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AN ANISOTROPIC FINITE ELEMENT METHOD

ON POLYHEDRAL DOMAINS:

INTERPOLATION ERROR ANALYSIS

HENGGUANG LI

Abstract. On a polyhedral domain Ω ⊂ R
3, consider the Poisson equation

with the Dirichlet boundary condition. For singular solutions from the non-
smoothness of the domain boundary, we propose new anisotropic mesh refine-
ment algorithms to improve the convergence of finite element approximation.
The proposed algorithm is simple, explicit, and requires less geometric condi-
tions on the mesh and on the domain. Then, we develop interpolation error
estimates in suitable weighted spaces for the anisotropic mesh, especially for
the tetrahedra violating the maximum angle condition. These estimates can
be used to design optimal finite element methods approximating singular so-
lutions. We report numerical test results to validate the method.

1. introduction

Let Ω ⊂ R
3 be a bounded polyhedral domain. Consider the Poisson equation

with the Dirichlet boundary condition,

−Δu = f in Ω, u = 0 on ∂Ω.(1)

The regularity of the solution is determined by the smoothness of the boundary
∂Ω and the smoothness of the given data f . For example, when the domain has a
smooth boundary, the solution continuously depends on the given data f in Sobolev
spaces with the full regularity estimate [23, 32]

‖u‖Hm+1(Ω) ≤ C‖f‖Hm−1(Ω), m ≥ 0.(2)

On domains with a non-smooth boundary, equation (1) usually possesses solutions
with singularities near the non-smooth points, and therefore the estimate in (2) no
longer holds, even when f is smooth. The lack of regularity in the solution can
cause severe convergence issues in the numerical approximations [18, 20, 39].

Addressing critical problems both in theory and in practice, various finite ele-
ment methods (FEMs) approximating such singular solutions have been studied.
Intuitively, the accuracy of the numerical solution can be improved by increasing the
mesh density near the singularity of the solution. For elliptic boundary value prob-
lems in two-dimensional (2D) polygonal domains, this idea has led to effective FEMs
based on local mesh grading algorithms, in which the numerical approximation of
singular solutions achieves the optimal convergence rate. See [1, 8, 12, 15, 31, 36, 37]
and the references therein. The validation of these methods highly depends on the
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regularity estimate of the singular solution in special weighted Sobolev spaces (e.g.,
[10, 21, 26, 27, 29, 34, 35]), which itself is an active research topic in mathematical
analysis.

For a three-dimensional (3D) polyhedral domain Ω, the solution is featured with
different types of singularities: the vertex (conical) singularity and the (anisotropic)
edge singularity. Thus, an anisotropic mesh is in general expected for a better
finite element approximation. The combination of different types of singularities,
together with the complexity in the 3D geometry, makes the development of optimal
FEMs for equation (1) a more technically challenging task. Existing algorithms on
polyhedral domains usually require restrictive geometric conditions on the mesh
and on the domain. Some relevant results are as follows. The mesh in [2, 25, 33]
is based on the method of dyadic partitioning. These meshes are isotropic and
optimal only for weaker singular solutions. The mesh in [1, 3–5] is based on a
coordinate transformation from a quasi-uniform mesh. It is anisotropic along the
edges and requires confining angle conditions for the simplex. The mesh in [9, 11]
is also anisotropic and leads to optimal convergence rate. The algorithm, however,
requires extra steps for prism refinements to maintain the angle condition in the
simplex. There are also tensor-product anisotropic meshes based on 2D graded
meshes [6, 38] that are usually effective on a domain with simple geometry.

The aim of this paper is twofold. First, we propose new anisotropic mesh refine-
ment algorithms (Algorithm 3.2) for the finite element approximation of singular
solutions in equation (1). These graded refinements are simple, explicit, and de-
termined by a set of parameters associated to the singular set (vertices and edges)
of the domain. Meanwhile, with less geometric requirements on the simplex and
on the domain, these algorithms are defined recursively based on direct decomposi-
tion of tetrahedra, and lead to conforming triangulations. Second, we develop H1

interpolation error estimates for the finite element space associated with the pro-
posed anisotropic mesh. Due to the lack of regularity in the usual Sobolev space,
these estimates are established for solutions in suitable weighted Sobolev spaces
Mm

μ (Definition 2.2), in which the norm of the solution continuously depends on
the given data f . Using the interpolation error estimates and weighted regularity
results for the solution, one can decide the range of the grading parameters, such
that the finite element solution approximates the singular solution in the optimal
rate.

A notable difference from the existing meshes is that our triangulation, with
tetrahedral elements, in general, violates the maximum angle condition [7]. Namely,
the maximum interior angle in the triangular faces of the tetrahedra approaches π
as the level of refinements increases. To overcome the resulting difficulty in the error
analysis, we develop technical tools through the following steps. First, we classify
tetrahedra into different types according to their relation with the singular set.
For each tetrahedron type, we construct explicit linear transformations that map
the tetrahedra to the reference element. We show that the mapping is bounded,
whose upper bound is independent of the refinement level. Then, we obtain the
interpolation error estimate by proving that the lack of angle condition can be
compensated for by different weights in the function space. The finite element error
estimate (Theorem 4.25) is an immediate consequence of the interpolation error
analysis and the Céa Lemma. The weighted space Mm

μ and some of its variants are
closely related to the Mellin transform for non-smooth domains [29, 30], in which



ANISOTROPIC FINITE ELEMENT METHODS ON POLYHEDRAL DOMAINS 1569

many rigorous regularity results have been established [16,22,24]. Thus, using Mm
μ

as the function space for the solution, to validate the proposed FEM, here we pay
more attention to the connection between the grading parameters in the anisotropic
mesh and the indices in the weighted space. Besides the results in this paper, we
also expect that the self-contained analytical techniques developed here will lead to
new convergence results when similar weighted spaces are considered, and will be
useful for other numerical studies of the proposed anisotropic FEM. In particular,
we mention that Mm

μ is the space for the homogeneous Dirichlet problem (1).
For problems with the Neumann or other boundary conditions, different weighted
spaces that contain polynomials near the boundary may be needed to characterize
the solution. We shall study the proposed anisotropic method in such weighted
spaces for more general applications in future works.

The rest of the paper is organized as follows. In Section 2, we define the weighted
Sobolev space and the finite element approximation to equation (1). In Section 3,
we propose the 3D anisotropic mesh algorithm and discuss the resulting mesh prop-
erties. In Section 4, we give detailed interpolation error estimates on anisotropic
meshes in weighted spaces. In Section 5, we report numerical test results on two
model domains. These numerical results are in agreement with our theoretical
prediction, and hence provide evidence for the validation of our method.

Throughout the text below, we adopt the bold notation for vector fields. Let
T be a triangle (resp. tetrahedron) with vertices a, b, c (resp. a, b, c, d). Then, we
denote T by its vertices: �3abc for the triangle and �4abcd for the tetrahedron,
where the sup-index implies the number of vertices for T . We denote by ab the

open line segment with endpoints a and b and denote by
−→
ab the vector from a to

b. By a ∼ b (resp. a � b), we mean there exists a constant C > 0 independent of
a and b, such that C−1a ≤ b ≤ Ca (resp. a ≤ Cb). In addition, when A ⊂ B, it is
possible that A = B. The generic constant C > 0 in our estimates may be different
at different occurrences. It will depend on the computational domain, but not on
the functions involved or the mesh level in the finite element algorithms.

2. Preliminaries

In this section, we introduce the weighted Sobolev space and the finite element
approximation to equation (1), as well as other necessary notation and existing
results.

2.1. Weighted Sobolev spaces. Let V = {v�}Nv

�=1 and E = {e�}Ne

�=1 be the set of
vertices and open edges of Ω, where Nv and Ne are the numbers of the vertices
and edges, respectively. Let Ns := Nv +Ne. Then, we denote the singular set by
S := {s�}Ns

�=1 = V ∪ E . We number the elements in S, such that

s� = v� for 1 ≤ � ≤ Nv; s� = e�−Nv
for Nv < � ≤ Ns.(3)

Namely, the first Ns elements are vertices, while the last Ne elements are edges.
Then, we classify different sub-regions based on their locations relative to the

singular set S.

Definition 2.1 (The domain decomposition). For a vertex v ∈ V , let Ov ⊂ Ω be
a neighborhood of v, whose closure does not contain any other vertices. Let Gv

be the projection of Ov on the unit sphere S2 centered at v. Therefore, Gv is a
spherical polygon on S2. Denote by Ev ⊂ E the set of edges that touch v. Then,
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each edge e ∈ Ev corresponds to a vertex ve of the region Gv. Let O(ve) ⊂ Gv be
a neighborhood of the vertex ve, whose closure does not contain other vertices of
Gv. Then, using the spherical coordinates (ρ, ϑ) ∈ R+×S2 centered at v, we define
the neighborhood of the part of the edge e ∈ Ev close to v, Ov

e = {(ρ, ϑ) ∈ Ov, ϑ ∈
O(ve)}. Thus, Ω has the decomposition

(4) Ω =

(⋃
v∈V

(
Oo

v ∪
( ⋃

e∈Ev

Ov
e

)))
∪ Ωo ∪

(⋃
e∈E

Oo
e

)
,

where Oo
v = Ov \ (

⋃
e∈Ev

Ov
e ), Ω

o is an interior region of Ω away from the singular

points, and Oo
e = Ω \

(
Ωo ∪ (

⋃
v∈V Ov)

)
. Namely, Ω is decomposed into four

components: (I)
⋃

v∈V (
⋃

e∈Ev
Ov

e ), the neighborhood of the part of edges close
to vertices; (II)

⋃
e∈E Oo

e , the neighborhood of the part of the edges away from
vertices; (III)

⋃
v∈V Oo

v, the sub-region of the neighborhood of the vertices that
does not contain edge points; (IV) Ωo, the interior part away from the singular set
S.

With this domain decomposition, we define the following weighted Sobolev space.

Definition 2.2 (Anisotropic weighted spaces). Let Hm, m ≥ 0, be the usual
Sobolev space that consists of functions whose kth derivatives are square-integrable
for 0 ≤ k ≤ m. Let Hm

loc(Ω) := {v, v ∈ Hm(ω)}, where ω is any open subset with
compact closure ω̄ ⊂ Ω. Let ρv(x) and ρe(x) be distance functions from x ∈ Ω to
the vertex v ∈ V and to the edge e ∈ E , respectively. Within the neighborhood
Ov

e , let ρe,v = ρe/ρv be the angular distance. In the neighborhoods Oo
e and Ov

e ,
we choose a local Cartesian coordinate system in which the edge e ∈ E lies on
the z-axis. Let α⊥ = (α1, α2) consist of the first two entries of the multi-index
α = (α1, α2, α3) ∈ Z

3
≥0. Therefore, in Oo

e and Ov
e , ∂α⊥ = ∂α1

x ∂α2
y is a partial

derivative in a direction perpendicular to the z-axis. Recall the singular set S
in (3). Then, given an Ns-dimensional vector μ = (μ1, . . . , μNs

), we define the
anisotropic weighted space

Mm
μ (Ω) := {v ∈ Hm

loc(Ω), ρ|α|−μv
v ∂αv ∈ L2(Oo

v), ρ|α⊥|−μe
e ∂αv ∈ L2(Oo

e),(5)

ρ|α|−μv
v ρ|α⊥|−μe

e,v ∂αv ∈ L2(Ov
e ) ∀|α| ≤ m},

where μv and μe are the entries in μ that have the same sub-indices as those of v
and e in S. Thus, for 1 ≤ � ≤ Nv, μ� specifies the weight associated to the vertex
v� ∈ V ; and for Nv < � ≤ Ns, μ� gives the weight associated to the edges e�−Nv

∈ E .
For any v ∈ Mm

μ (Ω), the associated norm is

‖v‖2Mm
μ (Ω) := ‖v‖2Hm(Ωo) +

∑
|α|≤m

(∑
v∈V

[‖ρ|α|−μv
v ∂αv‖2L2(Oo

v)

+
∑

{e∈E,ē∩v=v}
‖ρ|α|−μv

v ρ|α⊥|−μe
e,v ∂αv‖2L2(Ov

e )
] +

∑
e∈E

‖ρ|α⊥|−μe
e ∂αv‖2L2(Oo

e)

)
.

In this paper, all the vectors denoted by the bold font have Ns entries. For any
two vectors a and b, we write a < (≤, >,≥) b if each entry a� < (≤, >,≥) b�,
1 ≤ � ≤ Ns. We denote by 1 (resp. 0) the constant Ns-dimensional vectors with
all entries being 1 (resp. 0).
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Note that the distance functions in the space Mm
μ are determined by the location

of the singular set S. Thus, they only depend on the domain Ω, and remain the
same for any sub-region of Ω.

Remark 2.3. The space Mm
μ is anisotropic in the sense that the transverse deriva-

tives ∂α⊥ and the longitudinal derivatives along the edge play different roles in the
formulation. Compared with the isotropic weighted spaces [16]

Km
μ (Ω) := {v ∈ Hm

loc(Ω), ρ|α|−μv
v ∂αv ∈ L2(Oo

v), ρ|α|−μe
e ∂αv ∈ L2(Oo

e),

ρ|α|−μv
v ρ|α|−μe

e,v ∂αv ∈ L2(Ov
e ) ∀|α| ≤ m},

the space Mm
μ is suitable to describe the anisotropic behavior of singular solutions,

especially the additional regularity in the edge direction. For example, define the
vector η, such that

(6) η� =
√
λ� + 1/4 for 1 ≤ � ≤ Nv and η� = π/ω� for Nv < � ≤ Ns,

where λ� > 0 is the smallest positive eigenvalue of the Laplace-Beltrami operator
with the zero Dirichlet boundary condition on the spherical polygon Gv� in the unit
sphere S2 centered at v�, and ω� is the interior dihedral angle of the edge e�−Nv

∈ E .
Then, for m ≥ 0, the solution u ∈ H1

0 (Ω) of equation (1), satisfies [16, 19]

‖u‖Mm
a+1(Ω) ≤ C‖f‖Mm

a−1(Ω) for 0 ≤ a < η.(7)

This shows the continuous dependence of the solution on the given data in weighted
spaces, despite the lack of regularity in usual Sobolev spaces.

Remark 2.4. Note that the estimate (7) does not give a shifting in the index m. In
fact, a smoother f is expected in order for u to be in Mm+2

a+1 (Ω) [11]. This, however,
requires sophisticated regularity analysis that we will address in a forthcoming
paper. Nevertheless, our goal in this paper is to propose new anisotropic finite
element algorithms and develop interpolation error estimates in suitable weighted
spaces. These estimates will also facilitate the finite element analysis for singular
solutions when other anisotropic regularity results become available. Hence, from
now on, we assume the solution of equation (1) satisfies

u ∈ Mm+1
σ+1 (Ω) for m ≥ 1,

where σ > 0 will be specified later.

2.2. The finite element method. Recall that H1
0 (Ω) ⊂ H1(Ω) is the subspace

consisting of functions with zero trace on ∂Ω. The variational solution u ∈ H1
0 (Ω)

of equation (1) satisfies

a(u, v) =

∫
Ω

∇u · ∇vdx =

∫
Ω

fvdx = (f, v) ∀v ∈ H1
0 (Ω).

Let Tn be a triangulation of Ω with tetrahedra. Let Sn ⊂ H1
0 (Ω) be the Lagrange

finite element space of degree m ≥ 1 associated with Tn. Namely, Sn = {v ∈
C(Ω), v|T ∈ Pm, for any tetrahedron T ∈ Tn}, where Pm is the space of polyno-
mials of degree ≤ m. Then, the finite element solution un ∈ Sn for equation (1) is
defined by

(8) a(un, vn) = (f, vn) ∀vn ∈ Sn.
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Remark 2.5. By the Poincaré inequality, the bilinear form a(·, ·) is both continuous
and coercive on H1

0 (Ω). Thus, the Céa Lemma [14, 17] gives rise to

‖u− un‖H1(Ω) ≤ inf
vn∈Sn

‖u− vn‖H1(Ω).(9)

On a standard quasi-uniform triangulation Tn, it is well known that the limited
regularity of u in the usual Sobolev space may result in a sub-optimal convergence
rate for the finite element approximation. Namely,

‖u− un‖H1(Ω) ≤ Chs‖u‖Hs+1(Ω),(10)

where h is the mesh size in Tn and 0 < s < m depends on the geometry of the
domain.

3. Anisotropic mesh algorithms

In this section, we propose new 3D anisotropic mesh algorithms for the finite
element approximation of singular solutions of equation (1). We first classify tetra-
hedra in the triangulation based on their relation with the singular set S.

Definition 3.1 (Tetrahedron types). Recall the vertex set V , the edge set E , and
S = V ∪ E . For a tetrahedron T , we say T contains a singular edge if one of its
edges lies on an edge in E . Let x be a vertex of T . We say x is a singular vertex
of T if x ∈ V , or x ∈ e for some edge e ∈ E but none of T ’s edges lies on e. Let T
be an initial triangulation of Ω, such that: (I) each tetrahedron contains at most
one singular vertex and at most one singular edge; (II) if a tetrahedron contains
both a singular vertex and a singular edge, the singular vertex is an endpoint of the
singular edge. Then, each tetrahedron T ∈ T falls into one of the five categories.

(1) o-tetrahedron: T̄ ∩ S = ∅.
(2) v-tetrahedron: T̄ ∩ S is a vertex in V .
(3) ve-tetrahedron: T̄ ∩ S is an interior point of an edge in E .
(4) e-tetrahedron: T̄ ∩S is an edge of T , which lies on an edge in E but contains

no vertex in V .
(5) ev-tetrahedron: T̄ ∩ S contains a vertex v ∈ V and an edge of T that lies

on an edge in E joining v.

Then, we present our anisotropic mesh algorithm.

Algorithm 3.2 (Anisotropic refinement). Let T be a triangulation of Ω as in
Definition 3.1. For each element s� ∈ S, 1 ≤ � ≤ Ns, we associate a grading
parameter κ� ∈ (0, 1/2]. Let T = �4x0x1x2x3 ∈ T be a tetrahedron with vertices
x0, x1, x2, x3, such that x0 is the singular vertex if T is a v-, ve-, or ev-tetrahedron;
and x0x1 is the singular edge if T is an e- or ev-tetrahedron. Let κ = (κ1, . . . , κNs

)
be the collection of the grading parameters, such that each κ� corresponds to an
element s� in the singular set S. Then, the refinement, denoted by κ(T ), proceeds
as follows. We first generate new nodes xkl, 0 ≤ k < l ≤ 3, on each edge xkxl of
T , based on its type.

(I) (T is an o-tetrahedron): xkl = (xk + xl)/2.
(II) (T is a v-tetrahedron): Suppose x0 = s� ∈ V (1 ≤ � ≤ Nv). Define κv := κ�.

Let Iv := {�, v is an endpoint of e�−Nv
} be the index set for edges touching

v. Define κ = κev := min�∈Iv (κv, κ�). Then, xkl = (xk + xl)/2 for 1 ≤ k <
l ≤ 3; x0l = (1− κ)x0 + κxl for 1 ≤ l ≤ 3.
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Figure 1. Decompositions for a tetrahedron �4x0x1x2x3, top
row (left to right): o-tetrahedron, v- or ve-tetrahedron, e-
tetrahedron; bottom row (left to right): an ev-tetrahedron (κv >
κe), an ev-tetrahedron (κv < κe).

(III) (T is a ve-tetrahedron): Suppose x0 = x0x1 ∩ s�, (Nv < � ≤ Ns), namely,
s� ∈ E . We define κ = κe := κ�. Then, xkl = (xk+xl)/2 for 1 ≤ k < l ≤ 3;
x0l = (1− κ)x0 + κxl for 1 ≤ l ≤ 3.

(IV) (T is an e-tetrahedron): Suppose x0x1 ⊂ e�−Nv
= s� ∈ E (Nv < � ≤ Ns).

Define κe := κ�. Then, xkl = (1−κe)xk+κexl for 0 ≤ k ≤ 1 and 2 ≤ l ≤ 3;
x01 = (x0 + x1)/2, x23 = (x2 + x3)/2.

(V) (T is an ev-tetrahedron): Suppose x0 = v� = s� ∈ V (1 ≤ � ≤ Nv) and
x0x1 ⊂ e�′−Nv

= s�′ ∈ E (Nv < �′ ≤ Ns). Define κv := κ�, κe := κ�′ ,
and κev := min�∈Iv (κv, κ�), where Iv is the index set defined in (II). Then,
for 2 ≤ l ≤ 3, x0l = (1 − κev)x0 + κevxl and x1l = (1 − κe)x1 + κexl;
x01 = (1− κv)x0 + κvx1, x23 = (x2 + x3)/2.

Connecting these nodes xkl on all the faces of T , we obtain four sub-tetrahedra and
one octahedron. The octahedron then is cut into four tetrahedra using x13 as the
common vertex. Therefore, after one refinement, we obtain eight sub-tetrahedra for
each T ∈ T denoted by their vertices:

�4x0x01x02x03, �4x1x01x12x13, �4x2x02x12x23, �4x3x03x13x23,

�4x01x02x03x13, �4x01x02x12x13, �4x02x03x13x23, �4x02x12x13x23.

See Figure 1 for different types of decompositions. Given an initial mesh T0 sat-
isfying the condition in Definition 3.1, the associated family of anisotropic meshes
{Tn, n ≥ 0} is defined recursively Tn = κ(Tn−1). See Figure 2 for example.

Remark 3.3. Algorithm 3.2 first assigns to each singular element s� ∈ S a grading
parameter κ�, which can be regarded as an indicator of the severity of the singularity
at s�. A smaller value of κ� leads to a higher mesh density near s�, while the value
κ� = 1/2 corresponds to a quasi-uniform refinement. It is apparent that our meshing
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Figure 2. Anisotropic triangulations after two consecutive refine-
ments on a tetrahedron, top row (left to right): o-tetrahedron, v-
or ve-tetrahedron (κ = 0.3), e-tetrahedron (κe = 0.3); bottom row
(left to right): ev-tetrahedron (κev = 0.3, κv = 0.4, κe = 0.3),
ev-tetrahedron (κev = 0.3, κv = 0.3, κe = 0.4).

method results in very different mesh geometries. In a region away from the singular
set S (i.e., Ωo), the mesh is isotropic and quasi-uniform. The local refinement for a
v- or ve-tetrahedron in fact follows the same rule: the mesh is isotropic and graded
toward the vertex x0 based on the grading parameter κ associated to the vertex x0.
In the neighborhood Oo

e of an edge away from the vertices, the resulting mesh in
general is anisotropic and graded toward the edge e ∈ E . The mesh refinement in
Ov

e depends on the parameters κv and κ�, � ∈ Iv, which is also anisotropic, graded
toward both the edge e ∈ E and the vertex v ∈ V .

Remark 3.4. Our anisotropic refinements also generate tetrahedra with different
shape regularities. A direct calculation shows that successive refinements of an o-
tetrahedron produce tetrahedra within three similarity classes [13]; refinements for a
v- or ve-tetrahedron produce tetrahedra within 22 similarity classes (Remark 3.4 in
[28]). However, refinements for an e- or ev-tetrahedron lead to anisotropic meshes
toward the edge that in general do not preserve the maximum angle condition.
Namely, the maximum edge angle in the face of the tetrahedron approaches π as
the level of refinement n increases. This is a main difficulty that we shall overcome
in the error analysis.

Remark 3.5. Compared with existing 3D graded mesh refinements [1,3,11,38], the
proposed algorithm has a few notable properties: (1) it is simple, explicit, and
defined recursively; (2) the meshes Tj , j ≤ n, are conforming and the associated
finite element spaces Sj are nested; (3) the algorithm results in a triangulation
with the same topology and data structure as the usual 3D uniform mesh [13],
and also provides the flexibility to adjust the grading parameters for vertex and
edge singularities on general polyhedral domains. In what follows, we shall obtain
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interpolation error estimates for singular solutions on such meshes, which in turn
imply that our mesh can effectively improve the convergence of the finite element
approximation.

To simplify the exposition in the next section, for a singular element in S, we
now define another set of parameters associated with κv, κe, and κev (Algorithm
3.2). When s� ∈ S is a vertex v, let av be such that

κv = κ� = 2−m/av .(11)

When s� ∈ S is an edge e, let ae be such that

κe = κ� = 2−m/ae .(12)

In addition, we define the constant aev = min�∈Iv(av, a�), where Iv is the index set
defined in (II) of Algorithm 3.2. Therefore,

κev = 2−m/aev .(13)

Then, we denote by a = (a1, . . . , aNs
) the collection of these mesh parameters

a� :=

{
aev, if v = s�;
ae, if e = s�,

1 ≤ � ≤ Ns.(14)

Here, m ≥ 1 is the polynomial degree in the finite element approximation (8). Since
κ� ∈ (0, 1/2], it is clear that 0 < a� ≤ m.

4. Interpolation error estimates

In this section, we develop analytical tools and obtain interpolation error es-
timates on the proposed anisotropic mesh. Let T0 be an initial triangulation of
the domain Ω with tetrahedra that satisfy the condition in Definition 3.1. Recall
Tn is the mesh obtained after n successive refinements based on the parameter κ.
Throughout this section, we let h := 2−n be the mesh parameter of Tn. For a
continuous function v, we let vI be its Lagrange nodal interpolation associated to
the underlying mesh.

Note that the tetrahedra in the initial mesh T0 = {T(0),j}Jj=1 are all shape regular
and can be classified into five categories (Definition 3.1). Thus, with the triangu-
lation Tn, the interpolation error estimates on Ω break down into the interpolation
error estimates on the sub-regions of Ω, each of which is represented by an initial
tetrahedron T(0),j ∈ T0.

In addition, we mention that based on the definition, the space Mm+1
μ , m ≥ 1,

regardless of the sub-index μ, is equivalent to the Sobolev space Hm+1 on any
sub-region of Ω that is away from the singular set S. Therefore, by the Sobolev
embedding Theorem, u ∈ Mm+1

μ (Ω) is continuous at each nodal point in the interior
of the domain. On the boundary of the domain, we set uI = 0 due to the boundary
condition. This makes the interpolation uI well defined.

4.1. Estimates on initial o-, v-, and ve-tetrahedra in T0. We first have the
estimate for an o-tetrahedron in the initial mesh.

Lemma 4.1. Let T(0) ∈ T0 be an o-tetrahedron. For u ∈ Mm+1
a+1 (Ω), where a is

given in (14), let uI be its nodal interpolation on Tn. Then, we have

|u− uI |H1(T(0)) ≤ Chm‖u‖Mm+1
a+1 (T(0))

,(15)

where h = 2−n and C is independent of n and u.
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Proof. Based on Algorithm 3.2, the restriction of Tn on T(0) is a quasi-uniform

mesh with size O(2−n). Since Hm+1(T(0)) is equivalent to Mm+1
a+1 (T(0)) on an o-

tetrahedron, by the standard interpolation error estimate, we have

|u− uI |H1(T(0)) ≤ C2−nm‖u‖Hm+1(T(0)) ≤ Chm‖u‖Mm+1
a+1 (T(0))

.

This completes the proof. �

For a v- or ve-tetrahedron in T0, we first identify its sub-regions that have com-
parable distances to the singular vertex.

Definition 4.2 (Mesh layers in v- and ve-tetrahedra). Let T(0) = �4x0x1x2x3 ∈ T0
be either a v- or a ve-tetrahedron with x0 ∈ V or x0 ∈ e ∈ E . We use a local
Cartesian coordinate system, such that x0 is the origin. For 1 ≤ i ≤ n, the ith
refinement on T(0) produces a small tetrahedron with x0 as a vertex and with

one face, denoted by Pv,i, parallel to the face �3x1x2x3 of T(0). See Figure 1 for
example.

Then, after n refinements, we define the ith mesh layer Lv,i of T(0), 1 ≤ i < n,
as the region in T(0) between Pv,i and Pv,i+1. We denote by Lv,0 the region in T(0)

between �3x1x2x3 and Pv,1; and let Lv,n be the small tetrahedron with x0 as a
vertex that is bounded by Pv,n and three faces of T(0). Since it is clear that x0 is
the only point for the special refinement, we drop the sub-index � in the grading
parameter (14). Namely, for such T(0), we use

κ = 2−m/a

to denote the grading parameter near x0 (κ = κev if x0 ∈ V and κ = κe if x0 ∈ e ∈
E). Define the dilation matrix

Bv,i :=

⎛
⎝κ−i 0 0

0 κ−i 0
0 0 κ−i

⎞
⎠ .(16)

Then, by Algorithm 3.2, Bv,i maps Lv,i to Lv,0 for 0 ≤ i < n, and maps Lv,n to T(0).
We define the initial triangulation of Lv,i, 0 ≤ i < n, to be the first decomposition
of Lv,i into tetrahedra. Thus, the initial triangulation of Lv,i consists of those
tetrahedra in Ti+1 that are contained in the layer Lv,i.

Remark 4.3. Based on the refinement, on Lv,i, 0 ≤ i ≤ n, the tetrahedra in Tn are
isotropic with mesh size O(κi2i−n). In T(0), let ρ be the distance to x0. Therefore,

ρ ∼ κi on Lv,i, 0 ≤ i < n.(17)

Namely, if T(0) is a v-tetrahedron, ρ ∼ ρv for v = x0 ∈ V ; and if T(0) is a ve-
tetrahedron, ρ ∼ ρe, where e ∈ E is the edge containing x0.

Then, we have the interpolation error estimate in the layer Lv,i.

Lemma 4.4. Let T(0) ∈ T0 be either a v- or a ve-tetrahedron. For u ∈ Mm+1
a+1 (Ω),

where a is given in (14), let uI be its nodal interpolation on Tn. Then, for 0 ≤ i < n,
we have

|u− uI |H1(Lv,i) ≤ Chm‖u‖Mm+1
a+1 (Lv,i)

,

where h = 2−n and C is independent of n and u.
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Proof. For (x, y, z) ∈ Lv,i, let (x̂, ŷ, ẑ) ∈ Lv,0 be its image under the dilation Bv,i.
For a function v on Lv,i, we define v̂ on Lv,0 by

v̂(x̂, ŷ, ẑ) := v(x, y, z).

As part of Tn, the triangulation on Lv,i is mapped by Bv,i to a triangulation on
Lv,0 with mesh size O(2i−n). Then, by the scaling argument and (17), we have

|u− uI |2H1(Lv,i)
= κi|û− ûI |2H1(Lv,0)

≤ Cκi22m(i−n)|û|2Hm+1(Lv,0)

≤ C22m(i−n)κ2mi|u|2Hm+1(Lv,i)

≤ C22m(i−n)κ2ai
∑

|α|=m+1

‖ρm−a∂αu‖2L2(Lv,i)
.

Recall κ = 2−m/a and Remark 4.3. Then, by the definition of the weighted space,
we have

|u−uI |2H1(Lv,i)
≤ C22m(i−n)κ2ai

∑
|α|=m+1

‖ρm−a∂αu‖2L2(Lv,i)
≤ Ch2m‖u‖2Mm+1

a+1 (Lv,i)
,

which completes the proof. �

Then, we give the error estimate on the entire initial tetrahedron T(0).

Corollary 4.5. Let T(0) ∈ T0 be either a v- or a ve-tetrahedron. For u ∈ Mm+1
a+1 (Ω),

where a is given in (14), let uI be its nodal interpolation on Tn. Then, we have

|u− uI |H1(T(0)) ≤ Chm‖u‖Mm+1
a+1 (T(0))

,

where h = 2−n and C is independent of n and u.

Proof. By Lemma 4.4, it suffices to show the estimate for the last layer Lv,n. For
(x, y, z) ∈ Lv,n, let (x̂, ŷ, ẑ) ∈ T(0) be its image under the dilation Bv,n. For a
function v on Lv,n, we define v̂ on T(0) by

v̂(x̂, ŷ, ẑ) := v(x, y, z).

Now let χ be a smooth cutoff function on T(0) such that χ = 0 in a neighborhood of
x0 and = 1 at every other node of T(0). Recall the distance function ρ from Remark

4.3. Thus, ρ(x̂, ŷ, ẑ) = κ−nρ(x, y, z). Since χû = 0 in the neighborhood of x0, we
have

|χû|2Hm+1(T(0))
≤ C

∑
|α|≤m+1

‖ρ|α|−1∂αû‖2L2(T(0))
.

Define ŵ := û− χû and note that (χû)I = ûI . We have

|û− ûI |H1(T(0)) = |ŵ + χû− ûI |H1(T(0)) ≤ |ŵ|H1(T(0)) + |χû− ûI |H1(T(0))

= |ŵ|H1(T(0)) + |χû− (χû)I |H1(T(0))(18)

≤ C(‖û‖H1(T(0)) + |χû|Hm+1(T(0))),

where C depends on m and, through χ, the nodes in the triangulation. Then, using
(18), the scaling argument, κ−n � ρ−1 in Lv,n, the definition of the weighted space,
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and (14), we have

|u− uI |2H1(Lv,n)
= κn|û− ûI |2H1(T(0))

≤ Cκn(‖û‖2H1(T(0))
+

∑
|α|≤m+1

‖ρ|α|−1∂αû‖2L2(T(0))
)

≤ C
∑

|α|≤m+1

‖ρ|α|−1∂αu‖2L2(Lv,n)
≤ Cκ2na‖u‖2Mm+1

a+1 (Lv,n)

= C2−2mn‖u‖2Mm+1
a+1 (Lv,n)

= Ch2m‖u‖2Mm+1
a+1 (Lv,n)

.

Then, the desired estimate follows by summing up the estimates from different
layers Lv,i, 0 ≤ i ≤ n. �
4.2. Estimates on initial e-tetrahedra in T0. Throughout this subsection, let
T(0) := �4x0x1x2x3 ∈ T0 be an e-tetrahedron with x0x1 on the edge e ∈ E and let
κe be the associated grading parameter. Then, we define the mesh layer associated
with Tn on T(0) as follows.

Definition 4.6 (Mesh layers in e-tetrahedra). Based on Algorithm 3.2, in each re-
finement, an e-tetrahedron is cut by a parallelogram parallel to x0x1. For example,
in the e-tetrahedron of Figure 1, the quadrilateral with vertices x02, x12, x13, x03 is
the aforementioned parallelogram. We denote by Pe,i the parallelogram produced
in the ith refinement, 1 ≤ i ≤ n. Therefore, the distance from Pe,i+1 to e is κe× the
distance from Pe,i to e. For the mesh Tn, let the ith layer Le,i on T(0), 0 < i < n,
be the region bounded by Pe,i, Pe,i+1, and the faces of T(0). Define Le,0 to be the
sub-region of T(0) away from e that is separated by Pe,1. We define Le,n to be the
sub-region of T(0) between Pe,n and e. See for example Figure 4. As in Definition
4.2, the initial triangulation of the layer Le,i, 0 ≤ i < n, is the first decomposition
of this region into tetrahedra. Thus, the initial triangulation of Le,i consists of
those tetrahedra in Ti+1 that are contained in Le,i.

Remark 4.7. In the mesh layers, the distance ρe to the edge e satisfies

ρe ∼ κi
e on Le,i, 0 ≤ i < n.(19)

In addition, the mesh layers of an e-tetrahedron T(0) also satisfy the following
properties (see Figure 4):

• The layer Le,i, 2 ≤ i ≤ n, is the union of two components: sub-regions from
2i−1 e-tetrahedra in Ti−1 and sub-regions from 2i− 2 ve-tetrahedra in Ti−1.

• Among the aforementioned 2i − 2 ve-tetrahedra in Ti−1, 2k of them are
sub-regions of ve-tetrahedra in Tk, 1 ≤ k ≤ i− 1.

Now, we start to develop some estimates for the shape regularity of the mesh on
Le,i, although it is in general anisotropic and violates the maximum angle condition.
These results will be used for the interpolation error analysis.

Definition 4.8. (Relative distances for e-tetrahedra) Recall the initial e-tetrahed-
ron T(0) = �4x0x1x2x3 ∈ T0. For an e-tetrahedron T = �4γ0γ1γ2γ3 generated
by some subsequent refinements of T(0) based on Algorithm 3.2, consider its two
vertices on the edge x0x1. We call the vertex that is closer to x0 the first vertex of
T , and call the vertex closer to x1 the second vertex of T .

Without loss of generality, we suppose γ0γ1 ⊂ e ∈ E and γ0 (resp. γ1) is the first
(resp. second) vertex of T . Let γ be either γ2 or γ3. Denote by γ′ the orthogonal
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Figure 3. The mesh on an e-tetrahedron after one refinement
(left); the induced triangles on a face containing the singular edge
(right).

projection of γ on the z-axis (the axis containing the edge e). See for instance
Figure 3. Then, we define cγ,1 to be the first relative z-distance of γ, such that

|cγ,1| = |γ0γ′|/|γ0γ1|, and(20) {
cγ,1 = |cγ,1| if

−−→
γ0γ

′ = t(−−→γ0γ1) for some t > 0,
cγ,1 = −|cγ,1| otherwise.

The second relative z-distance of γ, denoted by cγ,2, is defined by

|cγ,2| = |γ1γ′|/|γ0γ1|, and(21) {
cγ,2 = |cγ,2| if

−−→
γ1γ

′ = t(−−→γ1γ0) for some t > 0,
cγ,2 = −|cγ,2| otherwise.

It is clear that cγ,2 = 1− cγ,1. In addition, we define the absolute relative distance
for T , denoted by cT , such that

cT = max(|cγ2,1|, |cγ2,2|, |cγ3,1|, |cγ3,2|).(22)

Remark 4.9. For each e-tetrahedron, there are four relative distances corresponding
to the two vertices away from the z-axis. The sign of the relative distance is
determined by the location of orthogonal projection of the off-the-edge vertex. The
relative distances imply, for the e-tetrahedron, how far the off-the-edge vertices
shift away in the z-direction from the vertices on the z-axis.

Remark 4.10. Note that after one refinement, T is decomposed into eight sub-
tetrahedra: two e-tetrahedra (denoted by TA and TB), two ve-tetrahedra, and four
o-tetrahedra. In this case, we call T the parent tetrahedron of the sub-tetrahedra,
and call each sub-tetrahedron the child tetrahedron of T . Note that Definition 4.8
is also valid for ev-tetrahedra. We shall use it later for ev-tetrahedra as well.

In what follows, we establish the connections between T and its child e-tetrahedra
TA and TB in terms of the corresponding relative z-distances.

Lemma 4.11. Let T ⊂ T(0) be an e-tetrahedron in Ti, 1 ≤ i < n. Let TA,
TB ⊂ T be the two child e-tetrahedra in Ti+1. Denote by cT , cA, and cB the
absolute distances for T , TA, and TB as in (22). Then, max(cA, cB) ≤ max(cT , 1).

Proof. Denote T by T = �4γ0γ1γ2γ3 with the first vertex γ0 and the second vertex
γ1 on the singular edge γ0γ1. As illustrated in Figure 3, we let TA := �4γ0γ4γ5γ6
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and TB := �4γ1γ4γ7γ8. Recall the relative distance from Definition 4.8. In par-
ticular, let cγ2,1, cγ2,2 be the relative distances of γ2 in T , and let cAγ5,1

, cAγ5,2
(resp.

cBγ7,1, c
B
γ7,2) be the relative distances of γ5 (resp. γ7) in TA (resp. TB). We first

show |cAγ5,1|, |cAγ5,2| ≤ max(|cγ2,1|, |cγ2,2|, 1).
Consider the triangles on the face �3γ0γ1γ2 of T , induced by the sub-tetrahedra

after one refinement of T (the second picture in Figure 3). In addition, we have
drawn three dashed line segments γ2γ

′
2, γ5γ

′
5, and γ7γ

′
7 that are perpendicular to

γ0γ1. Then, by (20), we have

|cγ2,1| = |γ0γ′
2|/|γ0γ1| and |cAγ5,1| = |γ0γ′

5|/|γ0γ4|.

Note that �3γ0γ5γ
′
5 is similar to �3γ0γ2γ

′
2. Therefore, |γ0γ′

5| = κe|γ0γ′
2|, and cγ2,1

and cAγ5,1 have the same sign. Recall 0 < κe ≤ 1/2. Then, we consider all the
possible cases.

In the case cγ2,1 < 0, we have

0 > cAγ5,1 = −|γ0γ′
5|/|γ0γ4| = −2κe|γ0γ′

2|/|γ0γ1| = 2κecγ2,1 ≥ cγ2,1.

Therefore, |cAγ5,1
| ≤ |cγ2,1|. Meanwhile, we have

1 ≤ cAγ5,2 = 1− cAγ5,1 = 1− 2κecγ2,1 < 1− cγ2,1 = cγ2,2.

Therefore, |cAγ5,2| ≤ |cγ2,2|.
In the case 0 ≤ cγ2,1 < (2κe)

−1, we have cAγ5,1 ≥ 0 and

cAγ5,1 = |γ0γ′
5|/|γ0γ4| = 2κe|γ0γ′

2|/|γ0γ1| = 2κecγ2,1 < 1.

Meanwhile, we have

0 ≤ cAγ5,2 = 1− cAγ5,1 = 1− 2κecγ2,1 < 1.

In the case cγ2,1 ≥ (2κe)
−1, we have

1 ≤ cAγ5,1
= |γ0γ′

5|/|γ0γ4| = 2κe|γ0γ′
2|/|γ0γ1| = 2κecγ2,1 ≤ |cγ2,1|.

Meanwhile, we have

0 ≥ cAγ5,2 = 1− cAγ5,1 = 1− 2κecγ2,1 ≥ 1− cγ2,1 = cγ2,2.

Therefore, |cAγ5,2| ≤ |cγ2,2|. Thus, we have shown

|cAγ5,1|, |c
A
γ5,2| ≤ max(|cγ2,1|, |cγ2,2|, 1).

With a similar calculation, we can derive the upper bounds for other relative
distances in TA and TB, namely,

|cAγ6,1|, |cAγ6,2| ≤ max(|cγ3,1|, |cγ3,2|, 1),
|cBγ7,1|, |cBγ7,2| ≤ max(|cγ2,1|, |cγ2,2|, 1), |cBγ8,1|, |cBγ8,2| ≤ max(|cγ3,1|, |cγ3,2|, 1).

Hence, the proof is completed by (22). �

Recall that for a v- or ve-tetrahedron in T0, the isotropic transformation (16)
maps a mesh layer to a reference domain (either the tetrahedron itself or the layer
Lv,0). Here, we define the reference domain for an e-tetrahedron.
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Figure 4. A reference tetrahedron T̂ (left); the triangulation T̂1
after one edge refinement (center); the triangulation T̂2 after two
edge refinements (right).

Definition 4.12 (The reference e-tetrahedron). For the initial e-tetrahedron
T(0) := �4x0x1x2x3 ∈ T0, we use a local Cartesian coordinate system, such that

the z-axis contains the edge x0x1 with the direction of −−→x0x1 as the positive direc-
tion, and x2 is in the xz-plane. We will specify the origin later. Let l0 := |x0x1|
be the length of the singular edge. Then, we define the reference tetrahedron
T̂ = �4x̂0x̂1x̂2x̂3, such that

x̂0 = (0, 0,−l0/2), x̂1 = (0, 0, l0/2), x̂k = (λ̂k, ξ̂k,−l0/2), k = 2, 3,

where λ̂k, ξ̂k are the x- and y-components of the vertices x2 and x3, respectively.

Therefore, ξ̂2 = 0 and λ̂2, λ̂3, ξ̂3 are constants that depend on the shape regularity
of T(0). Thus, T̂ is a tetrahedron with one face in the plane z = −l0/2, one face
in the xz-plane, such that |x̂0x̂1| = |x0x1|, |x̂0x̂2| = the length of the orthogonal
projection of x0x2 in the plane z = −l0/2, and |x̂0x̂3| = the length of the orthogonal

projection of x0x3 in the plane z = −l0/2. In addition, we denote by T̂1 and T̂2
the triangulations of T̂ after one and two edge refinements with parameter κe,
respectively. See Figure 4 for example.

In the following lemmas, we construct explicit linear mappings between an e-
tetrahedron ⊂ T(0) and the reference tetrahedron T̂ .

Lemma 4.13. For an e-tetrahedron Ti � T := �4γ0γ1γ2γ3 ⊂ T(0), 1 ≤ i ≤ n,

suppose γ0γ1 is the singular edge, and −−→γ0γ1 and −−→x0x1 share the same direction. We
use the local coordinate system in Definition 4.12, and set (γ0 + γ1)/2 to be the
origin. Then, there exist a matrix

Be,i =

⎛
⎝ κ−i

e 0 0
0 κ−i

e 0
b1κ

−i
e b2κ

−i
e 2i

⎞
⎠(23)

with |b1|, |b2| ≤ C0, where C0 > 0 depends on the initial tetrahedron T(0) but not on

i, such that Be,i : T → T̂ is a bijection.

Proof. Based on the refinement in Algorithm 3.2, and on Definition 4.12, we have

γ2 = (κi
eλ̂2, 0, ζ2), γ3 = (κi

eλ̂3, κ
i
eξ̂3, ζ3), and |γ0γ1| = 2−il0=2−i|x0x1|, where ζ2

and ζ3 are the z-coordinates of the vertices γ2 and γ3, respectively. Thus, the



1582 HENGGUANG LI

anisotropic transformation

A1 :=

⎛
⎝κ−i

e 0 0
0 κ−i

e 0
0 0 2i

⎞
⎠

maps T to a tetrahedron, with vertices A1γ0 = (0, 0,−l0/2), A1γ1 = (0, 0, l0/2),

A1γ2 = (λ̂2, 0, 2
iζ2), and A1γ3 = (λ̂3, ξ̂3, 2

iζ3). Now, define

(24) b1 = −(2iζ2 + 2−1l0)/λ̂2, b2 = [2i(ζ2λ̂3 − λ̂2ζ3) + 2−1l0(λ̂3 − λ̂2)]/λ̂2ξ̂3,

and let

A2 :=

⎛
⎝ 1 0 0

0 1 0
b1 b2 1

⎞
⎠ .

Then, a straightforward calculation shows that

Be,i := A2A1 =

⎛
⎝ κ−i

e 0 0
0 κ−i

e 0
b1κ

−i
e b2κ

−i
e 2i

⎞
⎠

maps T to T̂ . Meanwhile, by Lemma 4.11, we have |ζ2|, |ζ3| ≤ C|γ0γ1| = C2−il0,

where C depends on the shape regularity of T(0). In addition, since λ̂2, λ̂3, ξ̂3

all depend on the shape regularity of T(0) and λ̂2, ξ̂3 �= 0, by (24), we conclude
|b1|, |b2| ≤ C0, where C0 ≥ 0 depends on T(0) but not on i. �

Recall the parent and child tetrahedra associated to each mesh refinement in Re-
mark 4.10. Note that for a ve-tetrahedron T(i) ⊂ T(0) in Ti, its parent tetrahedron,
which is in Ti−1, can be either a ve-tetrahedron or an e-tetrahedron. Nevertheless,
there exists a ve-tetrahedron T(k) ∈ Tk, 1 ≤ k ≤ i, such that T(i) ⊂ T(k) ⊂ T(0) and
T(k)’s parent tetrahedron is an e-tetrahedron in Tk−1.

Next, we construct the mapping between a ve-tetrahedron in Ti and the reference
domain. Recall the triangulations T̂1 and T̂2 of T̂ in Definition 4.12.

Lemma 4.14. Let T(i) ⊂ T(0) be a ve-tetrahedron in Ti, 1 ≤ i ≤ n. Let T(k) ∈ Tk,
1 ≤ k ≤ i, be the ve-tetrahedron, such that T(i) ⊂ T(k) and T(k)’s parent tetrahedron

T(k−1) = �4γ0γ1γ2γ3 ∈ Tk−1 is an e-tetrahedron. On T(k−1), we use the same local
coordinate system as in Lemma 4.13 with origin at (γ0 + γ1)/2. Then, there is the
transformation

Bi,k =

⎛
⎝ κ−i+1

e 0 0
0 κ−i+1

e 0
b1κ

−i+1
e b2κ

−i+1
e 2k−1κk−i

e

⎞
⎠(25)

that maps T(i) to a ve-tetrahedron in T̂1, where |b1|, |b2| ≤ C0, for C0 > 0 depending
on T(0) but not on i or k.

Proof. Based on Algorithm 3.2, the origin (γ0 + γ1)/2 is the vertex of T(i) on the
singular edge. Then, the linear mapping

A1 =

⎛
⎝κk−i

e 0 0
0 κk−i

e 0
0 0 κk−i

e

⎞
⎠
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translates T(i) to T(k). Since T(k−1) is an e-tetrahedron, by Lemma 4.13, the trans-
formation

A2 =

⎛
⎝ κ−k+1

e 0 0
0 κ−k+1

e 0
b1κ

−k+1
e b2κ

−k+1
e 2k−1

⎞
⎠

maps T(k−1) to T̂ , and also maps the restriction of Tk on T(k−1) to T̂1, where
|b1|, |b2| < C for C depending on T(0). Therefore,

Bi,k := A2A1 =

⎛
⎝ κ−i+1

e 0 0
0 κ−i+1

e 0
b1κ

−i+1
e b2κ

−i+1
e 2k−1κk−i

e

⎞
⎠

maps T(i) to one of the ve-tetrahedra in T̂1. This completes the proof. �
The parameters b1 and b2 in Lemmas 4.13 and 4.14 can be different for different

tetrahedra in Ti, but they are uniformly bounded by a constant that depends on
the initial tetrahedron T(0). Now, we are ready to construct the mapping from a
tetrahedron T(i+1) ∈ Ti+1 in the mesh layer Le,i (Definition 4.6) to the reference
domain. Also recall that T(i+1) is a tetrahedron in the initial triangulation of Le,i.

Lemma 4.15. Let T(i+1) ∈ Ti+1 be a tetrahedron, such that T(i+1) ⊂ Le,i ⊂ T(0),
0 ≤ i < n.

Case 1. T(i+1) is a child tetrahedron of an e-tetrahedron T(i) ∈ Ti. Using the T(i)-
based local coordinate system as in Lemma 4.13, the transformation

Be,i =

⎛
⎝ κ−i

e 0 0
0 κ−i

e 0
b1κ

−i
e b2κ

−i
e 2i

⎞
⎠(26)

maps T(i+1) to some o-tetrahedron in T̂1.
Case 2. T(i+1) is a child tetrahedron of a ve-tetrahedron T(i) ∈ Ti. Let T(k) ∈ Tk,
1 ≤ k ≤ i, be the ve-tetrahedron, such that T(i) ⊂ T(k) and T(k)’s parent tetrahedron
T(k−1) ∈ Tk−1 is an e-tetrahedron. Using the T(k−1)-based local coordinate system
as in Lemma 4.14, the transformation

Bi,k =

⎛
⎝ κ−i+1

e 0 0
0 κ−i+1

e 0
b1κ

−i+1
e b2κ

−i+1
e 2k−1κk−i

e

⎞
⎠(27)

maps T(i+1) to an o-tetrahedron in T̂2. In both cases, |b1|, |b2| ≤ C0, for C0 > 0
depending on T(0) but not on i or k.

Proof. If T(i+1) is a child tetrahedron of an e-tetrahedron T(i) ∈ Ti, the matrix in

(23) maps T(i) to T̂ , and maps Pe,i+1∩T(i) to P̂1, where Pe,i+1 is the parallelogram

cutting T(0) in the (i + 1)st refinement (Definition 4.6) and P̂1 is the parallelo-

gram cutting T̂ in the first edge refinement (see Figure 4). Consequently, T(i+1) is

translated to one of the four o-tetrahedra in T̂1 by the same mapping.
For Case II, the transformation (25) maps T(i) to a ve-tetrahedron in T̂1. In

addition, it maps Pe,i∩ T̄(i) to P̂1, and Pe,i+1∩T(i) to P̂2 (see Figure 4). Therefore,

the same transformation maps T(i+1) to an o-tetrahedron in T̂2 between P̂1 and P̂2.
This completes the proof. �
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Each tetrahedron in Ti+1 that belongs to layer Le,i falls into either Case I or
Case II of Lemma 4.15. Thus, there is a linear transformation B (either Be,i or

Bi,k) that maps T(i+1) to an o-tetrahedron in either T̂1 or in T̂2. We denote this o-

tetrahedron by T̂(i+1). It is clear that T̂(i+1) belongs to a finite number of similarity

classes determined by the o-tetrahedra in T̂1 and T̂2. Then, for (x, y, z) ∈ T(i+1),
we have

(28) B(x, y, z) = (x̂, ŷ, ẑ) ∈ T̂(i+1).

For a function v on T(i+1), we define v̂(x̂, ŷ, ẑ) := v(x, y, z).
In the (i + 1)st refinement, 0 ≤ i < n, when the layer Le,i is formed, it only

contains tetrahedra in Ti+1. To obtain the mesh Tn, these tetrahedra in Le,i are
further refined uniformly n − i − 1 times. In the following, we obtain a uniform
interpolation error estimate for the mesh Tn in the layer Le,i.

Theorem 4.16. Let T(0) ∈ T0 be an e-tetrahedron. For u ∈ Mm+1
a+1 (Ω), where a is

given in (14), let uI be its nodal interpolation on Tn. Then, for 0 ≤ i < n, we have

|u− uI |H1(Le,i) ≤ Chm‖u‖Mm+1
a+1 (Le,i)

,

where Le,i is the mesh layer in Definition 4.6, h = 2−n, and C depends on T(0) and
m, but not on i.

Proof. Based on Algorithm 3.2, the layer Le,i is formed in the (i+ 1)st refinement
and is the union of tetrahedra in Ti+1 between Pe,i and Pe,i+1. Therefore, it suffices
to verify the following interpolation error estimate on each tetrahedron Ti+1 �
T(i+1) ⊂ Le,i,

|u− uI |H1(T(i+1)) ≤ Chm‖u‖Mm+1
a+1 (T(i+1))

.(29)

We show this estimate based on the type of T(i+1)’s parent tetrahedron.

Case I. T(i+1)’s parent is an e-tetrahedron in Ti. Let (x, y, z) ∈ T(i+1) and (x̂, ŷ, ẑ) ∈
T̂(i+1) as in (28). Then, by the mapping in (26) and direct calculation, we have

(30)

⎧⎨
⎩

dxdydz = 2−iκ2i
e dx̂dŷdẑ;

∂xv = (κ−i
e ∂x̂ + b1κ

−i
e ∂ẑ)v̂, ∂yv = (κ−i

e ∂ŷ + b2κ
−i
e ∂ẑ)v̂, ∂zv = 2i∂ẑ v̂;

∂x̂v̂ = (κi
e∂x − b12

−i∂z)v, ∂ŷ v̂ = (κi
e∂y − b22

−i∂z)v, ∂ẑ v̂ = 2−i∂zv.

Therefore, by Lemma 4.15, (30), the standard interpolation estimate on T̂(i+1),
(19), and (12), we have

‖∂x(u− uI)‖2L2(T(i+1))
≤ C2−i

(
‖∂x̂(û− ûI)‖2L2(T̂(i+1))

+ ‖∂ẑ(û− ûI)‖2L2(T̂(i+1))

)
≤ C2−i22m(i−n)|û|2

Hm+1(T̂(i+1))

≤ C22m(i−n)
∑

|α⊥|+α3=m+1

2−2iα3κ2i(|α⊥|−1)
e ‖∂α⊥∂α3

z u‖2L2(T(i+1))

≤ C22m(i−n)
∑

|α⊥|+α3=m+1

2−2iα3‖ρ|α⊥|−1
e ∂α⊥∂α3

z u‖2L2(T(i+1))

≤ C22m(i−n)κ2iae
e ‖u‖2Mm+1

a+1 (T(i+1))
≤ Ch2m‖u‖2Mm+1

a+1 (T(i+1))
.

A similar calculation for the derivative with respect to y gives

‖∂y(u− uI)‖L2(T(i+1)) ≤ Chm‖u‖Mm+1
a+1 (T(i+1))

.
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In the z-direction, by Lemma 4.15, (30), the standard interpolation estimate, (19),
and (12), we have

‖∂z(u− uI)‖2L2(T(i+1))
≤ C2iκ2i

e ‖∂ẑ(û− ûI)‖2L2(T̂(i+1))

≤ C2iκ2i
e 22m(i−n)|û|2

Hm+1(T̂(i+1))

≤ C22m(i−n)
∑

|α⊥|+α3=m+1

22i2−2iα3κ2i|α⊥|
e ‖∂α⊥∂α3

z u‖2L2(T(i+1))

≤ C22m(i−n)
∑

|α⊥|+α3=m+1

2−2iα3‖ρ|α⊥|−1
e ∂α⊥∂α3

z u‖2L2(T(i+1))

≤ C22m(i−n)κ2iae
e ‖u‖2Mm+1

a+1 (T(i+1))
≤ Ch2m‖u‖2Mm+1

a+1 (T(i+1))
.

Hence, we have completed the proof for (29).

Case II. T(i+1)’s parent is a ve-tetrahedron T(i) ∈ Ti. Let T(k) ∈ Tk, 1 ≤ k ≤ i,
be the ve-tetrahedron, such that T(i) ⊂ T(k) and T(k)’s parent tetrahedron T(k−1) ∈
Tk−1 is an e-tetrahedron. Then, using the mapping (27), by (28), for (x, y, z) ∈
T(i+1) and (x̂, ŷ, ẑ) ∈ T̂(i+1), we have

(31)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dxdydz = 21−kκ3i−k−2
e dx̂dŷdẑ;

∂xv = (κ1−i
e ∂x̂ + b1κ

1−i
e ∂ẑ)v̂, ∂yv = (κ1−i

e ∂ŷ + b2κ
1−i
e ∂ẑ)v̂,

∂zv = 2k−1κk−i
e ∂ẑ v̂;

∂x̂v̂ = (κi−1
e ∂x − b12

1−kκi−k
e ∂z)v, ∂ŷ v̂ = (κi−1

e ∂y − b22
1−kκi−k

e ∂z)v,
∂ẑ v̂ = 21−kκi−k

e ∂zv.

Therefore, by Lemma 4.15, (31), the standard interpolation estimate, (19), and
(12), we have

‖∂x(u− uI)‖2L2(T(i+1))
≤C21−kκi−k

e

(
‖∂x̂(û− ûI)‖2L2(T̂(i+1))

+‖∂ẑ(û− ûI)‖2L2(T̂(i+1))

)
≤ C21−kκi−k

e 22m(i−n)|û|2
Hm+1(T̂(i+1))

≤ C22m(i−n)
∑

|α⊥|+α3=m+1

22(1−k)α3κ2(i−k)α3
e κ(2i−2)(|α⊥|−1)

e ‖∂α⊥∂α3
z u‖2L2(T(i+1))

≤ C22m(i−n)
∑

|α⊥|+α3=m+1

22(1−k)α3‖ρ|α⊥|−1
e ∂α⊥∂α3

z u‖2L2(T(i+1))

≤ C22m(i−n)κ2iae
e ‖u‖2Mm+1

a+1 (T(i+1))
≤ Ch2m‖u‖2Mm+1

a+1 (T(i+1))
.

A similar calculation for the derivative with respect to y gives

‖∂y(u− uI)‖L2(T(i+1)) ≤ Chm‖u‖Mm+1
a+1 (T(i+1))

.
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In the z-direction, by Lemma 4.15, (31), the standard interpolation estimate, (19),
and (12), we have

‖∂z(u− uI)‖2L2(T(i+1))
≤ C(21−kκi−k

e )κ2(i−1)
e (2k−1κk−i

e )2‖∂ẑ(û− ûI)‖2L2(T̂(i+1))

≤ C(21−kκi−k
e )κ2(i−1)

e (2k−1κk−i
e )222m(i−n)|û|2

Hm+1(T̂(i+1))

≤ C22m(i−n)
∑

|α⊥|+α3=m+1

(21−kκi−k
e )2(α3−1)κ2|α⊥|(i−1)

e ‖∂α⊥∂α3
z u‖2L2(T(i+1))

≤ C22m(i−n)
∑

|α⊥|+α3=m+1

(21−kκi−k
e )2(α3−1)κ2i−2|α⊥|

e ‖ρ|α⊥|−1
e ∂α⊥∂α3

z u‖2L2(T(i+1))

≤ C22m(i−n)κ2iae
e ‖u‖2Mm+1

a+1 (T(i+1))
≤ Ch2m‖u‖2Mm+1

a+1 (T(i+1))
.

This completes the proof for (29) of Case II.

Hence, the theorem is proved by summing up the estimates for all the tetrahedra
T(i+1) in Le,i. �

Remark 4.17. The main ingredients for the proof of Theorem 4.16 include the scal-
ing argument based on the mappings in Lemma 4.15 and the standard interpolation
estimates. Despite the slight difference in the interpolation error analsyis for differ-
ent directional derivatives, the calculations in the proof show that for the element
T(i+1) away from the edge, we have

|u− uI |H1(T(i+1)) ≤ C2m(i−n)h−1
⊥

∑
|α|=m+1

h
|α⊥|
⊥ hα3

3 ‖∂αu‖L2(T(i+1)),

where h⊥ is the size of the projection of the element in the xy-plane, and h3 is the
size of the element along the edge direction. In the proof, h⊥ and h3 are replaced
by specific expressions in terms of the grading parameters, such that they can be
transferred to the proper weight in the norm.

Then, we extend the interpolation error estimate to the entire initial tetrahedron
T(0) ∈ T0.

Corollary 4.18. Let T(0) ∈ T0 be an e-tetrahedron. For u ∈ Mm+1
a+1 (Ω), where a

is given in (14), let uI be its nodal interpolation on Tn. Then, we have

|u− uI |H1(T(0)) ≤ Chm‖u‖Mm+1
a+1 (T(0))

,

where h = 2−n and C depends on T(0) and m.

Proof. By Theorem 4.16, it suffices to show the estimate for any tetrahedron T(n) ∈
Tn in the last layer Le,n. We derive the desired estimate in the following two cases.

Case I. T(n) is an e-tetrahedron. By Lemma 4.13, the mapping Be,n translates T(n)

to the reference tetrahedron T̂ . Consequently, it maps any point (x, y, z) ∈ T(n) to

(x̂, ŷ, ẑ) ∈ T̂ . For a function v on T(n), we define v̂ on T̂ by

v̂(x̂, ŷ, ẑ) := v(x, y, z).

Now, let χ be a smooth cutoff function on T̂ such that χ = 0 in a neighborhood
of the edge ê := x̂0x̂1 and = 1 at every other Lagrange node of T̂ . Let ρê be the
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distance to ê. Let ûI be the interpolation of û on the reference tetrahedron T̂ .
Since χû = 0 in the neighborhood of ê, (χû)I = ûI and

|χû|2
Hm+1(T̂ )

≤ C
∑

|α⊥|+α3≤m+1

‖ρ|α⊥|−1
ê ∂α⊥∂α3

ẑ û‖2
L2(T̂ )

.(32)

Define ŵ := û− χû. Then, by the usual interpolation error estimate, we have

|û− ûI |H1(T̂ ) = |ŵ + χû− ûI |H1(T̂ ) ≤ |ŵ|H1(T̂ ) + |χû− ûI |H1(T̂ )

= |ŵ|H1(T̂ ) + |χû− (χû)I |H1(T̂ ) ≤ C(‖û‖H1(T̂ ) + |χû|Hm+1(T̂ )),(33)

where C depends on m and, through χ, the nodes on T̂ . Then, using the scaling
argument based on (30), (33), (32), the relation ρê(x̂, ŷ, ẑ) = κ−n

e ρe(x, y, z), and
(12), we have

‖∂x(u− uI)‖2L2(T(n))
≤ C2−n

(
‖∂x̂(û− ûI)‖2L2(T̂ )

+ ‖∂ẑ(û− ûI)‖2L2(T̂ )

)
≤ C2−n

∑
|α⊥|+α3≤m+1

‖ρ|α⊥|−1
ê ∂α⊥∂α3

ẑ û‖2
L2(T̂ )

≤ C
∑

|α⊥|+α3≤m+1

2−2nα3‖ρ|α⊥|−1
e ∂α⊥∂α3

z u‖2L2(T(n))

≤ C
∑

|α⊥|+α3≤m+1

2−2nα3κ2nae
e ‖ρ|α⊥|−1−ae

e ∂α⊥∂α3
z u‖2L2(T(n))

≤ Ch2m‖u‖2Mm+1
a+1 (T(n))

.

A similar calculation for the derivative with respect to y gives

‖∂y(u− uI)‖L2(T(n)) ≤ Chm‖u‖Mm+1
a+1 (T(n))

.

In the z-direction, using (33), (32), (30), and (12), we have

‖∂z(u− uI)‖2L2(T(n))
= 2nκ2n

e ‖∂ẑ(û− ûI)‖2L2(T̂ )

≤ C2nκ2n
e

∑
|α⊥|+α3≤m+1

‖ρ|α⊥|−1
ê ∂α⊥∂α3

ẑ û‖2
L2(T̂ )

≤ C
∑

|α⊥|+α3≤m+1

2−2nα3‖ρ|α⊥|−1
e ∂α⊥∂α3

z u‖2L2(T(n))

≤ Cκ2nae
e ‖u‖2Mm+1

a+1 (T(n))
≤ Ch2m‖u‖2Mm+1

a+1 (T(n))
.

Thus, we have proved the estimate for Case I.

Case II. T(n) is a ve-tetrahedron. Let T(k) ∈ Tk, 1 ≤ k ≤ n, be the ve-tetrahedron,
such that T(n)⊂T(k) and T(k)’s parent tetrahedron T(k−1)∈Tk−1 is an e-tetrahedron.

By Lemma 4.14, the mapping Bn,k translates T(n) to a ve-tetrahedron in T̂(n) ∈ T̂1.
Thus, Bn,k maps every point (x, y, z) ∈ T(n) to (x̂, ŷ, ẑ) ∈ T̂(n). As in Case I, for a

function v on T(n), we define v̂ on T̂(n) by

v̂(x̂, ŷ, ẑ) := v(x, y, z).

Now let χ be a smooth cutoff function on T̂(n) such that χ = 0 in a neighborhood

of the singular vertex on ê := x̂0x̂1 of T̂ and = 1 at every other Lagrange node of
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T̂(n). Recall the distance ρê to ê. Since χû = 0 in the neighborhood of the singular

vertex, we have (χû)I = ûI on T̂(n) and

|χû|2
Hm+1(T̂(n))

≤ C
∑

|α⊥|+α3≤m+1

‖ρ|α⊥|−1
ê ∂α⊥∂α3

ẑ û‖2
L2(T̂(n))

.(34)

Define ŵ := û− χû. Then, by the usual interpolation error estimate, we have

(35)

|û− ûI |H1(T̂(n))
= |ŵ + χû− ûI |H1(T̂(n))

≤ |ŵ|H1(T̂(n))
+ |χû− ûI |H1(T̂(n))

= |ŵ|H1(T̂(n))
+ |χû− (χû)I |H1(T̂(n))

≤ C(‖û‖H1(T̂(n))
+ |χû|Hm+1(T̂(n))

),

where C depends on m and, through χ, the nodes in the T̂(n). In Le,n, ρe(x, y, z) =

κn−1
e ρê(x̂, ŷ, ẑ). Therefore, by (31), (35), (34), and (12), we have

‖∂x(u− uI)‖2L2(T(n))
≤ C21−kκn−k

e

(
‖∂x̂(û− ûI)‖2L2(T̂(n))

+ ‖∂ẑ(û− ûI)‖2L2(T̂(n))

)
≤ C21−kκn−k

e

∑
|α⊥|+α3≤m+1

‖ρ|α⊥|−1
ê ∂α⊥∂α3

ẑ û‖2
L2(T̂(n))

≤ C
∑

|α⊥|+α3≤m+1

22(1−k)α3κ2(n−k)α3
e ‖ρ|α⊥|−1

e ∂α⊥∂α3
z u‖2L2(T(n))

≤ Cκ2nae
e ‖u‖2Mm+1

a+1 (T(n))
≤ Ch2m‖u‖2Mm+1

a+1 (T(n))
.

A similar calculation for the derivative with respect to y gives

‖∂y(u− uI)‖L2(T(n)) ≤ Chm‖u‖Mm+1
a+1 (T(n))

.

In the z-direction, by (31), (35), (34), and (12), we have

‖∂z(u− uI)‖2L2(T(n))
= (21−kκn−k

e )κ2(n−1)
e (2k−1κk−n

e )2‖∂ẑ(û− ûI)‖2L2(T̂(n))

≤ C(21−kκn−k
e )κ2(n−1)

e (2k−1κk−n
e )2

∑
|α⊥|+α3≤m+1

‖ρ|α⊥|−1
ê ∂α⊥∂α3

ẑ û‖2
L2(T̂(n))

≤ C
∑

|α⊥|+α3≤m+1

(21−kκn−k
e )2α3(2k−1κk

e)
2‖ρ|α⊥|−1

e ∂α⊥∂α3
z u‖2L2(T (n))

≤ Cκ2nae
e ‖u‖2Mm+1

a+1 (T(n))
≤ Ch2m‖u‖2Mm+1

a+1 (T(n))
.

Thus, we have proved the estimate for Case II.

Hence, the corollary is proved by summing up the estimates in Theorem 4.16
and the estimates for all the tetrahedra T(n) in Le,n. �

4.3. Estimates on initial ev-tetrahedra in T0. In this subsection, we denote by
T(0) = �4x0x1x2x3 ∈ T0 an ev-tetrahedron, such that x0 = v ∈ V and x0x1 is on
the edge e ∈ E . Then, we first define mesh layers associated with Tn on T(0).

Definition 4.19 (Mesh layers in ev-tetrahedra). For 1 ≤ i ≤ n, the ith refinement
on T(0) produces a small tetrahedron with x0 as a vertex. We denote by Pev,i the
face of this small tetrahedron whose closure does not contain x0 (see the last two
pictures in Figure 1). Then, for the mesh Tn on T(0), we define the ith mesh layer
Lev,i, 1 ≤ i < n, as the region in T(0) between Pev,i and Pev,i+1. We denote by

Lev,0 the region in T(0) between �3x1x2x3 and Pev,1 and let Lev,n ⊂ T(0) be the
small tetrahedron with x0 as a vertex that is generated in the nth refinement.
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For each ev-tetrahedron, one extra refinement results in one ev-tetrahedron, one
e-tetrahedron, two ve-tetrahedra, and four o-tetrahedra. Let T = �4γ0γ1γ2γ3 ⊂
T(0) be an ev-tetrahedron generated by some subsequent refinements of T(0), with
γ0 = x0 and γ0γ1 on the edge e ∈ E . We define the relative distances cγ,1 and cγ,2
for T using the same notation as in Definition 4.8 (see also Remark 4.10). In the
next lemma, we show the analogue of Lemma 4.11 for ev-tetrahedra. Namely, the
relative distances are bounded for ev-tetrahedra with respect to the refinement.

Lemma 4.20. Let T = �4γ0γ1γ2γ3 ⊂ T(0) be an ev-tetrahedron in Ti, 1 ≤ i < n,
with γ0 = x0 and γ0γ1 on the edge e ∈ E . Let TR ⊂ T be the ev-tetrahedron in
Ti+1. Denote by cT and cR the absolute distances (22) for T and TR, respectively.
Then, cR ≤ max(cT , 1).

Proof. Recall the grading parameters κv, κe, and κev for T(0) with κv, κe ≥ κev.

We use Figure 3 to demonstrate the proof. Then, TR = �4γ0γ4γ5γ6. Consider
the triangles on the face �3γ0γ1γ2 of T , induced by the sub-tetrahedra after one
refinement on T , where γ′

5 and γ′
2 are the orthogonal projections of γ5 and γ2 on

the singular edge. However, note that instead of the mid-point of γ0γ1 for the
e-tetrahedron, the location of γ4 here is given by |γ0γ4| = κv|γ0γ1| for the ev-
tetrahedron. Let cγ2,1, cγ2,2 (resp. cRγ5,1, c

R
γ5,2) be the relative distances of γ2 in T

(resp. γ5 in TR).
Based on Algorithm 3.2, |γ0γ′

5| = κev|γ0γ′
2|. By (20), cRγ5,1 and cγ2,1 have the

same sign. Then, we first show |cRγ5,1|, |cRγ5,2| ≤ max(|cγ2,1|, |cγ2,2|, 1) by considering
the following cases, in which the calculations are based on the definitions in (20)
and (21).

If cγ2,1 < 0, we have

0 > cRγ5,1 = −|γ0γ′
5|/|γ0γ4| = −κ−1

v κe,v|γ0γ′
2|/|γ0γ1| = κ−1

v κevcγ2,1 ≥ cγ2,1.

Therefore, |cRγ5,1
| ≤ |cγ2,1|. Meanwhile, we have

1 ≤ cRγ5,2 = 1− cRγ5,1 = 1− κ−1
v κevcγ2,1 < 1− cγ2,1 = cγ2,2.

Therefore, |cRγ5,2| ≤ |cγ2,2|.
If 0 ≤ cγ2,1 < κvκ

−1
ev , we have cRγ5,1 ≥ 0 and

cRγ5,1 = |γ0γ′
5|/|γ0γ4| = κ−1

v κev|γ0γ′
2|/|γ0γ4| = κ−1

v κevcγ2,1 < 1.

Meanwhile, we have
0 ≤ cRγ5,2 = 1− cRγ5,1 ≤ 1.

If cγ2,1 ≥ κvκ
−1
ev , we have

1 ≤ cRγ5,1 = |γ0γ′
5|/|γ0γ4| = κ−1

v κev|γ0γ′
2|/|γ0γ4| = κ−1

v κevcγ2,1 ≤ |cγ2,1|.
Meanwhile, we have

0 ≥ cRγ5,2 = 1− cRγ5,1 = 1− κ−1
v κevcγ2,1 ≥ 1− cγ2,1 = cγ2,2.

Therefore, |cRγ5,2
| ≤ |cγ2,2|.

Hence, |cRγ5,1
|, |cRγ5,2

| ≤ max(|cγ2,1|, |cγ5,2|, 1). Using a similar calculation, we can
also obtain the same estimate for relative distances of γ3 and γ6. Then, the proof
is completed by combining these estimates and by the definition of the absolute
distance (22). �

Now, we define the reference element for the ev-tetrahedron.
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Definition 4.21 (The reference ev-tetrahedron). We shall use the tetrahedron

T̂ = �4x̂0x̂1x̂2x̂3 in Definition 4.12 as our reference element in this subsection.
For T(0), recall the grading parameters κv and κe associated with x0 and x0x1,

respectively. For the reference ev-tetrahedron T̂ , one graded refinement using the
same parameters κv, κe, and κev for x̂0 and x̂0x̂1 gives rise to a triangulation on T̂ ,
which we denote by T̂1. Define the union of the seven tetrahedra in T̂1 away from
x̂0 to be the mesh layer L̂ on T̂ . We denote by L̂ the initial triangulation of L̂ that
contains these seven tetrahedra.

Then, we construct a mapping from an ev-tetrahedron T ⊂ T(0) in Ti to T̂ .

Lemma 4.22. For an ev-tetrahedron T := �4γ0γ1γ2γ3 ⊂ T(0) in Ti, 0 ≤ i ≤ n,
suppose γ0 = v ∈ V and γ0γ1 ⊂ e ∈ E . Use a local Cartesian coordinate system,
such that (γ0 + γ1)/2 is the origin, γ1 is in the positive z-axis, and γ2 is in the
xz-plane. Then, there is a mapping

Bev,i =

⎛
⎝ κ−i

ev 0 0
0 κ−i

ev 0
b1κ

−i
ev b2κ

−i
ev κ−i

v

⎞
⎠(36)

with |b1|, |b2| ≤ C0, for C0 ≥ 0 depending on T(0), such that Bev,i : T → T̂ is a
bijection.

Proof. Recall λ̂k and ξ̂k, k = 2, 3, in Definition 4.12. Based on Algorithm 3.2, we

have γ2 = (κi
evλ̂2, 0, ζ2), γ3 = (κi

evλ̂3, κ
i
ev ξ̂3, ζ3), and |γ0γ1| = κi

vl0=κi
v|x0x1|, where

ζ2 and ζ3 are the z-coordinates of the vertices γ2 and γ3, respectively. Then, the
transformation

A1 :=

⎛
⎝κ−i

ev 0 0
0 κ−i

ev 0
0 0 κ−i

v

⎞
⎠

maps T to a tetrahedron, with vertices A1γ0 = (0, 0,−l0/2), A1γ1 = (0, 0, l0/2),

A1γ2 = (λ̂2, 0, κ
−i
v ζ2), and A1γ3 = (λ̂3, ξ̂3, κ

−i
v ζ3). Now, let

b1 = −(κ−i
v ζ2 + l0/2)/λ̂2, b2 = [κ−i

v (ζ2λ̂3 − λ̂2ζ3) + l0(λ̂3 − λ̂2)/2]/λ̂2ξ̂3.

Define

A2 :=

⎛
⎝ 1 0 0

0 1 0
b1 b2 1

⎞
⎠ .

By Lemma 4.20, the absolute distance for T is bounded by a constant determined
by T(0). Therefore, we have |ζ2|, |ζ3| ≤ C|γ0γ1| = Cκi

vl0, where C depends on

the shape regularity of T(0). In addition, since λ̂2, λ̂3, ξ̂3 all depend on the shape

regularity of T (0) and λ̂2, ξ̂3 �= 0, the transformation

Bev,i := A2A1 =

⎛
⎝ κ−i

ev 0 0
0 κ−i

ev 0
b1κ

−i
ev b2κ

−i
ev κ−i

v

⎞
⎠

maps T to T̂ with |b1|, |b2| ≤ C0, where C0 ≥ 0 depends on T(0) but not on i. This
completes the proof. �
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Using the mapping in Lemma 4.22, we present the interpolation error estimate
in the mesh layer Lev,i.

Theorem 4.23. Let T(0) = �4x0x1x2x3 ∈ T0 be an ev-tetrahedron defined above.
Let Lev,i be the mesh layer in Definition 4.19, 0 ≤ i < n. Recall the parameters av,
ae, and aev associated to κv, κe, and κev in (11)–(13). Define

aV := (m+ 1)(1− a−1
v aev) + aev.(37)

Suppose ∑
|α⊥|+α3≤m+1

‖ρα3−aV +ae
v ρ|α⊥|−1−ae

e ∂α⊥∂α3
z u‖2L2(T(0))

< ∞.

Let uI be the nodal interpolation on Tn. Then, we have

|u− uI |2H1(Lev,i)
≤ Ch2m

∑
|α⊥|+α3≤m+1

‖ρα3−aV +ae
v ρ|α⊥|−1−ae

e ∂α⊥∂α3
z u‖2L2(Lev,i)

,

where h = 2−n and C depends on T(0) and m.

Proof. Let T(i) ⊂ T(0) be the ev-tetrahedron in Ti. Then by Definition 4.19, we

have Lev,i = T(i) \ T(i+1). Then, the mapping Bev,i in (36) translates Lev,i to L̂

(see Definition 4.21). For a point (x, y, z) ∈ Lev,i, let (x̂, ŷ, ẑ) ∈ L̂ be its image

under Bev,i. For a function v on Lev,i, define the function v̂ on L̂ by

v̂(x̂, ŷ, ẑ) := v(x, y, z).

Let ρê be the distance to x̂0x̂1 on the reference tetrahedron T̂ . Then, it is clear that
ρe(x, y, z) = κi

evρê(x̂, ŷ, ẑ) on Lev,i. Meanwhile, Bev,i maps the triangulation Tn on

Lev,i to a graded triangulation on L̂ that is obtained after i+ 1− n refinements of

the initial mesh L̂. Note that the subsequent refinements on L̂ are anisotropic with
the parameter κe toward x̂0x̂1, since L̂ does not contain ev- or v-tetrahedra.

Then, by the mapping (36), the scaling argument, Corollary 4.18, (19), and (12),
we have

‖∂x(u− uI)‖2L2(Lev,i)
≤ Cκi

v

(
‖∂x̂(û− ûI)‖2L2(L̂)

+ ‖∂ẑ(û− ûI)‖2L2(L̂)

)
≤ Cκi

v2
2m(i−n)

∑
|α⊥|+α3≤m+1

‖ρ|α⊥|−1−ae

ê ∂α⊥∂α3

ẑ û‖2
L2(L̂)

≤ C22m(i−n)
∑

|α⊥|+α3≤m+1

κ2iα3
v κ2iae

ev ‖ρ|α⊥|−1−ae
e ∂α⊥∂α3

z u‖2L2(Lev,i)

≤ C2−2mn
∑

|α⊥|+α3≤m+1

22imκ2iα3
v κ2iae

ev ‖ρ|α⊥|−1−ae
e ∂α⊥∂α3

z u‖2L2(Lev,i)
.(38)

Note that κi
ev � ρv � κi

v on Lev,i, av, ae ≥ aev (see (13)) and aV ≥ av. Then, we
consider all the possible cases below.
(I) (α3 ≤ av.) Then, we have

κi(α3−av)
v � ρα3−av

v .

Then, by (11), we have

2imκiα3
v κiae

ev � ρα3−av
v κiae

ev � ρα3−av+ae
v .(39)
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(II) ((1 − a−1
v aev)(m + 1) < α3 ≤ m + 1.) Note that 0 < av ≤ m. Therefore, by

(13), we have

κiα3
v = 2−imα3/av ≤ 2−imα3/aev+imaV /aev−im = κi(α3−aV +aev)

ev .

Note that α3 − aV + aev > 0, therefore,

2imκiα3
v κiae

ev ≤ 2imκi(α3−aV +aev)
ev κiae

ev � ρα3−aV +ae
v .(40)

(III) (av < α3 ≤ (1−a−1
v aev)(m+1).) If aev = av, we have (1−a−1

v aev)(m+1) = 0,
and therefore such α3 does not exist. Thus, we only need to consider the case
aev < av. Note that α3 − aV + aev ≤ 0 and aev ≤ ae. Therefore, by (13), we have

2imκiα3
v κiae

ev = κiα3
v κi(ae−aev)

ev � ρα3−aV +aev
v ρ(ae−aev)

v = ρα3−aV +ae
v .(41)

Therefore, choosing aV as in (37), by (38) – (41), we have shown that

‖∂x(u− uI)‖2L2(Lev,i)
(42)

≤ C2−2mn
∑

|α⊥|+α3≤m+1

‖ρα3−aV +ae
v ρ|α⊥|−1−ae

e ∂α⊥∂α3
z u‖2L2(Lev,i)

.

In the y-direction, with a similar process, we obtain

‖∂y(u− uI)‖2L2(Lev,i)
(43)

≤ C2−2mn
∑

|α⊥|+α3≤m+1

‖ρα3−aV +ae
v ρ|α⊥|−1−ae

e ∂α⊥∂α3
z u‖2L2(Lev,i)

.

In the z-direction, by the mapping (36), the scaling argument, and Corollary
4.18, we have

‖∂z(u − uI)‖2
L2(Lev,i)

= κ
−i
v κ

2i
ev‖∂ẑ(û − ûI)‖2

L2(L̂)

≤ C22m(i−n)κ−i
v κ2i

ev

∑

|α⊥|+α3≤m+1

‖ρ|α⊥|−1−ae
ê ∂α⊥∂

α3
ẑ û‖2

L2(L̂)

≤ C2−2mn
∑

|α⊥|+α3≤m+1

22imκ2i(α3−1)
v κ2i(1+ae)

ev ‖ρ|α⊥|−1−ae
e ∂α⊥∂α3

z u‖2
L2(Lev,i)

≤ C2
−2mn

∑

|α⊥|+α3≤m+1

2
2im

κ
2iα3
v κ

2iae
ev ‖ρ|α⊥|−1−ae

e ∂
α⊥∂

α3
z u‖2

L2(Lev,i)

≤ C2−2mn
∑

|α⊥|+α3≤m+1

‖ρα3−aV +ae
v ρ|α⊥|−1−a

e ∂α⊥∂α3
z u‖2

L2(Lev,i)
,(44)

where the last inequality follows from the analysis in (39)–(41).
Hence, the proof is completed by the estimates in (42)–(44). �

Then, we are ready to obtain the interpolation error estimate on the entire ev-
tetrahedron T(0).

Corollary 4.24. Let T(0) ∈ T0 be an ev-tetrahedron as in Theorem 4.23. Recall
aV from (37). Suppose∑

|α⊥|+α3≤m+1

‖ρα3−aV +ae
v ρ|α⊥|−1−ae

e ∂α⊥∂α3
z u‖2L2(T(0))

< ∞.

Let uI be the nodal interpolation on Tn. Then, we have

|u− uI |2H1(T(0))
≤ Ch2m

∑
|α⊥|+α3≤m+1

‖ρα3−aV +ae
v ρ|α⊥|−1−ae

e ∂α⊥∂α3
z u‖2L2(T(0))

,

where h = 2−n and C depends on T(0) and m.
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Proof. By Theorem 4.23, it suffices to show

|u− uI |2H1(Lev,n)
≤ C2−2mn

∑
|α⊥|+α3≤m+1

‖ρα3−aV +ae
v ρ|α⊥|−1−ae

e ∂α⊥∂α3
z u‖2L2(Lev,n)

.

By Lemma 4.22, Bev,n(Lev,n) = T̂ . For (x, y, z) ∈ Lev,n, let (x̂, ŷ, ẑ) ∈ T̂ be its

image under Bev,n. For a function v on Lev,n, we define v̂ on T̂ by

v̂(x̂, ŷ, ẑ) := v(x, y, z).

Now, let χ be a smooth cutoff function on T̂ such that χ = 0 in a neighborhood of
the edge ê := x̂0x̂1 and = 1 at every other node of T̂ . Let ρv̂ be the distance from
(x̂, ŷ, ẑ) to x̂0. Then, by (36),

κn
evρv̂(x̂, ŷ, ẑ) � ρv(x, y, z) � κn

vρv̂(x̂, ŷ, ẑ),(45)

and κn
evρê(x̂, ŷ, ẑ) = ρe(x, y, z). Let ûI be the interpolation of û on the reference

tetrahedron T̂ . Since χû = 0 in the neighborhood of ê, (χû)I = ûI and

(46) |χû|Hm+1(T̂ ) ≤ C
∑

|α⊥|+α3≤m+1

‖ρ|α⊥|−1−ae

ê ρα3−aV +ae

v̂ ∂α⊥∂α3

ẑ û‖2
L2(T̂ )

.

Note that by (37), aV ≥ aev. Define ŵ := û−χû. Then, by the usual interpolation
error estimate, ρê � ρv̂, and (46), we have

|û− ûI |H1(T̂ ) = |ŵ + χû− ûI |H1(T̂ ) ≤ |ŵ|H1(T̂ ) + |χû− ûI |H1(T̂ )

= |ŵ|H1(T̂ ) + |χû− (χû)I |H1(T̂ ) ≤ C(‖û‖H1(T̂ ) + |χû|Hm+1(T̂ )),

≤ C
∑

|α⊥|+α3≤m+1

‖ρ|α⊥|−1−ae

ê ρα3−aV +ae

v̂ ∂α⊥∂α3

ẑ û‖2
L2(T̂ )

,(47)

where C depends on m and, through χ, the nodes on T̂ . Then, using (47), the
scaling argument based on (36), and the relation ρê(x̂, ŷ, ẑ) = κ−n

ev ρe(x, y, z), we
have

‖∂x(u − uI)‖2
L2(Lev,n)

≤ Cκn
v

(
‖∂x̂(û − ûI)‖2

L2(T̂ )
+ ‖∂ẑ(û − ûI)‖2

L2(T̂ )

)

≤ Cκ
n
v

∑

|α⊥|+α3≤m+1

‖ρα3−aV +ae
v̂ ρ

|α⊥|−1−ae
ê ∂

α⊥∂
α3
ẑ û‖2

L2(T̂ )

≤ C
∑

|α⊥|+α3≤m+1

κ
2nα3
v κ

2nae
ev ‖ρα3−aV +ae

v̂ ρ
|α⊥|−1−ae
e ∂

α⊥∂
α3
z u‖2

L2(Lev,n)

≤ C2−2mn
∑

|α⊥|+α3≤m+1

22nmκ2nα3
v κ2nae

ev ‖ρα3−aV +ae
v̂ ρ|α⊥|−1−ae

e ∂α⊥∂α3
z u‖2

L2(Lev,n)
.(48)

Then, we consider the following cases.
(I) (α3 ≤ av). By (11), (45), aV ≥ av, and α3 − av ≤ 0, we have

2nmκnα3
v κnae

ev ρα3−aV +ae

v̂ = κn(α3−av)
v ρα3−av

v̂ κnae
ev ρae

v̂ ρav−aV

v̂

� ρα3−av+ae
v ρav−aV

v̂ � ρα3−aV +ae
v .(49)

(II) ((1− a−1
v aev)(m+ 1) < α3 ≤ m + 1). Following the calculation in (40), by

(13) and (45), we have

2nmκnα3
v κnae

ev ρα3−aV +ae

v̂ ≤ 2nmκn(α3−aV +aev)
ev κnae

ev ρα3−aV +ae

v̂

= κn(α3−aV )
ev κnae

ev ρα3−aV +ae

v̂ � ρα3−aV +ae
v .(50)

(III) (av < α3 ≤ (1−a−1
v aev)(m+1).) If aev = av, we have (1−a−1

v aev)(m+1) =
0, and therefore such α3 does not exist. Thus, we only need to consider the case
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aev < av. Note that α3 − aV + aev ≤ 0 and aev ≤ ae. Therefore, by (13) and (45),
we have

2nmκnα3
v κnae

ev ρα3−aV +ae

v̂ = κnα3
v κn(ae−aev)

ev ρα3−aV +ae

v̂

≤ κn(α3−aV +aev)
v ρα3−aV +aev

v̂ κn(ae−aev)
ev ρae−aev

v̂ � ρα3−aV +ae
v .(51)

Therefore, by (48)–(51), we conclude

‖∂x(u− uI)‖2L2(Lev,n)

≤ Ch2m
∑

|α⊥|+α3≤m+1

‖ρα3−aV +ae
v ρ|α⊥|−1−ae

e ∂α⊥∂α3
z u‖2L2(Lev,n)

.(52)

A similar error estimate in the y-direction leads to

‖∂y(u− uI)‖2L2(Lev,n)

≤ Ch2m
∑

|α⊥|+α3≤m+1

‖ρα3−aV +ae
v ρ|α⊥|−1−ae

e ∂α⊥∂α3
z u‖2L2(Lev,n)

.(53)

In the z-direction, using (47), κv ≥ κev, the scaling argument based on (36),
(12), and (49)–(51), we have

‖∂z(u − uI)‖2
L2(Lev,n)

= κ
−n
v κ

2n
ev ‖∂ẑ(û − ûI)‖2

L2(T̂ )

≤ Cκ−n
v κ2n

ev

∑

|α⊥|+α3≤m+1

‖ρα3−aV +ae
v̂ ρ

|α⊥|−1−ae
ê ∂α⊥∂

α3
ẑ û‖2

L2(T̂ )

≤ C
∑

|α⊥|+α3≤m+1

κ2n(α3−1)
v κ2n(1+ae)

ev ‖ρα3−aV +ae
v̂ ρ|α⊥|−1−ae

e ∂α⊥∂α3
z u‖2

L2(Lev,n)

≤ C2
−2mn

∑

|α⊥|+α3≤m+1

2
2nm

κ
2nα3
v κ

2nae
ev ‖ρα3−aV +ae

v̂ ρ
|α⊥|−1−ae
e ∂

α⊥∂
α3
z u‖2

L2(Lev,n)

≤ Ch
2m

∑

|α⊥|+α3≤m+1

‖ρα3−aV +ae
v ρ

|α⊥|−1−ae
e ∂

α⊥∂
α3
z u‖2

L2(Lev,n)
.(54)

Then, the proof is completed by (52)–(54). �

Then, we formulate our interpolation error analysis for the anisotropic mesh on
Ω.

Theorem 4.25. Recall a in (14). Let aVT
be the parameter (37) associated to the

initial ev-tetrahedron T ∈ T0. For each vertex v� ∈ V, let U� be the union of the
initial ev-tetrahedra that have v� as the singular vertex. Define σ = (σ1, . . . , σNs

),
such that

σ� =

{
maxT∈U�

(aVT
), 1 ≤ � ≤ Nv;

a�, Nv < � ≤ Ns.

Let Tn be the triangulation defined in Algorithm 3.2. For u ∈ Mm+1
σ+1 (Ω), let uI be

its nodal interpolation on Tn. Then, we have

|u− uI |H1(Ω) ≤ Chm‖u‖Mm+1
σ+1 (Ω),

where h = 2−n. In turn, for the finite element solution un defined in (8), we have

|u− un|H1(Ω) ≤ C dim(Sn)
−m/3‖u‖Mm+1

σ+1 (Ω),(55)

where dim(Sn) is the dimension of the finite element space associated with Tn. In
both estimates, the constant C depends on T0 and m, but not on n.
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Proof. Note that σ ≥ a > 0. Then, the first inequality is the consequence of the
definition of the weighted space Mm

μ and the local interpolation error estimates on
different initial tetrahedra: the o-tetrahedra (Lemma 4.1), the v- or ve-tetrahedra
(Corollary 4.5), the e-tetrahedra (Corollary 4.18), and the ev-tetrahedra (Corollary
4.24).

Note that for each refinement, each tetrahedron is decomposed into 8 child
tetrahedra. Therefore, the dimension of the finite element space dim(Sn) ∼ 23n.
Thus, the second inequality follows from the best approximation property (9) and
h ∼ dim(Sn)

−1/3. �

Remark 4.26. Given a sufficiently smooth function f in equation (1), the regularity
of the solution u (the parameters of the weighted space in the regularity estimates)
depends on the geometry of the domain. See (7) for example. Therefore, for a
singular solution in the weighted space u ∈ Mm+1

σ+1 (Ω), where σ� > 0 for 1 ≤ � ≤ Ns,
it is sufficient to choose the parameter a that satisfies the condition in Theorem
4.25, in order to recover the optimal convergence rate of the finite element solution.

In particular, for a vertex v and an edge e, let �v and �e be the sub-indices in σ�

corresponding to v and e, respectively. Then, to achieve the optimal convergence
rate, for the edge e, we can choose the grading parameter

(56) κe = 2−m/ae , for 0 < ae ≤ min(m,σ�e);

for the vertex v, we can choose

κv = 2−m/av for 0 < av ≤ m and(57)

aV = (m+ 1)(1− a−1
v aev) + aev ≤ σ�v ,

where aev is the minimum value of the parameters associated with v and with all
the edges touching v (see the definition in (13)).

In addition, using (37), we obtain

av(aV − av) = (m+ 1− av)(av − aev).

Since 0 < aev ≤ av ≤ m, it can be seen that for ev-tetrahedra, av ≤ aV . Therefore,
by (57), for a given regularity index σ�v in the weighted space, the optimal value
of av is usually smaller than that of σ�v . Intuitively, the additional regularity
represented by the difference in the regularity index σ�v−av is needed to compensate
for the lack of the maximum angle condition in the mesh when av > aev. In the
special case when av = aev, we have aV = av and the new ev-tetrahedra generated
in each refinement will satisfy the maximum angle condition. Nevertheless, the
conditions in (56) and (57) give rise to an optimal range of the grading parameter,
for which the proposed finite element solution converges in the optimal rate (55)
when u ∈ Mm+1

σ+1 (Ω).

5. Numerical results

In this section, using the proposed anisotropic finite element algorithm, we solve
the boundary value problem (1) on two model polyhedral domains (the prism and
the Fichera corner). These domains represent typical three dimensional vertex-edge
solution singularities. It will be evident that the numerical results are aligned with
our approximation results presented in Section 4, and thus validate our method.
In both numerical tests, we use linear finite elements and let f = 1. This is for
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Figure 5. The prism domain: the initial triangulation (left) and
the mesh after two graded refinements toward the singular edge e
(κe = 0.2).

the purpose of simplifying the demonstration of the method. High-order elements
solving more complicated equations will be reported in a forthcoming paper.

5.1. Test I. [The prism domain] Let T be the triangle with vertices (0, 0), (1, 0),
and (0.5, 0.5), and let the domain be the prism Ω :=

(
(0, 1)2 \ T

)
× (0, 1) (Figure

5). Then, we solve equation (1) in the variational form (8). Based on the regularity
estimates in (6) and (7) the solution is in H2 in the sub-region of Ω that is away
from the edge e where the opening angle is 3π/2. Therefore, a quasi-uniform mesh
in such a region will yield a first-order (optimal) convergence for the interpolation
error. In the neighborhood of the edge e, by (6) and Table 1 in [19], we have

u ∈ M2
σ+1 for σe < ηe = 2/3 and σv < ηv = 13/6,

where σv is the index regarding the regularity of the solution near either of the
vertices (endpoints of e) v (see (5)). Then, by (56) and (57), a sufficient condition
to attain the optimal convergence rate for the finite element solution is that the
mesh parameters satisfy ae < 2/3 and aV < 13/6.

Recall that for linear elements, m = 1. Then, using (37), 0 < aev ≤ av, 0 <
aev ≤ ae, and the fact av, ae ∈ (0, 1], we have

aV = 2− a−1
v (2− av)aev ≤ 2− aev < 2 < 13/6.

Therefore, the optimal condition (aV < 13/6) for the vertex v is always satisfied for
all the feasible values of av and ae, which implies that the vertex v shall not affect
the convergence rate on the anisotropic meshes. Hence, to improve the convergence
rate, we only need to implement special edge refinement based on the value of ae.
Thus, in the numerical tests, we choose the parameters for the edge e and for either
of the vertices v, such that

0 < ae ≤ 1 and av = 1.

Then, based on Theorem 4.25 and (56), in order to recover the optimal convergence
rate for the finite element solution, it suffices to choose 0 < ae < 2/3, namely,
0 < κe = 2−1/ae < 0.353. Recall that for κev = κe < 0.5 and κv = 2−1/av = 0.5,
the resulting mesh is graded toward the edge e without special refinement for the
vertex v. See Figure 5 for such graded meshes when κe = 0.2.

In Table 1, we display the convergence rates of the finite element solution on
proposed anisotropic meshes associated with different values of the grading param-
eter κe. Here, j is the level of refinements. Denote by uj the linear finite element
solution on the mesh after j refinements. Since the exact solution is not known,
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Figure 6. The Fichera corner (left to right): the initial mesh,
mesh after two refinements, mesh after three refinements (κe =
κv = 0.3).

the convergence rate is computed using the numerical solutions for successive mesh
refinements

convergence rate = log2(
|uj − uj−1|H1(Ω)

|uj+1 − uj |H1(Ω)
).(58)

As j increases, the dimension of the discrete system is O(23j). Therefore, the as-
ymptotic convergence rate in (58) is a reasonable indicator of the actual convergence
rate for the numerical solution.

It is clear from the table that the first-order convergence rate is obtained for
κe = 0.1, 0.2, 0.3 < 0.353, while we lose the optimal convergence rate if κe = 0.4, 0.5,
both larger than the critical value 0.353. When κe = 0.4, that is 0.353 < κe < 0.5,
this choice still leads to an anisotropic mesh graded toward the singular edge,
but the grading is insufficient to resolve the edge singularity in the solution, and
hence does not lead to the optimal rate of convergence. These results are in strong
agreement with the theoretical estimates in Section 4. We also point out that on
quasi-uniform meshes (κe = 0.5), the theoretical convergence rate is about h0.66.
We see in Table 1 that the numerical rate (58) for κe = 0.5 is decreasing and shall
approach the theoretical rate 0.66 as j increases.

5.2. Test II. [The Fichera corner] Let D0 be the cube (−1, 1)3 and D1 = [0, 1)3.
Let the domain Ω := D0 \ D1. Thus, the domain Ω is featured with the Fichera
corner at the vertex v and three adjacent edges e with the opening angle 3π/2
(Figure 6). For a sub-region away from these three edges, the solution of equation
(1) belongs to H2, and therefore, a quasi-uniform mesh will lead to the optimal
convergence rate for the interpolation error. In the neighborhood of the three

Table 1. Convergence rates for the prism domain.

j κe = 0.1 κe = 0.2 κe = 0.3 κe = 0.4 κe = 0.5
2 0.40 0.46 0.52 0.58 0.60
3 0.75 0.79 0.82 0.84 0.83
4 0.91 0.93 0.94 0.93 0.90
5 0.97 0.98 0.98 0.96 0.91
6 0.99 0.99 0.99 0.97 0.89
7 1.00 1.00 1.00 0.97 0.86
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edges, including the Fichera corner, by (6), (7), and Table 1 in [19], the solution
satisfies

u ∈ M2
σ+1, for σe < ηe = 2/3 and σv < ηv ≈ 0.954.

For the endpoints of the three marked edges, which are not at the Fichera corner,
the upper bound of the regularity index is 13/6. For the same reason as in Test
I, these vertices shall not affect the convergence rate for feasible mesh parameters.
Then, by Theorem 4.25, the sufficient condition to attain the optimal convergence
rate for the finite element solution is that the mesh parameters give rise to ae < 2/3
for the three marked edges and aV < 0.954 for the vertex v. There are many possible
values of ae and av that fulfill this requirement. To illustrate our method, in Table
2, we list the convergence rates of the finite element solutions on anisotropic meshes
with κe = κv = 0.3 (accordingly, ae = av ≈ 0.576) and on quasi-uniform meshes,
namely κe = κv = 0.5 (accordingly, ae = av = 1). The rates are computed using
numerical solutions as in (58). The finest mesh (j = 8) in the numerical tests
consists of about 5.9× 108 tetrahedra, which results in a system of over 108 linear
equations.

In the case κe = κv = 0.3, by (37), we have ae ≈ 0.576 < 2/3 and aV = av ≈
0.576 < 0.954. Therefore, by Theorem 4.25, (56), and (57), we expect to obtain
the first-order optimal convergence rate in the finite element approximation. As for
the quasi-uniform mesh (κe = κv = 0.5), since the solution is not globally in H2,
by (10), we expect a sub-optimal convergence rate. It is clear that the numerical
results in Table 2 validate this theoretical prediction and hence verify the theory.

Table 2. Convergence rates for the Fichera corner.

j κv = 0.3 κe = 0.3 κv = 0.5 κe = 0.5
2 0.64 0.68
3 0.84 0.82
4 0.94 0.86
5 0.97 0.86
6 0.99 0.83
7 0.99 0.80
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