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THE HOMOTOPY METHOD REVISITED: COMPUTING

SOLUTION PATHS OF �1-REGULARIZED PROBLEMS

BJOERN BRINGMANN, DANIEL CREMERS, FELIX KRAHMER,
AND MICHAEL MOELLER

Abstract. �1-regularized linear inverse problems frequently arise in signal
processing, image analysis, and statistics. The correct choice of the regulariza-
tion parameter t ∈ R≥0 is a delicate issue. Instead of solving the variational
problem for a fixed parameter, the idea of the homotopy method is to compute
a complete solution path u(t) as a function of t. In their celebrated paper A
new approach to variable selection in least squares problems [IMA J. Numer.
Anal. 20 (2000), no. 3, 389–403], Osborne, Presnell, and Turlach showed that

the computational cost of this approach is often comparable to the cost of
solving the corresponding least squares problem. Their analysis relies on the
one-at-a-time condition, which requires that different indices enter or leave the
support of the solution at distinct regularization parameters. In this paper,
we introduce a generalized homotopy algorithm based on a nonnegative least
squares problem, which does not require such a condition, and prove its ter-
mination after finitely many steps. At every point of the path, we give a full
characterization of all possible directions. To illustrate our results, we discuss
examples in which the standard homotopy method either fails or becomes in-
feasible. To the best of our knowledge, our algorithm is the first to provably
compute a full piecewise linear and continuous solution path for an arbitrary
combination of a measurement matrix and a data vector.

1. Introduction

In recent years, sparsity promoting regularizations for inverse problems played an
important role in many fields such as image and signal analysis [5,18] and statistics
[19]. The typical setup is that one tries to recover an unknown signal û ∈ R

N

from linear measurements f = Aû+ η ∈ R
m under the model assumption that û is

approximately sparse, i.e., has only few significant coefficients. Here η is typically
small and represents measurement noise. A common approach is to minimize the
energy functional

(1.1) u �→ Et(u) :=
1

2
‖Au− f‖22 + t‖u‖1 ,

where A ∈ R
m×N is a matrix, f ∈ R

m the data vector, and t > 0 is a regularization
parameter. In the statistics literature, this method is called the Lasso [19], while
the inverse problems literature mostly refers to it as �1-regularization. The choice
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Figure 1. We plot the different components of u(t) corresponding
to A ∈ R

3×6 and f ∈ R
3 with i.i.d. standard Gaussian entries Aij

and fi. The solution path u(t) is piecewise linear.

of the regularization parameter t often proves to be difficult. While choosing a
small t yields unnecessarily noisy reconstructions, choosing a large t diminishes the
features of the original signal û. An approach to this problem is to compute a
minimizer u(t) for every t > 0, and subsequently choose a suitable regularization
parameter, for instance by visual inspection of this family of solutions.

A popular algorithm to compute the full solution path is the so-called homotopy
method. If the convex function (1.1) has a unique minimizer for every t, the function
t �→ u(t) is continuous and piecewise linear (see Figure 1), and if the solutions are
not unique, a continuous and piecewise linear choice of t �→ u(t) is still possible.
The main idea of the homotopy method is to start at a large parameter t0, so that
the unique solution is u(t0) = 0, and then follow the solution path in the direction
of decreasing t. At every kink of the solution path, the classical homotopy method
[7, 8, 16] computes a new direction by solving a linear system. As it turns out, the
computational cost of the classical homotopy method is often comparable to the
cost of solving a single minimization problem u(t) ∈ argminu Et(u) or solving the
least squares problem u = A†f . For this reason the homotopy method has proven
to efficiently compute reconstructions when the noise level is unknown, provided
the output is really a solution path. This has been shown to be the case given a
so-called one-at-a-time condition [8, 16, 20]; cf. Definition 5.1. Loosely speaking,
this condition requires that at every kink only one index joins or leaves the support
of u(t). The first works [8, 16] additionally required the uniqueness of the solution
path t �→ u(t), i.e., they required that u(t) is the only minimizer of Et for every
t > 0. In [20], the homotopy method is extended to the case of nonuniqueness;
again the analysis implicitly assumes the one-at-a-time condition (see Section 5.1
for a detailed discussion).

The one-at-a-time condition is known to hold in various scenarios. For exam-
ple, empirical observations indicate that it is true with high probability for input
A ∈ R

m×N and f ∈ R
m drawn from independent continuous probability distri-

butions. Also, uniqueness of the solution path holds in many cases. Necessary
and sufficient conditions for the uniqueness of minimizers have been established in
[9, 22, 23]. In [20], it has been shown that, if the columns of A are independent
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and drawn from continuous probability distributions, the minimizer u(t) is almost
surely unique for every f ∈ R

m and t ∈ R>0.
However, both the one-at-a-time condition and uniqueness are known to be vio-

lated in certain cases [14,20]. For instance, when the entries of A and û are chosen
as independent random signs and the measurements are exact, i.e., η = 0, the one-
at-a-time condition is regularly violated. In such cases it has been observed that
standard homotopy implementations can fail to find a solution path [14]. If in ad-
dition uniqueness is violated, even the finite termination property of the homotopy
method may no longer hold; see Proposition 4.1.

In this paper, we propose a generalized homotopy method, which addresses these
issues. In contrast to the classical homotopy method [8, 16], which solves a linear
system at each kink, the generalized homotopy method solves a nonnegative least
squares problem. The main result of this paper, Theorem 4.2, shows that this new
algorithm always computes a full solution path in finitely many steps, even without
a one-at-a-time assumption. Along the way, we give a full characterization of all
directions which linearly extend a given partial solution path; see Theorem 3.2.
Our characterization is of interest even under the one-at-a-time condition, since it
provides a unified treatment of both hitting and leaving indices (cf. [8]). We also
show that, under the assumptions of [8,16], the generalized homotopy method and
the standard homotopy method coincide.

One-at-a-time conditions are not limited to the homotopy method, but also
appeared in algorithms related to �1-analysis regularization [21], �1-�1 sparse repre-
sentation [10], structured sparse quantile regression [15], and parametric quadratic
programming [2]. We expect that the analysis in this paper can be extended to
some of these frameworks.

1.1. Outline. In Section 2 we set up our notation and recall some basic facts com-
monly used in the sparse recovery literature. The set of all possible directions (cf.
Definition 3.1) is characterized in Section 3. In Section 4 we propose the generalized
homotopy method, and prove that it always computes a solution path. In Section 5
we compare the generalized homotopy method with the standard homotopy method
and the adaptive inverse scale space method [4].

2. Notation and background

For A ∈ R
m×N we will denote the ith column of A by Ai ∈ R

m. Similarly,
for a subset S ⊆ [N ], AS ∈ R

m×|S| is the submatrix of A with columns indexed
by S. Furthermore, with a slight abuse of notation, we write AT

S = (AS)
T . The

pseudoinverse of A is denoted by A†. For t ∈ R≥0 and u ∈ R
N , the equicorrelation

set E(t, u) is defined as

(2.1) E(t, u) := {i ∈ [N ] : |AT
i (Au− f)| = t} .

Indeed, for least squares solutions uLS∈argminu ‖Au−f‖22, we have that ATAuLS=
AT f . Even though this equation is no longer true for solutions of the �1-regularized
problem, it turns out to be useful to distinguish indices i ∈ [N ] according to the
magnitude of AT

i (Au− f). The active set A(u) is the support of u, i.e.,

A(u) := supp(u) = {i ∈ [N ] : ui �= 0} .
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For a fixed regularization parameter t ≥ 0 and vector f ∈ R
m, we define the set of

minimizers Ut(f) by

(2.2) Ut(f) :=

{
argminu∈RN

1
2‖Au− f‖22 + t ‖u‖1 if t > 0,

argminu∈RN ‖u‖1 s.t. AT (Au− f) = 0 if t = 0.

We will often drop the dependence on f and simply write Ut.
We recall some basic facts about the variational problem (2.2). A proof is in-

cluded for the reader’s convenience.

Lemma 2.1 ([22]). Let u1(t), u2(t) ∈ Ut be two minimizers. Then it holds that:

(a) Au1(t) = Au2(t);
(b) for t > 0, the map p given by

(2.3) p(t) :=
1

t
AT (f −Au(t))

satisfies p(t) ∈ ∂‖u(t)‖1 for all t > 0 and is independent of the specific choice
of u(t) ∈ Ut;

(c) ‖AT (f −Au(t))‖∞ ≤ t and A(u(t)) ⊆ E(t) := E(t, u(t)) .

Remark 2.2. In the following, p(t) always refers to the subgradient given by (2.3).

Proof. For t = 0, (a) holds since the constraint ATAu1(t) = ATAu2(t) implies
u1(t)− u2(t) ∈ Ker(ATA) = Ker(A) .

For t > 0, (a) follows from the strict convexity of ‖ · ‖22. Indeed, set v :=
1
2u1(t) +

1
2u2(t). Then

1

2
‖Av − f‖22 + t‖v‖1

≤ 1

2

(
1

2
‖Au1(t)− f‖22 + t‖u1(t)‖1

)
+

1

2

(
1

2
‖Au2(t)− f‖22 + t‖u2(t)‖1

)
(2.4)

= min
u∈RN

(
1

2
‖Au− f‖22 + t‖u‖1

)
.

If Au1(t) �= Au2(t), the inequality (2.4) would be strict, leading to a contradiction.
As a result, Au(t) is independent of the minimizer chosen and E(t) = E(t, u(t)) is
well-defined.

The statements (b) and (c) are an immediate consequence of the optimality
condition

0 ∈ AT (Au(t)− f) + t ∂‖u‖1 ,

since the subdifferential of the �1-norm is given by

∂‖u‖1 = {p ∈ R
N : pi = sgn ui ∀i ∈ A(u) and |pi| ≤ 1 ∀i �∈ A(u)} .

�

3. The set of possible directions D
We aim to construct a piecewise linear and continuous function u : R≥0 → R

N

satisfying

(3.1) u(t) ∈ Ut = argmin
u∈RN

1

2
‖Au− f‖22 + t ‖u‖1 ∀t > 0

and u(0) ∈ U0. To this end we make the following ansatz.
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Assume we already have a solution u(t̂) ∈ Ut̂. Set u(t) = u(t̂) + (t̂− t) d and try

to choose d ∈ R
N such that u(t) ∈ Ut for all t ∈ [t̂−δ, t̂], where δ = δ(t̂, u(t̂), d) > 0.

This motivates the definition of the set of all possible directions D(t̂, u(t̂)).

Definition 3.1. Let t̂ > 0 be a regularization parameter and let u(t̂) ∈ Ut̂ be a

solution of the variational problem (3.1). The set of all possible directions D(t̂, u(t̂))
is defined as

D(t̂, u(t̂)) =
{
d ∈ R

N : ∃δ ∈ (0, t̂] s.t. u(t) = u(t̂) + (t̂− t)d ∈ Ut ∀t ∈ [t̂− δ, t̂]
}

.

We now state and prove the main theorem of this section.

Theorem 3.2. The set of possible directions D(t̂, u(t̂)) at
(
t̂, u(t̂)

)
is the set of

solutions to a nonnegative least squares problem. More precisely, set

r(t̂) = f −Au(t̂) and p(t̂) =
1

t̂
AT

(
f −Au(t̂)

)
.

Then we have that

(3.2)
D(t̂, u(t̂)) = argmin

d∈RN

‖Ad− 1

t̂
r(t̂)‖22 s.t. di p(t̂)i ≥ 0 ∀i ∈ E(t̂)\A(u(t̂)) ,

di = 0 ∀i �∈ E(t̂) .

Remark 3.3. The major difference to the standard homotopy method (cf. Algorithm
2) is the condition dip(t̂)i ≥ 0 for all i ∈ E(t̂)\A(u(t̂)). In fact, if u(t) ∈ Ut for all
t ∈ [t̂ − δ, t̂], then the direction d necessarily satisfies this condition. To see this,
let i ∈ E(t̂)\A(u(t̂)) and p(t̂)i = 1. It follows that u(t)i ≥ 0 for all t ∈ [t̂ − δ, t̂]
because p(t) is continuous and p(t̂)i = 1. Therefore u(t̂)i + (t̂ − t)di ≥ 0, which,
since i �∈ A(u(t̂)), implies that p(t̂)idi = di ≥ 0.

As we will discuss in Section 5.1 below, this condition is sometimes violated for
directions computed by the standard homotopy method; so an extra condition is
indeed necessary.

Remark 3.4. By a change of variable, the constraints p(t̂)idi ≥ 0 are easily trans-
formed into nonnegativity constraints, which makes (3.2) a nonnegative least
squares problem.

Remark 3.5. In particular, it follows from Theorem 3.2 that D(t̂, u(t̂)) is nonempty.
To see this, we have to show that the nonnegative least squares problem in (3.2)
always has a solution. Since the feasible set in (3.2) is polyhedral, the image of
the feasible set under A is also polyhedral (cf. [17, §19]), and hence closed and
convex. Thus, there exists a unique projection Pr(t̂)/t̂ of r(t̂)/t̂ onto the image of
the feasible set under A, and D(t̂, u(t̂)) is the preimage.

Proof. The strategy of the proof is as follows: We characterize the solutions of the
nonnegative least squares problem by the Karush Kuhn Tucker (KKT) conditions
(equations (3.3)–(3.9)), and compare them componentwise to a characterization of
the set of possible directions.

Throughout the proof, let E := E(t̂), A := A(u(t̂)), and D := D(t̂, u(t̂)).
Let us start by stating the KKT conditions for the nonnegative least squares

problem in (3.2): d ∈ R
N is a minimizer of (3.2) if and only if there exist λ, θ ∈ R

N

such that

AT
i Ad− p(t̂)i + λi + θi = 0 ∀i ∈ [N ] ,(3.3)
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di = 0 ∀i ∈ EC ,(3.4)

θi = 0 ∀i ∈ E ,(3.5)

di p(t̂)i ≥ 0 ∀i ∈ E\A ,(3.6)

λi = 0 ∀i ∈ (E\A)C ,(3.7)

λi p(t̂)i ≤ 0 ∀i ∈ E\A ,(3.8)

λi di = 0 ∀i ∈ E\A .(3.9)

We now show that every solution d of this system is a possible direction. We need
to prove that there exists a δ > 0 such that u(t) = u(t̂) + (t̂ − t)d ∈ Ut for all
t ∈ [t̂− δ, t̂]. Recalling the optimality condition

0 ∈ AT (Au(t)− f) + t ∂‖u(t)‖1 ,

it suffices to show that p(t) := 1
tA

T (f −Au(t)) ∈ ∂‖u(t)‖1.
We begin by rewriting p(t). By inserting the definition of u(t), it follows that

(3.10)

p(t) =
1

t
AT

(
f −Au(t̂)− (t̂− t)Ad

)
=

t̂

t
p(t̂)− t̂− t

t
ATAd

= p(t̂) +
t̂− t

t

(
p(t̂)−ATAd

)
.

We argue componentwise proving that p(t)i ∈ ∂|u(t)i| for all i ∈ [N ]. We distinguish
the three different cases i ∈ A, i ∈ E\A, and i ∈ EC .

Case 1 (i ∈ A). Since u(t) = u(t̂)+ (t̂− t)d is continuous, the equality sgn(u(t)i) =
sgn(u(t̂)i) holds for all t in some small interval [t̂ − δA, t̂]. Using (3.3), (3.5), and
(3.7), it follows that

p(t)i = p(t̂)i +
t̂− t

t

(
p(t̂)−ATAd

)
i
= p(t̂)i .

Case 2 (i ∈ E\A). It follows that

u(t)i = u(t̂)i + (t̂− t)di
(3.6)
= (t̂− t)|di|p(t̂)i .

From (3.3), (3.5), and (3.10), we deduce that

p(t)i = p(t̂)i +
t̂− t

t
λi .

If di �= 0, then by complementary slackness (3.9), λi = 0 holds. Therefore p(t)i =
p(t̂)i and sgn(u(t)i) = p(t̂)i = p(t)i.

If di = 0, we have that u(t)i = 0. Since λi p(t̂)i ≤ 0, it follows that for some
δE\A > 0,

|p(t)i| = |p(t̂) + t̂− t

t
λi| ≤ 1 ∀t ∈ [t̂− δE\A, t̂] .

Case 3 (i ∈ EC). Lemma 2.1 and equation (3.4) yield u(t̂)EC = 0 and dEC = 0.
Thus, it follows that u(t)i = 0. Since |p(t̂)i| < 1 and p(t) is continuous, there exists
a δEC > 0 such that we have |p(t)i| ≤ 1 for all t ∈ [t̂− δEC , t̂].

Setting δ = min{δA, δE\A, δEC}, we conclude that p(t) ∈ ∂‖u(t)‖1 for all t ∈
[t̂− δ, t̂], and hence that d is a valid direction.
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It remains to show that every possible direction d is a solution to the nonnegative
least squares problem. To this end, we show that d satisfies the KKT conditions
(3.3)–(3.9). Set

λE\A := (p(t̂)−ATAd)E\A , λ(E\A)C := 0 ,

θEC := (p(t̂)−ATAd)EC , θE := 0 .

Then (3.5) and (3.7) are satisfied by definition.
As there exists a δ > 0 such that u(t) ∈ Ut for all [t̂− δ, t̂], we conclude

(3.11)

p(t) = p(t̂) +
t̂− t

t
(p(t̂)−ATAd) =

1

t
AT (f −Au(t)) ∈ ∂‖u(t)‖1 ∀t ∈ [t̂− δ, t̂] .

Based on this observation we first prove the multiplier equation (3.3), then the
feasibility condition (3.4), and finally the equations (3.6), (3.8), and (3.9) concerning
λ.

To prove (3.3), we need to show (ATAd)A = p(t̂)A. Since u(t) is continuous,

sgn(u(t)i) = sgn(u(t̂)i)

for all t ∈ [t̂ − δ, t̂] and i ∈ A. Therefore p(t)i = p(t̂)i, which together with (3.11)
yields (ATAd)i = p(t̂)i.

From Lemma 2.1 and the continuity of p(t), it follows that A(u(t)) ⊆ E(t) ⊆
E(t̂) = E . Thus supp(d) ⊆ E , which proves (3.4).

To conclude, we prove (3.6), (3.8), and (3.9). To this end, let i ∈ E\A. First,
assume that di �= 0. Since u(t̂)i = 0, it follows that

p(t)i = sgn(u(t)i) = sgn(di) ∀t ∈ [t̂− δ, t̂] .

Thus p(t)i is constant, and (3.11) yields λi = (p(t̂)−ATAd)i = 0.
Second, assume that di = 0. Then (3.6) and (3.9) follow immediately, and

p(t)i
(3.11)
= p(t̂)i +

t̂− t

t
λi .

If (3.8) were violated, then for all t ∈ [t̂− δ, t̂) we would have

|p(t)i| = |p(t̂)i +
t̂− t

t
λi| > |p(t̂)i| = 1 ,

which would contradict p(t) ∈ ∂‖u(t)‖1. �

Remark 3.6. To implement the generalized homotopy method, we need an ex-
plicit expression for the maximal step size δ = δ(t̂, u(t̂), d) > 0. For this, define
sA, sE\A, sEC , s ∈ R as

sA := max
i∈A

{νi : di �= 0 and νi < t̂} with νi :=
u(t̂)i + t̂di

di
,

sE\A := max
i∈E\A

{ |λi|
|λi|+ 2

t̂} ,

sEC := max
i∈EC

{μ±
i : μ±

i < t̂} with μ±
i :=

{
t̂ (p(t̂)−ATAd)i
±1−(ATAd)i

if ±1 �= (ATAd)i,

0 else,

s := max{sA, sE\A, sEC , 0} .



2350 B. BRINGMANN, D. CREMERS, F. KRAHMER, AND M. MOELLER

Then, the maximal step size is given by δ = t̂ − s. This follows directly from the
preceding proof.

Corollary 3.7. There exist only finitely many sets of possible direction D(t̂, u(t̂)).

Proof. The corollary essentially follows from the KKT conditions (3.3)–(3.9) in the
proof of Theorem 3.2. Recall that d ∈ D(t̂, u(t̂)) is a possible direction if and only
if there exist (λ, θ) ∈ R

N × R
N such that (3.3)–(3.9) are satisfied. Since θEC can

be chosen freely, the KKT conditions depend only on E ,A, and p(t̂)E ∈ {±1}|E|.
Therefore, the set D(t̂, u(t̂)) depends only on E ,A, and p(t̂)E , which attain only
finitely many different values. �

4. The generalized homotopy method

The characterization of the set of possible directions D(t̂, u(t̂)) in Theorem 3.2
directly yields a meta approach to compute a solution path: Start by choosing t0

large enough to ensure that u(t0) = 0 is a solution, i.e., t0 = ‖AT f‖∞. Compute a
direction d1 ∈ D(t0, u(t0)) and continue along the path t �→

(
t, u(t0) + (t0 − t)d1

)
∈

R× R
N as long as u(t) ∈ Ut. Then, compute a new direction and repeat.

In the case of nonuniqueness, this approach yields a family of algorithms, as it
needs to be combined with a rule R to choose a specific d from a given set D of po-
tential directions, i.e., d = R(D) ∈ D. The proof of the finite termination property
[8, 16, 20] only holds for some and not for all of these algorithms as illustrated in
Proposition 4.1 below. Thus for certain choice rules, the meta approach does not
necessarily terminate after finitely many steps.

Proposition 4.1. There exists a choice rule R, which, combined with the meta
approach outlined above, yields a piecewise linear and continuous solution path
t �→ u(t) with infinitely many kinks for certain A ∈ R

m×N and f ∈ R
m.

Proof. Let

(4.1) A =

[
1 1 1 0
0 0 0 1

]
∈ R

2×4 and f =

[
2
1

]
∈ R

2 .

Then u(t) = (u1(t), u2(t), u3(t), u4(t))
T ∈ Ut if and only if

(4.2)

⎧⎪⎨
⎪⎩

u1 = u2 = u3 = 0, u4 = 0 if t ≥ 2,

u1, u2, u3 ≥ 0, u1 + u2 + u3 = 2− t, u4 = 0 if t ∈ (1, 2),

u1, u2, u3 ≥ 0, u1 + u2 + u3 = 2− t, u4 = 1− t if t ∈ [0, 1] .

Thus already at the first kink t = 2 there are multiple permissible directions, and

it is not a priori clear which of them to choose. The choice d =
[
1
2

1
2 0 0

]T
is

permissible, yielding u1(t) = u2(t) =
2−t
2 , u3(t) = u4(t) = 0. At t = 1, a change of

direction is necessary to prevent that u4 violates (4.2). A new permissible direction

is d =
[
3
2 −1 1

2 1
]T

. Now u2(t) decreases and hits 0 at t = 1
2 , so again a change

of direction is required; d =
[
3
2

1
2 −1 1

]T
is permissible. Continuing in this

fashion and alternating between d =
[
3
2 −1 1

2 1
]T

and d =
[
3
2

1
2 −1 1

]T
,

one obtains kinks at t = 2−k for every k ∈ N. It is easy to check that the three
different directions chosen really correspond to different sets D, so we are following
a choice rule R.

The resulting solution path is displayed in Figure 2. �
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(A) Components of u(t) (B) u2(t) and u3(t) on [0, 1/2]

Figure 2. For A and f as in (4.1), we display a piecewise linear
and continuous solution path with infinitely many kinks.

To the best of our knowledge, this phenomenon was not discussed in any pre-
vious work dealing with the Lasso, nor have any specific choice rules been studied
which avoid it. We propose to always choose the direction dj+1 ∈ D(tj , u(tj)) with
minimal �2-norm, which yields the generalized homotopy method (Algorithm 1).
Due to the strict convexity of the squared �2-norm, this direction is unique. In the
previous example (4.1), the generalized homotopy method generates a solution path

with only two kinks. At t = 2, it chooses the direction d =
[
1/3 1/3 1/3 0

]T
,

and at t = 1, it chooses the direction d =
[
1/3 1/3 1/3 1

]T
.

Algorithm 1 Generalized Homotopy Method
1: Input: data f ∈ R

m, matrix A ∈ R
m×N

2: Output: number of steps K, sequence t0, . . . , tK of regularization parameters,
sequence u(t0), . . . , u(tK) of solutions

3: Initialization: Set t0 = ‖AT f‖∞ and u(t0) = 0.
4: for j = 0, 1, . . . do
5: if tj = 0 then
6: Break
7: end if
8: Compute rj = f −Au(tj), E = E(tj), and A = A(u(tj)).
9: Set

D = argmin
d

‖Ad− 1

tj
rj‖22 s.t. dEC = 0, di p(t

j)i ≥ 0 ∀i ∈ E\A ,

and compute dj+1 = argmind∈D ‖d‖22 .
10: Using Remark 3.6, find the minimal tj+1 ≥ 0 s.t. u(t) ∈ Ut for all t ∈

[tj+1, tj ].
11: end for

Let t0 = ‖AT f‖∞ > t1 > · · · > tK = 0 and let u(t0), u(t1), . . . , u(tK) be the
outputs of Algorithm 1. The path u : R≥0 → R

N , t �→ u(t) is then defined via
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linear interpolation by

(4.3) u(t) =

{
0 if t ≥ t0,

t−tk

tk−1−tk
u(tk−1) + tk−1−t

tk−1−tk
u(tk) if t ∈ [tk, tk−1).

The following theorem, the main result of this paper, shows that u(t) is indeed a
solution path.

Theorem 4.2. The generalized homotopy method (Algorithm 1) terminates after
finitely many iterations. Furthermore, u : R≥0 → R

N as in (4.3) is piecewise linear,
continuous, and satisfies

u(t) ∈ Ut = argmin
u∈RN

1

2
‖Au− f‖22 + t ‖u‖1

for all t > 0 as well as u(0) ∈ U0.

Remark 4.3. Algorithm 1 only differs from the standard homotopy method [8, 16]
when the latter fails to calculate a correct solution path (see Section 5.1).

To compute a valid direction d ∈ D(tj , u(tj)) , we can use an active set method
(cf. [13, Ch. 23]) to solve (3.2). Since the number of constraints |E(tj)\A(u(tj))| is
typically small compared to the number of variables |E(tj)|, this can be done by solv-
ing relatively few linear systems. In particular, maintaining a QR-decomposition
of AE(tj) throughout the iteration, as commonly done in implementations of the
standard homotopy method (cf. [6, 13]), may further decrease the computational
cost. By replacing the direction of minimal �2-norm in the generalized homotopy
method with the output of the active-set method, we obtain an efficient alternative
algorithm.

In order to (provably) ensure the finite termination of the algorithm, we need
to calculate the direction dj+1 of minimal �2-norm. For this, we can use the fol-
lowing two-stage procedure. First, compute any direction d̃ ∈ D(tj , u(tj)). Second,
compute dj+1 by solving

(4.4)
dj+1 ∈ argmin

d∈RN

‖d‖22 s.t. Ad = Ad̃, dE(tj)C = 0,

dip(t
j)i ≥ 0 ∀i ∈ E(tj)\A(u(tj)) .

To solve (4.4), we mention two different approaches. One can view (4.4) as a
least distance program (cf. [13, Ch. 24]). Also, one can solve (4.4) with a generic

QP-solver, and use d̃ as a starting point. Owing to the good performance of MAT-
LAB’s built-in QP-methods, this approach lead to the best results in our numerical
experiments (Section 5.4).

In the most common scenarios (see Lemmas 5.6, 5.7, and 5.8), the computation
of dj+1 is simpler than the above procedure, and (3.2) can be replaced by a linear
system.

To prove Theorem 4.2, we need the following lemma, which describes the depen-
dence of the solution sets Ut on t.

Lemma 4.4. Let p(t) be the subgradient as in Lemma 2.1. For every E ⊆ [N ] and
every s ∈ {±1}|E| the set

IE,s = {0 < t ≤ ‖AT f‖∞ : E = argmax
i∈[N ]

|p(t)i|, p(t)E = s}
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is an interval. If a, b with a < b lie in the same IE,s, and u(a) ∈ Ua as well as
u(b) ∈ Ub, then for every t ∈ [a, b] the linear interpolation

u(t) =
b− t

b− a
u(a) +

t− a

b− a
u(b)

satisfies u(t) ∈ Ut.

Proof. Fix E ⊆ [N ], s ∈ {±1}|E|, a, b ∈ IE,s, and u(a) ∈ Ua as well as u(b) ∈ Ub.
Let p(a) and p(b) be the subgradients at u(a) and u(b) as defined in (2.3). Also,
let t ∈ [a, b]. Then in order to prove that u(t) ∈ Ut, we have to show that

∂‖u(t)‖1 � p̃(t) :=
1

t
AT (f −Au(t)) =

b− t

b− a

a

t
p(a) +

t− a

b− a

b

t
p(b) .

The last equality shows that p̃(t) is a convex combination of p(a) and p(b) for
every t ∈ [a, b]. Thus ‖p̃(t)EC‖∞ < 1 and p̃(t)E = p(a)E = p(b)E = s. In particular,
‖p̃(t)‖∞ ≤ 1. To show that p̃(t) ∈ ∂‖u(t)‖1, it hence suffices to prove that ‖u(t)‖1 ≤
〈p̃(t), u(t)〉. Since A(u(a)) ∪ A(u(b)) ⊆ E , we have that

〈p̃(t), u(t)〉 = b− t

b− a
〈p̃(t), u(a)〉+ t− a

b− a
〈p̃(t), u(b)〉

=
b− t

b− a
〈p̃(t)E , u(a)E〉+

t− a

b− a
〈p̃(t)E , u(b)E〉

=
b− t

b− a
〈p(a)E , u(a)E〉+

t− a

b− a
〈p(b)E , u(b)E〉

=
b− t

b− a
‖u(a)‖1 +

t− a

b− a
‖u(b)‖1

≥ ‖u(t)‖1 .

This concludes the proof of the second statement. In particular, p̃(t) coincides with
the subgradient p(t) as in (2.3).

Next, we deduce the first statement. Since p(t) = p̃(t), we have that ‖p(t)EC‖∞ <
1 and p(t)E = s. This proves that t ∈ IE,s. Since t ∈ [a, b] was arbitrary, it follows
that [a, b] ⊆ IE,s. Hence, IE,s is connected, and therefore an interval. �
Proof of Theorem 4.2. Recalling Theorem 3.2, dj+1 is indeed a feasible direction
at (tj , u(tj)) provided that u(tj) ∈ Utj . To see this, observe that

{t ∈ [0, tj−1] : u(t) = u(tj−1) + (tj−1 − t)dj ∈ Ut}
is closed. Alternatively, one can also use explicit computation of the maximal δ > 0
in Remark 3.6.

We show the finite termination property by contradiction, assuming that the
algorithm does not terminate after finitely many steps. By Lemma 4.4 and the
monotonicity of the tj , there exists a set E ⊆ [N ], a vector s ∈ {±1}E , and a j0 ∈ N

such that tj ∈ IE,s for all j ≥ j0.
We will now show that

(4.5) ‖dj+1‖2 < ‖dj+2‖2 ∀ j ≥ j0 .

Since tj , tj+2 ∈ IE,s, there exists, again by Lemma 4.4, a d̄ ∈ D(tj , u(tj)) such that

u(tj+2) = u(tj) + (tj − tj+2)d̄ .

By construction,

u(tj+2) = u(tj) + (tj − tj+1)dj+1 + (tj+1 − tj+2)dj+2 .
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It follows that

d̄ =
tj − tj+1

tj − tj+2
dj+1 +

tj+1 − tj+2

tj − tj+2
dj+2

is a convex combination of dj+1 and dj+2. If ‖dj+2‖2 ≤ ‖dj+1‖2, we would have
‖d̄‖2 ≤ ‖dj+1‖2 by convexity. But, since dj+1 is the unique direction with minimal
�2-norm (by strict convexity), this yields d̄ = dj+1, which is a contradiction to
dj+2 �= dj+1. This shows (4.5).

By Corollary 3.7, there exist only finitely many sets of possible directions
D(tj , u(tj)). Since dj+1 is uniquely determined for each D(tj , u(tj)), the set

{dj+1 : j ∈ N}
is also finite, a contradiction to (4.5). �

5. Relation to previous work

In this section, we compare the generalized homotopy method with previous
homotopy algorithms [8,14,16,20] and the adaptive inverse scale space method [4].

5.1. Standard homotopy method. At the core of the generalized homotopy
method is a nonnegative least squares prolem to locally choose the direction. In
contrast, previous works on the homotopy method [8, 16, 20] proposed to find a
direction by solving a linear system. We will refer to the resulting algorithm as
the standard homotopy method (Algorithm 2). Note that for reasons of better
comparison to Algorithm 1, we have slightly extended the method to also accept
inputs where the one-at-a-time condition (see Definition 5.1) does not hold. A first
step towards dealing with scenarios where the one-at-a-time condition fails is the
homotopy method with looping, which was, based on ideas in [8], introduced in
[14], and is summarized in Algorithm 3.

Algorithm 2 Standard Homotopy Method [8, 16]

1: Input: data f ∈ R
m, matrix A ∈ R

m×N

2: Output: number of steps K, sequence t0, . . . , tK of regularization parameters,
sequence u(t0), . . . , u(tK) of solutions

3: Initialization: Set t0 = ‖AT f‖∞ and u(t0) = 0.
4: for j = 0, 1, . . . do
5: if tj = 0 then
6: Break
7: end if
8: Set Lj = A(u(tj−1))\A(u(tj)) and Sj = E(tj)\Lj .
9: Compute

(5.1) dj+1
Sj =

(
AT

SjASj

)†
p(tj)Sj and set dj+1

(Sj)C
= 0 .

10: Find the minimal tj+1 ≥ 0 such that u(t) solves (3.1) on [tj+1, tj ].
11: if tj+1 = tj then
12: Error “Algorithm failed to produce a solution path.”
13: end if
14: end for
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Definition 5.1 ([8]). Let t0, . . . , tK and u(t0), . . . , u(tK) be the output produced by
Algorithm 2. An index i ∈ Lj := A(u(tj−1))\A(u(tj)) is called a leaving coordinate,
and an index i ∈ Hj := E(tj)\E(tj−1) is called a hitting coordinate.

We say the one-at-a-time condition is satisfied, if for every 0 ≤ j ≤ K such that
tj > 0 we have that

(5.2) |Hj∪̇Lj | ≤ 1 .

Theorem 5.2 ([8]). Assume that the one-at-a-time condition holds and that AE(tj)
is injective at every iteration. Then, the standard homotopy algorithm computes
the unique solution path in finitely many steps.

Our next result shows that under the same assumptions, the standard and gen-
eralized homotopy methods agree.

Theorem 5.3. Assume that the one-at-a-time condition holds and that AE(tj) is
injective at every iteration. Then the outputs of the standard homotopy method
[8, 16] and the generalized homotopy method (Algorithm 1) coincide.

Remark 5.4. As the injectivity assumption guarantees the uniqueness of the solu-
tion path, Theorem 5.3 directly follows from Theorem 4.2 and Theorem 5.2. Nev-
ertheless, we provide a self-contained proof. This also yields an alternative proof of
Theorem 5.2.

To prove Theorem 5.3, we first show Proposition 5.5, which states that dj+1 as in
Algorithm 1 has the form (5.1) for some, a priori unknown, set Sj . The following
three lemmas then show that the support set agrees with Sj as in Algorithm 2.
They correspond to the three different cases in the proof of Theorem 3.2.

Proposition 5.5. Let 0 ≤ j ≤ K − 1. Let Sj := A(u(tj)) ∪ supp(dj+1), where
dj+1 is as in Algorithm 1. Then A(u(tj)) ⊆ Sj ⊆ E(tj) ∩ E(tj+1),

dj+1
Sj = (AT

SjASj )†p(tj)Sj , and dj+1
(Sj)C

= 0 .

In light of Proposition 5.5, the standard homotopy method makes the educated
guess Sj = E(tj)\Lj , which is always correct under the assumptions in Theorem
5.2.

Proof. Throughout the proof, we write E = E(tj), A = A(u(tj)), S = Sj , and
D = D(tj , u(tj)). Set

βS =
(
AT

SAS
)†

p(tj)S =
(
AT

SAS
)†

AT
S
rj

tj
and βSC = 0.

We have to show β = dj+1. Since the sign-constraint is only imposed on indices in
E\A, there exists an ε ∈ (0, 1) such that β(τ ) = (1− τ )dj+1 + τβ is in the feasible
set of the nonnegative least squares problem (3.2). Further, by the KKT conditions
(3.3), (3.5), and (3.9), we have

AT
SASd

j+1
S = p(tj)S = AT

SASβS .

Thus Adj+1 = Aβ holds, and β(τ ) ∈ D. By the definition of β, ‖β‖2 ≤ ‖dj+1‖2
holds, which yields ‖β(τ )‖2 ≤ ‖dj+1‖2 for all τ ∈ [0, ε]. Since β(τ ) ∈ D, this yields
β(τ ) = dj+1. Recalling the definition of β(τ ), the equality β = dj+1 follows.
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The inclusion A(u(tj)) ⊂ Sj holds by the definition of Sj , and Sj ⊆ E(tj) follows
from Theorem 3.2. To see that Sj ⊆ E(tj+1), we distinguish two cases. If tj+1 > 0,
then

p(tj+1)Sj

(3.10)
= p(tj)Sj +

tj − tj+1

tj+1
(p(tj)Sj −AT

SjAdj+1) = p(tj)Sj ,

showing that Sj ⊆ E(tj+1). Since E(0) = [N ], Sj ⊆ E(tj+1) also holds if tj+1 =
0. �

The first lemma describes a case of a leaving coordinate, i.e., that a coordinate
u(t)i becomes zero which was previously nonzero.

Lemma 5.6. Let Hj = ∅, Lj = {i}, E(tj) = A(u(tj))∪̇{i} and dj+1 as in Algorithm
1. Then one has that

dj+1
E(tj)\{i} =

(
AT

E(tj)\{i}AE(tj)\{i}

)†
p(tj)E(tj)\{i} and dj+1

(E(tj)\{i})C = 0 .

Furthermore, if AE(tj) is injective, then AT
i Adj+1 �= p(tj)i and the index i leaves

the equicorrelation set E(t).

Proof. We set Sj as in Proposition 5.5. Since E(tj) = A(u(tj))∪̇{i}, either Sj =
A(u(tj)) or Sj = E(tj). From u(tj−1)i �= 0 (by the definition of Lj) and u(tj)l �= 0
for all l ∈ E(tj)\{i} = A(u(tj)) together with Proposition 5.5, it follows that
Sj−1 = E(tj). Now Sj �= E(tj) = Sj−1, as otherwise, again by Proposition 5.5,
dj+1 = dj , which is a contradiction.

Now assume that AE(tj), and hence also AT
E(tj)AE(tj), is injective and that

AT
i Adj+1 = p(tj)i. Then

AT
E(tj)AE(tj)d

j+1
E(tj) = p(tj)E(tj) = AT

E(tj)AE(tj)d
j
E(tj) ,

and thus dj+1 = dj , which is again a contradiction. �

The second lemma deals with the case that Hj = ∅ and Lj = ∅. Under the
additional assumption that E(tj) = A(u(tj))∪̇{i}, this implies that i ∈ [N ] is in the
equicorrelation set for both t = tj−1 and t = tj , but on the interval [tj , tj−1] the
ith component p(t)i changes from +1 to −1 or vice versa while u(t)i remains zero.

Lemma 5.7. Assume that E(tj) = E(tj−1) and that i ∈ E(tj) is an index such that
A(u(tj)) = A(u(tj−1)) = E(tj)\{i} and p(tj)i �= p(tj−1)i. Then

dj+1
E(tj) =

(
AT

E(tj)AE(tj)

)†
p(tj)E(tj) and dj+1

(E(tj))C = 0 .

Furthermore, dj+1
i p(tj)i > 0.

Proof. Again, for Sj as in Proposition 5.5, one has that either Sj = E(tj)\{i} or
Sj = E(tj). If Sj−1 = E(tj−1), Proposition 5.5 would yield

AT
E(tj−1)Ad = p(tj−1)E(tj−1) ,

implying that p(tj−1)i = (ATAdj)i, and hence, with (3.10), a contradiction to
the assumption p(tj+1)i �= p(tj)i . Thus, Sj−1 = E(tj)\{i}. Since dj+1 �= dj and
p(tj)A(u(tj−1)) = p(tj−1)A(u(tj−1)), it follows that Sj �= Sj−1, i.e., Sj = E(tj), which
proves the first part of the lemma.

Last, since dj+1
i p(tj)i ≥ 0 by Algorithm 1 and i ∈ Sj\A(u(tj)) ⊆ supp(dj+1), it

follows that dj+1
i p(tj)i > 0. �
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The third lemma describes the case of a hitting coordinate, i.e., a coordinate
which has to be included in the equicorrelation set at t = tj .

Lemma 5.8. Let Hj = {i}, Lj = ∅, and E(tj) = A(u(tj))∪̇{i}. Then we have that

dj+1
E(tj) =

(
AT

E(tj)AE(tj)

)†
p(tj)E(tj) , dj+1

E(tj)C = 0 ,

and dj+1
i p(tj)i > 0.

Proof. By assumption E(tj) = A(u(tj))∪̇{i}. Then, either Sj = A(u(tj)) or Sj =
E(tj). To prove the lemma, it suffices to show that Sj �= A(u(tj)).

Since u(tj)l �= 0 for all l ∈ A(u(tj)) and Lj = ∅, it follows that Sj−1 = A(u(tj)).
If Sj = A(u(tj)), then dj+1 = dj , which is a contradiction. The last inequality
follows as in Lemma 5.7. �

Lemma 5.8 was already proven in [8, Lemma 5.4] under the additional assump-
tion that AE(tj) is injective. The most difficult part in their proof is to show that

dj+1
i agrees in sign with p(tj)i, i.e., d

j+1
i p(tj)i ≥ 0.

Proof of Theorem 5.3. The result follows from the first parts of the Lemmas 5.6,
5.7, and 5.8 if we show that the assumption |E(tj)\A(u(tj))| = 1 is satisfied for
every j = 0, . . . ,K − 1. Due to the one-at-a-time condition, it suffices to note that
|E(t)\A(u(t))| = 0 for every t ∈ (tj+1, tj), which follows directly from the second
parts of the Lemmas 5.6, 5.7, and 5.8. �

Remark 5.9. Our analysis shows that the injectivity of AE(tj) is only needed to show

that |E(tj)\A(u(tj))| = 1 at every iteration, and only in the scenario of Lemma 5.6.
Essentially, we have to exclude that a leaving index i ∈ Lj = A(u(tj−1))\A(u(tj))
remains in the equicorrelation set, i.e., i ∈ E(t) for all t ∈ (tj+1, tj). As long
as the solution path is unique, this would contradict Lemma 4.4. In the case of
nonuniqueness, there may be additional kinks in the interior of one of the IE,s (as
defined in Lemma 4.4), where we do not know yet whether and how it can be
excluded.

It was noted in [8, 14] that without the one-at-a-time condition, the standard
homotopy method can encounter sign inconsistencies. An example with A ∈ R

3×3

is given in [14], namely

(5.3) A =

⎡
⎣−3 4 4
−5 1 4
5 1 −4

⎤
⎦ and f =

⎡
⎣24
17
−7

⎤
⎦ .

The outputs of the generalized homotopy method and SparseLab [6], one of the most
popular implementations of the homotopy method [8,16], are displayed in Figure 3.
At the first kink t = 192, the 1st component in the output produced by SparseLab
enters the active set with the wrong sign. Therefore, in this example SparseLab is
unable to produce a full solution path. As Algorithm 2 has an additional feature
to detect sign inconsistencies, it would exit at t = 192.

Notice that the matrix A is invertible, and thus the solution path is unique.
The wrong solution path produced by SparseLab is solely the result of the missing
one-at-a-time condition, and not of nonuniqueness.
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(A) Output of Algorithm 1 (B) Output of SparseLab

(C) Components of p(t)

Figure 3. We display the behaviour of the generalized homotopy
method and the output of SparseLab in an example where the one-
at-a-time condition does not hold. On certain intervals, the output
of SparseLab has a nonzero first component while the correct sub-
gradient satisfies |p1(t)| < 1. Thus, SparseLab does not produce a
solution path.

In [14], based on ideas in [8], the following strategy was proposed: Instead of
choosing Sj = E(tj)\Lj in Algorithm 2, loop over all sets S ⊆ [N ] with A(u(tj)) ⊆
S ⊆ E(tj), compute

dS =
(
AT

SAS

)†
p(tj)S, and set dSC = 0 .

Choose Sj = S as soon as tj+1 < tj , i.e., d ∈ D(tj , u(tj)). We call this the homotopy
method with looping (see Algorithm 3).

From Proposition 5.5 it follows that the homotopy method with looping finds a
direction at every iteration. This is, at least in the case of nonuniqueness, a non-
trivial result. Notice that the homotopy method with looping does not necessarily
compute the direction with minimal �2 norm. Therefore, the finite termination of
the algorithm is unclear.
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Algorithm 3 Homotopy Method With Looping [8, 14]

1: Input: data f ∈ R
m, matrix A ∈ R

m×N

2: Output: number of steps K, sequence t0, . . . , tK of regularization parameters,
sequence u(t0), . . . , u(tK) of solutions

3: Initialization: Set t0 = ‖AT f‖∞ and u(t0) = 0.
4: for j = 0, 1, . . . do
5: if tj = 0 then
6: Break
7: end if
8: for S ⊆ [N ] with A(u(tj)) ⊆ S ⊆ E(u(tj)) do
9: Compute

dj+1
S =

(
AT

SAS

)†
p(tj)S and set dj+1

(S)C
= 0 .

10: Find the minimal tj+1 ≥ 0 such that u(t) solves (3.1) on [tj+1, tj ].
11: if tj+1 < tj then
12: Break
13: end if
14: end for
15: end for

Besides providing a theoretical foundation to the homotopy method with loop-
ing, the characterization of the set of possible directions (Theorem 3.2) can also
improve its performance. The loop over all sets S ⊆ [N ] with A(u(tj)) ⊆ S ⊆ E(tj)
can be interpreted as a rudimentary active-set strategy to solve the nonnegative
least squares problem (3.2), even though this was not explicitly noted. As soon as
|E(tj)\A(u(tj))| becomes large this methods becomes infeasible. Indeed, we would

have to solve 2|E(t
j)\A(u(tj))| linear systems. Empirical tests show that small random

Bernoulli matrices, for instance A ∈ R
20×50, regularly yield |E(tj)\A(u(tj))| ≥ 18.

Nevertheless, we consider their work [14] an important step towards understanding
the solution paths of (3.1) even when the one-at-a-time condition fails.

The injectivity assumption in Theorem 5.2 is mainly needed to prevent the non-
uniqueness of the solution path. Scenarios without uniqueness assumptions were
studied in [20], but again only under the (implicit) assumption of the one-at-a-time
condition. The results [20, Lemma 9 and Section 3.1] state that a continuous and
piecewise linear solution path is given by the semi-explicit formula

(5.4) βE(t) = (AE(t))
†
(
f − (AT

E(t))
† t p(t)E(t)

)
and β(E(t))C = 0 .

Although β(t) ∈ Ut for A and f as in the previous example (5.3), this approach in
general only applies under the one-at-a-time condition. As an example, consider

(5.5) A =

⎡
⎣−1 +1 +1 +1
+1 −1 +1 +1
+1 +1 +1 −1

⎤
⎦ , f =

⎡
⎣−1
−3
−1

⎤
⎦ and t = 2 .

Then u(2) =
[
0 0 −1 0

]T
is a solution and the corresponding subgradient is

p(2) =
[
−1 1 −1 −1

]T
. But (5.4) yields β(2) =

[
−1/4 −1/4 −3/4 −1/4

]
,

and thus the second component has the wrong sign. As can be seen in Figure 4,
the path β(t) is neither continuous nor does it solve β(t) ∈ Ut for all t ≥ 0.
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(A) Components of u(t) (B) Components of β(t)

(C) Components of p(t)

Figure 4. For A and f as in (5.5) we compare a solution path
u(t) to the semi-explicit β(t) as in (5.4). In this example, β(t) is
not a solution path.

5.2. Adaptive inverse scale space method. The adaptive inverse scale space
(aISS) method is a fast algorithm to compute �1-minimizing solutions of linear
systems. Instead of calculating the minimizers of variational problems with vary-
ing regularization parameters t, it computes an exact solution to the differential
inclusion

(5.6)

{
∂νq(t) = AT (f −Av(t)) with q(t) ∈ ∂‖v(t)‖1,
q(0) = 0.

The following theorem is proven in [4, Theorem 1 and 2].

Theorem 5.10 ([4]). There exists a finite sequence of times

0 = t0 < t1 < t2 < · · · < tK < tK+1 = ∞

such that for all k = 0, . . . ,K,

v(t) = v(tk), q(t) = q(tk) + (t− tk) AT (f −Av(tk)),
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for t ∈ [tk, tk+1) is a solution of the inverse scale space flow. Here, v(tk) is a
solution of

(5.7) v(tk) ∈ argmin
v∈RN

‖Av − f‖22 s.t. q(tk) ∈ ∂‖v‖1 .

Furthermore, v(t) is an �1-minimizing solution of ATAv = AT f for all t ≥ tK .

The aISS method has striking similarities to the generalized homotopy method.
First, a seemingly continuous problem, i.e., a differential inclusion, can be solved
completely by knowing the solution at finitely many points. While the generalized
homotopy method produces a piecewise linear path u(t), the path v(t) of the aISS
method is piecewise constant.

Second, both methods solve nonnegative least squares problems to calculate the
solution path. To see this, note that in the aISS method

q(tk) ∈ ∂‖v‖1 ⇔ viq(t
k)i ≥ 0 ∀i with |q(tk)i| = 1, vi = 0 ∀i with |q(tk)i| < 1 .

Although in a different context, the link between the inverse scale space flow and
variational methods is also studied in [3].

5.3. Parametric quadratic programming. The �1-regularized linear inverse
problem (3.1) can be equivalently rewritten as

(5.8) min
u∈RN ,z∈Rm

1

2
‖z‖22 + t‖u‖1 s.t. z = f −Au .

The dual problem of (5.8) is then given by

(5.9) max
r∈Rm

−1

2
‖r‖22 + 〈r, f〉 s.t. ‖AT r‖∞ ≤ t .

Since for 1N :=
[
1 . . . 1

]T ∈ R
N the constraint ‖AT r‖∞ ≤ t is equivalent to

−t1N ≤ AT r ≤ t1N , (5.9) is a parametric quadratic program. The parametric qua-
dratic programming algorithm in [2] assumes, similar to earlier homotopy methods
[8, 16], that a one-at-a-time condition holds and that AT has full row rank. The
optimal partition approach in [1] uses maximal complementary to not rely on a
one-at-a-time condition. However, the solution path produced by [1, Algorithm 3]
is not necessarily continuous, and the subproblems are more complicated than (3.2).
To the best of our knowledge, there is no result comparable to Theorem 3.2, which
holds for every u(t̂) ∈ Ut̂, in the parametric quadratic programming literature.

5.4. Numerical experiments. To illustrate our findings and give more insight to
when the homotopy algorithm is the better choice in comparison to more standard
state-of-the-art convex optimization techniques, we perform the following numerical
experiment. We compare our method to a generic MATLAB implementation of
the primal-dual hybrid gradient method (PDHG) with adaptive steps [12] and to
the adaptive inverse scale space method (aISS) [4]; see Figure 5. For each s ∈
{20, 24, 28, . . . , 110}, we created 100 sparse recovery problems as follows: We first
generated an s-sparse vector û of dimension 1000, whose nonzero entries are drawn
independently from a Bernoulli distribution, then generated a random Bernoulli
matrix A of dimension 300×1000, and set f = Aû. Finally, we used the generalized
homotopy method, aISS, and PDHG to compute a solution of

u# ∈ argmin
u∈R1000

‖u‖1 s.t. Au = f ,

and compared u# with û.
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(A) Runtime (B) Reconstruction error

(C) Data error
(D) NNLS solved by gen. hom. method

Figure 5. For a sparse recovery problem with a random Bernoulli
matrix A, we compare the performance of the generalized homo-
topy method, the adaptive inverse scale space method, and the
primal-dual hybrid gradient method with adaptive steps. The spar-
sity varies between 20 and 110 in steps of size 4, and for each level,
100 experiments were conducted. In (A), we compare the runtime
of the three algorithms. In (B) and (C), we compare the relative re-
construction error ‖û−u#‖1/‖û‖1 and the data error ‖Au#−f‖22,
respectively. In (D), the x-axis represents the number of steps
taken by the generalized homotopy method. The y-axis represents
the number of steps in which the solution of the linear system (5.1)
failed to be a valid direction. Each data point in (D) was created by
taking the median value of all experiments with the same sparsity.

For small sparsities s, i.e., 20≤ s≤ 40, both the generalized homotopy method
and aISS are faster and more accurate than PDHG. For medium-sized sparsities
s, i.e., 40≤ s≤ 50, the runtimes of all three methods are comparable, while the
generalized homotopy method and aISS are still more accurate than PDHG. For s ≥
84, the true sparse signal û is no longer recovered from the linear measurements f =
Au.
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In Figure 5(D), we examine the success rate of the standard homotopy method.
For paths with a small number of steps, the standard homotopy method success-
fully computes a solution path. As the number of steps increases, the number of
failures of (5.1) begins to grow polynomially with the number of steps taken. To
obtain a solution path, we now have to solve the nonnegative least squares prob-
lem (3.2). Under these circumstances, the generalized homotopy method recovers
sparse signals efficiently.

6. Conclusions and future research

In this paper, we have introduced a generalized homotopy method which com-
putes a full solution path of �1-regularized problems in finitely many iterations. In
contrast to previous homotopy methods, it provably works for an arbitrary combi-
nation of a measurement matrix and a data vector, requiring neither the uniqueness
of the solution path nor the one-at-a-time condition. The backbone of the gener-
alized homotopy method is a characterization of the set of possible directions by a
nonnegative least squares problem.

In future research, we will extend the proposed homotopy method to arbitrary
polyhedral regularizations. Furthermore, we will investigate its applicability for
generalizing the ideas of nonlinear spectral decompositions considered in [3, 11] to
more general data fidelity terms.
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[4] Martin Burger, Michael Möller, Martin Benning, and Stanley Osher, An adaptive inverse

scale space method for compressed sensing, Math. Comp. 82 (2013), no. 281, 269–299, DOI
10.1090/S0025-5718-2012-02599-3. MR2983025

[5] Emmanuel J. Candès, Justin Romberg, and Terence Tao, Robust uncertainty principles: exact
signal reconstruction from highly incomplete frequency information, IEEE Trans. Inform.
Theory 52 (2006), no. 2, 489–509, DOI 10.1109/TIT.2005.862083. MR2236170

[6] David Donoho, Iddo Drori, Victoria Stodden, Yaakov Tsaig, and Morteza Shahram, Sparselab,
https://sparselab.stanford.edu/, 2007.

[7] David L. Donoho and Yaakov Tsaig, Fast solution of l1-norm minimization problems when
the solution may be sparse, IEEE Trans. Inform. Theory 54 (2008), no. 11, 4789–4812, DOI
10.1109/TIT.2008.929958. MR2589865

[8] Bradley Efron, Trevor Hastie, Iain Johnstone, and Robert Tibshirani, Least angle regression,
Ann. Statist. 32 (2004), no. 2, 407–499, DOI 10.1214/009053604000000067. MR2060166

[9] Simon Foucart and Holger Rauhut, A Mathematical Introduction to Compressive Sens-
ing, Applied and Numerical Harmonic Analysis, Birkhäuser/Springer, New York, 2013.
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