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EXPLICIT BOUNDS FOR GENERATORS

OF THE CLASS GROUP

LOÏC GRENIÉ AND GIUSEPPE MOLTENI

Abstract. Assuming Generalized Riemann’s Hypothesis, Bach proved that
the class group C�K of a number field K may be generated using prime ideals
whose norm is bounded by 12 log2 ΔK, and by (4 + o(1)) log2 ΔK asymp-
totically, where ΔK is the absolute value of the discriminant of K. Under
the same assumption, Belabas, Diaz y Diaz and Friedman showed a way to
determine a set of prime ideals that generates C�K and which performs bet-
ter than Bach’s bound in computations, but which is asymptotically worse.
In this paper we show that C�K is generated by prime ideals whose norm is

bounded by the minimum of 4.01 log2 ΔK, 4
(
1 +

(
2πeγ)−NK

)2
log2 ΔK and

4
(
logΔK +log logΔK − (γ+log 2π)NK +1+ (NK +1)

log(7 logΔK)
logΔK

)2
. More-

over, we prove explicit upper bounds for the size of the set determined by

Belabas, Diaz y Diaz and Friedman’s algorithms, confirming that it has size
� (logΔK log logΔK)2. In addition, we propose a different algorithm which
produces a set of generators which satisfies the above mentioned bounds and
in explicit computations turns out to be smaller than log2 ΔK except for 7 out
of the 31292 fields we tested.

1. Introduction

Let K be a number field of degree nK ≥ 2, with r1 (resp. r2) real (resp. pair
of complex) embeddings and denote ΔK the absolute value of its discriminant.
Throughout the paper p will always denote a non-zero prime ideal, ρ a non-trivial
zero of ζK, γ the imaginary part of such a ρ and, since we are assuming Generalized
Riemann’s Hypothesis, ρ = 1

2 + iγ. The Euler–Mascheroni constant will also be
denoted γ, but the context will make it clear.

Buchmann’s algorithm is an efficient method to compute both the class group
C�K and a basis for a maximal lattice of the unity group of K. However, it needs
as input a set of generators for C�K. Minkowski’s bound shows that ideals hav-
ing a norm (essentially) below

√
ΔK may be used, but it works just for a few

fields since the discriminant increases very quickly. Assuming Generalized Rie-
mann’s Hypothesis, Eric Bach proved in [Bac90] that ideals with a norm below

12 log2 ΔK suffice, and that the bound improves up to (4 + o(1)) log2 ΔK as ΔK

diverges, where the function in o(1) is not made explicit in that paper, but has

order at least log−2/3 ΔK. This is a remarkable improvement, but for certain ap-
plications it is still too large. A different method to find a good bound T for
norms of ideal generating C�K has been proposed by Karim Belabas, Francisco
Diaz y Diaz and Eduardo Friedman [BDyDF08]. In all tests their method behaves
very well, producing a good bound T (K) (see Section 3 of [BDyDF08]) which is
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much lower than 4 log2 ΔK. However, the authors prove [BDyDF08, Theorem 4.3]

that T (K) ≥
((

1
4nK

+ o(1)
)
logΔK log logΔK

)2
, and advance the conjecture that

T (K) ∼
(
1
4 logΔK log logΔK

)2
. Thus, its impressive performance is the combined

effect of relatively large/small constants in front of these bounds and of the present
computational power, but which will disappear for large ΔK.

In this paper we first prove in Theorem 3.6 an explicit, easy and better version
of Bach’s (4 + o(1)) log2 ΔK bound, in Corollary 3.7 that 4 log2 ΔK is sufficient
for a wide range of fields, and in Corollary 3.8 that 4.01 log2 ΔK is sufficient for
all fields. Corollary 3.7 also contains an explicit bound showing that the universal
constant 4.01 actually decays exponentially to 4 with the degree of the field.

Second, in Theorem 4.4 we prove that T (K) ≤
( 1+o(1)

4 logΔK log logΔK

)2
, and

that T (K) ≤ 3.9(logΔK log logΔK)2 with only three exceptions which are explicit.
In a private communication K. Belabas told us that he also has a proof for the
first part of this claim. Together with the lower bound in [BDyDF08] it shows in
particular that T (K) � (logΔK log logΔK)2 for fixed nK.

The weight function of [BDyDF08] can be seen as the convolution square of a
characteristic function, i.e., of a one-step function. Using the convolution square of
a two- (resp. three-) steps function, we show in Corollary 5.1 that the bound already
improve to (6.04+ o(1)) log2 ΔK (resp. (4.81+ o(1)) log2 ΔK), where, moreover, in
both cases o(1) < 0 for fields of degree nK ≥ 3. To further improve the result we
propose in Subsections 5.2–5.4 a different algorithm producing a new bound T1(K),
and which is essentially a multistep version of Belabas, Diaz y Diaz and Friedman’s
algorithm, where the number of steps is not set in advance. By design, it performs
better than T (K) and is lower than all the bounds we have proved in the first part
of the paper. In Subsection 5.6 we report the conclusions about extensive tests we
have conducted on a few thousand of pure and biquadratic fields: in all cases the
algorithm produces T1(K) lower than log2 ΔK except for some biquadratic fields

where it is already ≤ 1.004 log2 ΔK.
All “little-o” terms in these formulas are explicit, simple, of order log logΔK

logΔK
, and

with small coefficients.
We have made two sample implementations of our algorithms. The first one is

a script for PARI/GP [PARI15] which can be found at the following address:
http://users.mat.unimi.it/users/molteni/research/generators/bounds.gp.
The other is the branch loic-bnf-optim of the git tree of PARI/GP, available at
http://pari.math.u-bordeaux.fr/git/pari.git.

2. Preliminary

Definition 2.1. Let W be the set of functions F : [0,+∞) → R such that:

• F is continuous;
• ∃ε > 0 such that the function F (x)e(

1
2+ε)x is integrable and of bounded

variation;
• F (0) > 0;
• (F (0)− F (x))/x is of bounded variation.

Then let, for T > 1, W(T ) be the subset of W such that:

• F has support in [0, log T ];
• the Fourier cosine transform of F is non-negative.

http://users.mat.unimi.it/users/molteni/research/generators/bounds.gp
http://pari.math.u-bordeaux.fr/git/pari.git
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Definition 2.2. For any compactly supported function F on [0,∞), we set

I(F ) :=

∫ +∞

0

F (0)− F (x)

2 sinh(x/2)
dx and J(F ) :=

∫ +∞

0

F (x)

2 cosh(x/2)
dx.

Definition 2.3. Let TC(K) be the lowest T such that the set {p : Np ≤ T} generates
C�K.

The main result of [BDyDF08, Th. 2.1] can be reformulated as follows.

Theorem 2.4 (Belabas, Diaz y Diaz, Friedman). Let K be a number field satisfying
the Riemann Hypothesis for all L-functions attached to non-trivial characters of its
ideal class group C�K, and suppose that there exists, for some T > 1, an F ∈ W(T )
such that

(2.1) 2
∑
p

log Np

+∞∑
m=1

F (m logNp)

Npm/2
> F (0)(logΔK − (γ + log 8π)nK)

+ I(F )nK − J(F )r1.

Then TC(K) < T .

Assuming GRH, Weil’s Explicit Formula (see [Lan94, Ch. XVII, Th. 3.1]), as
simplified by Poitou in [Poi77], can be written for F ∈ W as

(2.2) 2
∑
γ

∫ +∞

0

F (x) cos(xγ) dx = 4

∫ +∞

0

F (x) cosh
(x
2

)
dx

−2
∑
p

log Np

+∞∑
m=1

F (m logNp)

Npm/2
+F (0)(logΔK−(γ+log 8π)nK)+I(F )nK−J(F )r1.

Hence (2.1) can be stated as

(2.3) 2

∫ +∞

0

F (x) cosh
(x
2

)
dx >

∑
γ

∫ +∞

0

F (x) cos(xγ) dx.

Let Φ be an even, integrable and compactly supported function, and let F =
Φ ∗ Φ. Then ∫ +∞

0

F (x) cosh
(x
2

)
dx = 2

(∫ +∞

0

Φ(x) cosh
(x
2

)
dx

)2

,∫ +∞

0

F (x) cos(xt) dx = 2
(∫ +∞

0

Φ(x) cos(xt) dx
)2

,

and F satisfies (2.3) and hence (2.1) if and only if

(2.4) 8
(∫ +∞

0

Φ(x) cosh
(x
2

)
dx

)2

>
∑
γ

Φ̂(γ)2,

where we have set Φ̂(t) :=
∫
R
Φ(x)eixt dx = 2

∫ +∞
0

Φ(x) cos(xt) dx.
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3. Bounds for class group generators

Assume T > 1 and let L := log T . Let Φ+ be a real, non-negative, piecewise
continuous function with positively measured support in [0, L], and let

Φ−(x) := Φ+(−x),

Φ◦(x) := Φ+(L/2 + x),

Φ(x) := Φ◦(x) + Φ◦(−x),

F := Φ ∗ Φ.

(3.1)

These choices ensure that F ∈ W(T ).

Proposition 3.1. Assume GRH and let F be as in (3.1). Then (2.1) is satisfied
by F if

(3.2)
√
T ≥

2T
∫ L

0

(
Φ+(x)

)2
dx( ∫ L

0
Φ+(x)ex/2 dx

)2 (logΔK − (γ + log 8π)nK)

−
4T

∑
p,mlog Np

(Φ+∗Φ−)(log Np
m)

Npm/2( ∫ L

0
Φ+(x)ex/2 dx

)2 +
2T I(Φ+ ∗ Φ−)nK( ∫ L

0
Φ+(x)ex/2 dx

)2+2T
∫ L

0
Φ+(x)e−x/2 dx∫ L

0
Φ+(x)ex/2 dx

.

Proof. We have

2

∫ +∞

0

Φ(x) cosh
(x
2

)
dx =

1

T 1/4

∫ L

0

Φ+(x)ex/2 dx+ T 1/4

∫ L

0

Φ+(x)e−x/2 dx.

Hence

8
(∫ +∞

0

Φ(x) cosh
(x
2

)
dx

)2

>
2√
T

(∫ L

0

Φ+(x)ex/2 dx
)2

+ 4

∫ L

0

Φ+(x)ex/2 dx

∫ L

0

Φ+(x)e−x/2 dx.

Moreover,

(3.3) Φ̂(t) = 2Re

∫
R

Φ◦(x)eixt dx = 2Re
[
e−iLt

2 Φ̂+(t)
]
.

Hence

(3.4) |Φ̂(t)|2 ≤ 4
∣∣e−iLt

2 Φ̂+(t)
∣∣2 = 4

∣∣Φ̂+(t)
∣∣2.

We have
∣∣Φ̂+(t)

∣∣2 = Φ̂+(t)Φ̂+(t) = Φ̂+(t)Φ̂−(t) = ̂Φ+ ∗ Φ−(t). Thus to satisfy (2.4)
it is sufficient that

(3.5)
2√
T

(∫ L

0

Φ+(x)ex/2 dx
)2

+ 4

∫ L

0

Φ+(x)ex/2 dx

∫ L

0

Φ+(x)e−x/2 dx

≥
∑
γ

�̂(γ),

where

� := 4Φ+ ∗ Φ−.
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By Weil’s Explicit Formula (2.2),

(3.6)
∑
γ

�̂(γ) ≤ �(0)
(
logΔK − (γ + log 8π)nK

)
− 2

∑
p,m

log Np
�
(
m log Np

)
Npm/2

+ I(�)nK + 4

∫ +∞

0

�(x) cosh
(x
2

)
dx,

where we cancelled the term − J(�)r1 because � ≥ 0. Notice that

�(0) = 4

∫ L

0

(
Φ+(x)

)2
dx(3.7)

and ∫ +∞

0

�(x) cosh
(x
2

)
dx =

1

2

∫
R

�(x)ex/2 dx

= 2

∫ L

0

Φ+(x)ex/2 dx

∫ L

0

Φ+(x)e−x/2 dx.(3.8)

The claim follows combining (3.5), (3.6), (3.7) and (3.8). �

3.1. Upper bound for Te(K). The coefficient of logΔK in Proposition 3.1 is

2T
∫ L

0

(
Φ+(x)

)2
dx( ∫ L

0
Φ+(x)ex/2 dx

)2 .
The Cauchy–Schwarz inequality shows that its minimum value is 2T

T−1 and it is

attained only for Φ+(x) = ex/2 on [0, L]. We are interested in small values for
this coefficient, hence this is the best choice we can make. However, this function
produces in (3.2) an inequality for T that cannot be solved easily and, moreover, this
choice does not give the best possible results for secondary coefficients. To overcome
this problem in the next theorem we consider the functions ex/2χ[L−a,L](x), where
a is a parameter which is fixed in (0, L]. This is a suboptimal choice for the
coefficient of logΔK if a �= L, but every value of a independent of T produces
an inequality which can be solved easily, still having the correct order for the main
term. Furthermore, acting on a we can also minimize the total contribution coming
from the other terms in (3.2). Theorem 3.6 is proved using several values of a, and
would not be accessible using only the conclusions coming from the choice a = L.

Definition 3.2. Assume a ∈ (0, L]. Let Φ+
e (x) := ex/2χ[L−a,L](x) and let Fe be

the F defined in (3.1) when Φ+ = Φ+
e .

Remark 3.3. We recall that Fe is even with support in [−L,L]. Moreover, we find
that for every x ∈ [0, L],

Fe(x) = δ1(x)(2a− L+ x)ex/2
√
T + δ2(x)(L− x)ex/2

√
T

+ 2δ3(x)
(
e−x/2 − ex/2−a

)
T + δ4(x)(2a− L− x)e−x/2

√
T ,

where δ1 := χ[L−2a,L−a), δ2 := χ[L−a,L], δ3 := χ[0,a] and δ4 := χ[0,2a−L].

Definition 3.4. Let Te(K) be the minimal T such that the function Fe satis-
fies (2.1) for some a.
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Note that TC(K) ≤ Te(K) so that we will state most results about Te(K) below
as results on TC(K) as well.

Theorem 3.5. Assume GRH. Fix T0 > 1. We then have

(3.9)
√
Te(K)

≤ max
(√

T0, r(logΔK, nK, T0)−
4

(1− T−1
0 )2

∑
Npm≤T0

( 1

Npm
− 1

T0

)
log Np

)
,

in particular, √
Te(K) ≤ max

(√
T0, r(logΔK, nK, T0)

)
,(3.10)

where

r(L, n, t) := 2

1− t−1

(
L+ log t−

(
γ + log 2π − log t

t− 1
+ log

(
1− t−1

))
n
)
.

Proof. We are assuming Φ+ = Φ+
e for some a ≤ L. In this case we have∫ L

0

Φ+
e (x)e

x/2 dx =
(
1− e−a

)
T =

∫ L

0

(
Φ+

e (x))
2 dx,∫ L

0

Φ+
e (x)e

−x/2 dx = a.

Moreover, for all x ∈ [0, a],

Φ+
e ∗ Φ−

e (x) =
(
e−x/2 − ex/2−a

)
T.

In addition, for all x > a, Φ+
e ∗ Φ−

e (x) = 0. This means that

I(Φ+
e ∗ Φ−

e ) =

∫ +∞

0

Φ+
e ∗ Φ−

e (0)− Φ+
e ∗ Φ−

e (x)

2 sinh(x/2)
dx

= (log 4)
(
1− e−a

)
T + aT −

(
1− e−a

)
log

(
ea − 1

)
T.

We now set a =: log T0 for some T0 > 1. Since we need to have L = log T ≥ a, we
get that (3.2) is satisfied for any T ≥ T0 such that

√
T ≥ 2

1− T−1
0

(
logΔK − 2

1− T−1
0

∑
Npm≤T0

( logNp

Npm
− logNp

T0

)

−
(
γ + log 2π − log T0

T0 − 1
+ log

(
1− T−1

0

))
nK + log T0

)
.

Since the right-hand side does not depend on T , this proves the first claim. The
second is now obvious, because the sum on prime ideals is non-negative. �
3.2. Upper bounds for class group generators. Theorem 3.6 below gives an
upper bound for Te(K), and hence for TC(K). It is essentially the best result we
can deduce from Theorem 3.5 (see the remark immediately following the proof).
The theorem has Corollaries 3.7 and 3.8 as easy consequences.

Theorem 3.6. We have√
TC(K) ≤

√
Te(K)

≤ 2
(
logΔK + log logΔK − (γ + log 2π)nK + 1 + (nK + 1) log(7 logΔK)

logΔK

)
.

Moreover, if logΔK ≥ nK2nK , we have√
TC(K) ≤

√
Te(K) ≤ 2(logΔK + log logΔK − (γ + log 2π)nK + 1).
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Proof. We use (3.10) with T0 = logΔK + 1. We have

1

2
r(L, n,L+ 1) = L+ logL − (γ + log 2π)n+ 1 + (n+ 1)

logL
L − f(L)n+ g(L),

where

f(L) := (γ + log 2π)L−1 − (1 + L−1)2 − L−2 logL,
g(L) := (1 + L−1) log(1 + L−1).

We have f(L) ≥ 0 and g(L)− 2f(L) ≤ 0 for any L ≥ 4. This proves that

(3.11)
1

2
r(logΔK, nK, logΔK + 1)

≤ logΔK + log logΔK − (γ + log 2π)nK + 1 + (nK + 1)
log logΔK

logΔK

for any K such that logΔK ≥ 4. We look under which condition 1
2

√
T0 satisfies

the same bound, i.e., when

(3.12)
1

2

√
logΔK + 1

≤ logΔK + log logΔK − (γ + log 2π)nK + 1 + (nK + 1)
log logΔK

logΔK
.

For n ≥ 2 and L ≥ 1, let

h(L, n) := L+ logL − (γ + log 2π)n+ 1 + (n+ 1)
logL
L − 1

2

√
L+ 1,

so that (3.12) holds true if h(logΔK, nK) ≥ 0. We have ∂h
∂L ≥ 0 if L ≥ 0.2n − 1,

which is true each time L = logΔK and n = nK. This allows us to prove that if
L0 ≥ 0.2n − 1 satisfies h(L0, n) ≥ 0, then h(L, n) ≥ 0 if L ≥ L0. Case b = 2.3 in
Table 3 of [Odl76] shows that logΔK ≥ 2.8nK − 9.6: using this inequality we have
h(logΔK, nK) ≥ 0 if nK ≥ 17. For 2 ≤ nK ≤ 16, we still have h(logΔK, nK) ≥ 0
for logΔK ≥ L0(nK) where L0(nK) is indicated in the table below. The table
also gives the minimum possible logΔK for the given nK, computed either with
“megrez” number field table or with Odlyzko’s Table 3.

nK min logΔK L0(nK) nK min logΔK L0(nK) nK min logΔK L0(nK)
2 1.098 2.697 7 12.125 13.676 12 24.336 25.675
3 3.135 4.576 8 13.972 16.053 13 27.749 28.096
4 4.762 6.728 9 17.118 18.446 14 29.748 30.520
5 7.383 8.995 10 19.060 20.849 15 33.256 32.948
6 9.184 11.319 11 22.359 23.259 16 35.277 35.378

We note that (3.12) holds also for nK = 15. By (3.10), (3.11), and (3.12), the first
claim is proved for nK ≥ 17 or logΔK ≥ max(4,L0(nK)) (in an even stronger form,
because now we have log logΔK instead of log(7 logΔK)).

To complete the proof and to extend the claim to 2 ≤ nK ≤ 16 and logΔK ≤
max(4,L0(nK)) we use a different strategy. Let

�(n, t) :=
1

2
(t1/2 − t−1/2)− log t+

(
γ + log 2π − log t

t− 1
+ log

(
1− t−1

))
n

for n > 0 and t > 1. It is the function such that

r(�(n, t), n, t) =
√
t,
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hence, if logΔK = �(nK, T0), then by (3.10) T0 is an upper bound for Te(K); note
that this corresponds to the case a = L = log T in Theorem 3.5. Observe that � is
increasing as a function of t, and that it diverges to −∞ and to +∞ for t → 1−

and t → +∞, respectively, for every fixed n. As a consequence, for given nK and
logΔK there is a unique T0 such that �(nK, T0) = logΔK, and this T0 is also an
upper bound for Te(K).

Thus, for 2 ≤ nK ≤ 16 (only a finite set of cases) and logΔK ≤ max(4,L0(nK))
(a bounded range for logΔK) we set T0 such that logΔK = �(nK, T0) and we
directly check that

1

2
√
T0

+
( log T0

T0 − 1
−log(1−T−1

0 )
)
nK ≤ 1+log

(�(nK, T0)

T0

)
+(nK+1)

log(7�(nK, T0))

�(nK, T0)

which is equivalent to

1

2

√
T0 ≤ logΔK + log logΔK − (γ + log 2π)nK + 1 + (nK + 1)

log(7 logΔK)

logΔK
.

(Note that now log(7 logΔK) appears, as in the claim.)
For the second claim of the theorem, we use (3.9) still with T0 = logΔK + 1.

We compute a lower bound for the sum of prime ideals choosing two prime ideals
p0 and p1 above, respectively, 2 and 3. We get∑
Npm≤T0

( 1

Npm
− 1

T0

)
log Np ≥

( 1

Np0
− 1

T0

)
log Np0 + δnK,2

( 1

Np1
− 1

T0

)
log Np1,

where δnK,2 is 1 if nK = 2 and 0 otherwise. Note that this holds in any case
because if p0 or p1 does not appear in the original sum, then the chosen lower
bound is negative. In its turn this is

≥ nK(log 2)
( 1

2nK
− 1

T0

)
+ nK(log 3)δnK,2

( 1

3nK
− 1

T0

)
,(3.13)

because the inert case gives the least contribution. Since max(4,L0(nK)) ≤ nK2nK

for all nK ≤ 16, (3.11) holds if logΔK ≥ nK2nK . Hence to prove the second claim
it is sufficient to prove that if logΔK ≥ nK2nK , then

(3.14) (nK + 1)
log logΔK

logΔK

≤ 2nK(log 2)
( 1

2nK
− 1

logΔK + 1

)
+ nK(log 3)δnK,2

( 1

3nK
− 1

logΔK + 1

)
and √

logΔK + 1 ≤ 2(logΔK + log logΔK − (γ + log 2π)nK + 1).

The second statement is elementary and is true for any nK ≥ 2. For (3.14), we
observe that the left-hand side is decreasing in logΔK while the right-hand side
is increasing, hence it is sufficient to verify it with logΔK substituted by nK2nK .
One can see that it is true for nK ≥ 7 and for 2 ≤ nK ≤ 6 and logΔK ≥ L1(nK)
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as indicated in the table:

nK nK2nK L1(nK)
2 8 15.670
3 24 35.173
4 64 78.801
5 160 174.859
6 384 384.395

To fill the gap, we use (3.9), (3.13), and T0 = logΔK + 7. �

Remark. The first claim is somehow the best we can hope from (3.10). Indeed the
optimal T0 for (3.10) is such that

logΔK = T0 − (nK + 1) logT0 +
(
γ + log 2π − 2

log T0

T0 − 1
+ log(1− T−1

0 )
)
nK − 1

for all but a finite number of fields of degree nK ≤ 22. Using this formula, one
checks that the best bound we can get from (3.10) is

2(logΔK + log logΔK − (γ + log 2π)nK + 1 + ε(logΔK)),

where ε(logΔK) ∼ (nK + 1) log logΔK/ logΔK for logΔK → ∞ and fixed nK.

Remark. Using the full strength of (3.9), one can prove that for quadratic fields
the second claim of Theorem 3.6 is true for TC(K) also for logΔK ≤ nK2nK = 8
with only the four exceptions Q[

√
−15], Q[

√
−5], Q[

√
−23] and Q[

√
−6] (for which

TC(K) = 2) and the ten fields of discriminant in [−11, 13] ∪ {−19} (for which the
class group is trivial).

We now prove that, for fixed nK, the absolute upper bound for TC(K)/ log2 ΔK

is near 4 and that the asymptotic limit 4 log2 ΔK is true for a very large set of
fields.

Corollary 3.7. We have

TC(K) ≤ Te(K) ≤ 4
(
1 +

(
2πeγ

)−nK
)2

log2 ΔK.

Moreover,

if logΔK ≤ 1

e

(
2πeγ

)nK
then TC(K) ≤ Te(K) ≤ 4 log2 ΔK.

Notice that 2πeγ > 11.19.

Proof. It is sufficient to prove that Te(K) ≤ 4 log2 ΔK if logΔK ≤ nK2nK , be-
cause the second statement of Theorem 3.6 already proves both statements in the
remaining ranges.

The right-hand side of the first claim of Theorem 3.6 is 2 logΔK+2f(logΔK, nK)
with

f(L, n) := logL+ 1− (γ + log 2π)n+ (n+ 1)
log(7L)

L .

We just need to check that f(logΔK, nK) ≤ 0 if logΔK ≤ nK2nK . As a function

of L ≥ 1, for fixed n ≥ 2, ∂f
∂L = n+1

L
(

1
n+1 − log(7L)−1

L
)
is negative then positive,

hence to check that f is negative, it is sufficient to check its value for the minimum
and the maximum L we are interested in. We have f(n2n, n) < 0 for any n ≥ 2
and f(log 23, n) < 0 for any n ≥ 3. Thus f(logΔK, nK) < 0 for any field of degree
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nK ≥ 3. For quadratic fields, we come back to (3.10) with T0 = 2 logΔK to directly
check that Te(K) ≤ 4 log2 ΔK if logΔK ≤ nK2nK = 8. �

Remark. The upper bound for the quotient Te(K)/ log2 ΔK obviously tends very
fast to 4. For instance, for nK ≥ 10, we have TC(K) ≤ Te(K) ≤ (4 + 2.6 ·
10−10) log2 ΔK, but notice that the second claim in Corollary 3.7 shows that TC(K)
≤ Te(K) ≤ 4 log2 ΔK if ΔK ≤ exp(1010).

For a much tighter range of discriminants one can prove bounds of the form
Te(K) ≤ c log2 ΔK with c < 4. For instance, we have the psychologically important

bound TC(K) ≤ Te(K) ≤ log2 ΔK as soon as

logΔK + 2 log logΔK + 2 + 2(nK + 1)
log(7 logΔK)

logΔK
≤ 2(γ + log 2π)nK.

For a given degree nK ≥ 4, this happens for ΔK lower than a certain limit. As nK

goes to infinity, the limit corresponds to a root-discriminant tending to (2πeγ)2 =
125.23 . . . . There are infinitely many fields satisfying this condition. Indeed, con-
sider the field F = Q[cos(2π/11),

√
2,
√
−23]. Martinet [Mar78] proved that the

Hilbert class field tower of F is infinite because F satisfies Golod–Shafarevich’s
condition. Since nF = 20 and logΔF ≤ 90.6, this shows that there is an infinite
number of fields K such that logΔK ≤ 4.53nK. For one of those fields, we have
TC(K) ≤ Te(K) ≤ log2 ΔK if nK ≥ 47 and the quotient improves when the degree
increases, with lim sup{Te(K)/ log2 ΔK : logΔK ≤ 4.53nK} ≤ 0.88.

As a second example, consider F = Q[x]/(f), where f = x10+223x8+18336x6+
10907521x4 + 930369979x2 + 18559139599. Hajir and Maire [HM01a] proved that
the Hilbert class field tower of F is infinite because F satisfies Golod–Shafarevich’s
condition. Since logΔF ≤ 44.4, this shows that there is an infinite number of fields
K such that logΔK ≤ 4.44nK. For one of those fields, we have TC(K) ≤ Te(K) ≤
log2 ΔK if nK ≥ 34 with lim sup{Te(K)/ log2 ΔK : logΔK ≤ 4.44nK} ≤ 0.84.

As a third example, consider the field F = Q[x]/(f), where f = x12 + 339x10

−19752x8−2188735x6+284236829x4+4401349506x2+15622982921. In [HM01b],
the authors proved that F admits an infinite tower of extensions ramified at most
above a single prime ideal of F of norm 9. Since log(9ΔF )/12 ≤ 4.41, there is an infi-
nite number of fields K such that logΔK ≤ 4.41nK. For one of those fields, we have
TC(K) ≤ Te(K) ≤ log2 ΔK if nK ≥ 32 with lim sup{Te(K)/ log2 ΔK : logΔK ≤
4.41nK} ≤ 0.82.

Assuming GRH, Serre [Ser75] proved that there are only finitely many fields
such that logΔK ≤ cnK for every c < γ + log 8π. Suppose that logΔK ≤
(γ + log 8π)nK, then TC(K) ≤ Te(K) ≤ log2 ΔK if nK ≥ 11. Serre’s result does
not rule out the possibility that there are infinitely many such fields; in this case

lim sup{Te(K)/ log2 ΔK : logΔK ≤ (γ + log 8π)nK} ≤
(

4 log 2
γ+log 8π

)2 ≤ 0.54.

Corollary 3.8. Assume GRH. Then

TC(K) ≤ Te(K) ≤ 4.01 log2 ΔK.

Proof. For nK ≥ 3 or nK = 2 and logΔK ≤ (2πeγ)nK/e, the claim follows from
Corollary 3.7.
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For nK = 2 and logΔK ≥ (2πeγ)nK/e we apply a different argument. Let

fK(n, t) = log t−
(
γ + log 2π − log t

t− 1
+ log

(
1− t−1

))
n

− 2

1− t−1

∑
Npm≤t

( 1

Npm
− 1

t

)
log Np,

so that (3.9) can be written as√
Te(K) ≤ max

(√
T0,

2

1− T−1
0

(logΔK + fK(nK, T0))
)
.

Suppose we have a T0 such that fK(nK, T0) ≤ 0, then we have√
Te(K) ≤ max

(√
T0,

2

1− T−1
0

logΔK

)
,

and hence

Te(K) ≤ 4

(1− T−1
0 )2

log2 ΔK

if logΔK ≥ 1
2 (T

1/2
0 − T

−1/2
0 ). Recalling that nK = 2, we choose T0 = 935: in this

case

fK(2, 935) ≤ 2− 935

467

∑
Npm≤935

( 1

Npm
− 1

935

)
log Np.

The value of the sum on prime ideals depends on K, but it is always larger than
what we get assuming that all primes are inert. This gives

fK(2, 935) ≤ 2− 935

467

∑
p2m≤935

( 1

p2m
− 1

935

)
log(p2) ≤ −0.02

which therefore produces Te(K) ≤ 4.0086 log2 ΔK for logΔK ≥ 15.3. The proof is
complete because (2πeγ)2/e ≥ 46. �

3.3. Lower bound for Te(K).

Proposition 3.9. Assume GRH. Then√
Te(K) ≥ (1 + o(1))

logΔK

nK
.

Proof. Let S(T ) denote the Dirichlet series appearing on the left-hand side of (2.1).

Then, introducing the generalized von Mangoldt function Λ̃K(n) :=
∑

Npm=n log Np

we get

(3.15) S(T ) =
∑
n

2Fe(logn)√
n

Λ̃K(n).

Using Λ̃K(n) ≤ nKΛ(n) in (3.15) and introducing Stieltjes’ integral notation, we
have

S(T )

nK
≤

∫ +∞

2−

2Fe(log x)√
x

dψ(x).
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Let g(x) = 2Fe(log x)√
x

and notice that it is a continuous function which is derivable

except at most in T±1 and (Te−2a)±1 with a derivative which is continuous where
it exists and bounded. Thus, with a partial integration we get:

S(T )

nK
≤ −

∫ +∞

2

g′(x)ψ(x) dx ≤ −
∫ +∞

2

g′(x)x dx+

∫ +∞

2

|g′(x)||ψ(x)− x| dx

=

∫ +∞

2

g(x) dx+

∫ +∞

2

|g′(x)||ψ(x)− x| dx+ 2g(2).

Since under RH |ψ(x) − x| ≤ 2
√
x log2 x for every x ≥ 2 (Schoenfeld proved that

RH implies |ψ(x)−x| ≤ 1
8π

√
x log2 x as soon as x ≥ 74, a direct computation shows

that inequality for the intermediate range x ∈ [2, 74]) we get:

≤
∫ +∞

2

g(x) dx+ 2

∫ +∞

2

|g′(x)|
√
x log2 x dx+ 3Fe(log 2)

= 2

∫ +∞

2

Fe(log x)√
x

dx+ 2

∫ +∞

2

∣∣∣(Fe(log x)√
x

)′∣∣∣√x log2 x dx+ 3Fe(log 2)

= 2

∫ +∞

log 2

Fe(x)e
x/2 dx+

∫ +∞

log 2

|2F ′
e(x)− Fe(x)|x2 dx+ 3Fe(log 2).

We extend the range of the integrals, getting

(3.16)
S(T )

nK
≤ 2

∫ +∞

0

Fe(x)e
x/2 dx+

∫ +∞

0

|2F ′
e(x)− Fe(x)|x2 dx+ 3Fe(log 2).

We notice that

(3.17)

∫ +∞

0

Fe(x)e
x/2 dx ≤

∫
R

Fe(x)e
x/2 dx =

(∫
R

Φe(x)e
x/2 dx

)2

.

We observe that, since Φe ≥ 0, maxFe = Fe(0) and that the non-negative part of
the support of Fe is included in [0, a]∪ [L−2a, L] (the intervals may overlap) hence∫ +∞

0

|Fe(x)|x2 dx =

∫ L

0

Fe(x)x
2 dx ≤ Fe(0)

(∫ a

0

x2 dx+

∫ L

L−2a

x2 dx
)

= Fe(0)
(
2aL2 − 4a2L+ 3a3

)
≤ 2aFe(0)L

2.(3.18)

Moreover, from Remark 3.3, we see that the function is piecewise of the form
(ax+ b)ex/2 +(cx+ d)e−x/2, with a, b, c and d constants, with at most four pieces.
Deriving the expression we find that it can have at most three variations in each
piece. The total variation of Fe on [0, L] is thus at most 12maxFe = 12Fe(0). It
follows that

(3.19)

∫ +∞

0

|F ′
e(x)|x2 dx ≤ 12Fe(0)L

2.

Plugging (3.17), (3.18), and (3.19) into (3.16) we get

S(T )

nK
≤ 2

(∫
R

Φe(x)e
x/2 dx

)2

+ 2(a+ 12)Fe(0)L
2 + 3Fe(0)

= 2
(
e−aT 3/4

∫ a

0

ex dx+ T−1/4

∫ a

0

dx
)2

+ 2(a+ 12)Fe(0)L
2 + 3Fe(0)

= 2
((

1− e−a
)
T 3/4 + aT−1/4

)2

+ 2(a+ 12)Fe(0)L
2 + 3Fe(0)

= 2
(
1−e−a

)2
T 3/2 + 4a

(
1−e−a

)
T 1/2 + a2T−1/2 + 2(a+12)Fe(0)L

2 + 3Fe(0).
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We have J(Fe) ≤ π
2Fe(0) hence in order to satisfy (2.1) we must have

2
(
1− e−a

)2
T 3/2 + 4a

(
1− e−a

)
T 1/2 + a2T−1/2 + 2(a+ 12)Fe(0)L

2 + 3Fe(0)

≥ S(T )

nK
≥ Fe(0)

( logΔK

nK
−
(
γ + log 8π +

π

2

))
which can be simplified to

(1 + o(1))
√
T ≥ Fe(0)

2
(
1− e−a

)2
T

( logΔK

nK
− 2(a+ 12)L2 +O(1)

)
.

Since Fe(0) =
∫
R
(Φe(y))

2 dy ≥ 2
∫ L/2

L/2−a
eL/2+y dy = 2

(
1− e−a

)
T , this requires(

1 + o(1)
)2√

T ≥ 1

1− e−a

( logΔK

nK
− 2(a+ 12)L2 +O(1)

)
.

In the given range for a, we can assume that the right-hand side is positive otherwise
the claim is evident. In that case the minimum for the main term is obviously
a = log T , hence we can assume that

(1 + o(1))
√
T ≥ 1

1− T−1

( logΔK

nK
+O(log3 logΔK)

)
.

The claim follows. �

4. Upper bound for T (K)

Belabas, Diaz y Diaz and Friedman [BDyDF08, Section 3] applied Theorem 2.4
with F (x) = FL(x) := (L−x)χ[−L,L](x) = (Φ∗Φ)(x), where Φ is the characteristic

function of [−L/2, L/2], with L = log T , T > 1. (Actually they chose F = 1
LΦ ∗Φ,

but the difference does not matter since (2.1) is homogeneous). For this weight
function, (2.1) reads

(4.1) 2
∑
p,m

Np
m<T

log Np

Npm/2

(
1− log Npm

L

)

> logΔK − (γ + log 8π)nK +
I(FL)

L
nK − J(FL)

L
r1

with

I(FL) =
π2

2
− 4 dilog

(
1√
T

)
+ dilog

(
1

T

)
≤ π2

2

and

J(FL) =
πL

2
− 4C + 4 Imdilog

(
i√
T

)
≥ πL

2
− 4C,

where dilog x = −
∫ x

0
log(1−u)

u du and C =
∑

k≥0(−1)k(2k + 1)−2 = 0.9159 . . . is
Catalan’s constant. Note that Belabas, Diaz y Diaz and Friedman use the es-
timated values for I(FL) and J(FL) instead of their exact values: this is a le-
gitimate simplification which affects the conclusions only by very small quanti-
ties. In this way they produce a quick algorithm giving a bound T (K) for TC(K)
which, in explicit computations, is very small. Unfortunately, they also prove
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that it is ≥ (( 1
4nK

+ o(1)) logΔK log logΔK)2, and that therefore it is asymp-
totically worse than Bach’s bound. In the same paper they advance the conjec-
ture that (logΔK log logΔK)2 is the correct size of T (K), guessing that T (K) =
(( 14+o(1)) logΔK log logΔK)2. In this section we prove for T (K) the corresponding
upper bound and some explicit bounds.

4.1. Estimation of the number of zeros. We first prove an estimation of the
number of zeros of Dedekind’s zeta function that we will use to prove the main
result of this section.

Definition 4.1. For t ∈ R, let

NK(t) := #{ρ : |γ| ≤ t},
where the number is intended including the multiplicity.

Trudgian [Tru15] gives an estimation of NK(t) for t ≥ 1. The bound depends on
a parameter η which we take equal to 0.05. In that case the formula is:

∀t ≥ 1, NK(t) =
t

π
log

(
ΔK

( t

2πe

)nK
)
+RK(t),

with

|RK(t)| ≤ 0.247(logΔK + nK log t) + 8.851nK + 3.024.

For t ∈ (0, 1], we use a different strategy.

Proposition 4.2. Assume GRH. We have

∀t ∈ (0, 1], NK(t) ≤ 0.637t
(
logΔK − 2.45nK + S

(3.03
t

))
,

where

S(U) := 960

(
(U − 4)e

U
4 + (U + 4)e−

U
4

)2
U5

.

Proof. We use an analog of [Oma00, Proposition 1], but with a different weight:
the function F := 30φ ∗ φ with φ(x) :=

(
1
4 − x2

)
χ[− 1

2 ,
1
2 ]
(x). We then have

F (x) =

{
−|x|5 + 5|x|3 − 5x2 + 1 if |x| ≤ 1,
0 if 1 < |x|,

and

F̂ (t) = 30
(
φ̂(t)

)2
= 120

(
2 sin

(
t
2

)
− t cos

(
t
2

))2
t6

.

Observe that F̂ is decreasing on [0, 8.98]. Consider, for U > 0,

FU (x) := F
( x

U

)
.

We then have

F̂U (t) = UF̂ (Ut) = 120U

(
2 sin

(
Ut
2

)
− Ut cos

(
Ut
2

))2
(Ut)6

.

Using Weil’s Explicit Formula (2.2) we have

(4.2) U
∑
γ

F̂ (Uγ) = 4

∫ +∞

0

FU (x) cosh
(x
2

)
dx− 2

∑
p,m

log Np

Np
m
2

FU (m logNp)

+ logΔK − (γ + log 8π)nK + I(FU )nK − J(FU )r1.
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We have

4

∫ +∞

0

FU (x) cosh
(x
2

)
dx = 4

∫ +∞

0

F
( x

U

)
cosh

(x
2

)
dx

= 4U

∫ 1

0

(1− 5x2 + 5x3 − x5) cosh
(Ux

2

)
dx

= 960

(
(U − 4)e

U
4 + (U + 4)e−

U
4

)2
U5

= S(U).

Moreover,

I(FU ) =

∫ +∞

0

1− FU (x)

2 sinh(x/2)
dx = U

∫ +∞

0

(1− F (x))
e−Ux/2

1− e−Ux
dx.

Integrating by parts, which is possible because F is C2, it becomes

= 5

∫ 1

0

(2x− 3x2 + x4) log
(1 + e−Ux/2

1− e−Ux/2

)
dx

from which we readily see that I(FU ) is decreasing. Removing the positive terms∑
p,m and J(FU )r1 from (4.2), we get

∀U > 0, U
∑
γ

F̂ (Uγ) ≤ logΔK − (γ + log 8π − I(FU ))nK + S(U).

Let t ∈ (0, 1] and c be such that 0 < c ≤ 8.98, then setting U = c
t and using

I(Fc/t) ≤ I(Fc) we have∑
γ

F̂
(cγ

t

)
≤ t

c

(
logΔK − (γ + log 8π − I(Fc))nK + S

(c
t

))
and

F̂ (c)NK(t) ≤
∑
|γ|≤t

F̂
(cγ

t

)
≤

∑
γ

F̂
(cγ

t

)
so that for all t ∈ (0, 1], and all c ∈ (0, 8.98] we have

NK(t) ≤ c5t

120(2 sin(c/2)− c cos(c/2))2

(
logΔK −

(
γ + log 8π − I(Fc)

)
nK + S

(c
t

))
.

The value of c minimizing the coefficient of t logΔK is 3.051 . . . . The claim follows
setting c = 3.03. �

Definition 4.3. Let MK(t) be the function

MK(t) :=

⎧⎪⎪⎨⎪⎪⎩
0.637t

(
logΔK − 2.45nK + S

(
3.03
t

))
if 0 < t < 1,

t
π log

(
ΔK

(
t

2πe

)nK
)
+ 0.247(logΔK + nK log t)

+8.851nK + 3.024
if 1 ≤ t.

Recalling the previous proposition we thus have

∀t > 0, NK(t) ≤ MK(t).
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4.2. The bound. Now we are in position to prove the announced upper bounds
for T (K).

Theorem 4.4. Assume GRH. We have for any fixed nK,

lim sup
ΔK→∞

T (K)(
logΔK log logΔK

)2 ≤ 1

16
.

Moreover, for any field K �∈
{
Q[

√
−1],Q[

√
−3],Q[

√
5]
}
we have

T (K) ≤ 3.9
(
logΔK log logΔK

)2
.

Remark. Computing T (K) for the whole “megrez” number field table [megrez08],
we find that the quotient T (K)/(logΔK log logΔK)2 is mostly ≤ 0.27 for them. In
fact, apart from the fields appearing as exceptions in the theorem and for which the
quotient is ≥ 10, there are only six more fields for which it is ≥ 1: the quadratic
fields of discriminant in {−11,−8,−7, 8, 12, 13}.

Proof. Assume T > e, L = log T and F := FL = Φ ∗ Φ with Φ := χ[−L/2,L/2].
Then (2.4) becomes

4
(√

T − 2 +
1√
T

)
≥

∑
γ

1− cos(Lγ)

γ2
,

but to estimate T (K) we have to add the function

G(T ) =
(
4 dilog

( 1√
T

)
− dilog

( 1

T

))
nK + 4 Imdilog

( i√
T

)
r1

to the right-hand side, as a consequence of the approximations used in [BDyDF08]
for I(FL) and J(FL). Thus, introducing f(t) := 1−cos t

t2 , the condition becomes

(4.3) 4
(√

T − 2 +
1√
T

)
≥ L2

∑
γ

f(Lγ) +G(T ),

and we need an upper bound for the sum appearing on the right-hand side. The
function G(T ) may be easily estimated for T ≥ e, as

(4.4) G(T ) ≤ 8nK√
T

∞∑
k=0

T−2k

(4k + 1)2
≤ 8.05nK√

T
.

The main contribution to the sum on zeros comes from those which are close to
0, the remaining ones being easily and quite well estimated via the partial sum-
mation formula. Thus, we consider first the range |t| ≤ 1. The best absolute
bound for f(Lt) in this range is 1

2L
2, and if we bound the sum

∑
|γ|≤ f(Lγ) sim-

ply as supt∈[0,1] |f(Lt)|NK(1), then we get a term of size 1
2L

2 logΔK. With this

bound (4.3) would become

(4 + o(1))
√
T >

(1
2
+ o(1)

)
L2 logΔK

forcing T to ≥ ( 14 + o(1))(logΔK)2(log logΔK)4, which is much larger than what
we want to prove.

We overcome this problem using the conclusion of Proposition 4.2 to bound
NK(t) for t ≤ 1, but in itself this is not yet sufficient since that bound diverges as
t goes to 0. Hence, for very small γ we apply a more involved argument. In a way
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similar to the proof of Proposition 4.2 but using F := Φ ∗ Φ with Φ := χ[−1/2,1/2],
we have,

∀U > 0, 2U
∑
γ

f(Uγ) ≤ logΔK − (γ + log 8π − I(U))nK +
8

U

(
eU/4 − e−U/4

)2
,

where I(U) := I(FU ) =
1
U

(
π2

2 + 4dilog(e−U/2)− dilog(e−U )
)
. Hence

(4.5) ∀U ≥ 3.545, 2U
∑
γ

f(Uγ) ≤ logΔK − 2.6016nK +
8

U
e

U
2 .

Setting U = L, this bound gives immediately a bound for L2
∑

γ f(Lγ) of the right

order 1
2L logΔK for the part depending on the discriminant. Unfortunately, it also

contains the term 4e
L
2 = 4

√
T which makes the bound completely useless when

inserted in (4.3). As a consequence we have to modify a bit this approach, and we
use (4.5) with U := L− 2 logL. In fact, we notice that for all t ≥ 0, f ′(t) ≤ 0.014.
This means that

(4.6) ∀t ≥ 0, f(Lt) ≤ f((L− 2 logL)t) + 0.028t logL.

Below ג :=
(
0.014L2 logL

)−1/3
we bound f(Lt) using (4.6) otherwise we use the

trivial bound f(Lt) ≤ 2
(Lt)2 . We thus define

∀t ≥ 0, g(t) :=

{
0.028tL2 logL if 0 ≤ t ≤ ,ג
2
t2 if ג < t.

Note that we have chosen ג in such a way that g is continuous. With this definition
of g, we thus have L2f(Lt) ≤ L2f((L− 2 logL)t)χ[0,ג](t) + g(t).

Since we use (4.5) with U = L−2 logL, we need that L−2 logL ≥ 3.545 so that
we suppose T ≥ 2000. This, in turn, means that ג ≤ 1. In this way we get

(4.7) L2
∑
γ

f(Lγ) ≤ L2
∑
|γ|≤ג

f((L− 2 logL)γ) +
∑
γ

g(γ).

By (4.5), for the first part we have

(4.8) L2
∑
|γ|≤ג

f((L− 2 logL)γ)

≤ L2

2(L− 2 logL)

(
logΔK − 2.6016nK +

8
√
T

L(L− 2 logL)

)
.

Notice that in this way the term containing
√
T is actually O(

√
T/ log T ) and does

not interfere any more.
We now estimate the second part of (4.7). We have∑

γ

g(γ) =
∑
|γ|≤ג

g(γ) +
∑
|γ|>ג

g(γ) ≤ g(ג)NK(ג) +

∫ +∞

+ג

g(t) dNK(t)

= −
∫ +∞

ג

g′(t)NK(t) dt.
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Since g′ is non-positive on (∞,ג] we can estimate NK by MK, getting

≤ −
∫ +∞

ג

g′(t)MK(t) dt = −
∫ 1

ג

g′(t)MK(t) dt−
∫ +∞

1

g′(t)MK(t) dt.

The first integral can be estimated by noticing that S is increasing so that MK(t) ≤
t
ג
MK(ג) in ,ג] 1]. The second integral can be computed. In this way we have

∑
γ

g(γ) ≤ 2.55
(
logΔK−2.45nK+S

(3.03
ג

))∫ 1

ג

dt

t2
+ g(1)MK(1) +

∫ +∞

1

g(t)F ′
K(t) dt

= 2.55
(
logΔK − 2.45nK + S

(3.03
ג

))(1
ג
− 1

)
+

2

π
(logΔK − nK log(2πe)) + 2 · 0.247 logΔK + 2(8.851nK + 3.024)

+ 2

∫ +∞

1

( 1

π

(
logΔK + nK log

( t

2π

))
+

0.247nK

t

) dt

t2

= 2.55
(
logΔK − 2.45nK + S

(3.03
ג

))(1
ג
− 1

)
(4.9)

+
4

π
(logΔK − nK log 2π) + 0.247(2 logΔK + nK)

+ 2(8.851nK + 3.024).

Inserting (4.8) and (4.9) in (4.7) we finally obtain

L2
∑
γ

f(Lγ)

≤ L2

2(L− 2 logL)

(
logΔK − 2.6016nK +

8
√
T

L(L− 2 logL)

)
+ 2.55

[
logΔK−2.45nK+S

(
3.03

(
0.014L2 logL

)1/3)][(
0.014L2 logL

)1/3−1
]

+
4

π
(logΔK − nK log 2π) + 0.247(2 logΔK + nK) + 2(8.851nK + 3.024)

≤
( L2

2(L− 2 logL)
+ 0.62

(
L2 logL

)1/3 − 0.78
)
logΔK +

4L

(L− 2 logL)2

√
T

+
(
− 1.3008L2

L− 2 logL
− 1.5057

(
L2 logL

)1/3
+ 21.857

)
nK

+ 2.55S
(
3.03

(
0.014L2 logL

)1/3)((
0.014L2 logL

)1/3 − 1
)
+ 6.05.

We are assuming T ≥ 2000, thus the coefficient of nK is smaller than 3.17 − 1.3L
and we get

(4.10) L2
∑
γ

f(Lγ)

≤
( L2

2(L−2 logL)
+ 0.62

(
L2 logL

) 1
3 − 0.78

)
logΔK +

4L

(L−2 logL)2

√
T

+2.55S
(
3.03

(
0.014L2 logL

) 1
3

)((
0.014L2 logL

)1/3−1
)
+(3.17−1.3L)nK+6.05.
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We can now deal with the first part of the proposition, that is,

lim sup
ΔK→∞

T (K)(
logΔK log logΔK

)2 ≤ 1

16

inserting (4.10) in (4.3), with the bound (4.4). Obviously, T diverges as ΔK goes
to infinity; in particular, the restriction T ≥ 2000 does not matter. Moreover, we
observe that the second term in the second line of (4.10) is o(log T ) logΔK and

that the third line is O(
√
T/ log T ), hence the first claim is proved.

We now study the second part of the proposition, which means the claimed
inequality

T (K) ≤ 3.9
(
logΔK log logΔK

)2
.

We note that, to have T < 2000 in (4.3) with (4.4) and (4.10), we need logΔK <
5.15 + 0.63nK. According to Table 3 in [Odl76] (entry b = 1.3), this may happen
only if nK ≤ 5 and also in this case, only when ΔK ≤ 607 (resp. 1141, 2143, 4023)
for fields of degree 2 (resp. 3, 4, 5).

For fields of degree nK ≥ 6 and ΔK ≥ 1.7 · 105, by elementary arguments one
sees from (4.3), (4.4), and (4.10) that

T (K) ≤ 3.6
(
logΔK log logΔK

)2
.

According to Table 3 in [Odl76], this covers in particular all fields with degree
nK ≥ 7.

For fields of degree nK ≤ 5, we see that

(4.11) T (K) ≤ 3.9
(
logΔK log logΔK

)2
as soon as ΔK ≥ 3 · 106 for quadratic fields, or ΔK ≥ 106 for 3 ≤ nK ≤ 5. There
remains a finite number of fields of degree 2 ≤ nK ≤ 6. All those with nK ≥
3 appear in “megrez” number field table [megrez08] and for all fields, including
the quadratic ones, we use the algorithm indicated in [BDyDF08] as implemented

in [PARI15]. For K ∈
{
Q[

√
−3],Q[

√
−1]

}
we find T (K) = 5 and for K = Q[

√
5],

T (K) = 7. All other fields satisfy (4.11). �

5. Multi-step

5.1. Bounds for two- and three-steps. The original choice F = Φ ∗ Φ with Φ
the characteristic function of [−L/2, L/2] is of the type considered in (3.1) with
Φ+(x) = χ[0,L](x), i.e., a function assuming only one value in [0, L]. We call this
choice the one-step case. The following corollary shows that the performance of
the algorithm significantly improves when Φ+(x) is allowed to assume two or three
values in the [0, L] interval, as long as it is zero when x is close to L/2 (so that
Φ(x) = 0 if x is close to 0). In particular, the extra factor log logΔK disappears.
We call these choices two- and three-steps.

Corollary 5.1. Let Φ+(x) = bχ[L−2a,L](x)+χ[L−a,L](x) and define F as in (3.1).
Denote, respectively, Tc2(K) (“two steps”) and Tc3(K) (“three steps”) the lowest T
such that (2.1) is satisfied by such an F , with, respectively, b = 0 and b �= 0. We
have √

Tc2(K) ≤ max
(
2.456 logΔK − 5.623nK + 14,

√
13
)
,
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where the result is obtained with a = 2.5, and√
Tc3(K) ≤ max

(
2.193 logΔK − 6.19nK + 16,

√
32
)
,

which is obtained with a = 1.722 and b = e−a/2

1−e−a/2 .

Proof. The claim is proved applying Proposition 3.1 with Φ+(x) = bχ[L−2a,L](x)+

χ[L−a,L](x). Conditions
√
Tc2 ≥

√
13 and

√
Tc3 ≥

√
32 come from the need to

ensure that the support of Φ+ be in [0, L], so that we need to assume L > a for the
two-steps and L > 2a for the three-steps, respectively. �

5.2. The algorithm. Our aim is to find a good T for the number field K as fast as
possible exploiting the bilinearity of the convolution product. We introduce some
definitions to make the discussion easier.

Definition 5.2. Let S be the real vector space of even and compactly supported
step functions and, for T > 1, let S(T ) be the subspace of S of functions supported
in [−L/2, L/2], with L = log T .

Definition 5.3. For any integer N ≥ 1 and positive real δ we define the subspace
Sd(N, δ) of S(e2Nδ) made of functions which are constant for all k ∈ N on [kδ, (k+
1)δ).

The elements of Sd(N, δ) are thus step functions with fixed step width δ. If
N ≥ 1, δ > 0 and T = e2Nδ we have

Sd(N, δ) ⊂ S(T ) ⊂ S,(5.1a)

∀Φ ∈ S(T ), Φ ∗ Φ ∈ W(T ),(5.1b)

Sd(N, δ) ⊂ Sd(N + 1, δ),(5.1c)

∀k ≥ 1, Sd

(
kN,

δ

k

)
⊆ Sd(N, δ).(5.1d)

If, for some T > 1, Φ ∈ S(T ) and F = Φ ∗ Φ satisfies (2.1) then, according to
Theorem 2.4, TC(K) < T . This leads us to define the linear form �K on

⋃
T>1 W(T )

by

�K(F ) = −2
∑
p

log Np

+∞∑
m=1

F (m logNp)

Npm/2
+ F (0)(logΔK − (γ + log 8π)nK)

+ I(F )nK − J(F )r1

and the quadratic form qK on S by qK(Φ) = �K(Φ ∗ Φ). From Theorem 2.4 we
deduce the following consequence.

Corollary 5.4. Let K be a number field satisfying GRH and T > 1. If the restric-
tion of qK to S(T ) has a negative eigenvalue then TC(K) < T .

Definition 5.5. A bound for K is an L = log T with T as in Theorem 2.4.

Note that qK is a continuous function as a function from (S(T ), ‖.‖1) to R.
Therefore if L is a bound for K then there exists an L′ < L such that L′ is a bound
for K. Note also that, in terms of T , only the norms of prime ideals are relevant,
which means that we do not need the smallest possible T to get the best result.
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Remark 5.6. If T > 1 and Φ ∈ S(T ), then for any ε > 0 there exists N ≥ 1, δ > 0
and Φδ ∈ Sd(N, δ) such that ‖Φ ∗ Φ− Φδ ∗ Φδ‖∞ ≤ ε and e2Nδ ≤ T . Hence we do
not loose anything in terms of bounds for K if we consider only the subspaces of
the form Sd(N, δ).

As we will see later, we can compute qK(Φ) for a generic Φ ∈ S(T ) combining
its values for Φ = χ[−L/2,L/2] at different L’s. Thus, let GRHcheck(K, L) be the
function that returns the right-hand side of (4.1) minus its left-hand side (without
the approximations for I(FL) and J(FL)), and let BDyDF(K) be the function which
implements the algorithm of [BDyDF08, Section 3]. The computation of BDyDF(K)
is very fast because the only arithmetic information we need on K � Q[x]/(P ) is
the splitting information for primes p < T and is determined easily for nearly all p.
Indeed, if p does not divide the index of Z[x]/(P ) in OK, then the splitting of p in
K is determined by the factorization of P mod p. We can also store such splitting
information for all p that we consider and do not recompute it each time we test
whether a given L is a bound for K.

We denote qK,N,δ the restriction of qK to Sd(N, δ). According to Corollary 5.4,
if qK,N,δ has a negative eigenvalue, then 2Nδ is a bound for K. This justifies the
following definition.

Definition 5.7. The pair (N, δ) is K-good when qK,N,δ has a negative eigenvalue.

We can reinterpret Functions GRHcheck and BDyDF saying that if GRHcheck(K, 2δ)
is negative, then (1, δ) is K-good and that

(
1, 1

2 log BDyDF(K)
)
is K-good.

The fundamental step for our algorithm is the following: given δ > 0 we look
for the smallest N such that (N, δ) is K-good. Looking for such an N can be done
fairly easily with this setup. For any i ≥ 1, let Φi be the characteristic function
of (−iδ, iδ). Then (Φi)1≤i≤N is a basis of Sd(N, δ). We have Φi ∗ Φi = F2iδ =
(2iδ − |x|)χ[−2iδ,2iδ](x). We observe that

Φi ∗ Φj = F(i+j)δ − F|i−j|δ .

This means that the matrix AN of qK,N,δ can be computed by computing only the
values of �K(Fiδ) for 1 ≤ i ≤ 2N and subtracting those values.

We then stop when the determinant of AN is negative or when 2Nδ ≥ BDyDF(K).
This does not guarantee that we stop as soon as there is a negative eigenvalue.
Indeed, consider the following sequence of signatures:

(0, p, 0) → (1, p, 0) → (1, p, 1) → (0, p+ 1, 2) → · · · ;

here a signature is (z, p,m), where z is the dimension of the kernel and p (resp. m)
the dimension of a maximal subspace where qK is positive (resp. negative) definite.
We should have stopped when the signature was (1, p, 1), but the determinant was
zero there. Our algorithm will stop as soon as there is an odd number of negative
eigenvalues (and no zero) or we go above BDyDF(K). Such an unfavorable sequence
of signatures is, however, very unlikely and does not happen in practice.

The corresponding algorithm is presented in Function NDelta. We have added
a limit Nmax for N which is not needed right now but will be used later. Note that
(Φi) is a basis adapted to the inclusion (5.1c) so that we only need to compute the
edges of the matrix AN at each step. The test detA < 0 in line 13 can be efficiently
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Input: a number field K
Input: a positive real δ
Input: a positive integer Nmax

Output: an N � Nmax such that (N, δ) is K-good or 0
1 tab ← (2Nmax + 1)-dimensional array;

2 tab[0] ← 0;

3 A ← Nmax ×Nmax identity matrix;

4 N ← 0;

5 while N < Nmax do
6 N ← N + 1;

7 tab[2N − 1] ← (2N − 1)GRHcheck(K, (2N − 1)δ);

8 tab[2N ] ← 2NGRHcheck(K, 2Nδ);

9 for i ← 1 to N do
10 A[N, i] ← tab[N + i]− tab[N − i];

11 A[i, N ] ← A[N, i];

12 end

13 if detA < 0 then
14 return N ;

15 end

16 end

17 return 0;
Function NDelta(K,δ,Nmax)

implemented using Cholesky LDL∗ decomposition because it is incremental; more-
over, if the last coefficient of D is negative, the last line of L−1 is a vector v such
that vAtv < 0 so that we can check the result.

One way to use this function is to compute T = BDyDF(K) and for some Nmax ≥
2, let δ = L

2Nmax
and N = NDelta(K, δ, Nmax). Using the inclusion (5.1d), we see

that (N, δ) is K-good and that N ≤ Nmax, so that we have improved the bound.

5.3. Adaptive steps. Unfortunately, Function NDelta is not very efficient mostly
for two reasons. To explain them and to improve the function we introduce some
extra notations.

For any δ > 0, let Nδ be the minimal N such that (N, δ) is K-good. Observe
that Function NDelta computes Nδ, as long as Nδ ≤ Nmax and no zero eigenvalue
prevents success. Obviously, using (5.1c), we see that for any N ≥ Nδ, (N, δ) is K-
good. We have observed numerically that the sequence NδN is roughly decreasing,
i.e., for most values of N we have NδN ≥ (N + 1)δN+1.

For any N ≥ 1, let δN be the infimum of the δ’s such that (N, δ) is K-good.
It is not necessarily true that if δ ≥ δN , then (N, δ) is K-good, however, we have
never found a counterexample. The function δ �→ δNδ is piecewise linear with
discontinuities at points where Nδ changes; the function is increasing in the linear
pieces and decreasing at the discontinuities. This means that if we take 0 < δ2 < δ1
but we have Nδ2 > Nδ1 , then we may have δ2Nδ2 > δ1Nδ1 so the bound we get for
δ2 is not necessarily as good as the one for δ1.

The resolution of Function NDelta is not very good: going from N − 1 to N
the bound for the norm of the prime ideals is multiplied by e2δ. This is the first
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reason reducing the efficiency of the function. The second one is that if Nmax is

above 20 or so, the number δ = log BDyDF(K)
2Nmax

has no specific reason to be near δNδ
;

as discussed above, this means that we can get a better bound for K by choosing
δ to be just above either δNδ

or δ1+Nδ
. Both reasons derive from the same facts

and give a bound for K that can be overestimated by at most 2δ for the considered
N = NDelta(K, δ, Nmax).

To improve the result, we can use once again inclusion (5.1d) and determine a
good approximation of δN for N = 2n. We determine first by dichotomy a δ0 such
that (N0, δ0) is K-good for some N0 ≥ 1. For any k ≥ 0, we take Nk+1 = 2Nk and
determine by dichotomy a δk+1 such that (Nk+1, δk+1) is K-good; we already know

that δk
2 is an upper bound for δk+1 and we can either use 0 as a lower bound or try

to find a lower bound not too far from the upper bound because the upper bound
is probably not too bad. The algorithm is described in Function Bound. It uses a
subfunction OptimalT(K, N, T�, Th) which returns the smallest integer T ∈ [T�, Th]
such that NDelta(K, L/(2N), N) > 0. The algorithm does not return a bound
below those proved in Theorem 3.6 and Corollary 3.8.

5.4. Further refinements. To improve the speed of the algorithm, we decided to
make the dichotomy in OptimalT(K, N, T�, Th), not on all value of T but only on
the norms of the prime ideals in [T�, Th].

To reduce the time used to compute the determinants, we tried to use steps of
width 4δ in [−L/2, L/2] and of width 2δ in the rest of [−3L/4, 3L/4], to halve the
dimension of Sd(N, δ). It worked in the sense that we found substantially the same
T faster. However, we decided that the total time of the algorithm is not high
enough to justify the increase in code complexity.

Input: a number field K
Output: a bound for the norm of a system of generators of C�K

1 if logΔK < nK2nK then

2 T0 ← 4
(
logΔK + log logΔK − (γ+ log 2π)nK+1+(nK+1) log(7 logΔK)

logΔK

)2

;

3 else
4 T0 ← 4(logΔK + log logΔK − (γ + log 2π)nK + 1)2;

5 end

6 T0 ← min
(
T0, 4.01 log

2 ΔK

)
;

7 N ← 8; δ ← 0.0625;

8 while NDelta(K, δ, N) = 0 do
9 δ ← δ + 0.0625;

10 end

11 Th ← OptimalT(K, N, e2N (δ−0.0625), e2N δ);

12 T ← Th + 1;

13 while Th < T ||T > T0 do
14 T ← Th; N ← 2N ;

15 Th ← OptimalT(K, N, 1, Th);

16 end

17 return T ;
Function Bound(K)
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5.5. Theoretical performance. We denote T1(K) the result of Function Bound.
The algorithm reaches bounds of the same quality as those of Te(K).

Corollary 5.8. Assume GRH. Then Function Bound terminates. Moreover, we
have√

T1(K) ≤ 2 logΔK + 2 log logΔK + 2− 2(γ + log 2π)nK + 2(nK + 1) log(7 logΔK)
logΔK

,√
T1(K) ≤ 2 logΔK + 2 log logΔK + 2− 2(γ + log 2π)nK if logΔK ≥ nK2nK ,

T1(K) ≤ 4
(
1 +

(
2πeγ

)−nK
)2

log2 ΔK,

T1(K) ≤ 4 log2 ΔK if logΔK ≤ 1

e

(
2πeγ

)nK ,

T1(K) ≤ 4.01 log2 ΔK.

Proof. Consider one of the bounds of Theorem 3.6 or of Corollary 3.8. It is associ-
ated to a certain Fe = Φe ∗Φe with a certain a = log T0 and T given by the bound.
As in Remark 5.6, For any ε > 0, there exists a step function Φ with support
in [−L/2, L/2] and 2N steps, for N large enough, such that ‖F − Φ ∗ Φ‖∞ < ε.
Since the inequality in (2.1) is strict, we can take ε small enough so that Φ ∗ Φ
satisfies (2.1). Hence, for N large enough, the algorithm will find a negative eigen-
value in Sd(2

N , 2−N−1L) and hence it will terminate. The bound T that it gives
obviously satisfies the first two and last inequality of the statement of the corollary.
Since the intermediate inequalities are consequences of the first two, T will also
satisfy the intermediate inequalities. �

5.6. Effective performance.

5.6.1. Various fields. We tested the algorithm on several fields. First let K =
Q[x]/(P ), where

P = x3 + 559752270111028720x+ 55137512477462689.

The polynomial P has been chosen so that for all primes 2 ≤ p ≤ 53 there are two
prime ideals of norms p and p2. This ensures that there are lots of small norms of
prime ideals. We have T (K) = 19162. There are 2148 non-zero prime ideals with
norms up to T (K). We found that T1(K) = 11071 and that there are 1343 non-zero
prime ideals of norms up to T1(K).

We tested also the algorithm on the set of 4686 fields of degree 2 to 27 and
small discriminant coming from a benchmark of [PARI15]. The mean value of
T1(K)/T (K) for those fields is lower than 1/2.

We have tested the cyclotomic fields K = Q[ζn] for n ≤ 250. For them we have
found that the quotient T1(K)/T (K) becomes smaller and smaller as the degree
increases, reaching the value 1/2 for the higher order cyclotomic fields. However, we
have observed that the fraction is generally higher than what we get for the generic
fields with comparable degree and discriminant. Certainly cyclotomic fields are not
typical fields; for instance, for them the class number grows more than exponentially
as a function of the order [Wash97, Th. 4.20]. The weight function that we observe
in the tests for generic fields contains several parameters and therefore could have
generic profiles but actually always shows two bumps, one centered at the origin
and one near the end of the support. On the contrary, the weight producing T (K)
has a unique bump in the origin, by design. The fact that the original algorithm
already produces a good bound for cyclotomic of small order in some sense means



EXPLICIT BOUNDS FOR GENERATORS OF THE CLASS GROUP 2507

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
quadratic
biquadratic
degree 6
degree 21

Figure 1.
T1(K)
T (K) for some fields of small discriminant; in abscissa logΔK.

that the second bump is not necessary, and this is probably due to the existence of
a lots of ideals of small norms. However, we admit we do not have any convincing
explanation of this phenomenon.

5.6.2. Pure fields, small discriminants. We computed T (K) and T1(K) for fields of
the form Q[x]/(P ) with P = xn ± p and p is the first prime after 2a for a certain
family of integers n and a such that logΔK ≤ 250. We limited the discriminant
because, while at the time of writing the record for which the Buchmann algorithm
has been successfully completed has logΔK ≥ 646, this has been done for only

very few fields with logΔK ≥ 100 log 10 � 230. We computed the family of T1(K)
T (K)

for each fixed degree. The results are presented in Figure 1. We can see that
in the right half of the graph, the fields adopt the asymptotical behavior where
T1(K)
T (K) � (log logΔK)−2.

Let t(K) denote the time needed to compute T (K) and t1(K) the additional time

needed to compute T1(K). In Figure 2, we have drawn the points t1(K)
t(K) for the four

families of fields we have tested. We have removed three points with t1(K)
t(K) ≥ 25 (in

detail: 30.17, 30.31, and 47.19) whose logΔK is, respectively, 160.81, 162.20, and
167.74. In spite of the relatively large value for the quotient, the value of t1(K)
in all cases has been lower than 2s (and actually larger than 0.35s in only 22 out
of the 8308 fields, including the three fields for which t1(K)/t(K) ≥ 25, all having
logΔK ≥ 153). This shows that the time needed to compute T1(K) is already
limited with respect to the time needed for the full Buchmann algorithm.

5.6.3. Pure fields. We once again computed T (K) and T1(K) for fields of the form
Q[x]/(P ) with P = xn ± p and p is the first prime after 10a for a certain family of

integers n and a. The graph of T1(K)
T (K) looks like a continuation of the right half of

Figure 1 so that we do not draw it once again. The graph of T1(K)
T (K) (log logΔK)2 is

much more regular and appears to have a non-zero limit; see Figure 3. We plotted

the graph of T1(K)
log2 ΔK

for the same fields in Figure 4 as well. We computed the
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Figure 2.
t1(K)
t(K) for some fields of small discriminant; in abscissa logΔK.

mean of T1(K)
T (K) (log logΔK)2 and the maximum of T1(K)

log2 ΔK
for each fixed degree. The

results are summarized below:

P a ≤ logΔK ≤ mean of T1(K)
T (K) (log logΔK)2 1−max

( T1(K)
log2 ΔK

)
x2 − p 3999 9212 13.19 2 · 10−5

x6 + p 1199 13818 13.38 9 · 10−6

x21 − p 328 15169 13.68 4 · 10−5

The small discriminants are (obviously) much less sensitive to the new algorithm.
We reduced the range for each series to have logΔK ≤ 500. The results are as
follows:

P a ≤ mean of T1(K)
T (K) (log logΔK)2 1−max

( T1(K)
log2 ΔK

)
x2 − p 218 12.35 0.018
x6 + p 43 13.66 0.073
x21 − p 10 17.19 0.279

5.6.4. Biquadratic fields. We repeated the computations above also for biquadratic
fields Q[

√
p1,

√
p2] where each pi is the first prime after 2ai (respectively 10ai) for

certain families of integers ai and included them in Figures 1–4.
In the case where pi is the first prime after 10ai , we found that the mean of

T1(K)
T (K) (log logΔK)2 is 13.63 for the 7119 fields computed, and 13.88 if we restrict

the family to the 1537 ones with logΔK ≤ 500, while the maximum of T1(K)
log2 ΔK

is

lower than 1.0038 for all fields and 0.957 for the fields with logΔK ≤ 500.

5.7. A simplified algorithm. Since the expression of Fe as given in Remark 3.3
is simpler for a = L/2, we can implement a variant of the algorithm of Belabas,
Diaz y Diaz and Friedman with that weight. We have for x ≥ 0,

Fe(x) =
((

x− 2 + 2e−x
√
T
)
χ[0,L/2)(x) + (L− x)χ[L/2,L](x)

)
ex/2

√
T
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Figure 3.
T1(K)
T (K) (log logΔK)2 for some fields; in abscissa logΔK.
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Figure 4.
T1(K)
log2 ΔK

for some fields; in abscissa logΔK.

so that (2.1) becomes∑
Npm<

√
T

(
m log Np− 2 + 2

√
T

Npm

)
log Np+

∑
√
T≤Npm<T

(L−m log Np) logNp

>
(√

T − 1
)
(logΔK − (γ + log 8π)nK) +

I(Fe)

2
√
T
nK − J(Fe)

2
√
T

r1,

where

I(Fe)

2
√
T

=
(√

T − 1
)
log

( 4

1− T−1/2

)
− L2

8
+

L

2
− π2

12
− dilog(−T−1/2),

J(Fe)

2
√
T

=
(√

T + 1
)
log

( 2

1 + T−1/2

)
+

L2

8
− L

2
− π2

24
− dilog(−T−1/2)

+
1

2
dilog(−T−1).
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Applying Theorem 3.5 with T0 =
√
T , we can see that the result T2(K) of this

algorithm satisfies

√
T2(K) ≤ 2 logΔK + 2 log logΔK − (γ + log 2π)nK + 1+ 2 log 2 + cnK

log logΔK

logΔK

for some absolute constant c. This means that the asymptotical expansion is nearly
optimal: the first term that changes with respect to Theorem 3.6 is the constant
term which increases from 2 to 1 + 2 log 2 � 2.38. For small discriminants this
algorithm is sometimes worse than BDyDF and always significantly worse than Bound,
given in Subsections 5.2–5.4. For larger discriminants, it gives only sightly bigger
results than Bound but is always faster. Numerically, in our experiments with the
above mentioned fields, T2(K) ≥ T (K) if logΔK ≤ 48 (resp. 142, 83, 162) for
nK = 2 (resp. 4, 6, 21) for a total of 401 fields out the 12648 tested.

6. A final comment

We have proved that

(1 + o(1))
logΔK

nK
≤

√
Te(K) ≤ (2 + o(1)) logΔK.

We have three reasons to believe that the “true” behavior is√
Te(K) ∼ logΔK

as ΔK → ∞, for fixed nK.
The first one is computational. We have observed that

√
T1(K)/ logΔK seems

to tend to 1 (from below, see Figure 4) for several series of pure fields and one series
of biquadratic fields. We also tested some restricted cases with Φ+

e and a = L and
the Φ+ of the form indicated in Corollary 5.1 with a = log 4 and b = 0: in all cases
we observed the same phenomenon, which is that the experimental result seems to
be half of the one we can prove.

The second one is related to the upper bound. In (3.3) the function F̂ (t) =

4(Re[e−iLt/2Φ̂+(t)])2 is estimated with �̂(t) = 4|Φ̂+(t)|2 in (3.4). This step removes
the quick oscillations of e−iLt/2 and allows the conclusion of the argument, but it
overestimates the contribution of this object, which would be of this size only in the
case where the γ’s were placed very close to the maxima of cos2(Lt) and which would
be smaller by a factor 1/2, in mean, for uniformly spaced zeros. Unfortunately, the
actual information we have for the vertical distribution of zeros is not strong enough
to distinguish between these two behaviors.

The third one is related to the lower bound in Proposition 3.9. For its com-
putation we have considered each prime integer as totally split. This allows an
explicit bound, but it should be corrected by a factor 1/nK, because this is the
density of the totally split primes, and the contribution of the other primes should
be negligible.

All three reasons indicate that 1 · logΔK should be the correct asymptotic. We
are unable to prove it, though.
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