 1 the series on the right-
hand side of (3.15) is a meromorphic function of q containing only simple
polar singularities at q = n ∈ N∪{0}, with corresponding residues given by
(2s)nx

n/n!. Indeed, point (4) above tells us that the series is an analytic
function of q for q �∈ N∪{0}; the residue at the nonnegative integer values of
q can be computed immediately by considering a single term of the series.

(6) The residue of the two terms under brackets on the right-hand side of (3.16)
are negatives of each other. This can be established easily by considering
points (3) and (5) as well as the identity limq→n(−1)nG(s) sin(π(q+s))/π =
1/Γ(2s)—which itself results from Euler’s reflection formula and standard
trigonometric identities.

(7) The sum of the bracketed terms in (3.16) is an analytic function of q up to
and including nonnegative integer values of this variable, as it follows from
point (6). Its limit as q → n, further, is easily seen to equal the product of
an analytic function of q and s times the monomial xn.

Expressions establishing the x-analyticity properties of Ns
α(x) can now be ob-

tained. On one hand, by Lemma 3.6 the functionNs
α(x) is a jointly analytic function

of (s, α) in the domain D. In view of points (3) through (7), on the other hand,
we see that the right-hand side expression in equation (3.15) is also an analytic
function throughout D. Since, as shown above in this proof, these two functions
coincide in the open set U := (0, 1

2 )×(0, 2s) ⊂ D, it follows that they must coincide
throughout D. In other words, interpreting the right-hand sides in equations (3.15)
and (3.16) as their analytic continuation at all removable-singularity points (cf.
points (2) and (6)) these two equations hold throughout D.

We may now establish the x-analyticity of the function Ns
α(x) for given α and s

in D. We first do this in the case α = s+n with n ∈ N∪{0} and s ∈ (0, 1). Under
these conditions the complete first term in (3.15) vanishes—even at s = 1/2—as it
follows from points (1) through (3). The function Ns

α(x) then equals the series on
the right-hand side of (3.15). In view of point (4) we thus see that, at least in the
case α = s + n, Ns

α(x) is analytic with respect to x for |x| < 1 and, further, that
the desired relation (3.9) holds.

In order to establish the x-analyticity of Ns
α(x) in the case α = 2s + n (or,

equivalently, q = n) with n ∈ N ∪ {0} and s ∈ (0, 1), in turn, we consider the limit
q → n of the right-hand side in equation (3.16). Evaluating this limit by means of
points (4) and (7) results in an expression which, in view of point (4), exhibits the
x-analyticity of the function Ns

α for |x| < 1 in the case under consideration.
To complete our description of the analytic character of Ns

α(x) for (α, s) ∈ D
it remains to show that this function is not x-analytic near zero whenever (α − s)
and (α− 2s) are not elements of N∪{0}. But this follows directly by consideration
of (3.15), since, per points (1), (2) and (3), for such values of α and s the coefficient
multiplying the nonanalytic term x−2s+α in (3.15) does not vanish. The proof is
now complete. �
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3.2. Singularities on both edges. Utilizing Theorem 3.7, which in particular
establishes that the image of the function uα(y) = yα (eq. (3.5)) under the operator
Ts is analytic for α = s+ n, here we consider the image of the function

(3.17) u(y) := ys(1− y)syn

under the operator Ts and we show that, in fact, Ts[u] is a polynomial of degree n.
This is a desirable result which, as we shall see, leads in particular to:

(i) diagonalization of weighted version of the fractional-Laplacian operator, as
well as

(ii) smoothness and even analyticity (up to a singular multiplicative weight) of
solutions of equation (1.1) under suitable hypotheses on the right-hand side f .

Remark 3.8. Theorem 3.7 states that the image of the aforementioned function uα

under the operator Ts is analytic not only for α = s + n but also for α = 2s + n.
But, as shown in Remark 4.20, the smoothness and analyticity theory mentioned
in point (ii) above, which applies in the case α = s + n, cannot be duplicated in
the case α = 2s+ n. Thus, except in Remark 4.20, the case α = 2s+ n will not be
further considered in this paper.

In view of Remark 3.2 and in order to obtain an explicit expression for Ts[u] we
first express the derivative of u in the form

u′(y) =
d

dy
(ys(1− y)syn) = ys−1(1− y)s−1 [yn(s+ n− (2s+ n)y)]

and (using (2.3)) we thus obtain

(3.18) Ts[u] = (1− 2s)Cs

(
(s+ n)Ls

n − (2s+ n)Ls
n+1

)
,

where

(3.19) Ls
n := P.V.

ˆ 1

0

sgn(x− y)|x− y|−2sys−1(1− y)s−1yndy.

On the other hand, in view of definitions (3.1) and (3.2) and Lemma 2.4 it is easy
to check that

(3.20)
∂

∂x
Ss(y

s−1(1− y)s−1yn) = (1− 2s)CsL
s
n.

In order to characterize the image Ts[u] of the function u in (3.17) under the
operator Ts, Lemma 3.9 below presents an explicit expression for the closely related
function Ls

n. In particular the lemma shows that Ls
n is a polynomial of degree n−1,

which implies that Ts[u] is a polynomial of degree n.

Lemma 3.9. Ls
n(x) is a polynomial of degree n− 1. More precisely,

(3.21) Ls
n(x) = Γ(s)

n−1∑
k=0

(2s)k
k!

Γ(n− k − s+ 1)

(s+ k − n)Γ(n− k)
xk.

Proof. We proceed by substituting (1− y)s−1 in the integrand (3.19) by its Taylor
expansion around y = 0,

(3.22) (1− y)s−1 =
∞∑
j=0

qjy
j , with qj =

(1− s)j
j!

,
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and subsequently exchanging the principal value integration with the infinite sum
(a step that is justified in Appendix A.2). The result is

(3.23) Ls
n(x) =

∞∑
j=0

(
P.V.

ˆ 1

0

sgn(x− y)|x− y|−2sqjy
s−1+n+jdy

)

or, in terms of the functions Ns
α defined in equation (3.6),

(3.24) Ls
n(x) =

∞∑
j=0

qjN
s
s+n+j .

In view of (3.9), equation (3.24) can also be made to read

(3.25) Ls
n(x) =

∞∑
j=0

∞∑
k=0

(1− s)j
j!

(2s)k
k!

1

s− n− j + k
xk,

or, interchanging of the order of summation in this expression (which is justified in
Appendix A.3),

(3.26) Ls
n(x) =

∞∑
k=0

(2s)k
k!

ankx
k, where ank =

∞∑
j=0

(1− s)j
j!

1

s− n− j + k
.

The proof will be completed by evaluating explicitly the coefficients ank for all pairs
of integers k and n.

In order to evaluate ank we consider the hypergeometric function

(3.27) 2F1(a, b; c; z) =

∞∑
j=0

(a)j(b)j
(c)j

zj

j!
.

Comparing the ank expression in (3.26) to (3.27) and taking into account the relation

1

s− n− j + k
=

(n− k − s)j
(n− k − s+ 1)j

1

s+ k − n

(which follows easily from the recursion (z+1)j = (z)j(z+ j)/z for the Pochhamer
symbol defined in equation (3.10)), we see that ank can be expressed in terms of the
hypergeometric function 2F1 evaluated at z = 1:

ank = 2F1(1− s, n− k − s;n− k − s+ 1; 1)/(s+ k − n).

This expression can be simplified further: in view of Gauss’s formula 2F1(a, b; c; 1) =
Γ(c)Γ(c−a−b)
Γ(c−a)Γ(c−b) (see, e.g., [6, p. 2]) we obtain the concise expression

(3.28) ank =
Γ(n− k − s+ 1)Γ(s)

(s+ k − n)Γ(n− k)
.

It then clearly follows that ank = 0 for k ≥ n—since the term Γ(n − k) in the
denominator of this expression is infinite for all integers k ≥ n. The series in (3.26)
is therefore a finite sum up to k = n − 1 which, in view of (3.28), coincides with
the desired expression (3.21). The proof is now complete. �

Corollary 3.10. Let w(y) = u(y)χ(0,1)(y), where u = ys(1 − y)syn (eq. (3.17))
and where χ(0,1) denotes the characteristic function of the interval (0, 1). Then,

defining the nth degree polynomial p(x) = (1 − 2s)Cs

(
(s+ n)Ls

n − (2s+ n)Ls
n+1

)
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with Ls
n given by (3.21), for all x ∈ R such that x �= 0 and x �= 1 (cf. Remark 2.6)

we have

(3.29) Ts[u](x) = p(x)

and, consequently,

(3.30) (−Δ)sw(x) = p(x).

Proof. In view of equation (3.18) and Lemma 3.9 we obtain (3.29). The rela-
tion (3.30) then follows from Remark 3.3. �

In view of equation (3.20) and Lemma 3.9, the results obtained for the image
of u(y) = ys(1 − y)syn under the operator Ts can be easily adapted to obtain
analogous polynomial expressions of degree exactly n for the image of the function
ũ(y) = ys−1(1 − y)s−1yn under the operator Ss; indeed, both of these results can
be expressed in terms of isomorphisms in the space Pn of polynomials of degree less
than or equal to n, as indicated in the following corollary.

Corollary 3.11. Let s ∈ (0, 1), m ∈ N, and consider the linear mappings P :
Pm → Pm and Q : Pm → Pm defined by

P : p → Ts[y
s(1− y)sp(y)] and

Q : p → Ss[y
s−1(1− y)s−1p(y)].

(3.31)

Then the matrices [P ] and [Q] of the linear mappings P and Q in the basis {yn :
n = 0, . . . ,m} are upper-triangular and their diagonal entries are given by

Pnn =
Γ(2s+ n+ 1)

n!
and

Qnn =− Γ(2s+ n− 1)

n!
,

respectively. In particular, for s = 1
2 we have

Pnn = 2n,

Qnn =− 2

n
for n �= 0 and Q00 = −2 log(2).

(3.32)

Proof. The expressions for n �= 0 and for P00 follow directly from equations (3.18),
(3.20) and (3.21). In order to obtain Q00, in turn, we note from (3.20) that for
n = 0 we have ∂

∂xSs(y
s−1(1− y)s−1yn) = 0. In particular, Ss(y

s−1(1− y)s−1) does
not depend on x and we therefore obtain

Q00 = Ss(y
s−1(1− y)s−1) = Cs

ˆ 1

0

(y2s−1 − 1)ys−1(1− y)s−1dy

= Cs (B(3s− 1, s)− B(s, s)) .

In the limit as s → 1/2, employing l’Hôpital’s rule together with well-known values
[2, 6.1.8, 6.3.2, 6.3.3] for the Gamma function and its derivative at z = 1/2 and
z = 1, we obtain S 1

2
(y−1/2(1− y)−1/2) = −2 log(2). �
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3.3. Diagonal form of the weighted fractional Laplacian. In view of the form
of the mapping P in equation (3.31) and using the “weight function”

ωs(y) = (y − a)s(b− y)s,

for φ ∈ C2(a, b) ∩ C1[a, b] (that is, φ smooth up to the boundary but it does not
necessarily vanish on the boundary) we introduce the weighted version

(3.33) Ks(φ) = Cs
d

dx

ˆ b

a

|x− y|1−2s d

dy
(ωsφ(y)) dy (s �= 1/2),

of the operator Ts in equation (3.3). In view of Lemma 2.3, Ks can also be viewed
as a weighted version of the fractional-Laplacian operator, and we therefore define

(3.34) (−Δ)sω[φ] = Ks(φ) for φ ∈ C2(a, b) ∩ C1[a, b].

Remark 3.12. Clearly, given a solution φ of the equation

(3.35) (−Δ)sω[φ] = f

in the domain Ω = (a, b), the function u = ωsφ extended by zero outside (a, b)
solves the Dirichlet problem for the fractional Laplacian (1.1) (cf. Lemma 2.3).

In order to study the spectral properties of the operator (−Δ)sω, consider the
weighted L2 space

(3.36) L2
s(a, b) =

{
φ : (a, b) → R :

ˆ b

a

|φ|2ωs < ∞
}
,

which, together with the inner product

(3.37) (φ, ψ)sa,b =

ˆ b

a

φψ ωs

and associated norm is a Hilbert space. We can now establish the following lemma.

Lemma 3.13. The operator (−Δ)sω maps Pn into itself. The restriction of (−Δ)sω
to Pn is a self-adjoint operator with respect to the inner product (·, ·)sa,b.
Proof. Using the notation Ks = (−Δ)sω, we first establish the relation (Ks[p], q) =
(p,Ks[q]) for p, q ∈ Pn. But this follows directly from application of integration
by parts and Fubini’s theorem followed by an additional instance of integration by
parts in (3.33), and noting that the boundary terms vanish by virtue of the weight
ωs. �

The orthogonal polynomials with respect to the inner product under consider-
ation are the well-known Gegenbauer polynomials [2]. These are defined on the
interval (−1, 1) by the recurrence

C
(α)
0 (x) = 1,

C
(α)
1 (x) = 2αx,

C(α)
n (x) =

1

n

[
2x(n+ α− 1)C

(α)
n−1(x)− (n+ 2α− 2)C

(α)
n−2(x)

]
;

(3.38)

for an arbitrary interval (a, b), the corresponding orthogonal polynomials can be
easily obtained by means of a suitable affine change of variables. Using this orthog-
onal basis we can now produce an explicit diagonalization of the operator (−Δ)sω.
We first consider the interval (0, 1); the corresponding result for a general interval
(a, b) is presented in Corollary 3.15.
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Theorem 3.14. Given s ∈ (0, 1) and n ∈ N ∪ {0}, consider the Gegenbauer poly-

nomial C
(s+1/2)
n , and let pn(x) = C

(s+1/2)
n (2x − 1). Then the weighted operator

(−Δ)sω in the interval (0, 1) satisfies the identity

(3.39) (−Δ)sω(pn) =
Γ(2s+ n+ 1)

n!
pn.

Proof. By Lemma 3.13 the restriction of the operator (−Δ)sω to the subspace
Pm is self-adjoint and thus diagonalizable. We may therefore select polynomials
q0, q1, . . . , qm ∈ Pm (where, for 0 ≤ n ≤ m, qn is a polynomial eigenfunction
of (−Δ)sω of degree exactly n) which form an orthogonal basis of the space Pm.
Clearly, the eigenfunctions qn are orthogonal and, therefore, up to constant factors,
the polynomials qn must coincide with pn for all n, 0 ≤ n ≤ m. The correspond-
ing eigenvalues can be extracted from the diagonal elements, displayed in equa-
tion (3.32), of the upper-triangular matrix [P ] considered in Corollary 3.11. These
entries coincide with the constant term in (3.39), and the proof is thus complete. �

Corollary 3.15. The weighted operator (−Δ)sω in the interval (−1, 1) satisfies the
identity

(−Δ)sω(C
(s+1/2)
n ) = λs

nC
(s+1/2)
n ,

where

(3.40) λs
n =

Γ(2s+ n+ 1)

n!
.

Moreover, in the interval (a, b), we have

(3.41) (−Δ)sω(pn) = λs
n pn,

where pn(x) = C
(s+1/2)
n

(
2(x−a)
b−a − 1

)
.

Proof. The formula is obtained by employing the change of variables x̃ = (x− a)/
(b − a) and ỹ = (y − a)/(b − a) in equation (3.33) to map the weighted operator
in (a, b) to the corresponding operator in (0, 1), and observing that ωs(y) = (b −
a)2sω̃s(ỹ), where ω̃s(ỹ) = ỹs(1− ỹ)s. �

Remark 3.16. It is useful to note that, in view of the formula limn→∞ nβ−αΓ(n+
α)/Γ(n+β) = 1 (see, e.g., [2, 6.1.46]) we have the asymptotic relation λs

n ≈ O
(
n2s
)

for the eigenvalues (3.40). This fact will be exploited in the following sections in
order to obtain sharp Sobolev regularity results as well as regularity results in spaces
of analytic functions.

As indicated in the following corollary, the background developed in the present
section can additionally be used to obtain the diagonal form of the operator Ss

for all s ∈ (0, 1). This corollary generalizes a corresponding existing result for the
case s = 1/2 for which, as indicated in Remark 3.4, the operator Ss coincides with
the single-layer potential for the solution of the two-dimensional Laplace equation
outside a straight arc or “crack”.

Corollary 3.17. The weighted operator φ → Ss[ω
s−1φ] can be diagonalized in

terms of the Gegenbauer polynomials C
(s−1/2)
n ,

Ss

[
ωs−1C(s−1/2)

n

]
= μs

nC
(s−1/2)
n ,
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where in this case the eigenvalues are given by

μs
n = −Γ(2s+ n− 1)

n!
.

Proof. The proof for the interval [0, 1] is analogous to that of Theorem 3.14. In this
case, the eigenvalues are extracted from the diagonal entries of the upper triangular
matrix [Q] in equation (3.32). A linear change of variables allows us to obtain the
desired formula for an arbitrary interval. �

Corollary 3.18. In the particular case s = 1/2 on the interval (−1, 1), the previous
results amount, on one hand, to the known result [25, eq. 9.27] (cf. also [40]),

ˆ 1

−1

log |x− y|Tn(y)(1− y2)−1/2dy =

{
−π

nTn for n �= 0,
−2 log(2) for n = 0,

(where Tn denotes the Tchevyshev polynomial of the first kind), and, on the other
hand, to the relation

∂

∂x

ˆ 1

−1

log |x− y| ∂
∂y

(
Un(y)(1− y2)1/2

)
dy = (n+ 1)πUn

(where Un denotes the Tchevyshev polynomial of the second kind).

4. Regularity theory

This section studies the regularity of solutions of the fractional-Laplacian equa-
tion (1.1) under various smoothness assumptions on the right-hand side f , including
treatments in both Sobolev and analytic function spaces, and for multi-interval do-
mains Ω as in Definition 2.1. In particular, Section 4.1 introduces certain weighted
Sobolev spaces Hr

s (Ω) (which are defined by means of expansions in Gegenbauer
polynomials together with an associated norm). The space Aρ of analytic functions
in a certain “Bernstein ellipse” Bρ is then considered in Section 4.2. The main
result in Section 4.1 (resp. Section 4.2) establishes that for right-hand sides f in
the space Hr

s (Ω) with r ≥ 0 (resp. the space Aρ(Ω) with ρ > 0) the solution u
of equation (1.1) can be expressed in the form u(x) = ωs(x)φ(x), where φ belongs
to Hr+2s

s (Ω) (resp. to Aρ(Ω)). Sections 4.1 and 4.2 consider the single-interval
case; generalizations of all results to the multi-interval context are presented in
Section 4.3. The theoretical background developed in the present Section 4 is ex-
ploited in Section 5 to develop and analyze a class of effective algorithms for the
numerical solution of equation (1.1) in multi-interval domains Ω.

4.1. Sobolev Regularity, single-interval case. In this section we define certain
weighted Sobolev spaces, which provide a sharp regularity result for the weighted
fractional Laplacian (−Δ)sω (Theorem 4.12) as well as a natural framework for the
analysis of the high order numerical methods proposed in Section 5. It is noted that
these spaces coincide with the nonuniformly weighted Sobolev spaces introduced
in [5]; Theorem 4.14 below provides an embedding of these spaces into spaces of
continuously differentiable functions. For notational convenience, in the present
discussion leading to the Definition 4.6 of the Sobolev space Hr

s (Ω), we restrict
our attention to the domain Ω = (−1, 1); the corresponding definition for general
multi-interval domains then follows easily.
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In order to introduce the weighted Sobolev spaces we note that the set of Gegen-

bauer polynomials C
(s+1/2)
n constitutes an orthogonal basis of L2

s(−1, 1) (cf. (3.36)).
The L2

s norm of a Gegenbauer polynomial (see [2, eq. 22.2.3]), is given by

(4.1) h
(s+1/2)
j =

∥∥∥C(s+1/2)
j

∥∥∥
L2

s(−1,1)
=

√
2−2sπ

Γ2(s+ 1/2)

Γ(j + 2s+ 1)

Γ(j + 1)(j + s+ 1/2)
.

Definition 4.1. Throughout this paper C̃
(s+1/2)
j denotes the normalized polyno-

mial C
(s+1/2)
j /h

(s+1/2)
j .

Given a function v ∈ L2
s(−1, 1), we have the following expansion,

(4.2) v(x) =

∞∑
j=0

vj,sC̃
(s+1/2)
j (x),

which converges in L2
s(−1, 1), and where

(4.3) vj,s =

ˆ 1

−1

v(x)C̃
(s+1/2)
j (x)(1− x2)sdx.

In view of the expression

(4.4)
d

dx
C

(α)
j (x) = 2αC

(α+1)
j−1 (x), j ≥ 1,

for the derivative of a Gegenbauer polynomial (see, e.g., [37, eq. 4.7.14]), we have

(4.5)
d

dx
C̃

(s+1/2)
j (x) = (2s+ 1)

h
(s+3/2)
j−1

h
(s+1/2)
j

C̃
s+3/2
j−1 .

Thus, using termwise differentiation in (4.2) we may conjecture that, for sufficiently
smooth functions v, we have

(4.6) v(k)(x) =

∞∑
j=k

v
(k)
j−k,s+kC̃

(s+k+1/2)
j−k (x),

where v(k)(x) denotes the kth derivative of the function v(x) and where, calling

(4.7) Ak
j =

k−1∏
r=0

h
(s+3/2+r)
j−1−r

h
(s+1/2+r)
j−r

(2(s+ r) + 1) = 2k
h
(s+1/2+k)
j−k

h
(s+1/2)
j

Γ(s+ 1/2 + k)

Γ(s+ 1/2)
,

the coefficients in (4.6) are given by

(4.8) v
(k)
j−k,s+k = Ak

j vj,s.

Lemma 4.2 below provides, in particular, a rigorous proof of (4.6) under minimal
hypotheses. Further, the integration by parts formula established in that lemma
together with the asymptotic estimates on the factors Bk

j provided in Lemma 4.3,
then allow us to relate the smoothness of a function v and the decay of its Gegen-
bauer coefficients; see Corollary 4.4.

Lemma 4.2 (Integration by parts). Let k ∈ N and let v ∈ Ck−2[−1, 1] such that
for a certain decomposition [−1, 1] =

⋃n
i=1[αi, αi+1] (−1 = α1 < αi < αi+1 <

αn = 1) and for certain functions ṽi ∈ Ck[αi, αi+1] we have v(x) = ṽi(x) for all
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x ∈ (αi, αi+1) and 1 ≤ i ≤ n. Then for j ≥ k the s-weighted Gegenbauer coefficients
vj,s defined in equation (4.3) satisfy

vj,s = Bk
j

ˆ 1

−1

ṽ(k)(x)C̃
(s+k+1/2)
j−k (x)(1− x2)s+kdx

−Bk
j

n∑
i=1

[
ṽ(k−1)(x)C̃

(s+k+1/2)
j−k (x)(1− x2)s+k

]αi+1

αi

,

(4.9)

where

(4.10) Bk
j =

h
(s+k+1/2)
j−k

h
(s+1/2)
j

k−1∏
r=0

(2(s+ r) + 1)

(j − r)(2s+ r + j + 1)
.

With reference to equation (4.7), further, we have Ak
j = 1

Bk
j

. In particular, under

the additional assumption that v ∈ Ck−1[−1, 1] the relation (4.8) holds.

Proof. Equation (4.9) results from iterated applications of integration by parts
together with the relation [2, eq. 22.13.2]

�(2t+ �+ 1)

2t+ 1

ˆ
(1− y2)tC

(t+1/2)
� (y)dy = −(1− x2)t+1C

(t+3/2)
�−1 (x)

and subsequent normalization according to Definition 4.1. The validity of the rela-
tion Ak

j = 1
Bk

j

can be checked easily. �

Lemma 4.3. There exist constants C1 and C2 such that the factors Bk
j in equa-

tion (4.7) satisfy

C1j
−k < |Bk

j | < C2j
−k.

Proof. In view of the relation limj→∞ jb−aΓ(j + a)/Γ(j + b) = 1 (see [2, 6.1.46]) it

follows that h
(s+1/2)
j in equation (4.1) satisfies

(4.11) lim
j→∞

j1/2−sh
(s+1/2)
j �= 0

and, thus, letting

(4.12) qkj =
h
(s+k+1/2)
j−k

h
(s+1/2)
j

,

we obtain

(4.13) lim
j→∞

qkj /j
k �= 0.

The lemma now follows by estimating the asymptotics of the product term on the
right-hand side of (4.10) as j → ∞. �

Corollary 4.4. Let k ∈ N and let v satisfy the hypotheses of Lemma 4.2. Then
the Gegenbauer coefficients vj,s in equation (4.3) are quantities of order O(j−k) as
j → ∞:

|vj,s| < Cj−k

for a constant C that depends on v and k.
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Proof. The proof of the corollary proceeds by noting that the factor Bk
j in equa-

tion (4.9) is a quantity of order j−k (Lemma 4.3), and obtaining bounds for the
remaining factors in that equation. These bounds can be produced by (i) applying
the Cauchy-Schwarz inequality in the space L2

s+k(−1, 1) to the (s + k)-weighted
scalar product (3.37) that occurs in equation (4.9); (ii) using [37, eq. 7.33.6] to
estimate the boundary terms in equation (4.9). The derivation of the bound per
point (i) is straightforward. From [37, eq. 7.33.6], on the other hand, it follows
directly that for each λ > 0 there is a constant C such that

| sin(θ)2λ−1Cλ
j (cos(θ))| ≤ Cjλ−1.

Letting x = cos(θ), λ = s + k + 1/2 and dividing by the normalization constant

h
(s+k+1/2)
j we then obtain∣∣∣C̃s+k+1/2

j (x)(1− x2)s+k
∣∣∣ < Cjs+k−1/2/h

(s+k+1/2)
j .

In view of (4.11), the right-hand side in this equation is bounded for all j ≥ 0. The
proof now follows from Lemma 4.3. �

We now define a class of Sobolev spaces Hr
s that, as shown in Theorem 4.12,

completely characterizes the Sobolev regularity of the weighted fractional-Laplacian
operator (−Δ)sω.

Remark 4.5. In what follows, and when clear from the context, we drop the subindex
s in the notation for Gegenbauer coefficients such as vj,s in (4.3), and we write,
e.g., vj = vj,s, wj = wj,s, fj = fj,s, etc.

Definition 4.6. Let r, s ∈ R, r ≥ 0, s > −1/2 and, for v ∈ L2
s(−1, 1) call vj the

corresponding Gegenbauer coefficient (4.3) (see Remark 4.5). Then the complex

vector space Hr
s (−1, 1) =

{
v ∈ L2

s(−1, 1) :
∑∞

j=0(1 + j2)r|vj |2 < ∞
}
will be called

the s-weighted Sobolev space of order r.

Lemma 4.7. Let r, s ∈ R, r ≥ 0, s > −1/2. Then the space Hr
s (−1, 1) endowed

with the inner product 〈v, w〉rs =
∑∞

j=0 vjwj(1 + j2)r and associated norm

(4.14) ‖v‖Hr
s
=

∞∑
j=0

|vj |2(1 + j2)r

is a Hilbert space.

Proof. The proof is completely analogous to that of [27, Theorem 8.2]. �

Remark 4.8. By definition it is immediately checked that for every function v ∈
Hr

s (−1, 1) the Gegenbauer expansion (4.2) with expansion coefficients (4.3) is con-
vergent in Hr

s (−1, 1).

Remark 4.9. In view of the Parseval identity ‖v‖2L2
s(−1,1) =

∑∞
n=0 |vn|2 it follows

that the Hilbert spaces H0
s (−1, 1) and L2

s(−1, 1) coincide. Further, we have the
dense compact embedding Ht

s(−1, 1) ⊂ Hr
s (−1, 1) whenever r < t. (The density

of the embedding follows directly from Remark 4.8 since all polynomials are con-
tained in Hr

s (−1, 1) for every r.) Finally, by proceeding as in [27, Theorem 8.13]
it follows that for any r > 0, Hr

s (−1, 1) constitutes an interpolation space between

H
�r�
s (−1, 1) and H

�r	
s (−1, 1) in the sense defined by [8, Chapter 2].
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Closely related “Jacobi-weighted Sobolev spaces” Hk
s (Definition 4.10) were in-

troduced previously [5] in connection with Jacobi approximation problems in the
p-version of the finite element method. As shown in Lemma 4.11 below, in fact, the
spaces Hk

s coincide with the spaces Hk
s defined above, and the respective norms are

equivalent.

Definition 4.10 (Babuška and Guo [5]). Let k ∈ N ∪ {0} and r > 0. The kth
order nonuniformly weighted Sobolev space Hk

s (a, b) is defined as the completion
of the set C∞(a, b) under the norm

‖v‖Hk
s
=

⎛
⎝ k∑

j=0

ˆ b

a

|v(j)(x)|2ωs+jdx

⎞
⎠

1/2

=

⎛
⎝ k∑

j=0

‖v(j)‖2L2
s+j

⎞
⎠

1/2

.

The rth order space Hr
s(a, b), in turn, is defined by interpolation of the spaces

Hk
s (a, b) (k ∈ N ∪ {0}) by the K-method (see [8, Section 3.1]).

Lemma 4.11. Let r > 0. The spaces Hr
s (a, b) and Hr

s(a, b) coincide, and their
corresponding norms ‖ · ‖Hr

s
and ‖ · ‖Hr

s
are equivalent.

Proof. A proof of this lemma for all r > 0 can be found in [5, Theorem 2.1 and
Remark 2.3]. In what follows we present an alternative proof for nonnegative integer
values of r: r = k ∈ N ∪ {0}. In this case it suffices to show that the norms
‖ · ‖Hk

s
and ‖ · ‖Hk

s
are equivalent on the dense subset C∞[a, b] of both Hk

s (a, b)

(Remark 4.8) and Hk
s (a, b). But, for v ∈ C∞[a, b], using (4.6), Parseval’s identity

in L2
s+k and Lemma 4.2 we see that for every integer k ≥ 0 we have ‖v(k)‖L2

s+k
=∑∞

j=k |v
(k)
j−k,s+k|2 =

∑∞
j=k |vj,s|2/|Bk

j |2. From Lemma 4.3 we then obtain

D1

∞∑
j=k

|vj,s|2j2k ≤ ‖v(k)‖2L2
s+k

≤ D2

∞∑
j=k

|vj,s|2j2k

for certain constants D1 and D2, where v
(k)
j−k,s+k. In view of the inequalities

(1 + j2k) ≤ (1 + j2)k ≤ (2j2)k ≤ 2k(1 + j2k)

the claimed norm equivalence for r = k ∈ N ∪ {0} and v ∈ C∞[a, b] follows. �

Sharp regularity results for the fractional Laplacian in the Sobolev spaceHr
s (a, b)

can now be obtained easily.

Theorem 4.12. Let r ≥ 0. Then the weighted fractional-Laplacian operator (3.34)
can be extended uniquely to a continuous linear map (−Δ)sω from Hr+2s

s (a, b) into
Hr

s (a, b). The extended operator is bijective and bicontinuous.

Proof. Without loss of generality, we assume (a, b) = (−1, 1). Let φ ∈ Hr+2s
s (−1, 1),

and let φn =
∑n

j=0 φjC̃
(s+1/2)
j , where φj denotes the Gegenbauer coefficient of φ

as given by equation (4.3) with v = φ. According to Corollary 3.15 we have

(−Δ)sωφ
n =

∑n
j=0 λ

s
jφjC̃

(s+1/2)
j . In view of Remarks 4.8 and 3.16 it is clear that

(−Δ)sωφ
n is a Cauchy sequence (and thus a convergent sequence) in Hr

s (−1, 1). We
may thus define

(−Δ)sωφ = lim
n→∞

(−Δ)sωφ
n =

∞∑
j=0

λs
jφjC̃

(s+1/2)
j ∈ Hr

s (−1, 1).
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The bijectivity and bicontinuity of the extended mapping follows easily, in view
of Remark 3.16, as does the uniqueness of continuous extension. The proof is
complete. �

Corollary 4.13. The solution u of (1.1) with right-hand side f ∈ Hr
s (a, b) (r ≥ 0)

can be expressed in the form u = ωsφ for some φ ∈ Hr+2s
s (a, b).

Proof. Follows from Theorem 4.12 and Remark 3.12. �

The classical smoothness of solutions of equation (1.1) for sufficiently smooth
right-hand sides results from the following version of the “Sobolev embedding”
theorem.

Theorem 4.14 (Sobolev’s lemma for weighted spaces). Let s ≥ 0, k ∈ N ∪ {0}
and r > 2k + s + 1. Then we have a continuous embedding Hr

s (a, b) ⊂ Ck[a, b] of
Hr

s (a, b) into the Banach space Ck[a, b] of k-continuously differentiable functions in
[a, b] with the usual norm ‖v‖k (given by the sum of the L∞ norms of the function
and the kth derivative): ‖v‖k = ‖v‖∞ + ‖v(k)‖∞.

Proof. Without loss of generality we restrict attention to (a, b) = (−1, 1). Let
0 ≤ � ≤ k and let v ∈ Hr

s (−1, 1) be given. Using the expansion (4.2) and in view
of the relation (4.4) for the derivative of a Gegenbauer polynomial, we consider the
partial sums

(4.15) v(�)n (x) = 2�
�∏

i=1

(s+ i− 1/2)
n∑

j=�

vj

h
(s+1/2)
j

C
(s+�+1/2)
j−� (x)

that result as the partial sums corresponding to (4.2) up to j = n are differentiated
� times; but we have the estimate

(4.16) ‖C(s+1/2)
n ‖∞ ∼ O(n2s)

which is an immediate consequence of [37, Theorem 7.33.1]. Thus, taking into
account (4.11), we obtain

|v(�)n (x)| ≤ C(�)
n−�∑
j=0

|vj+�|
h
(s+1/2)
j+�

|C(s+�+1/2)
j (x)| ≤ C(�)

n−�∑
j=0

(1 + j2)(s+2�)/2+1/4|vj+�|,

for some constant C(�). Multiplying and dividing by (1 + j2)r/2 and applying the
Cauchy-Schwarz inequality in the space of square summable sequences it follows
that

(4.17) |v(�)n (x)| ≤ C(�)

⎛
⎝n−�∑

j=0

1

(1 + j2)r−(s+2�+1/2)

⎞
⎠

1/2⎛
⎝n−�∑

j=0

(1 + j2)r|vj+�|2
⎞
⎠

1/2

.

We thus see that, provided r− (s+2�+1/2) > 1/2 (or equivalently, r > 2�+s+1),

v
(�)
n converges uniformly to ∂�

∂x� v(x) (cf. [33, Th. 7.17]) for all � with 0 ≤ � ≤ k.

It follows that v ∈ Ck[−1, 1], and, in view of (4.17), it is easily checked that there

exists a constant M(�) such that ‖∂(�)

∂xk v(x)‖∞ ≤ M(�)‖v‖rs for all 0 ≤ � ≤ k. The
proof is complete. �



1844 G. ACOSTA, J. P. BORTHAGARAY, O. BRUNO, AND M. MAAS

Remark 4.15. In order to check that the previous result is sharp we consider an
example in the case k = 0: the function v(x) = | log(x)|β with 0 < β < 1/2 is not
bounded, but a straightforward computation shows that, for s ∈ N, v ∈ Hs+1

s (0, 1),
or equivalently (see Lemma 4.11), v ∈ Hs+1

s (0, 1).

Corollary 4.16. The weighted fractional-Laplacian operator (3.34) maps bijec-
tively the space C∞[a, b] into itself.

Proof. Follows directly from Theorem 4.12 together with Lemmas 4.2 and 4.3 and
Theorem 4.14. �

4.2. Analytic regularity: Single-interval case. Let f denote an analytic func-
tion defined in the closed interval [−1, 1]. Our analytic regularity results for the
solution of equation (1.1) relies on consideration of analytic extensions of the func-
tion f to relevant neighborhoods of the interval [−1, 1] in the complex plane. We
thus consider the Bernstein ellipse Eρ, that is, the ellipse with foci ±1 whose mi-
nor and major semiaxial lengths add up to ρ ≥ 1. We also consider the closed
set Bρ in the complex plane which is bounded by Eρ (and which includes Eρ, of
course). Clearly, any analytic function f over the interval [−1, 1] can be extended
analytically to Bρ for some ρ > 1. We thus consider the following set of analytic
functions.

Definition 4.17. For each ρ > 1 let Aρ denote the normed space of analytic
functions Aρ = {f : f is analytic on Bρ} endowed with the L∞ norm ‖ · ‖L∞(Bρ).

Theorem 4.18. For each f ∈ Aρ we have ((−Δ)sω)
−1f ∈ Aρ. Further, the mapping

((−Δ)sω)
−1 : Aρ → Aρ is continuous.

Proof. Let f ∈ Aρ and let us consider the Gegenbauer expansions

(4.18) f =

∞∑
j=0

fjC̃
(s+1/2)
j and ((−Δ)sω)

−1f =

∞∑
j=0

(λs
j)

−1fjC̃
(s+1/2)
j .

In order to show that ((−Δ)sω)
−1f ∈ Aρ it suffices to show that the right-hand

series in this equation converges uniformly within Bρ1
for some ρ1 > ρ. To do

this we utilize bounds on both the Gegenbauer coefficients and the Gegenbauer
polynomials themselves.

In order to obtain suitable coefficient bounds, we note that, since f ∈ Aρ, there
indeed exists ρ2 > ρ such that f ∈ Aρ2

. It follows [41] that the Gegenbauer
coefficients decay exponentially. More precisely, for a certain constant C we have
the estimate

(4.19) |fj | ≤ C max
z∈Bρ2

|f(z)|ρ−j
2 j−s for some ρ2 > ρ,

which follows directly from corresponding bounds [41, eqns. 2.28, 2.8, 1.1, 2.27] on
Jacobi coefficients. (Here we have used the relation

C
(s+1/2)
j = rsjP

(s,s)
j with rsj =

(2s+ 1)j
(s+ 1)j

= O(js)

that expresses Gegenbauer polynomials C
(s+1/2)
j in terms of Jacobi polynomials

P
(s,s)
j .)
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In order to adequately account for the growth of the Gegenbauer polynomials,
on the other hand, we consider the estimate

(4.20)
‖C(s+1/2)

j ‖L∞(Bρ1
)

h
(s+1/2)
j

≤ Dρj1 for all ρ1 > 1,

which follows directly from [39, Theorem 3.2] and equation (4.11), whereD = D(ρ1)
is a constant which depends on ρ1.

Now let ρ1 ∈ [ρ, ρ2). In view of (4.19) and (4.20) we see that the jth term of the
right-hand series in equation (4.18) satisfies

(4.21)

∣∣∣∣∣λ
s
jfjC

(s+1/2)
j (x)

h
(s+1/2)
j

∣∣∣∣∣ ≤ CD(ρ1)

(
ρ1
ρ2

)j

j−s(λs
j)

−1 max
z∈Bρ1

|f(z)|

throughout Bρ1
. Taking ρ1 ∈ (ρ, ρ2) we conclude that the series converges uniformly

in Bρ1
, and that the limit is therefore analytic throughout Bρ, as desired. Finally,

taking ρ1 = ρ in (4.21) we obtain the estimates

‖((−Δ)sω)
−1f‖L∞(Bρ) ≤ CD(ρ)

∞∑
j=0

(
ρ

ρ2

)j

j−s(λs
j)

−1 max
z∈Eρ

|f(z)| ≤ E‖f‖L∞(Bρ)

which establish the stated continuity condition. The proof is thus complete. �

Corollary 4.19. Let f ∈ Aρ. Then the solution u of (1.1) can be expressed in the
form u = ωsφ for a certain φ ∈ Aρ.

Proof. Follows from Theorem 4.18 and Remark 3.12. �

Remark 4.20. We can now see that, as indicated in Remark 3.8, the smoothness
and analyticity theory presented throughout Section 4 cannot be duplicated with
weights of exponent 2s, in spite of the “local” regularity result of Theorem 3.7,
which establishes analyticity of T [yα](x) around x = 0 for both cases, α = s + n
and α = 2s + n. Indeed, we can easily verify that T (y2s(1 − y)2syn) cannot be
extended analytically to an open set containing [0, 1]. If it could, Theorem 4.18
would imply that ys(1− y)s is an analytic function around y = 0 and y = 1.

4.3. Sobolev and analytic regularity on multi-interval domains. This sec-
tion concerns multi-interval domains Ω of the form (2.2). Using the characteristic

functions χ(ai,bi) of the individual component interval, letting ωs(x) =
∑M

i=1(x −
ai)

s(bi − x)sχ(ai,bi)(x) and relying on Corollary 2.5, we define the multi-interval
weighted fractional-Laplacian operator on Ω by (−Δ)sωφ = (−Δ)s[ωsφ], where
φ : R → R. In view of the various results in previous sections it is natural to

use the decomposition (−Δ)sω = Ks +Rs, where Ks[φ] =
∑M

i=1 χ(ai,bi)Ksχ(ai,bi)φ
is a block-diagonal operator and where Rs is the associated off-diagonal remainder.
Using integration by parts it is easy to check that

(4.22) Rsφ(x) = C1(s)

ˆ
Ω\(aj ,bj)

|x− y|−1−2sωs(y)φ(y)dy for x ∈ (aj , bj).

Theorem 4.21. Let Ω be given as in Definition 2.1. Then, given f ∈ L2
s(Ω), there

exists a unique φ ∈ L2
s(Ω) such that (−Δ)sωφ = f . Moreover, for f ∈ Hr

s (Ω) (resp.
f ∈ Aρ(Ω)) we have φ ∈ Hr+2s

s (Ω) (resp. φ ∈ Aν(Ω) for some ν > 1).
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Proof. Since (−Δ)sω = (Ks + Rs), left-multiplying the equation (−Δ)sωφ = f by
K−1

s yields

(4.23)
(
I +K−1

s Rs

)
φ = K−1

s f.

The operator K−1
s is clearly compact in L2

s(Ω) since the eigenvalues λs
j tend to

infinity as j → ∞ (cf. (3.40)). On the other hand, the kernel of the operator Rs

is analytic, and therefore Rs is continuous (and, indeed, also compact) in L2
s(Ω).

It follows that the operator K−1
s Rs is compact in L2

s(Ω), and, thus, the Fredholm
alternative tells us that equation (4.23) is uniquely solvable in L2

s(Ω) provided the
left-hand side operator is injective.

To establish the injectivity of this operator, assume φ ∈ L2
s solves the homo-

geneous problem. Then Ks(φ) = −Rs(φ), and since Rs(φ) is an analytic func-
tion of x, in view of the mapping properties established in Theorem 4.18 for the
self-operator Ks (which coincides with the single-interval version of the operator
(−Δ)sω), we conclude the solution φ to this problem is again analytic. Thus, a so-
lution to (1.1) for a null right-hand side f can be expressed in the form be u = ωsφ
for a certain function φ which is analytic throughout Ω. But this implies that the
function u = ωsφ belongs to the classical Sobolev space Hs(Ω). (To check this fact
we consider that: (a) ωs ∈ Hs(Ω), since, by definition, the Fourier transform of
ωs coincides (up to a constant factor) with the confluent hypergeometric function
M(s + 1, 2s + 2, ξ) whose asymptotics [2, eq. 13.5.1] show that ωs in fact belongs
to the classical Sobolev space Hs+1/2−ε(Ω) for all ε > 0; and (b) the product fg
of functions f , g in Hs(Ω) ∩ L∞(Ω) is necessarily an element of Hs(Ω), as the
Aronszajn-Gagliardo-Slobodeckij semi-norm [17] of fg can easily be shown to be
finite for such functions f and g, which implies fg ∈ Hs(Ω) [17, Prop. 3.4]). Having
established that u = ωsφ ∈ Hs(Ω), the injectivity of the operator in (4.23) in L2

s(Ω)
follows from the uniqueness of Hs solutions, which is established for example in [3].
As indicated above, this injectivity result suffices to establish the claimed existence
of an L2

s(Ω) solution for each L2
s(Ω) right-hand side.

Assuming f is analytic (resp. belongs to Hr
s (Ω)), finally, the regularity claims

now follow directly from the single-interval results of Sections 4.1 and 4.2, since a
solution φ of (−Δ)sωφ = f satisfies

(4.24) Ks(φ) = f −Rs(φ).

The proof is now complete. �

5. High order numerical methods

This section presents rapidly-convergent numerical methods for single- and multi-
interval fractional-Laplacian problems. In particular, this section establishes that
the proposed methods, which are based on the theoretical framework introduced
above in this paper, converge: (i) exponentially fast for analytic right-hand sides
f , (ii) superalgebraically fast for smooth f , and (iii) with convergence order r for
f ∈ Hr

s (Ω).

5.1. Single-interval method: Gegenbauer expansions. In view of Corollary
3.15, a spectrally accurate algorithm for solution of the single-interval equation (3.35)
(and thus eq. (1.1) for Ω = (a, b)) can be obtained from use of Gauss-Jacobi quadra-
tures. Assuming (a, b) = (−1, 1) for notational simplicity, the method proceeds as
follows: 1) The continuous scalar product (4.3) with v = f is approximated with
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spectral accuracy (and, in fact, exactly whenever f is a polynomial of degree less
or equal to n+ 1) by means of the discrete inner product

(5.1) f
(n)
j :=

1

h
(s+1/2)
j

n∑
i=0

f(xi)C
(s+1/2)
j (xi)wi,

where (xi)
n
i=0 and (wi)

n
i=0 denote the nodes and weights of the Gauss-Jacobi quad-

rature rule of order 2n + 1. (As is well known [23], these quadrature nodes and
weights can be computed with full accuracy at a cost of O(n) operations.) 2) For

each i, the necessary values C
(s+1/2)
j (xi) can be obtained for all j via the three-term

recurrence relation (3.38), at an overall cost of O(n2) operations. The algorithm is
then completed by 3) Explicit evaluation of the spectrally accurate approximation

(5.2) φn := K−1
s,nf =

n∑
j=0

f
(n)
j

λs
jh

(s+1/2)
j

C
(s+1/2)
j

that results by using the expansion (4.2) with v = f followed by an application
of equation (3.41) and subsequent truncation of the resulting series up to j = n.
The algorithm requires accurate evaluation of certain ratios of Gamma functions of
large arguments; see equations (3.40) and (4.1), for which we use Stirling’s series
as in [23, Sec. 3.3.1]. The overall cost of the algorithm is O(n2) operations. The
accuracy of this algorithm, in turn, is studied in Section 5.3.

5.2. Multiple intervals: An iterative Nyström method. This section pre-
sents a spectrally accurate iterative Nyström method for the numerical solution of
equation (1.1) with Ω as in (2.2). This solver, which is based on use of the equivalent
second-kind Fredholm equation (4.23), requires: (a) Numerical approximation of

K−1
s f , (b) Numerical evaluation of the “forward-map” (I+K−1

s Rs)[φ̃] for each given

function φ̃, and (c) Use of the iterative linear-algebra solver GMRES [34]. Clearly,
the algorithm in Section 5.1 provides a numerical method for the evaluation of each
block in the block-diagonal inverse operator K−1

s . Thus, in order to evaluate the
aforementioned forward map it now suffices to evaluate numerically the off-diagonal
operator Rs in equation (4.22).

An algorithm for evaluation ofRs[φ̃](x) for x ∈ (aj , bj) can be constructed on the
basis of the Gauss-Jacobi quadrature rule for integration over the interval (a�, b�)
with � �= j, in a manner entirely analogous to that described in Section 5.1. Thus,

using Gauss-Jacobi nodes and weights y
(�)
i and w

(�)
i (i = 1, . . . , n�) for each interval

(a�, b�) with � �= j we may construct a discrete operator Rn that can be used to

approximate Rs[φ̃](x) for each given function φ̃ and for all observation points x
in the set of Gauss-Jacobi nodes used for integration in the interval (aj , bj) (or,

in other words, for x = y
(j)
k with k = 1, . . . , nj). Indeed, consideration of the

numerical approximation

R[φ̃](y
(j)
k ) ≈

∑
� �=j

n�∑
i=0

|y(j)k − y
(�)
i |−2s−1φ̃(y

(�)
i )w

(�)
i

suggests the following definition. Using a suitable ordering to define a vector Y

that contains all unknowns corresponding to φ̃(y
(�)
i ), and, similarly, a vector F that
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contains all of the values f(y
(�)
i ), the discrete equation to be solved takes the form

(I +K−1
s,nRs,n)Y = K−1

s,n[F ],

where Rn and K−1
s,n are the discrete operator that incorporate the aforementioned

ordering and quadrature rules.
With the forward map (I + K−1

s,nRs,n) in hand, the multi-interval algorithm is
completed by means of an application of a suitable iterative linear algebra solver;
our implementations are based on the Krylov-subspace iterative solver GMRES [34].
Thus, the overall cost of the algorithm is O(m · n2) operations, where m is the
number of required iterations. (Note that the use of an iterative solver allows us
to avoid the actual construction and inversion of the matrices associated with the
discrete operators in equation (5.2), which would lead to an overall cost of the order
of O(n3) operations.) As the equation to be solved originates from a second-kind
equation, it is not unreasonable to anticipate that, as we have observed without
exception (and as illustrated in Section 6), a small number of GMRES iterations
suffices to meet a given error tolerance.

5.3. Error estimates. The convergence rates of the algorithms proposed in Sec-
tions 5.1 and 5.2 are studied in what follows. In particular, as shown in The-
orems 5.1 and 5.3, the algorithm’s errors are exponentially small for analytic f ,
they decay superalgebraically fast (faster than any power of mesh-size) for infin-
itely smooth right-hand sides, and with a fixed algebraic order of accuracy O(n−r)
whenever f belongs to the Sobolev space Hr

s (Ω) (cf. Section 4.1). For conciseness,
fully-detailed proofs are presented in the single-interval case only. A sketch of the
proofs for the multi-interval cases is presented in Corollary 5.4.

Theorem 5.1. Let r > 0, 0 < s < 1. Then, there exists a constant D such that
the error en(f) = (K−1

s − K−1
s,n)(f) in the numerical approximation (5.2) for the

solution of the single-interval problem (3.35) satisfies

(5.3) ‖en(f)‖H�+2s
s (a,b) ≤ Dn�−r‖f‖Hr

s (a,b)

for all f ∈ Hr
s (a, b). In particular, the L2

s-bound

(5.4) ‖en(f)‖L2
s(a,b)

≤ Dn−r‖f‖Hr
s (a,b)

holds for every f ∈ Hr
s (a, b).

Proof. As before, we work with (a, b) = (−1, 1). Let f be given and let pn denote the
n-degree polynomial that interpolates f at the Gauss-Gegenbauer nodes (xi)0≤i≤n.
Since the Gauss-Gegenbauer quadrature is exact for polynomials of degree less or

equal than 2n + 1, the approximate Gegenbauer coefficient f
(n)
j (eq. (5.1)) coin-

cides with the corresponding exact Gegenbauer coefficient of pn: using the scalar
product (3.37) we have

f
(n)
j =

n∑
i=0

pn(xi)C̃
(s+1/2)
j (xi)wi = 〈pn, C̃(s+1/2)

j 〉s.

It follows that the discrete operator Ks,n satisfies K−1
s,nf = K−1

s pn. Therefore, for
each � ≥ 0 we have

(5.5) ‖en(f)‖H�+2s
s (−1,1) = ‖K−1

s (f − pn)‖H�+2s
s (−1,1) ≤ D2‖f − pn‖H�

s(−1,1),
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where D2 denotes the continuity modulus of the operator K−1
s : H�

s(−1, 1) →
H�+2s

s (−1, 1) (see Theorem 4.12 and eq. (3.34)). From [22, Theorem 4.2] together
with the norm equivalence established in Lemma 4.11, we have, for all � ≤ r, the
following estimate for the interpolation error of a function f ∈ Hr

s (−1, 1):

(5.6) ‖f − pn‖H�
s(−1,1) < Cn�−r‖f‖Hr

s (−1,1) for f ∈ Hr
s (−1, 1),

which together with (5.5) shows that (5.3) holds. The proof is complete. �
Remark 5.2. A variety of numerical results in Section 6 suggest that the esti-
mate (5.3) is of optimal order, and that the estimate (5.4) is suboptimal by a factor
that does not exceed n−1/2. In view of equation (5.5), devising optimal error esti-
mates in the L2

s(a, b) norm is equivalent to that of finding optimal estimates for the
interpolation error in the space H−2s

s (a, b). Such negative-norm estimates are well
known in the context of Galerkin discretizations (see, e.g., [10]); the generalization
of such results to the present context is left for future work.

Theorem 5.3. Let f ∈ Aρ be given (Definition 4.17) and let en(f) = (K−1
s −

K−1
s,n)(f) denote the single-interval n-point error arising from the numerical method

presented in Section 5.1. Then the error estimate

(5.7) ‖en(f)‖Aν
≤ Cns

(
ν

ρ

)n

‖f‖Aρ
for all ν such that 1 < ν < ρ

holds. In particular, the operators K−1
s,n : Aρ → Aρ converge in norm to the contin-

uous operators K−1
s as n → ∞.

Proof. Equations (3.34), (4.18), (5.1) and (5.2) tell us that

(5.8) (K−1
s −K−1

s,n)f =
n∑

j=0

(
fj − f

(n)
j

)
(λs

j)
−1C̃

(s+1/2)
j +

∞∑
j=n+1

fj(λ
s
j)

−1C̃
(s+1/2)
j .

In order to obtain a bound for the quantities |fj − f
(n)
j | we utilize the estimate

(5.9)

∣∣∣∣∣
ˆ 1

−1

v(x)(1− x2)sdx−
n∑

i=0

v(xi)wi

∣∣∣∣∣ ≤ Cns

ρ2n
‖v‖L∞(Bρ)

that is provided in [41, Theorem 3.2] for the Gauss-Gegenbauer quadrature error

for a function v ∈ Aρ. Letting v = f C̃
(s+1/2)
j with j ≤ n, equations (5.9) and

(4.20) yield

(5.10) |fj − f
(n)
j | ≤ CDns

ρn
‖f‖L∞(Bρ).

It follows that the infinity norm of the left-hand side in equation (5.8) satisfies

‖(K−1
s −K−1

s,n)f‖L∞(Bν) ≤ Cns

(
ν

ρ

)n

‖f‖L∞(Bρ) for all ν < ρ

for some (new) constant C, as it can be checked by considering (4.20), (5.10), and
Remark 3.16 for the finite sum in (5.8), and (4.19), (4.20), and Remark 3.16 for the
tail of the series. The proof is now complete. �
Corollary 5.4. The algebraic order of convergence established in the single-interval
Theorem 5.1 is valid in the multi-interval Sobolev case as well. Further, an exponen-
tially small error in the infinity norm of C0(Ω) results in the analytic multi-interval
case (cf. Theorem 5.3).
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Proof. It is is easy to check that the family {Rs,n} (n ∈ N) of discrete approxi-
mations of the off-diagonal operator Rs is collectively compact [27] in the space
Hr

s (Ω) (r > 0). Indeed, it suffices to show that, for a given bounded sequence
{φn} ⊂ Hr

s (Ω), the sequence Rs,n[φn] admits a convergent subsequence in Hr
s (Ω).

But, selecting 0 < r′ < r, by Remark 4.9 we see that φn admits a convergent sub-
sequence in Hr′

s (Ω). Thus, in view of the smoothness of the kernel of the operator
Rs, the bounds for the interpolation error (5.6) applied to the product of φn and
the kernel (and its derivatives), and the fact that the Gauss-Gegenbauer quadrature
rule is exact for polynomials of degree ≤ 2n+1, Rs,n[φn] converges in Ht

s(Ω) for all
t ∈ R and, in particular for t = r. Thus, the family {Rs,n} is collectively compact
in Hr

s (Ω), as claimed, and therefore so is K−1
n,sRn,s. Then [27, Th. 10.12] shows

that, for some constant C, we have the bound

(5.11) ‖φn − φ‖Hr
s
≤ C‖(K−1

s Rs −K−1
s,nRs,n)φ‖Hr

s
+ ‖K−1

s −K−1
s,n)f‖.

The proof in the Sobolev case now follows from (5.11) together with equa-
tions (5.5) and (5.6) and the error estimates in Theorem 5.1. The proof in the
analytic case, finally, follows from the bound (5.9), Theorem 5.3 and an application
of Theorem 4.14 to the left-hand side of equation (5.11). �

6. Numerical results

This section presents a variety of numerical results that illustrate the properties
of algorithms introduced in Section 5. The efficiency of these methods is largely
independent of the value of the parameter s, and, thus, independent of the sharp
boundary layers that arise for small values of s. To illustrate the efficiency of
the proposed Gegenbauer-based Nyström numerical method and the sharpness of
the error estimates developed in Section 5, test cases containing both smooth and
nonsmooth right-hand sides are considered. In all cases the numerical errors were
estimated by comparison with reference solutions obtained for larger values of N .
Additionally, solutions obtained by the present Gegenbauer approach were checked
to agree with those provided by the finite-element method introduced in [3], thereby
providing an independent verification of the correcteness of the proposed method-
ology.

Left: Solution detail near the domain boundary for f equal to the
Runge function mentioned in the text. Right: Convergence for various values
of s. Computation time: 0.0066 sec. for N = 16 to 0.05 sec. for N = 256.

Figure 6.1. Exponential convergence for f(x) = 1
x2+0.01 .
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Figure 6.1 demonstrates the exponentially fast convergence that takes place for
a right-hand side given by the Runge function f(x) = 1

x2+0.01—which is analytic

within a small region of the complex plane around the interval [−1, 1], and for
values of s as small as 10−4. The present Matlab implementation of our algorithms
produces these solutions with near machine precision in computational times not
exceeding 0.05 seconds.

Left: errors in H2s
s (−1, 1) norm of order 1.5.

Right: errors in L2
s(−1, 1) norm, orders range from 1.5 to 2.

Figure 6.2. Convergence in the H2s
s (−1, 1) and L2

s(−1, 1) norms

for f(x) = |x|. In this case, f ∈ H
3/2−ε
s (−1, 1).

Results concerning a problem containing the nonsmooth right-hand side f(x) =
|x| (for which, as can be checked in view of Corollary 4.4 and Definition 4.6, we have

f ∈ H
3/2−ε
s (−1, 1) for any ε > 0 and any 0 ≤ s ≤ 1) are displayed in Figure 6.2.

The errors decay with the order predicted by Theorem 5.1 in the H2s
s (−1, 1) norm,

and with a slightly better order than predicted by that theorem for the L2
s(−1, 1)

error norm, although the observed orders tend to the predicted order as s → 0 (cf.
Remark 5.2).

N rel. err.

8 9.3134e-05
12 1.6865e-06
16 3.1795e-08
20 6.1375e-10
24 1.1857e-11
28 1.4699e-13

Figure 6.3. Multiple (upper curves) vs. independent single-intervals
solutions (lower curves) with f = 1. A total of five GMRES iterations
sufficed to achieve the errors shown on the right table for each one of
the discretizations considered.
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A solution for a multi-interval (two-interval) test problem with right-hand side
f = 1 is displayed in Figure 6.3. A total of five GMRES iterations sufficed to reach
the errors displayed for each one of the discretizations considered on the right-
hand table in Figure 6.3. The computational times required for each one of the
discretizations listed on the right-hand table are of the order of a few hundredths
of a second.

Appendix A. Appendix

A.1. Proof of Lemma 2.4. Let

Fε(x) =

ˆ
Ω\Bε(x)

Φs(x− y)v(y)dy.

Then, by definition we have

lim
ε→0

d

dx
Fε(x) = P.V.

ˆ
Ω

∂

∂x
Φs(x− y)v(y)dy.

We note that interchanging the limit and differentiation processes on the left-hand
side of this equation would result precisely in the right-hand side of equation (2.13),
and the lemma would thus follow. Since Fε converges throughout Ω as ε → 0, to
show that the order of the limit and differentiation can indeed be exchanged, it
suffices to show [33, Th. 7.17] that the quantity d

dxFε(x) converges uniformly over
compact subsets K ⊂ Ω as ε → 0.

To establish the required uniform convergence property over a given compact
set K ⊂ Ω let us first define a larger compact set K∗ = [a, b] ⊂ Ω such that
K ⊂ U ⊂ K∗, where U is an open set. Letting ε0 be sufficiently small so that
Bε0(x) ⊂ K∗ for all x ∈ K, for each ε < ε0 we may then write

∂

∂x
Fε =

ˆ
Ω\K∗

∂

∂x
Φs(x− y)v(y)dy +

ˆ
K∗\Bε(x)

∂

∂x
Φs(x− y)v(y)dy.

The first term on the right-hand side of this equation does not depend on ε for all
x ∈ K. To analyze the second term we consider the expansion v(y) = v(x) + (y −
x)R(x, y) and we write

´
K∗

∂
∂xΦs(x− y)v(y)dy = Γ1

ε(x) + Γ2
ε(x), where

Γ1
ε(x) = v(x)

ˆ
K∗\Bε(x)

∂

∂x
Φs(x− y)dy and

Γ2
ε(x) =

ˆ
K∗\Bε(x)

∂

∂x
Φs(x− y)(y − x)R(x, y)dy.

Since K∗ = [a, b], for each ε < ε0 and each x ∈ K the quantity Γ1
ε(x) can be

expressed in the form

Γ1
ε(x) = −v(x)

(
Φs(x− y)

∣∣y=b

y=x+ε
+Φs(x− y)

∣∣y=x−ε

y=a

)
which, in view of the relation Φs(−ε) = Φs(ε), is independent of ε. The uniform
convergence of Γ1

ε(x) over K therefore holds trivially.
The term Γ2

ε(x), finally, equalsˆ
K∗\Bε(x)

N(x− y)R(x, y)dy,

where N(x, y) = ∂
∂xΦs(x−y)(y−x). Since v ∈ C1(Ω) there exists a constant CK,K∗

such that |R(x, y)| < CK,K∗ for all (x, y) in the compact set K ×K∗ ⊂ Ω× Ω. In
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particular, for each x ∈ K the product N(x− y)R(x, y) is integrable over K∗, and
therefore the difference between Γ2

ε(x) and its limit satisfies

∣∣∣Γ2
ε(x)− lim

ε→0
Γ2
ε(x)

∣∣∣ = ∣∣∣∣
ˆ x+ε

x−ε

N(x− y)R(x, y)dy

∣∣∣∣ < CK,K∗

ˆ ε

−ε

|N(z)| dz.

The uniform convergence of Γ2
ε over the set K then follows from the integrability

of the function N = N(z) around the origin, and the proof is thus complete.

A.2. Interchange of infinite summation and P.V. integration in equation
(3.23).

Lemma A.1. Upon substitution of (3.22), the quantity Ls
n in equation (3.19) equals

the expression on the right-hand side of equation (3.23). In detail, for each x ∈ (0, 1)
we have
(A.1)

P.V.

ˆ 1

0

Js(x−y)ys−1

⎛
⎝ ∞∑

j=0

qjy
j

⎞
⎠ yndy =

∞∑
j=0

(
P.V.

ˆ 1

0

qjy
jJs(x− y)ys−1yndy

)
,

where Js(z) = sgn(z)|z|−2s.

Proof. Let x ∈ (0, 1) be given. Then, taking δ < min{x, 1 − x} we re-express the
left-hand side of (A.1) in the form

(A.2) lim
ε→0

[ˆ δ

0

dy +

ˆ
[δ,1−δ]\Bε(x)

dy +

ˆ 1

1−δ

dy

]⎛⎝ ∞∑
j=0

Js(x− y)qjy
s−1+n+j

⎞
⎠ .

The leftmost and rightmost integrals in this expression are independent of ε, and,
in view of (3.22), they are both finite. The exchange of these integrals and the
corresponding infinite sums follows easily in view of the monotone convergence
theorem since the coefficients qj are all positive.

The middle integral in equation (A.2), in turn, can be expressed in the form

(A.3) lim
ε→0

ˆ
[δ,1−δ]\Bε(x)

Js(x− y)
(

lim
m→∞

vm(y)
)
dy,

where

(A.4) vm(y) = ys−1yn
m∑
j=0

qjy
j .

In view of (3.22), vm converges (uniformly) to the smooth function v∞(y) =
ys−1yn(1 − y)s−1 for all y in the present domain of integration. As shown be-
low, interchange of this uniformly convergent series with the P.V. integral will then
allow us to complete the proof of the lemma.

In order to justify this interchange we replace the expansion

vm(y) = vm(x) + (x− y)Rm(x, y), where Rm(x, y) =
vm(y)− vm(x)

x− y
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in (A.3) and we define

F 1
ε = v∞(x)

ˆ
[δ,1−δ]\Bε(x)

Js(x− y)dy,(A.5)

F 2
ε =

ˆ
[δ,1−δ]\Bε(x)

Js(x− y)(x− y) lim
m→∞

Rm(x, y)dy;(A.6)

clearly the expression in equation (A.3) equals limε→0

(
F 1
ε + F 2

ε

)
.

The exchange of limε→0 and infinite summation for F 1
ε (in (A.5)) follows imme-

diately since vm(x) does not depend on ε. In order to perform a similar exchange
for F 2

ε in (A.6) we first note that

(A.7) lim
ε→0

F 2
ε =

ˆ 1−δ

δ

Js(x− y)(x− y) lim
m→∞

Rm(x, y)dy

in view of the integrand’s integrability, which itself follows from the bound

(A.8)
∣∣∣Js(x− y)(x− y) lim

m→∞
Rm(x, y)

∣∣∣ ≤ M |Js(x− y)(x− y)| ,

(where M is a bound for the derivative [v∞(y)]
′
in the interval [δ, 1 − δ]) together

with the integrability of the product |Js(x− y)(x− y)|. But (A.7) equals

lim
m→∞

ˆ 1−δ

δ

Js(x− y)(x− y)Rm(x, y)dy

= lim
m→∞

lim
ε→0

ˆ
[δ,1−δ]\Bε(x)

Js(x− y)(x− y)Rm(x, y)dy.

(A.9)

Indeed, the first expression results from an application of the dominated conver-
gence theorem—which is justified in view of (A.8) since Rm(x, y) is an increasing
sequence—while the second equality, which puts our integral in “principal value”
form, follows directly in view of the integrand’s integrability.

The lemma now follows by substituting first Rm(x, y) = (vm(y)−vm(y))/(x−y)
and then equation (A.4) in the right-hand integral of equation (A.9) and combining
the result with corresponding sums for F 1

ε and for the leftmost and rightmost
integrals in (A.2)—to produce the desired right-hand side in equation (A.1). The
proof is now complete. �

A.3. Interchange of summation order in (3.25) for x ∈ (0, 1). Letting

ajk =
(1− s)j

j!

(2s)k
k!

1

s− n− j + k
xk,

in order to show that the summation signs in (3.25) can be interchanged it suffices
to show that the series

∑
j,k ajk is absolutely convergent. To do this we write

∞∑
j=0

|ajk| =
(2s)k
k!

xk
∞∑
j=0

(1− s)j
j!

1

|s− n− j + k|

=
(2s)k
k!

xk

⎛
⎝k−n∑

j=0

(1− s)j
j!

1

s− n− j + k
+

∞∑
j=k−n+1

(1− s)j
j!

1

−s+ n+ j − k

⎞
⎠ .
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Since
(1−s)j

j! ∼ j−s as j → ∞ we obtain

∞∑
j=k−n+1

(1− s)j
j!

1

−s+ n+ j − k
≤ C

∞∑
j=k−n+1

j−s

−s+ n+ j − k
≤ C(s)

and, in view of the fact that, in particular,
(1−s)j

j! is bounded,

k−n∑
j=0

(1− s)j
j!

1

s− n− j + k
≤

k−n∑
�=0

1

s+ �
=

1

s
+

k−n∑
�=1

1

s+ �
.

It follows that
∞∑
k=0

∞∑
j=0

|ajk| ≤
∞∑
k=0

(2s)k
k!

(
C(s) +

k−n∑
�=1

1

�

)
xk

and, since (2s)k
k! ∼ k2s−1 and

∑k−n
�=1

1
� ∼ ln k as k → ∞, the sum

∑
j,k ajk is

absolutely convergent for every x ∈ (0, 1), as needed.
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[5] I. Babuška and B. Guo, Direct and inverse approximation theorems for the p-version of
the finite element method in the framework of weighted Besov spaces. I. Approximability of
functions in the weighted Besov spaces, SIAM J. Numer. Anal. 39 (2001/02), no. 5, 1512–
1538, DOI 10.1137/S0036142901356551. MR1885705

[6] W. N. Bailey, Generalized Hypergeometric Series, Cambridge Tracts in Mathematics and
Mathematical Physics, No. 32, Stechert-Hafner, Inc., New York, 1964. MR0185155

[7] D. A. Benson, S. W. Wheatcraft, and Mark M. Meerschaert, Application of a fractional
advection-dispersion equation, Water Resources Research, 36 (2000), no. 6, 1403–1412.
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[18] B. Dyda, A. Kuznetsov, and M. Kwaśnicki, Fractional Laplace operator and Meijer G-
function, Constr. Approx. 45 (2017), no. 3, 427–448. MR3640641

[19] P. Gatto and J. S. Hesthaven, Numerical approximation of the fractional Laplacian via hp-
finite elements, with an application to image denoising, J. Sci. Comput. 65 (2015), no. 1,
249–270, DOI 10.1007/s10915-014-9959-1. MR3394445

[20] G. Gilboa and S. Osher, Nonlocal operators with applications to image processing, Multiscale
Model. Simul. 7 (2008), no. 3, 1005–1028, DOI 10.1137/070698592. MR2480109

[21] G. Grubb, Fractional Laplacians on domains, a development of Hörmander’s theory
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