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UNIFORM ERROR BOUNDS OF A FINITE DIFFERENCE

METHOD FOR THE KLEIN-GORDON-ZAKHAROV SYSTEM

IN THE SUBSONIC LIMIT REGIME

WEIZHU BAO AND CHUNMEI SU

Abstract. We establish uniform error bounds of a finite difference method
for the Klein-Gordon-Zakharov (KGZ) system with a dimensionless parameter
ε ∈ (0, 1], which is inversely proportional to the acoustic speed. In the sub-
sonic limit regime, i.e., 0 < ε � 1, the solution propagates highly oscillatory
waves in time and/or rapid outgoing initial layers in space due to the singular
perturbation in the Zakharov equation and/or the incompatibility of the ini-
tial data. Specifically, the solution propagates waves with O(ε)-wavelength in
time and O(1)-wavelength in space as well as outgoing initial layers in space at
speed O(1/ε). This high oscillation in time and rapid outgoing waves in space
of the solution cause significant burdens in designing numerical methods and

establishing error estimates for KGZ system. By applying an asymptotic con-
sistent formulation, we propose a uniformly accurate finite difference method
and rigorously establish two independent error bounds at O(h2 + τ2/ε) and
O(h2 + τ + ε) with h mesh size and τ time step. Thus we obtain a uniform
error bound at O(h2 + τ) for 0 < ε ≤ 1. The main techniques in the analysis
include the energy method, cut-off of the nonlinearity to bound the numerical
solution, the integral approximation of the oscillatory term, and ε-dependent
error bounds between the solutions of KGZ system and its limiting model when
ε → 0+. Finally, numerical results are reported to confirm our error bounds.

1. Introduction

We study the Klein-Gordon-Zakharov (KGZ) system which describes the inter-
action between a Langmuir wave and an ion acoustic wave in plasma [24]:

(1.1)
∂ttE(x, t)− 3v20ΔE(x, t) + ω2

pE(x, t) + ω2
pN(x, t)E(x, t) = 0,

∂ttN(x, t)− c2sΔN(x, t)− n0ε0
4mN0

Δ|E|2(x, t) = 0, x ∈ R
d, t > 0,

where t is time, x ∈ R
d (d = 1, 2, 3) is the spatial coordinate, E(x, t) and N(x, t) are

real-valued functions representing the fast time scale component of the electric field
raised by electrons and the ion density fluctuation from the constant equilibrium,
respectively. Here v0 is the electron thermal velocity, ωp is the electron plasma
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frequency, cs is the ion-acoustic speed, n0 is plasma charge number, ε0 is vacuum
dielectric constant, m is ion mass and N0 is electron density. It can be derived from
the Euler equations for the electrons and ions, coupled with the Maxwell equation
for the electron field by negeleting the magnetic effect and further assuming that
ions move much slower than electrons (cf. [12, 16, 33, 39] for physical and formal
derivations and [35] for mathematical justifications).

For scaling the KGZ system (1.1), we introduce

(1.2) t̃ = t/ts, x̃ = x/xs, Ẽ(x̃, t̃) = E(x, t)/Es, Ñ(x̃, t̃) = N(x, t)/Ns,

where ts =
1
ωp

, xs =
√
3v0
ωp

, Es = 2cs

√
mN0

n0ε0
and Ns = 1 are the dimensionless time,

length, electric field and ion density unit, respectively. Plugging (1.2) into (1.1)
and removing all “∼” followed by replacing N(x, t) and E(x, t) by Nε(x, t) and
Eε(x, t), respectively, we get the following dimensionless KGZ system as,

(1.3)
∂ttE

ε(x, t)−ΔEε(x, t) + Eε(x, t) +Nε(x, t)Eε(x, t) = 0,

ε2∂ttN
ε(x, t)−ΔNε(x, t)−Δ|Eε|2(x, t) = 0, x ∈ R

d, t > 0,

where the dimensionless parameter ε :=
√
3v0
cs

> 0 is inversely proportional to the
speed of sound. Here we consider the case when the thermal electron velocity is
much smaller than the ion-acoustic speed, i.e., 3v20 � c2s, which gives 0 < ε � 1,
i.e., the KGZ system in the subsonic limit regime. To study the dynamics of the
KGZ system (1.3), the initial data is usually given as

Eε(x, 0) = E0(x), ∂tE
ε(x, 0) = E1(x),

Nε(x, 0) = Nε
0 (x), ∂tN

ε(x, 0) = Nε
1 (x).

(1.4)

As it is known, (1.3) is time symmetric or time reversible and conserves the total
energy (or Hamiltonian) [24, 25]

Hε(t) :=

∫
Rd

[
|∂tEε|2 + |∇Eε|2 + |Eε|2 + 1

2
|∇ϕε|2 + 1

2
|Nε|2 +Nε|Eε|2

]
dx

≡ Hε(0), t ≥ 0,

(1.5)

where ϕε is defined by Δϕε = ε∂tN
ε with lim|x|→∞ ϕε = 0.

There have been extensive studies for the KGZ system in the literature for ε = 1,
i.e., O(1)-acoustic-speed regime. Along the analytical part, for the derivation of
the KGZ system from two-fluid Euler-Maxwell system, we refer to [12, 35]; and
for the well-posedness of the Cauchy problem, we refer to [27, 29, 30, 37]. Along
the numerical part, we refer to [38] for the finite difference method and [7, 10] for
the exponential-wave-integrator Fourier pseudospectral method. However, in the
subsonic limit regime, the analysis and efficient computation of the KGZ system are
rather complicated [12,24] due to the high oscillation in time and/or rapid outgoing
waves in space of the solution as ε → 0+.

Based on the results in [14, 26], in the subsonic limit, i.e., ε → 0+, the KGZ
system collapses to the Klein-Gordon (KG) equation. Formally we have Eε → Ek,
where Ek := Ek(x, t) is the solution of the KG equation [14, 26]:

(1.6)
∂ttEk(x, t)−ΔEk(x, t) + Ek(x, t)− Ek(x, t)

3 = 0, x ∈ R
d, t > 0,

Ek(x, 0) = E0(x), ∂tEk(x, 0) = E1(x), x ∈ R
d.
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The KG equation (1.6) conserves the energy

H(t) :=

∫
Rd

[
|∂tEk|2 + |∇Ek|2 + |Ek|2 −

1

2
|Ek|4

]
dx ≡ H(0), t ≥ 0.

Different convergence rates can be obtained due to the incompatibility of the initial
data (E0, E1, N

ε
0 , N

ε
1 ) for (1.3) with respect to (1.6), which can be characterized as

(1.7) Nε
0 (x) = −E0(x)

2 + εαω0(x), Nε
1 (x) = −2E0(x)E1(x) + εβω1(x), x ∈ R

d,

where α ≥ 0 and β ≥ −1 are given parameters describing the incompatibility of
the initial data of the KGZ system (1.3)–(1.4) with respect to that of the KG
equation (1.6) in the subsonic limit regime such that the energy (1.5) is bounded,
and ω0(x) and ω1(x) are given functions which are all independent of ε. Similar to
the properties of the solutions of the Zakharov system in the subsonic limit regime
[25, 28, 31], when 0 < ε � 1, the solution of the KGZ system propagates waves
with wavelength O(ε) and O(1) in time and space, respectively (cf. Fig. 1.1(a)),
and/or rapid outgoing initial layers at speed O(1/ε) in space (cf. Fig. 1.1(b)).
More precisely, when α ≥ 2 and β ≥ 1, the leading oscillation comes from the ε2∂tt
term; and otherwise from the incompatibility of the initial data.

(a)
0.2

-0.2

-0.6

-1

0 0.2 0.4 0.6 0.8 1

(b)

0.6

0.2

-0.2

-0.6

-90 -60 -30 0 30 60 90

Figure 1.1. The temporal oscillation (a) and rapid outgoing wave
in space (b) of the KGZ system (1.3) for d = 1.

To illustrate the temporal oscillation and rapid outgoing wave phenomena, Fig-
ure 1.1 shows the solutions Nε(x, 1), Nε(1, t) of the KGZ system (1.3) for d = 1
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and the initial data

E0(x) = sech(x) cos
(x
2

)
, E1(x) =

1

2
ψ ((x+ 10)/5)ψ ((10− x)/5) sin

(x
2

)
,

ω0(x) = ψ ((x+ 18)/10)ψ ((18− x)/9) sin
(
2x+

π

6

)
, ω1(x) = e−

x2

3 sin(2x),
(1.8)

with

(1.9) ψ(x) =
ϕ(x)

ϕ(x) + ϕ(1− x)
, ϕ(x) = e−1/xχ(0,∞),

and χ being the characteristic function, α = β = 0 in (1.7) for different ε, which
was obtained numerically by the exponential-wave-integrator sine pseudospectral
method on a bounded interval [−200, 200] with the homogenous Dirichlet boundary
condition [7].

The highly temporal oscillatory nature in the solution of the KGZ system (1.3)
brings significant numerical difficulties, especially in the subsonic limit regime, i.e.,
0 < ε � 1. To the best of our knowledge, there are few results concerning error
estimates of different numerical methods for KGZ system with respect to mesh size
h and time step τ as well as the parameter 0 < ε ≤ 1. Recently, a conservative finite
difference method (FDM) was proposed and analyzed in the subsonic limit regime
[32], where it was proved that in order to obtain “correct” oscillatory solutions, the
FDM requests the meshing strategy (or ε-scalability) h = O(ε1/2) and τ = O(ε3/2).
The reason is due to that Nε(x, t) does not converge as ε → 0+ when α = 0 or
β = −1 [25, 31, 34] (cf. Figure 1.1).

The main aim of this paper is to propose and analyze a finite difference method
for the KGZ system, which is uniformly accurate in both space and time for
0 < ε ≤ 1. The key points in designing the uniformly accurate finite difference
method include: (i) reformulating the KGZ system into an asymptotic consistent
formulation and (ii) using an integral approximation of the oscillatory term. To
establish the error bounds, we apply the energy method, cut-off technique for treat-
ing the nonlinearity and the inverse estimates to bound the numerical solution, and
the limiting equation via a nonlinear Klein-Gordon equation with an oscillatory
potential. The error bounds of our new numerical method significantly relax the
meshing strategy of the standard FDM for the KGZ system in the subsonic limit
regime [32].

The rest of the paper is organized as follows. In Section 2, we introduce an
asymptotic consistent formulation of the KGZ system, present a finite difference
method and state our main results. Section 3 is devoted to the details of the error
analysis. Numerical results are reported in Section 4 to confirm our error bounds.
Finally some conclusions are drawn in Section 5. Throughout the paper, we adopt
the standard Sobolev spaces as well as the corresponding norms and denote A � B
to represent that there exists a generic constant C > 0 independent of ε, τ , h, such
that |A| ≤ C B.

2. A finite difference method and its error bounds

In this section, we present a uniformly accurate finite difference method based
on an asymptotic consistent formulation of the KGZ system and give its uniform
error bounds.
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2.1. An asymptotic consistent formulation. Following [8], we introduce

(2.1) F ε(x, t) = Nε(x, t) + |Eε(x, t)|2 −Gε(x, t), x ∈ R
d, t ≥ 0,

where Gε(x, t) represents initial layer caused by the incompatibility of the initial
data (1.7), which is the solution of the linear wave equation

∂ttG
ε(x, t)− 1

ε2
ΔGε(x, t) = 0, x ∈ R

d, t > 0,

Gε(x, 0) = εαω0(x), ∂tG
ε(x, 0) = εβω1(x), x ∈ R

d.
(2.2)

Substituting (2.1) into the KGZ system (1.3), we can reformulate it into an asymp-
totic consistent formulation

(2.3)

∂ttE
ε(x, t)−ΔEε(x, t) +

[
1− Eε(x, t)2 + F ε(x, t) +Gε(x, t)

]
Eε(x, t) = 0,

ε2∂ttF
ε(x, t)−ΔF ε(x, t)− ε2∂tt|Eε(x, t)|2 = 0, x ∈ R

d, t > 0,

Eε(x, 0) = E0(x), ∂tE
ε(x, 0) = E1(x), F ε(x, 0) = 0, ∂tF

ε(x, 0) = 0.

In the subsonic limit regime, i.e., ε → 0+, formally we have Eε(x, t) → Ek(x, t)
and F ε(x, t) → 0, where Ek(x, t) is the solution of the KG equation (1.6). Moreover,

as ε → 0+, formally we can also get Eε(x, t) → Ẽε(x, t), where Ẽε := Ẽε(x, t) is
the solution of the Klein-Gordon equation with an oscillatory potential Gε(x, t)
(KGE-OP)

(2.4)
∂ttẼ

ε(x, t)−ΔẼε(x, t) +
[
1− Ẽε(x, t)2 +Gε(x, t)

]
Ẽε(x, t) = 0,

Ẽε(x, 0) = E0(x), ∂tẼ
ε(x, 0) = E1(x), x ∈ R

d.

Inspired by the convergence of the Zakharov system to the nonlinear Schrödinger
equation in the subsonic limit [28] and the analysis of the KGZ system converging to
the KG equation [14], we can obtain the following result concerning the convergence
from the KGZ system (2.3) to the KGE-OP (2.4),

(2.5) ‖F ε‖L2 + ‖F ε‖L∞ + ‖Eε(·, t)− Ẽε(·, t)‖H1 ≤ CT ε, 0 ≤ t ≤ T,

where 0 < T < T ∗ with T ∗ > 0 being the maximum common existence time of
the solutions of the KGZ system (2.3) and the KGE-OP (2.4) and CT is a positive
constant independent of ε. To illustrate this, Figure 2.2 depicts the convergence be-
havior between the solutions of the KGZ system (2.3) and the KGE-OP (2.4), where
ηε
F
(t) := ‖F ε(·, t)‖L2 , ηε∞(t) := 1

ε‖F ε(·, t)‖L∞+‖∂tF ε(·, t)‖L∞+‖∂ttF ε(·, t)‖L∞ and

ηεe(t) := ‖Eε(·, t)− Ẽε(·, t)‖H1 for different ε with the same initial data as in (1.8)
for d = 1 and α = 0, β = −1.

2.2. A uniformly accurate finite difference method. For simplicity of nota-
tion, we will only present the numerical method for the KGZ system in one spatial
dimension, and extensions to higher dimensions are straightforward. Practically,
similar to most works for computation of the Zakharov-type system [8,9,13,22,32],
(2.3) is truncated on a bounded interval Ω = (a, b) with the homogeneous Dirichlet
boundary condition:

∂ttE
ε(x, t)− ∂xxE

ε(x, t) +
[
1− Eε(x, t)2 + F ε(x, t) +Gε

]
Eε(x, t) = 0,

ε2∂ttF
ε(x, t)− ∂xxF

ε(x, t)− ε2∂tt|Eε(x, t)|2 = 0, x ∈ Ω, t > 0,

Eε(x, 0) = E0(x), ∂tE
ε(x, 0) = E1(x), F ε(x, 0) = 0, ∂tF

ε(x, 0) = 0,

Eε(a, t) = Eε(b, t) = 0, F ε(a, t) = F ε(b, t) = 0, t ≥ 0,

(2.6)
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Figure 2.2. Time evolution of ηε
F
(t), ηε∞(t) and ηεe(t).

where Gε := Gε(x, t) is defined as the solution of (2.2) with homogeneous Dirichlet
boundary condition for d = 1,

∂ttG
ε(x, t)− 1

ε2
∂xxG

ε(x, t) = 0, x ∈ Ω, t > 0,

Gε(x, 0) = εαω0(x), ∂tG
ε(x, 0) = εβω1(x), x ∈ Ω,

Gε(a, t) = Gε(b, t) = 0, t ≥ 0.

(2.7)
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As ε → 0, formally we have Eε(x, t) → Ẽε(x, t) and F ε(x, t) → 0, where Ẽε(x, t) is
the solution of the KGE-OP,

(2.8)

∂ttẼ
ε(x, t)− ∂xxẼ

ε(x, t) +
[
1− Ẽε(x, t)2 +Gε(x, t)

]
Ẽε(x, t) = 0,

Ẽε(x, 0) = E0(x), ∂tẼ
ε(x, 0) = E1(x), x ∈ Ω,

Ẽε(a, t) = Ẽε(b, t) = 0, t ≥ 0.

We remark here that our numerical method and its error bounds can be easily ex-
tended to the case when the homogeneous Dirichlet boundary condition is replaced
by the period boundary condition.

Choose a mesh size h := Δx = b−a
M with M being a positive integer and a time

step τ := Δt > 0 and denote the grid points and time steps as

xj := a+ jh, j = 0, 1, . . . ,M ; tk := kτ, k = 0, 1, 2, . . . .

Define the index sets

TM = {j | j = 1, 2, . . . ,M − 1}, T 0
M = {j | j = 0, 1, . . . ,M}.

Let Eε,k
j and F ε,k

j be the approximations of Eε(xj , tk) and F ε(xj , tk), respectively,

and denote Eε,k = (Eε,k
0 , Eε,k

1 , . . . , Eε,k
M )T , F ε,k = (F ε,k

0 , F ε,k
1 , . . . , F ε,k

M )T ∈ R
M+1

as the numerical solution vectors at t = tk. The finite difference operators are the
standard notations as follows:

δ+x E
k
j =

Ek
j+1 − Ek

j

h
, δ+t E

k
j =

Ek+1
j − Ek

j

τ
, δctE

k
j =

Ek+1
j − Ek−1

j

2τ
,

δ2tE
k
j =

Ek+1
j − 2Ek

j + Ek−1
j

τ2
, δ2xE

k
j =

Ek
j+1 − 2Ek

j + Ek
j−1

h2
.

In this paper, we consider the finite difference discretization of (2.6) as follows,

(2.9a) δ2tE
ε,k
j =

(
δ2x − 1 + |Eε,k

j |2 − F ε,k
j −Hε,k

j

)Eε,k+1
j + Eε,k−1

j

2
,

(2.9b) ε2δ2tF
ε,k
j =

1

2
δ2x(F

ε,k+1
j + F ε,k−1

j ) + ε2δ2t |E
ε,k
j |2, j ∈ TM , k ≥ 1,

where we apply an average of the oscillatory potential Gε over the interval [tk−1,
tk+1]:

(2.10) Hε,k
j =

∫ 1

−1

(1− |s|)Gε(xj , tk + sτ )ds, j ∈ TM , k ≥ 1.

Meanwhile, the boundary and initial conditions are discretized as

Eε,k
0 = Eε,k

M = 0, F ε,k
0 = F ε,k

M = 0, k ≥ 0,

Eε,0
j = E0(xj), F ε,0

j = 0, j ∈ T 0
M .

(2.11)

Next we consider the value of the first step Eε,1
j and F ε,1

j . By Taylor expansion,

we get Eε,1
j as

(2.12) Eε,1
j = E0(xj)+τE1(xj)+

τ2

2
∂ttE

ε(xj , 0), F ε,1
j =

τ2

2
∂ttF

ε(xj , 0), j ∈ TM ,
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where by (2.6),

∂ttE
ε(x, 0) = E′′

0 (x)− E0(x)−Nε
0 (x)E0(x),

∂ttF
ε(x, 0) = 2E1(x)

2 + 2E0(x)∂ttE
ε(x, 0).

In practical computation, Hε,k
j in (2.10) can be obtained by solving the wave equa-

tion (2.7) via the sine pseudospectral discretization in space followed by integrating
in time in phase space exactly [8] as

Hε,k
j = εα

M−1∑
l=1

(̃ω0)l sin
(jlπ
M

) ∫ 1

−1

(1− |s|) cos
(
θl(tk + sτ )

)
ds

+ εβ
M−1∑
l=1

(̃ω1)l
θl

sin
(jlπ
M

) ∫ 1

−1

(1− |s|) sin
(
θl(tk + sτ )

)
ds

= 2

M−1∑
l=1

sin
(jlπ
M

)[
εα(̃ω0)l cos (θltk) + εβ

(̃ω1)l
θl

sin
(
θltk

)] ∫ 1

0

cos
(
τθls

)
(1− s)ds

=
4

τ2

M−1∑
l=1

1

θ2l
sin
(jlπ
M

)
sin2

(θlτ
2

)[
εα(̃ω0)l cos

(
θltk

)
+ εβ

(̃ω1)l
θl

sin
(
θltk

)]
,

where for l ∈ TM ,

θl =
lπ

ε(b− a)
, (̃ω0)l =

2

M

M−1∑
j=1

ω0(xj) sin
(jlπ
M

)
, (̃ω1)l =

2

M

M−1∑
j=1

ω1(xj) sin
(jlπ
M

)
.

We remark here that our numerical method (2.9) is unconditionally stable due to
the fact that it is implicit.

2.3. Main results. For simplicity of notation, we denote

α∗ := min{1, α, 1 + β} ∈ [0, 1].

Let T ∗ > 0 be the maximum common existence time of solutions to the KGZ system
(2.6) and the KGE-OP (2.8). Then for 0 < T < T ∗, according to the known results
in [1, 25, 28, 31], we can assume the exact solution (Eε(x, t), F ε(x, t)) of the KGZ

system (2.6) and the solution Ẽε(x, t) of the KGE-OP (2.8) are smooth enough and
satisfy

(A)

‖Eε‖W 4,∞(Ω) + ‖∂tEε‖W 2,∞(Ω) + ‖∂2
tE

ε‖W 2,∞(Ω) + ε‖∂3
tE

ε‖W 2,∞(Ω) � 1,

‖Ẽε‖W 4,∞(Ω) + ‖∂tẼε‖W 2,∞(Ω) + ‖∂2
t Ẽ

ε‖W 2,∞(Ω) � 1, ‖∂3
t Ẽ

ε‖L∞(Ω) �
1

ε1−α∗ ,

‖F ε‖W 4,∞(Ω) � ε, ‖∂tF ε‖W 4,∞(Ω) + ‖∂ttF ε‖W 2,∞(Ω) + ε‖∂3
t F

ε‖W 2,∞(Ω) � 1.

Furthermore, we assume that the initial data satisfies

(B) ‖E0‖W5,∞(Ω)+‖E1‖W5,∞(Ω)+‖ω0‖W3,∞(Ω)+‖ω1‖W3,∞(Ω) � 1.

It can be concluded from (2.2) and assumption (B) that

(2.13) ‖∂m
t Gε‖W 3,∞(Ω) � εα

∗−m, m = 0, 1, 2, 3.

To measure the error between the exact solution and the numerical solution of
the KGZ system, we introduce some notation. Denote

XM = {v = (vj)j∈T 0
M
| v0 = vM = 0} ⊆ R

M+1.
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The norms and inner products over XM are defined as

‖u‖2 = h
M−1∑
j=1

|uj |2, ‖u‖44 = h
M−1∑
j=1

|uj |4, ‖δ+x u‖2 = h
M−1∑
j=0

|δ+x uj |2,

‖u‖∞ = sup
j∈T 0

M

|uj |, (u, v) = h
M−1∑
j=1

ujvj , 〈δ+x u, δ+x v〉 = h
M−1∑
j=0

δ+x ujδ
+
x vj .

Then it is easy to get

(2.14) (−δ2xu, v) = 〈δ+x u, δ+x v〉, ((−δ2x)
−1u, v) = (u, (−δ2x)

−1v), u, v ∈ XM .

Define the error functions eε,k, fε,k as

eε,kj = Eε(xj , tk)− Eε,k
j , fε,k

j = F ε(xj , tk)− F ε,k
j , j ∈ T 0

M , 0 ≤ k ≤ T

τ
.

Then we have the following error estimates for the finite difference discretization
(2.9) with (2.10)–(2.12).

Theorem 2.1. Under assumptions (A) and (B), there exist h0 > 0 and τ0 > 0
sufficiently small and independent of ε such that, when 0 < h ≤ h0, 0 < τ ≤ τ0, the
scheme (2.9) with (2.10)–(2.12) satisfies the following error estimates.

‖eε,k‖+ ‖δ+x eε,k‖+ ‖fε,k‖ � h2 +
τ2

ε
, 0 ≤ k ≤ T

τ
, ε ∈ (0, 1],(2.15)

‖eε,k‖+ ‖δ+x eε,k‖+ ‖fε,k‖ � h2 + τ2 + τεα
∗
+ ε.(2.16)

Thus by taking the minimum, we have the uniform ε-independent error bound for
ε ∈ (0, 1] and 0 ≤ k ≤ T

τ ,

(2.17) ‖eε,k‖+ ‖δ+x eε,k‖+ ‖fε,k‖ � h2 + max
0<ε≤1

min

{
τ2

ε
, τ2 + τεα

∗
+ ε

}
� h2+ τ.

3. Error analysis

To prove Theorem 2.1, we will get the error bound (2.15) by using the energy
method and (2.16) via the limiting equation KGE-OP (2.8), which can be displayed
in the following diagram [3–5,8, 15, 21]:

(Eε,k, F ε,k)
O(h2+τ2+τεα

∗
+ε1+α∗

)
��

O(h2+τ2/ε)
�����

����
����

����
����

�
(Ẽε, 0)

O(ε)

��

(Eε, F ε).

To simplify notation, for a function V (x, t), and a grid function V k ∈ XM (k ≥ 0),
we denote for k ≥ 1,

([V ])(x, tk) =
V (x, tk+1) + V (x, tk−1)

2
, x ∈ Ω; [[V ]]

k
j =

V k+1
j + V k−1

j

2
, j ∈ T 0

M .
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3.1. Solvability of the scheme (2.9)–(2.11).

Lemma 3.1 (Solvability of the difference equations). For any given Ek, F k, Ek−1,
F k−1 ∈ XM , denote Ck = ‖F k‖+ ‖Hε,k‖+ ‖Ek‖2 + ‖δ+x Ek‖2, there exists τs > 0
which depends on Ck such that when τ < τs, there exists a unique solution of the
discretization (2.9).

Proof. We first prove the existence of a solution for the first equation (2.9a). For
any Ek, Ek−1, F k ∈ XM , we rewrite (2.9a) as

(3.1) [[E]]k = Ek +
τ2

2
Uk([[E]]k),

where Uk : XM → XM defined as

(Uk(u))j = (δ2x − 1 + |Ek
j |2 − F k

j −Hε,k
j )uj , j ∈ TM , k ≥ 1.

Denote the map V k : XM → XM as

V k(u) = u− Ek − τ2

2
Uk(u), u ∈ XM ,

and it is obvious that V k is continuous from XM to XM . Moreover,

(V k(u), u) = ‖u‖2 − (Ek, u) +
τ2

2
(‖δ+x u‖2 + ‖u‖2) + τ2

2
(F k +Hε,k − |Ek|2, u2).

Applying the Cauchy inequality, the Sobolev inequality [40], and Young’s inequality,
we can obtain

|(F k +Hε,k − |Ek|2, u2)| ≤ ‖u‖24(‖F k‖+ ‖Hε,k‖+ ‖Ek‖24)
≤ C‖δ+x u‖1/2‖u‖3/2(‖F k‖+ ‖Hε,k‖+ ‖δ+x Ek‖1/2‖Ek‖3/2)
≤ CCk‖δ+x u‖1/2‖u‖3/2

≤ ‖δ+x u‖2 + (CCk)4/3‖u‖2.(3.2)

Hence

(V k(u), u) ≥
[(
1− τ2

2
(CCk)4/3

)
‖u‖ − ‖Ek‖

]
‖u‖.

Setting τs = (CCk)−2/3, when τ < τs, one has

lim
‖u‖→∞

(V k(u), u)

‖u‖ = ∞,

which implies that there exists a solution u∗ such that V k(u∗) = 0 by applying the
Brouwer fixed point theorem [4, 23]. Thus (2.9a) is solvable.

Next we prove the uniqueness for (2.9a). Suppose there exist two solutions E(1),
E(2) ∈ XM satisfying the equation (2.9a), i.e., for j ∈ TM ,

E
(1)
j − 2Ek

j + Ek−1
j

τ2
=
[
δ2x − 1 + |Ek

j |2 − F k
j −Hε,k

j

] E(1)
j + Ek−1

j

2
,(3.3)

E
(2)
j − 2Ek

j + Ek−1
j

τ2
=
[
δ2x − 1 + |Ek

j |2 − F k
j −Hε,k

j

] E(2)
j + Ek−1

j

2
.(3.4)

Denote u = E(1) − E(2) ∈ XM and subtract (3.4) from (3.3), we get

(3.5) uj =
τ2

2

[
δ2x − 1 + |Ek

j |2 − F k
j −Hε,k

j

]
uj ,
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which implies that

‖u‖2 + τ2

2
(‖δ+x u‖2 + ‖u‖2) = τ2

2

(
|Ek|2 − F k −Hε,k, u2

)
.

Noticing (3.2), when τ < τs, one obtains

‖u‖2 + τ2

2
(‖δ+x u‖2 + ‖u‖2) ≤ τ2

2
(‖δ+x u‖2 + (CCk)4/3‖u‖2) ≤ τ2

2
‖δ+x u‖2 +

1

2
‖u‖2,

which yields that u = 0. Thus the solution of (2.9a) is unique.
Finally we prove (2.9b) is uniquely solvable. Multiplying (2.9b) by τ2, we see

that the coefficient matrix for the unknown F k+1 ∈ XM , of order (M−1)×(M−1),
is

Ak =

⎛⎜⎜⎜⎜⎜⎜⎝
ε2 + τ2

h2 − τ2

2h2 0 · · · 0

− τ2

2h2 ε2 + τ2

h2 − τ2

2h2 · · · 0

0 − τ2

2h2 ε2 + τ2

h2 · · · 0
...

...
...

. . .
...

0 0 0 · · · ε2 + τ2

h2

⎞⎟⎟⎟⎟⎟⎟⎠ ,

which is a symmetric positive definite matrix and it is invertible by Gerschgorin
[20] for any τ , h, ε > 0. The proof is completed. �

Combining assumption (A), (B), and (2.17), and using induction technique, we
can get that there exists a constant C > 0 independent of ε, when h < h0, τ < τ0,
the solution of the difference equation (2.9) satisfies

‖F ε,k‖+ ‖Hε,k‖+ ‖Eε,k‖2 + ‖δ+x Eε,k‖2 ≤ C.

Thus by applying Lemma 3.1, we can get the solvability of (2.9) for any k ≥ 1.

Corollary 3.1. There exists h0 > 0, τ0 > 0 independent of ε, such that the differ-
ence discretization (2.9) with (2.11)–(2.12) is uniquely solvable for 1 ≤ k ≤ T

τ − 1.

3.2. An error bound via the energy method. To bound the numerical so-
lution, following the idea in [2–4, 6, 36], we truncate the nonlinearity to a global
Lipschitz function with compact support, then the error can be achieved if the nu-
merical solution is close to the bounded exact solution. Choose a smooth function
ρ(s) ∈ C∞(R) such that

ρ(s) =

⎧⎪⎨⎪⎩
1, |s| ≤ 1,

∈ [0, 1], |s| ≤ 2,

0, |s| ≥ 2,

and set

M0 = max

{
sup

ε∈(0,1]

‖Eε‖L∞(ΩT ), sup
ε∈(0,1]

‖Ẽε‖L∞(ΩT )

}
,

where ΩT = Ω× [0, T ], which is well defined by assumption (A). For s, y1, y2 ∈ R,
define

(3.6) ρB(s) = s2ρ(s/B), B = M0 + 1

and

g(y1, y2) =
1

2

∫ 1

0

ρ′B(sy1 + (1− s)y2)ds.
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Then ρB(s) is globally Lipschitz and there exists CB > 0, such that

(3.7) |ρB(s1)− ρB(s2)| ≤ CB|s1 − s2| ∀s1, s2 ∈ R.

Set Êε,0 = Eε,0, F̂ ε,0 = F ε,0, Êε,1 = Eε,1, F̂ ε,1 = F ε,1, and define Êε,k, F̂ ε,k ∈ XM

for k ≥ 1 as follows:

(3.8)
δ2t Ê

ε,k
j = (δ2x − 1−Hε,k

j )[[Êε]]kj +
(
ρB(Ê

ε,k
j )− F̂ ε,k

j

)
g(Êε,k+1

j , Êε,k−1
j ),

ε2δ2t F̂
ε,k
j =

1

2
δ2x(F̂

ε,k+1
j + F̂ ε,k−1

j ) + ε2δ2t ρB(Ê
ε,k
j ).

Here (Êε,k, F̂ ε,k) can be viewed as another approximation of (Eε(xj , tk), F
ε(xj , tk)).

Applying similar techniques in the proof for Lemma 3.1, we can get that (3.8) is
uniquely solvable when τ , h are sufficiently small.

Define the error function êε,k, f̂ε,k ∈ XM as

êε,kj = Eε(xj , tk)− Êε,k
j , f̂ε,k

j = F ε(xj , tk)− F̂ ε,k
j , j ∈ T 0

M , k ≥ 0.

Regarding the error bounds on (êε,k, f̂ε,k), we have the following estimates.

Theorem 3.2. Under assumption (A), there exists τ1 > 0 sufficiently small, when
0 < τ ≤ τ1, the scheme (3.8) satisfies the following error estimates:

‖êε,k‖+ ‖δ+x êε,k‖+ ‖f̂ε,k‖ � h2 +
τ2

ε
, 0 ≤ k ≤ T

τ
, 0 < ε ≤ 1.

In order to prove it, we introduce the local truncation error ξ̂ε,kj , η̂ε,kj ∈ XM as

ξ̂ε,kj = δ2tE
ε(xj , tk)− (δ2x − 1−Hε,k

j )([Eε])(xj , tk)

− [ρB(E
ε(xj , tk))− F ε(xj , tk)] g (E

ε(xj , tk+1), E
ε(xj , tk−1))

= δ2tE
ε(xj , tk)−

[
δ2x − 1 + |Eε(xj , tk)|2 −Hε,k

j − F ε(xj , tk)
]
([Eε])(xj , tk),

η̂ε,kj = ε2δ2tF
ε(xj , tk)− δ2x([F

ε])(xj , tk)− ε2δ2t ρB(E
ε(xj , tk))

= ε2δ2tF
ε(xj , tk)− δ2x([F

ε])(xj , tk)− ε2δ2t |Eε(xj , tk)|2, k ≥ 1.

(3.9)

For the local truncation error, we have the following error bounds.

Lemma 3.3. Under assumption (A), we have for j ∈ TM ,

|ξ̂ε,kj | � h2+
τ2

ε
, |η̂ε,kj | � h2+τ2, 1 ≤ k ≤ T

τ
−1; |δct η̂

ε,k
j | � h2+

τ2

ε
, 2 ≤ k ≤ T

τ
−2.

Proof. By (2.6) and Taylor expansion, we have

δ2tE
ε(xj , tk) =

∑
m=±1

∫ 1

0

(1− s)∂ttE
ε(xj , tk +msτ )ds

=

∫ 1

−1

(1− |s|)
(
∂xxE

ε − Eε + (Eε)3 − EεF ε − EεGε
)
(xj , tk + sτ )ds

= ∂xxE
ε(xj , tk)− Eε(xj , tk) + Eε(xj , tk)

3 − Eε(xj , tk)F
ε(xj , tk)

+
τ2

6

∫ 1

−1

(1− |s|)3∂tt
(
∂xxE

ε − Eε + (Eε)3 − EεF ε
)
(xj , tk + sτ )ds

−
∫ 1

−1

(1− |s|)Eε(xj , tk + sτ )Gε (xj , tk + sτ ) ds.
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Similarly, by Taylor expansion, one can easily get that[
δ2x − 1 + |Eε(xj , tk)|2 −Hε,k

j − F ε(xj , tk)
]
([Eε])(xj , tk)

= ∂xxE
ε(xj , tk) +

[
|Eε(xj , tk)|2 − 1−Hε,k

j − F ε(xj , tk)
]
Eε(xj , tk)

+
h2

6

∫ 1

−1

(1− |s|)3([∂4
xE

ε])(xj + sh, tk)ds

+
τ2

2

∫ 1

−1

(1− |s|)∂2
x∂

2
tE

ε(xj , tk + sτ )ds

+
τ2

2

[
|Eε(xj , tk)|2 − 1−Hε,k

j − F ε(xj , tk)
] ∫ 1

−1

(1− |s|)∂ttEε(xj , tk + sτ )ds.

Note that by (2.10), we have∫ 1

−1

(1− |s|)Eε(xj , tk + sτ )Gε (xj , tk + sτ ) ds− Eε(xj , tk)H
ε,k
j

= τEε
t (xj , tk)

∫ 1

0

s(1− s) [Gε (xj , tk + sτ )−Gε (xj , tk − sτ )] ds+A1

= τ2Eε
t (xj , tk)

∫ 1

0

s(1− s)

∫ s

−s

∂tG
ε (xj , tk + θτ ) dθds+A1,(3.10)

where

A1 = τ2
∫ 1

−1

(1− |s|)Gε (xj , tk + sτ )

∫ s

0

(s− θ)∂ttE
ε(xj , tk + θτ )dθds.

Accordingly, by assumption (A) and (2.13), we deduce that

|ξ̂ε,kj | � h2‖∂4
xE

ε‖L∞ + τ2
[
‖∂2

tE
ε‖L∞(1 + ‖Gε‖L∞ + ‖F ε‖L∞ + ‖Eε‖2L∞)

+ ‖∂2
x∂

2
tE

ε‖L∞ + ‖∂tEε‖L∞(‖∂tGε‖L∞ + ‖∂tF ε‖L∞)

+ ‖Eε‖L∞(‖∂tEε‖2L∞ + ‖∂2
t F

ε‖L∞)
]

� h2 +
τ2

ε
, j ∈ TM , 1 ≤ k ≤ T

τ
− 1.

Similar expansion gives

η̂ε,kj =
ε2τ2

6

∫ 1

−1

(1− |s|)3
[
∂4
t F

ε(xj , tk + sτ )− ∂4
t |Eε|2(xj , tk + sτ )

]
ds

− τ2

2

∫ 1

−1

(1− |s|)∂2
xF

ε
tt(xj , tk + sτ )ds− h2

6

∫ 1

−1

(1− |s|)3([∂4
xF

ε])(xj + sh, tk)ds,

which implies

|η̂ε,kj | � h2‖∂4
xF

ε‖L∞ + τ2
(
‖∂2

x∂
2
t F

ε‖L∞ + ε2‖∂4
t F

ε‖L∞ + ε2‖∂4
t |Eε|2‖L∞

)
� h2 + τ2, j ∈ TM , 1 ≤ k ≤ T

τ
− 1.
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Applying δct to η̂ε,kj , one can deduce that

|δct η̂
ε,k
j | � h2‖∂4

x∂tF
ε‖L∞ + τ2(‖∂2

x∂
3
t F

ε‖L∞ + ε2‖∂5
t F

ε‖L∞ + ε2‖∂5
t |Eε|2‖L∞)

� h2 +
τ2

ε
, j ∈ TM , 2 ≤ k ≤ T

τ
− 2.

Thus the proof is completed. �

For the initial step, we have the following estimates.

Lemma 3.4. Under assumption (A), the initial and first step errors of the dis-
cretization (2.12) satisfy

êε,0j = f̂ε,0
j = 0, |êε,1j |+ |δ+x ê

ε,1
j |+ |f̂ε,1

j | � τ3

ε
, |δ+t ê

ε,0
j |+ |δ+t f̂

ε,0
j | � τ2

ε
.

Proof. By the definition of Êε,1
j , one can derive that

|êε,1j | = τ3

2

∣∣∣∣∫ 1

0

(1− s)2∂3
tE

ε(xj , sτ )ds

∣∣∣∣ � τ3‖∂3
tE

ε‖L∞ � τ3

ε
,

which implies that |δ+t ê
ε,0
j | � τ2

ε . Similarly, |δ+x ê
ε,1
j | � τ3‖∂x∂3

tE
ε‖L∞ � τ3

ε . It

follows from (2.12) and assumption (A) that

|f̂ε,1
j | = τ3

2

∣∣∣∣∫ 1

0

(1− s)2∂3
t F

ε(xj , sτ )ds

∣∣∣∣ � τ3‖∂3
t F

ε‖L∞ � τ3

ε
.

Recalling that f̂ε,0
j = 0, we can get |δ+t f̂

ε,0
j | � τ2

ε , which completes the proof. �

Subtracting (3.8) from (3.9), we have the error equations

δ2t ê
ε,k
j = (δ2x − 1−Hε,k

j )
êε,k+1
j + êε,k−1

j

2
+ rkj + ξ̂ε,kj ,

ε2δ2t f̂
ε,k
j =

1

2
δ2x(f̂

ε,k+1
j + f̂ε,k−1

j ) + ε2δ2t p
k
j + η̂ε,kj , j ∈ TM , 1 ≤ k <

T

τ
,

(3.11)

where

rkj =
(
|Eε|2 − F ε

)
([Eε])(xj , tk)−

(
ρB(Ê

ε,k
j )− F̂ ε,k

j

)
g(Êε,k+1

j , Êε,k−1
j ),

pkj = |Eε(xj , tk)|2 − ρB(Ê
ε,k
j ).

(3.12)

By the property of ρB (cf. (3.7)), one can easily get that

(3.13) |pkj | = |ρB(Eε(xj , tk))− ρB(Ê
ε,k
j )| ≤ CB|êε,kj |, j ∈ TM , 0 ≤ k ≤ T

τ
.

By the definition of g(·, ·), and noticing that

([Eε])(xj , tk) = g
(
Eε(xj , tk+1), E

ε(xj , tk−1)
)
,

it is known from [13] that for j ∈ TM , 1 ≤ k ≤ T
τ − 1,

(3.14)
∣∣∣g(Êε,k+1

j , Êε,k−1
j )

∣∣∣ � 1,
∣∣∣([Eε])(xj , tk)− g(Êε,k+1

j , Êε,k−1
j )

∣∣∣ � ∑
l=k±1

|êε,lj |.
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Proof of Theorem 3.2. Multiplying both sides of the first equation of (3.11) by

2τδct ê
ε,k
j , summing together for j ∈ TM , we obtain for 1 ≤ k ≤ T

τ − 1,

(3.15)

‖δ+t êε,k‖2 − ‖δ+t êε,k−1‖2 + 1

2
(‖δ+x êε,k+1‖2 − ‖δ+x êε,k−1‖2 + ‖êε,k+1‖2 − ‖êε,k−1‖2)

= (−Hε,k[[êε]]
k
+ rk + ξ̂ε,k, êε,k+1 − êε,k−1).

For analyzing the second equation of (3.11), we introduce ûε,k+1/2 ∈ XM by

−δ2xû
ε,k+1/2
j = δ+t (f̂

ε,k
j − pkj ).

Multiplying both sides of the second equation of (3.11) by τ (û
ε,k+1/2
j + û

ε,k−1/2
j ),

summing together for j ∈ TM , we have

(3.16)
ε2(‖δ+x ûε,k+1/2‖2 − ‖δ+x ûε,k−1/2‖2) + 1

2
(‖f̂ε,k+1‖2 − ‖f̂ε,k−1‖2)

= ([[f̂ε]]k, pk+1 − pk−1) + τ (η̂ε,k, ûε,k+1/2 + ûε,k−1/2), 1 ≤ k ≤ T

τ
− 1.

Introduce a discrete “energy”

Ak = ‖δ+t êε,k‖2 +
1

2
(‖êε,k‖2 + ‖êε,k+1‖2 + ‖δ+x êε,k‖2 + ‖δ+x êε,k+1‖2)

+ ε2‖δ+x ûε,k+1/2‖2 + 1

2
(‖f̂ε,k+1‖2 + ‖f̂ε,k‖2), 0 ≤ k ≤ T

τ
− 1.

(3.17)

Combining (3.15) and (3.16), we get for 1 ≤ k ≤ T
τ − 1,

Ak −Ak−1 = (−Hε,k[[êε]]k + rk + ξ̂ε,k, êε,k+1 − êε,k−1)

+ ([[f̂ε]]k, pk+1 − pk−1) + τ (η̂ε,k, ûε,k+1/2 + ûε,k−1/2).
(3.18)

Now we estimate the terms in (3.18), respectively. By the definition of rk, it can
be derived that

rkj =
(
|Eε(xj , tk)|2 − F ε(xj , tk)

) (
([Eε])(xj , tk)− g(Êε,k+1

j , Êε,k−1
j )

)
+ g(Êε,k+1

j , Êε,k−1
j )

(
pkj − f̂ε,k

j

)
.

(3.19)

In view of assumption (A), (3.13), and (3.14), we can get that

(3.20) |rkj | � |êε,k+1
j |+ |êε,kj |+ |êε,k−1

j |+ |f̂ε,k
j |.

This implies that

(−Hε,k[[êε]]
k
+ rk + ξ̂ε,k, êε,k+1 − êε,k−1)

= τ (−Hε,k[[êε]]
k
+ rk + ξ̂ε,k, δ+t ê

ε,k + δ+t ê
ε,k−1)

� τ (1 + ‖Hε,k‖∞)(‖rk‖2 + ‖ξ̂ε,k‖2 +
∑

l=k±1

‖êε,l‖2 +
k∑

l=k−1

‖δ+t êε,l‖2)

� τ (‖ξ̂ε,k‖2 +Ak +Ak−1).(3.21)
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It can be easily seen from (3.14) and assumption (A) that

pk+1 − pk−1 = Eε(xj , tk+1)
2 − Eε(xj , tk−1)

2 − 4τg(Êε,k+1
j , Êε,k−1

j )δct Ê
ε,k
j

= 2(([Eε])(xj , tk)− g(Êε,k+1
j , Êε,k−1

j ))(Eε(xj , tk+1)− Eε(xj , tk−1))

+ 2g(Êε,k+1
j , Êε,k−1

j )(êε,k+1
j − êε,k−1

j )

� τ‖Eε
t ‖L∞(|êε,k+1

j |+ |êε,k−1
j |) + τ (|δ+t ê

ε,k
j |+ |δ+t ê

ε,k−1
j |),

which yields

([[f̂ε]]k, pk+1 − pk−1) � τ
[ k∑
l=k−1

‖δ+t êε,l‖2 +
∑

l=k±1

(‖êε,l‖2 + ‖f̂ε,l‖2)
]

� τ (Ak +Ak−1), 1 ≤ k ≤ T

τ
− 1.(3.22)

Hence it can be concluded from (3.18), (3.21), and (3.22) that

(3.23) Ak −Ak−1 − τ (η̂ε,k, ûε,k+1/2 + ûε,k−1/2) � τ
(
‖ξ̂ε,k‖2 +Ak +Ak−1

)
.

Applying (2.14), the Sobolev inequality, and the Cauchy inequality, we obtain

−Ak

4
+ τ

k∑
l=1

(
η̂ε,l, ûε,l+1/2 + ûε,l−1/2

)

= −Ak

4
+

k∑
l=1

(
(−δ2x)

−1η̂ε,l, f̂ε,l+1 − pl+1 − (f̂ε,l−1 − pl−1)
)

= −Ak

4
− 2τ

k−1∑
l=2

(
δct (−δ2x)

−1η̂ε,l, f̂ε,l − pl
)

+
k+1∑
l=k

(
(−δ2x)

−1η̂ε,l−1, f̂ε,l − pl
)
−

1∑
l=0

(
(−δ2x)

−1η̂ε,l+1, f̂ε,l − pl
)

� A0 + τ

k−1∑
l=2

(‖δct η̂ε,l‖2 +Al) +

2∑
l=1

‖η̂ε,l‖2 +
k∑

l=k−1

‖η̂ε,l‖2.(3.24)

Summing the equation (3.23) together for k = 1, 2, . . . ,m ≤ T
τ −1, applying (3.24),

we obtain that
(3.25)

Am � A0 + τ

m∑
l=1

Al +

2∑
l=1

‖η̂ε,l‖2 +
m∑

l=m−1

‖η̂ε,l‖2 + τ

m∑
l=1

‖ξ̂ε,l‖2 + τ

m−1∑
l=2

‖δct η̂ε,l‖2.

By Lemma 3.4 and the discrete Sobolev inequality, we deduce that

(3.26) ε‖δ+x ûε,1/2‖ � ε‖δ+t (f̂ε,0 − p0)‖ � ε‖δ+t f̂ε,0‖+ ε‖δ+t êε,0‖ � τ2,

which together with Lemma 3.4 yields that

A0 � τ4/ε2.
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Applying Lemma 3.3 and (3.25), it can be concluded that there exists τ1 > 0 such
that when τ ≤ τ1, we have

Am �
(
h2 +

τ2

ε

)2

+ τ

m−1∑
i=1

Ai.

Applying the discrete Gronwall inequality, for sufficiently small τ , we can conclude
that

Am �
(
h2 +

τ2

ε

)2

, 0 ≤ m ≤ T

τ
− 1,

which completes the proof of Theorem 3.2 by recalling (3.17). �

3.3. Another bound via the limiting equation (2.4).

Theorem 3.5. Under assumptions (A)–(B), there exists τ2 > 0 sufficiently small,
when 0 < τ ≤ τ2, the scheme (3.8) satisfies the following error estimates:

‖êε,k‖+ ‖δ+x êε,k‖+ ‖f̂ε,k‖ � h2 + τ2 + τεα
∗
+ ε, 0 ≤ k ≤ T

τ
.

Define another error function

ẽε,kj = Ẽε(xj , tk)− Êε,k
j , f̃ε,k

j = −F̂ ε,k
j , j ∈ TM , 0 ≤ k ≤ T

τ
,

where Ẽε(x, t) is the solution of the KGE-OP (2.8). The local truncation error ξ̃ε,k,
η̃ε,k ∈ XM is defined as

ξ̃ε,kj = δ2t Ẽ
ε(xj , tk)− (δ2x − 1−Hε,k

j )([Ẽε])(xj , tk)

− ρB(Ẽ
ε(xj , tk))g

(
Ẽε(xj , tk+1), Ẽ

ε(xj , tk−1)
)

= δ2t Ẽ
ε(xj , tk)−

(
δ2x − 1 + |Ẽε(xj , tk)|2 −Hε,k

j

)
([Ẽε])(xj , tk),

η̃ε,kj = −ε2δ2t ρB(Ẽ
ε(xj , tk)) = −ε2δ2t |Ẽε(xj , tk)|2.

(3.27)

Lemma 3.6. Under assumption (A), we can obtain the following error bounds:

‖ξ̃ε,k‖ � h2 + τ2 + τεα
∗
, ‖η̃ε,k‖ � ε2, ‖δct η̃ε,k‖ � ε1+α∗

.

Proof. Similar to the proof of Lemma 3.3, we can get that

ξ̃ε,kj =− h2

6

∫ 1

−1

(1− |s|)3([∂4
xẼ

ε])(xj + sh, tk)ds

+
τ2

6

∫ 1

−1

(1− |s|)2∂tt
[
∂xxẼ

ε − Ẽε + |Ẽε|3
]
(xj , tk + sτ )ds

− τ2

2

∫ 1

−1

(1− |s|)∂2
x∂

2
t Ẽ

ε(xj , tk + sτ )ds−A2

− τ2

2

(
|Ẽε(xj , tk)|2 − 1−Hε,k

j

)∫ 1

−1

(1− |s|)∂ttẼε(xj , tk + sτ )ds,
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where

A2 =

∫ 1

−1

(1− |s|)Ẽε(xj , tk + sτ )Gε (xj , tk + sτ ) ds− Ẽε(xj , tk)H
ε,k
j

= τ

∫ 1

−1

(1− |s|)Gε (xj , tk + sτ )

∫ s

0

∂tẼ
ε(xj , tk + θτ )dθds

� τ‖Gε‖L∞‖∂tẼε‖L∞ � τεα
∗
.

Hence we can conclude from assumption (A) that

‖ξ̃ε,k‖ � h2 + τ2 + τεα
∗
.

Note that by assumption (A), it is easy to get that

∂3
t |Ẽε|2 = 6∂tẼ

ε∂ttẼ
ε + 2Ẽε∂3

t Ẽ
ε � εα

∗−1,

which indicates that

‖η̃ε,k‖ � ε2, ‖δct η̃ε,k‖ � ε1+α∗
,

thus the proof is completed. �

Analogous to Lemma 3.4, we have the error bounds for ẽε,0, f̃ε,0, ẽε,1, and f̃ε,1.

Lemma 3.7. Under assumptions (A) and (B), the first step errors of the dis-
cretization (2.12) satisfy

ẽε,0j = f̃ε,0
j = 0, |ẽε,1j |+ |δ+x ẽ

ε,1
j | � τ3 + τ2εα

∗
,

|f̃ε,1
j |+ |δ+t ẽ

ε,0
j | � τ2 + τεα

∗
, |δ+t f̃

ε,0
j | � τ.

Proof. It follows from (2.4) and (2.6) that ∂ttE
ε(xj , 0) = ∂ttẼ

ε(xj , 0). By (2.12)
and assumption (B), one gets that

ẽε,1j =
τ3

2

∫ 1

0

(1− s)2∂3
t Ẽ

ε(xj , sτ )ds

=
τ3

2

∫ 1

0

(1− s)2∂t

(
∂xxẼ

ε − Ẽε + |Ẽε|3 − ẼεGε
)
(xj , sτ )ds

=
τ3

2

∫ 1

0

(1− s)2∂t

(
∂xxẼ

ε − Ẽε + |Ẽε|3
)
(xj , sτ )ds

+
τ2

2
E0(xj)ε

αω0(xj)− τ2
∫ 1

0

(1− s)Ẽε(xj , sτ )G
ε(xj , sτ )ds

� τ3 + τ2εα
∗
.

Thus this gives that |δ+t ẽ
ε,0
j | � τ2 + τεα

∗
. Similar arguments can deduce that

|δ+x ẽ
ε,1
j | � τ3 + τ2εα

∗
. By the definition, we have

|f̃ε,1
j | = |F ε,1

j | � τ2|∂ttF ε(xj , 0)| � τ2.

The remaining conclusions are direct. �

Proof of Theorem 3.5. Subtracting (3.8) from (3.27), one has the error equations

δ2t ẽ
ε,k
j = (δ2x − 1−Hε,k

j )[[ẽε]]kj + r̃kj + ξ̃ε,kj ,

ε2δ2t f̃
ε,k
j = δ2x[[f̃

ε]]
k
j + ε2δ2t p̃

k
j + η̃ε,kj , j ∈ TM , 1 ≤ k ≤ T

τ
− 1,

(3.28)
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where

r̃kj = |Ẽε(xj , tk)|2([Ẽε])(xj , tk)−
(
ρB(Ê

ε,k
j )− [[F̂ ε]]

k
j

)
g(Êε,k+1

j , Êε,k−1
j ),

p̃kj = |Ẽε(xj , tk)|2 − ρB(Ê
ε,k
j ),

Suppose ũε,k+ 1
2 ∈ XM is the solution to the equation

−δ2xũ
ε,k+ 1

2
j = δ+t (f̃

ε,k
j − p̃kj ), j ∈ TM , 0 ≤ k ≤ T

τ
− 1.

Denote

Ãk = ‖δ+t ẽε,k‖2 +
1

2

(
‖ẽε,k‖2 + ‖ẽε,k+1‖2 + ‖δ+x ẽε,k‖2 + ‖δ+x ẽε,k+1‖2

)
+ ε2‖δ+x ũε,k+1/2‖2 + 1

2

(
‖f̃ε,k‖2 + ‖f̃ε,k+1‖2

)
.

Applying the same approach as in the former part, there exists τ2 > 0 sufficiently
small independent of ε such that

Ãk � Ã0 + τ
k−1∑
l=1

Ãl +
2∑

l=1

‖η̃ε,l‖2 +
k∑

l=k−1

‖η̃ε,l‖2 + τ
k∑

l=1

‖ξ̃ε,l‖2 + τ
k−1∑
l=2

‖δct η̃ε,l‖2.

By Lemma 3.7 and the discrete Sobolev inequality, we deduce that

ε‖δ+x ũε,1/2‖ � ε‖δ+t f̃ε,0‖+ ε‖δ+t ẽε,0‖ � ετ,

which together with Lemma 3.7 yield that

Ã0 � (τ2 + τεα
∗
)2.

Applying Lemma 3.6, it can be concluded that when 0 < τ ≤ τ2,

Ãk � (h2 + τ2 + τεα
∗
+ ε1+α∗

)2 + τ
k−1∑
i=1

Ãi.

It follows from the discrete Gronwall inequality that

Ãk � (h2 + τ2 + τεα
∗
+ ε1+α∗

)2,

implying that

‖ẽε,k‖+ ‖δ+x ẽε,k‖+ ‖f̃ε,k‖ � h2 + τ2 + τεα
∗
+ ε1+α∗

.

Using assumption (B) and the triangle inequality, we obtain that

‖êε,k‖+ ‖δ+x êε,k‖ � ‖ẽε,k‖+ ‖δ+x ẽε,k‖+ ‖Eε(·, tk)− Ẽε(·, tk)‖H1

� h2 + τ2 + τεα
∗
+ ε,

‖f̂ε,k‖ � ‖f̃ε,k‖+ ‖F ε(·, tk)‖L2 � h2 + τ2 + τεα
∗
+ ε,

which completes the proof of Theorem 3.5. �
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3.4. Proof of Theorem 2.1. Now we have proved the two types of estimates (2.15)

and (2.16) for (Êε,k, F̂ ε,k), which is the solution of the modified finite difference
discretization (3.8) with (2.10)–(2.12). Hence we can get the uniform error bounds

for (Êε,k, F̂ ε,k):

‖êε,k‖+ ‖δ+x êε,k‖+ ‖f̂ε,k‖ � h2 + τ,

which together with the inverse inequality [36] yields

‖Êε,k‖∞ − ‖Eε(·, tk)‖L∞ ≤ ‖êε,k‖∞ � ‖δ+x êε,k‖ � h2 + τ, 0 ≤ k ≤ T

τ
.

Thus there exists h0 > 0 and τ3 > 0 sufficiently small such that when 0 < h ≤ h0

and 0 < τ ≤ τ3,

‖Êε,k‖∞ ≤ 1 + ‖Eε(·, tk)‖∞ ≤ 1 +M0, 0 ≤ k ≤ T

τ
.

Set τ0 = min{τ1, τ2, τ3}, when 0 < h ≤ h0, 0 < τ ≤ τ0, (3.8) collapses to (2.9), i.e.,

(Êε,k, F̂ ε,k) are identical to (Eε,k, F ε,k), which completes the proof. �
Remark 3.8. The error bounds in Theorem 2.1 are still valid in higher dimensions,
e.g., d = 2, 3. The key point is the discrete Sobolev inequality in higher dimensions
as [4, 36]

‖ψh‖∞ ≤ 1

Cd(h)
‖ψh‖H1 , with Cd(h) ∼

⎧⎪⎨⎪⎩
1

|lnh| , d = 2,

h1/2, d = 3,

where ψh is a mesh function over Ω with homogeneous Dirichlet boundary condition.
Thus by requiring an additional condition on the time step τ ,

τ = o(Cd(h)),

the same error bounds can be obtained.

4. Numerical results

In this section, we present numerical results for the KGZ system (2.6) by the
finite difference discretization (2.9) with (2.10)–(2.12). In our experiment, the initial
condition is set as

E0(x) = e−x2

sinx, E1(x) = sech(x2/2) cosx,

ω0(x) = sech(x2) cos(3x), ω1(x) = sech(x2) sin(4x),

and the parameters α and β are chosen as:
Case I. α = 1 and β = 0;
Case II. α = 0 and β = −1.
In practical computation, the truncated domain is set as Ωε =

[
−30− 1

ε , 30 +
1
ε

]
,

which is large enough such that the homogeneous Dirichlet boundary condition
does not introduce significant errors. Similar to the truncation for the Zakharov
system, the bounded computational domain Ωε has to be chosen as ε-dependent
due to the fact that the rapid outgoing waves are at wave speed O

(
1
ε

)
and the

homogeneous Dirichlet boundary condition is taken at the boundary. The compu-
tational ε-dependent domain can be fixed as ε-independent if one applies absorbing
boundary condition (ABC) [17] or transport boundary condition (TBC) [18,19], or
perfected matched layer (PML) [11] for the wave-type equations in (2.6) and (2.2)
during the truncation (cf. [8]).
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Table 1. Spatial errors at time t = 1 for Case II, i.e., α = 0, β = −1.

eε(1) h0 = 0.2 h0/2 h0/2
2 h0/2

3 h0/2
4 h0/2

5

ε = 1 1.57E-2 4.05E-3 1.02E-3 2.56E-4 6.39E-5 1.60E-5
rate - 1.95 1.99 2.00 2.00 2.00

ε = 1/2 1.35E-2 3.48E-3 8.76E-4 2.19E-4 5.49E-5 1.37E-5
rate - 1.95 1.99 2.00 2.00 2.00

ε = 1/22 1.30E-2 3.35E-3 8.44E-4 2.11E-4 5.29E-5 1.32E-5
rate - 1.95 1.99 2.00 2.00 2.00

ε = 1/23 1.32E-2 3.42E-3 8.60E-4 2.15E-4 5.39E-5 1.35E-5
rate - 1.95 1.99 2.00 2.00 2.00

ε = 1/24 1.33E-2 3.43E-3 8.65E-4 2.17E-4 5.42E-5 1.36E-5
rate - 1.95 1.99 2.00 2.00 2.00

ε = 1/25 1.33E-2 3.44E-3 8.66E-4 2.17E-4 5.43E-5 1.36E-5
rate - 1.95 1.99 2.00 2.00 2.00

ε = 1/26 1.33E-2 3.44E-3 8.66E-4 2.17E-4 5.42E-5 1.36E-5
rate - 1.95 1.99 2.00 2.00 2.00

ε = 1/27 1.33E-2 3.44E-3 8.65E-4 2.17E-4 5.42E-5 1.36E-5
rate - 1.95 1.99 2.00 2.00 2.00

ε = 1/28 1.33E-2 3.43E-3 8.65E-4 2.17E-4 5.42E-5 1.36E-5
rate - 1.95 1.99 2.00 2.00 2.00

nε(1) h0 = 0.2 h0/2 h0/2
2 h0/2

3 h0/2
4 h0/2

5

ε = 1 1.91E-2 4.79E-3 1.20E-3 2.99E-4 7.49E-5 1.87E-5
rate - 2.00 2.00 2.00 2.00 2.00

ε = 1/2 1.61E-2 3.98E-3 9.92E-4 2.48E-4 6.20E-5 1.55E-5
rate - 2.02 2.00 2.00 2.00 2.00

ε = 1/22 6.59E-3 1.67E-3 4.18E-4 1.05E-4 2.62E-5 6.56E-6
rate - 1.98 2.00 2.00 2.00 1.99

ε = 1/23 5.30E-3 1.35E-3 3.39E-4 8.49E-5 2.13E-5 5.33E-6
rate - 1.97 1.99 2.00 2.00 2.00

ε = 1/24 5.12E-3 1.30E-3 3.28E-4 8.20E-5 2.05E-5 5.15E-6
rate - 1.97 1.99 2.00 2.00 1.99

ε = 1/25 5.06E-3 1.29E-3 3.23E-4 8.10E-5 2.03E-5 5.09E-6
rate - 1.97 1.99 2.00 2.00 1.99

ε = 1/26 5.03E-3 1.28E-3 3.21E-4 8.05E-5 2.02E-5 5.08E-6
rate - 1.97 1.99 2.00 2.00 1.99

ε = 1/27 5.01E-3 1.28E-3 3.21E-4 8.02E-5 2.01E-5 5.07E-6
rate - 1.97 1.99 2.00 2.00 1.99

ε = 1/28 5.01E-3 1.27E-3 3.20E-4 8.01E-5 2.01E-5 5.07E-6
rate - 1.97 1.99 2.00 1.99 1.99

To quantify the numerical errors, we introduce the error functions as follows,

eε(tk) :=
‖eε,k‖+ ‖δ+x eε,k‖
‖Eε(·, tk)‖H1

, nε(tk) :=
‖nε,k‖

‖Nε(·, tk)‖L2

,

where eε,k = Eε(·, tk) − Eε,k, nε,k = Nε(·, tk) − Nε,k. The “exact” solution is
obtained by the EWI-SP method [4] with very small mesh size h = 1/64 and time
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Table 2. Temporal errors at time t = 1 for Case I, i.e., α = 1, β = 0.

eε(1) τ0 = 0.05 τ0/2 τ0/2
2 τ0/2

3 τ0/2
4 τ0/2

5 τ0/2
6 τ0/2

7

ε = 1 6.34E-3 1.64E-3 4.16E-4 1.05E-4 2.62E-5 6.59E-6 1.67E-6 4.20E-7
rate - 1.95 1.98 1.99 1.99 1.99 1.98 1.99

ε = 1/2 5.19E-3 1.35E-3 3.42E-4 8.61E-5 2.16E-5 5.43E-6 1.37E-6 3.45E-7
rate - 1.95 1.98 1.99 1.99 1.99 1.98 1.99

ε = 1/22 5.17E-3 1.34E-3 3.41E-4 8.58E-5 2.15E-5 5.41E-6 1.37E-6 3.45E-7
rate - 1.95 1.98 1.99 1.99 1.99 1.98 1.99

ε = 1/23 5.17E-3 1.34E-3 3.41E-4 8.58E-5 2.15E-5 5.41E-6 1.37E-6 3.45E-7
rate - 1.95 1.98 1.99 1.99 1.99 1.98 1.99

ε = 1/24 5.16E-3 1.34E-3 3.40E-4 8.56E-5 2.15E-5 5.40E-6 1.37E-6 3.45e-7
rate - 1.95 1.98 1.99 1.99 1.99 1.98 1.99

ε = 1/25 5.14E-3 1.34E-3 3.39E-4 8.55E-5 2.15E-5 5.39E-6 1.36E-6 3.44E-7
rate - 1.94 1.98 1.99 1.99 1.99 1.98 1.98

ε = 1/26 5.13E-3 1.33E-3 3.39E-4 8.54E-5 2.15E-5 5.39E-6 1.36E-6 3.45E-7
rate - 1.95 1.97 1.99 1.99 1.99 1.98 1.98

ε = 1/27 5.00E-3 1.30E-3 3.29E-4 8.32E-5 2.09E-5 5.26E-6 1.33E-6 3.36E-7
rate - 1.95 1.98 1.98 1.99 1.99 1.98 1.98

ε = 1/28 5.01E-3 1.30E-3 3.29E-4 8.29E-5 2.09E-5 5.25E-6 1.33E-6 3.36E-7
rate - 1.95 1.98 1.99 1.99 1.99 1.98 1.98

nε(1) τ0 = 0.05 τ0/2 τ0/2
2 τ0/2

3 τ0/2
4 τ0/2

5 τ0/2
6 τ0/2

7

ε = 1 6.59E-3 1.70E-3 4.29E-4 1.08E-4 2.70E-5 6.78E-6 1.71E-6 4.28E-7
rate - 1.96 1.98 1.99 2.00 2.00 1.99 2.00

ε = 1/2 1.87E-2 4.85E-3 1.23E-3 3.08E-4 7.71E-5 1.93E-5 4.85E-6 1.21E-6
rate - 1.95 1.98 1.99 2.00 2.00 1.99 2.00

ε = 1/22 1.50E-2 4.63E-3 1.24E-3 3.15E-4 7.90E-5 1.98E-5 4.96E-6 1.24E-6
rate - 1.70 1.90 1.98 1.99 2.00 2.00 2.00

ε = 1/23 8.65E-3 3.50E-3 1.44E-3 4.36E-4 1.13E-4 2.83E-5 7.09E-6 1.77E-6
rate - 1.31 1.28 1.73 1.95 1.99 2.00 2.00

ε = 1/24 5.55E-3 1.96E-3 9.14E-4 4.87E-4 1.86E-4 5.02E-5 1.27E-5 3.18E-6
rate - 1.50 1.10 0.91 1.39 1.89 1.99 2.00

ε = 1/25 4.97E-3 1.45E-3 5.53E-4 2.66E-4 1.56E-4 7.76E-5 2.38E-5 6.09E-6
rate - 1.78 1.39 1.06 0.77 1.01 1.70 1.97

ε = 1/26 4.70E-3 1.30E-3 4.38E-4 1.81E-4 8.58E-5 4.86E-5 2.86E-5 1.12E-5
rate - 1.85 1.57 1.27 1.08 0.82 0.76 1.36

ε = 1/27 4.19E-3 1.20E-3 3.57E-4 1.41E-4 6.30E-5 2.96E-5 1.55E-5 9.45E-6
rate - 1.81 1.75 1.34 1.16 1.09 0.93 0.72

ε = 1/28 3.96E-3 1.12E-3 3.28E-4 1.12E-4 4.84E-5 2.26E-5 1.07E-5 5.30E-6
rate - 1.83 1.77 1.55 1.21 1.10 1.08 1.01

step τ = 10−6. The errors are displayed at t = 1. For spatial error analysis, we set
a time step τ = 10−5, such that the temporal error can be neglected; for temporal
error analysis, the mesh size h is set as h = 2.5× 10−4 such that the spatial error
can be ignored.
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Table 3. Temporal errors at time t = 1 for Case II, i.e., α = 0,
β = −1.

eε(1) τ0 = 0.05 τ0/2 τ0/2
2 τ0/2

3 τ0/2
4 τ0/2

5 τ0/2
6 τ0/2

7

ε = 1 6.34E-3 1.64E-3 4.16E-4 1.05E-4 2.62E-5 6.59E-6 1.67E-6 4.20E-7
rate - 1.95 1.98 1.99 1.99 1.99 1.98 1.99

ε = 1/2 5.48E-3 1.42E-3 3.62E-4 9.11E-5 2.29E-5 5.74E-6 1.45E-6 3.65E-7
rate - 1.94 1.98 1.99 1.99 1.99 1.98 1.99

ε = 1/22 5.16E-3 1.34E-3 3.41E-4 8.58E-5 2.16E-5 5.41E-6 1.37E-6 3.42E-7
rate - 1.95 1.98 1.99 1.99 1.99 1.98 1.99

ε = 1/23 5.20E-3 1.35E-3 3.44E-4 8.66E-5 2.18E-5 5.46E-6 1.38E-6 3.47E-7
rate - 1.94 1.98 1.99 1.99 1.99 1.98 1.99

ε = 1/24 5.47E-3 1.42E-3 3.59E-4 9.04E-5 2.27E-5 5.71E-6 1.44E-6 3.63E-7
rate - 1.95 1.98 1.99 1.99 1.99 1.98 1.99

ε = 1/25 5.77E-3 1.63E-3 4.04E-4 1.00E-4 2.51E-5 6.30E-6 1.59E-6 4.01E-7
rate - 1.83 2.01 2.01 2.00 1.99 1.99 1.99

ε = 1/26 5.52E-3 1.98E-3 5.67E-4 1.32E-4 3.15E-5 7.81E-6 1.96E-6 4.93E-7
rate - 1.48 1.80 2.11 2.06 2.01 1.99 1.99

ε = 1/27 5.45E-3 1.92E-3 8.40E-4 2.40E-4 5.20E-5 1.18E-5 2.88E-6 7.26E-7
rate - 1.51 1.19 1.81 2.21 2.13 2.04 1.99

ε = 1/28 5.45E-3 1.90E-3 8.42E-4 4.03E-4 1.13E-4 2.35E-5 5.17E-6 1.24E-6
rate - 1.52 1.17 1.06 1.83 2.27 2.19 2.06

nε(1) τ0 = 0.05 τ0/2 τ0/2
2 τ0/2

3 τ0/2
4 τ0/2

5 τ0/2
6 τ0/2

7

ε = 1 6.59E-3 1.70E-3 4.29E-4 1.08E-4 2.70E-5 6.78E-6 1.71E-6 4.28E-7
rate - 1.96 1.98 1.99 2.00 2.00 1.99 2.00

ε = 1/2 1.33E-2 3.45E-3 8.73E-4 2.19E-4 5.49E-5 1.38E-5 3.46E-6 8.65E-7
rate - 1.95 1.98 1.99 2.00 2.00 1.99 2.00

ε = 1/22 9.61E-3 2.97E-3 7.98E-4 2.03E-4 5.09E-5 1.28E-5 3.20E-6 8.00E-7
rate - 1.70 1.89 1.98 1.99 2.00 2.00 2.00

ε = 1/23 5.55E-3 2.30E-3 9.03E-4 2.77E-4 7.21E-5 1.81E-5 4.54E-6 1.14E-6
rate - 1.27 1.35 1.70 1.94 1.99 2.00 2.00

ε = 1/24 3.92E-3 1.35E-3 6.30E-4 3.13E-4 1.17E-4 3.23E-5 8.18E-6 2.05E-6
rate - 1.54 1.10 1.01 1.43 1.85 1.98 2.00

ε = 1/25 3.91E-3 1.19E-3 4.18E-4 1.89E-4 1.07E-4 4.80E-5 1.53E-5 3.96E-6
rate - 1.71 1.51 1.14 0.82 1.16 1.65 1.95

ε = 1/26 3.53E-3 1.37E-3 4.38E-4 1.49E-4 6.27E-5 3.45E-5 1.84E-5 7.03E-6
rate - 1.37 1.64 1.55 1.25 0.86 0.91 1.39

ε = 1/27 3.31E-3 1.27E-3 5.49E-4 1.78E-4 5.74E-5 2.26E-5 1.11E-5 6.51E-6
rate - 1.38 1.21 1.63 1.63 1.35 1.02 0.77

ε = 1/28 3.18E-3 1.20E-3 5.47E-4 2.52E-4 7.81E-5 2.34E-5 8.60E-6 3.80E-6
rate - 1.41 1.13 1.12 1.69 1.74 1.45 1.18

Table 1 depicts the spatial errors for Case II initial data, which clearly demon-
strates that our numerical method is uniformly second order accurate in h for all
ε ∈ (0, 1]. The result for Case I initial data is similar, which is omitted here for
brevity.
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Tables 2 and 3 present the temporal errors for Cases I and II, respectively, from
which we can conclude that the method is uniformly convergent in time for both
initial data. Specifically, Table 2 shows the method is uniformly second order
accurate for Eε, while for Nε, it is second order in time when τ � ε or ε � τ2 (cf.
upper and lower triangle parts, respectively). There is a resonance regime when
τ ∼ ε where the convergence rate degenerates to the first order, which agrees with
the analysis (2.15)–(2.16). For α = 0, β = −1, the upper and lower triangle parts
of Table 3 suggest that the method is second and first order in time when τ � ε
and ε � τ , respectively. Moreover, the upper triangle parts of Tables 2 and 3 show
the order of the errors at O(τ2/ε) for nε (cf. each column), which confirms our
error analysis in Section 3.

5. Conclusion

We presented a uniformly accurate finite difference method and carried out its
rigorous error bounds for the Klein-Gordon-Zakharov (KGZ) system in d (d =
1, 2, 3) dimensions, which involves a dimensionless parameter ε ∈ (0, 1]. When
0 < ε � 1, i.e., in the subsonic limit regime, the solution of the KGZ system prop-
agates highly oscillatory waves in time and/or rapid outgoing waves in space. Our
method was designed by reformulating the KGZ system into an asymptotic consis-
tent formulation followed by adopting an integral approximation for the oscillating
term. By applying the energy method and the limiting equation, two independent
error bounds were obtained, which depend explicitly on the parameter ε, mesh
size h and time step τ . Thus it can be established that the method is uniformly
convergent for ε ∈ (0, 1] with quadratic and linear convergence in space and time,
respectively. The error bound is confirmed by the numerical results, which also
suggest that our estimates are sharp.
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