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TOWARD A THEORY OF MONOMIAL PREORDERS

GREGOR KEMPER, NGO VIET TRUNG, AND NGUYEN THI VAN ANH

Abstract. In this paper we develop a theory of monomial preorders, which
differ from the classical notion of monomial orders in that they allow ties
between monomials. Since for monomial preorders, the leading ideal is less
degenerate than for monomial orders, our results can be used to study problems
where monomial orders fail to give a solution. Some of our results are new
even in the classical case of monomial orders and in the special case in which
the leading ideal defines the tangent cone.

Introduction

A monomial order or a monomial ordering is a total order on the monomials of
a polynomial ring which is compatible with the product operation [12]. Gröbner
basis theory is based on monomial orders with the additional condition that 1 is
less than all other monomials. Using such a monomial order, one can associate to
every ideal a leading ideal that has a simple structure and that can be used to get
information on the given ideal. This concept has been extended to an arbitrary
monomial order in order to deal with the local case by Mora, Greuel and Pfister
[11,12,20]. One may ask whether there is a similar theory for partial orders on the
monomials of a polynomial ring.

For a partial order, the leading ideal is no longer a monomial ideal and, therefore,
harder to study. On the other hand, it is closer to the given ideal in the sense that
it is less degenerate than the leading ideal for a monomial order. An instance is
the initial ideal generated by the homogeneous components of lowest degree of the
polynomials of the given ideal, which corresponds to the notion of the tangent cone
at the origin of an affine variety. Being closer to the original ideal, a partial order
may help to solve a problem that cannot be solved by any monomial order. A
concrete example is Cavaglia’s proof [4] of a conjecture of Sturmfels on the Koszul
property of the pinched Veronese. The aim of this paper is to establish an effective
theory of partial monomial orders and to show that it has potential applications in
the study of polynomial ideals.

Let k[X] = k[x1, . . . , xn] be a polynomial ring over a field k. For any integral
vector a = (α1, . . . , αn) ∈ Nn we write xa for the monomial xα1

1 · · ·xαn
n . Let <
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be an arbitrary partial order on the monomials of k[X]. For every polynomial
f =

∑
cax

a one defines the leading part of f as

L<(f) :=
∑

xa∈max<(f)

cax
a,

where max<(f) denotes the set all monomials xa of f such that there is no monomial
xb of f with xa < xb.

The first problem that we have to address is for which partial orders the leading
parts of polynomials behave well under the operations of k[X]. Obviously, such a
partial order should be a weak order, i.e., it satisfies the additional condition that
incomparability is an equivalence relation. Moreover, it should be compatible and
cancellative with the product operation, i.e., if xa, xb are monomials with xa < xb,
then xaxc < xbxc for any monomial xc, and if xaxc < xbxc for some xc, then
xa < xb. If a partial order < satisfies these conditions, we call it a monomial
preorder. A natural instance is the weight order associated to a weight vector
w ∈ Rn, defined by xa < xb if w · a < w · b.

We shall see that a binary relation < on the monomials of k[X] is a monomial
preorder if and only if there exists a real m × n matrix M for some m ≥ 1 such
that xa < xb if and only if M · a <lex M · b for any monomials xa, xb, where <lex

denotes the lexicographic order. This means that monomial preorders are precisely
products of weight orders. This characterization is a natural extension of a result of
Robbiano [24], who showed that every monomial order can be defined as above by
a real matrix with additional properties. It can be also deduced from a subsequent
result of Ewald and Ishida in [7], where similar preorders on the lattice Zn were
studied from the viewpoint of algebraic geometry (see also Gonzalez Perez and
Teissier [9]). They call the set of all such preorders the Zariski-Riemann space of
the lattice, and use this result to prove the quasi-compactness of that space.

As one can see from the above characterization by real matrices, monomial pre-
orders give rise to graded structures on k[X]. For graded structures, Robbiano
[25] developed a framework for dealing with leading ideals. See also the papers
of Mora [21] and Mosteig and Sweedler [23] and for related results. Especially,
non-negative gradings defined by matrices of integers were studied thoroughly by
Kreuzer and Robbiano in [19, Section 4.2]. They remarked in [19, p. 15]: “For ac-
tual computations, arbitrary gradings by matrices are too general.” Nevertheless,
we can develop an effective theory of leading ideals for monomial preorders despite
various obstacles compared to the theory of monomial orders.

Let < be an arbitrary monomial preorder of k[X]. Following Greuel and Pfister
[12], we will work in the localization k[X]< := S−1

< k[X], where S< := {u ∈ k[X] |
L<(u) = 1}. Note that k[X]< = k[X] if and only if 1 < xi or 1 and xi are
incomparable for all i, and k[X]< = k[X](X) if and only if xi < 1 for all i. In these
cases, we call < a global monomial preorder or local monomial preorder, respectively.
For every element f ∈ k[X]<, we can choose u ∈ S< such that uf ∈ K[X], and
define L<(f) := L<(uf). The leading ideal of a set G ⊆ k[X]< is the ideal in k[X]
generated by the polynomials L<(f), f ∈ G, denoted by L<(G).

Let I be an ideal in k[X]<. For monomial orders, there is a division algorithm and
a notion of s-polynomials, which are used to devise an algorithm for the computation
of a standard basis of I, i.e., a finite set G of elements of I such that L<(G) = L<(I).
For monomial preorders, there is no such algorithm. However, we can overcome this
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obstacle by refining the given monomial preorder < to a monomial order. We shall
see that I and L<(I) share the same leading ideal with respect to such a refinement
of the preorder <. Using this fact, we show that a standard basis of I with respect
to the refinement is also a standard basis of I with respect to the original monomial
preorder. Therefore, we can compute a standard basis with respect to a monomial
preorder by using the standard basis algorithm for monomial orders. Moreover, we
can show that if J ⊆ I are ideals in k[X]< with L<(J) = L<(I), then J = I.

An important feature of the leading ideal with respect to a monomial order is
that it is a flat deformation of the given ideal [12]. This can be also shown for a
monomial preorder. For that we need to approximate a monomial preorder by an
integral weight order which yields the same leading ideal. Compared to the case of
a monomial order, the approximation for a monomial preorder is more complicated
because of the existence of incomparable monomials, which must be given the same
weight.

Using the approximation by an integral weight order we can relate properties
of I and L<(I) with each other. The main obstacle here is that L<(I) and
I may have different dimensions. However, we always have dim k[X]/L<(I) =
dim k[X]/I∗, where I∗ = I ∩ k[X]. From this it follows that htL<(I) = ht I and
dim k[X]/L<(I) ≥ dim k[X]</I with equality if < is a global or local preorder.
Inspired by a conjecture of Kredel and Weispfening [18] on equidimensionality in
Gröbner basis theory and its solution by Kalkbrenner and Sturmfels [16], we also
show that if k[X]/I∗ equidimensional, then k[X]/L<(I) is equidimensional. This
has the interesting consequence that if an affine variety is equidimensional at the
origin, then so is its tangent cone.

Despite the fact that L<(I) and I may have different dimensions, many proper-
ties descend from L<(I) to I. Let P be a property which an arbitrary local ring may
have or not have. We denote by Spec

P
(A) the P-locus of a noetherian ring A. If P is

one of the properties regular, complete intersection, Gorenstein, Cohen-Macaulay,
Serre’s condition Sr, normal, integral, and reduced, we can show that

dimSpecNP
(k[X]</I) ≤ dimSpecNP

(
k[X]/L<(I)

)
,

where NP denotes the negation of P. As far as we know, this inequality is new even
for global monomial orders and for the tangent cone. From this it follows that if P
holds at all primes of k[X]/L<(I), then it also holds at all primes of k[X]</I. For
a large class of monomial preorders, containing all monomial orders, it suffices to
test P for the maximal ideal in k[X]/L<(I) corresponding to the origin. Moreover,
we can show that if k[X]/L<(I) is an integral domain, then so is k[X]</I. For a
positive integral weight order, Bruns and Conca [2] showed that the above properties
descend from k[X]/L<(I) to k[X]/I. However, their method could not be used for
monomial preorders.

If I is a homogeneous ideal of k[X], we can replace a monomial preorder < by a
global monomial preorder, which can be approximated by a positive integral weight
order. So we can use results on such weight orders [4,26,29] to compare important
graded invariants of I and L<(I). We can show that the graded Betti numbers of
L<(I) are upper bounds for the graded Betti numbers of I. From this it follows
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that the depth and the Castelnuovo-Mumford regularity of I are bounded by those
of L<(I):

depth k[X]/I ≥ depth k[X]/L<(I),

reg k[X]/I ≤ reg k[X]/L<(I).

We can also show that the dimension of the graded components of the local coho-
mology modules of L<(I) are upper bounds for those of I and that the reduction
number of k[X]/I is bounded above by the reduction number of k[X]/L<(I).

The above results demonstrate that one can use the leading ideal with respect
to a monomial preorder to study properties of the given ideal. For some cases,
where the preorder is not a total order, the leading ideal still has a structure like a
monomial ideal in a polynomial ring. For instance, if I is an ideal which contains
the defining ideal � of a toric ring R, one can construct a monomial preorder <
such that L<(I) contains � and L<(I)/� is isomorphic to a monomial ideal of R.
This construction was used by Gasharov, Horwitz and Peeva [8] to show that if R
is a projective toric ring and if Q is an arbitrary homogeneous ideal of R, there
exists a monomial ideal Q∗ in R such that R/Q and R/Q∗ have the same Hilbert
function. Their result is just a consequence of the general fact that k[X]/L<(I)
and k[X]/I have the same Hilbert function for any homogeneous ideal I and for
any monomial preorder ≤. This case shows that monomial preorders can be used
to study subvarieties of a toric variety.

We would like to mention that in a recent paper [17], the first two authors have
used global monomial preorders in a polynomial ring over a commutative ring R to
characterize the Krull dimension of R. Global monomial preorders have been also
used recently by Sumi, Miyazaki, and Sakata [28] to study ideals of minors.

The paper is organized as follows. In Section 1 we characterize monomial pre-
orders as products of weight orders, which are given by real matrices. In Section
2 we investigate basic properties of leading ideals. In Section 3 we approximate a
monomial preorder by an integral weight order. Then we use this result to study
the dimension of the leading ideal. In the final Section 4 we prove the descent of
properties and invariants from the leading ideal to the given ideal for an arbitrary
monomial preorder.

We refer to the books [6] and [12] for unexplained notions in Commutative Al-
gebra.

1. Monomial preorders

Recall that a (strict) partial order on a set S is a binary relation < on S which
is irreflexive, asymmetric, and transitive, i.e., for all a, b, c ∈ S,

• not a < a;
• if a < b then not b < a;
• if a < b and b < c then a < c.

The elements a, b are said to be comparable if a < b or b < a. One calls < a weak
order if the incomparability is an equivalence relation on S. Notice that this is
equivalent to saying that the negation �< of < is transitive. A partial order under
which every pair of elements is comparable is called a total order.

Let k[X] = k[x1, . . . , xn] be a polynomial ring in n indeterminates over a field k.
First, we want to see for which (strict) partial order < on the monomials of k[X]
one can define a meaningful notion of leading polynomials.
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It is natural that < should be a weak order. Moreover, < should be compatible
and cancellative with the multiplication, meaning that xa < xb implies xaxc < xbxc

and xaxc < xbxc implies xa < xb for a, b, c ∈ Nn. We call a weak order < on the
monomials of k[X] a monomial preorder if it the above properties are satisfied.
Note that this definition is weaker than the definition of a monomial preorder in
[17], where it is required that 1 < xa for all xa �= 1. If a monomial preorder is a
total order, we call it a monomial order. So a monomial order is precisely what
Greuel and Pfister [12, Definition 1.2.1] call a monomial ordering.

Remark 1.1. For a total order, the cancellative property can be deduced from
the compatibility with the multiplication. That is no more the case for a weak
order. For example, define xa < xb if deg xa < deg xb or deg xa = deg xb > 1
and xa <lex xb. This weak order is compatible with the product operation but not
cancellative because x1x2 < x2

1 but x2 �< x1.

Monomial preorders are abundant. Given an arbitrary real vector w ∈ Rn, we
define xa <w xb if w ·a < w · b, with the dot signifying the standard scalar product.
Obviously, <w is a monomial preorder. One calls <w the weight order associated
with w [6]. For example, the degree order or the reverse degree order defined by
xa < xb if deg xa < deg xb or deg xa > deg xb is the weight order of the vector
(1, . . . , 1) or (−1, . . . ,−1). More generally, we can associate with every real m× n
matrix M a monomial preorder < by defining xa < xb if M · a <lex M · b, where
<lex denotes the lexicographic order on Rn.

Given two monomial preorders < and <′, we can define a new monomial preorder
<∗ by xa <∗ xb if xa < xb or if xa, xb are incomparable with respect to < and
xa <′ xb. We call <∗ the product of < and <′. Note that this product is not
commutative. The monomial preorder associated with a real matrix M is just the
product of the weight orders associated with the row vectors of M .

The following result shows that every monomial preorder of k[X] arises in such
a way.

Theorem 1.2. For every monomial preorder < of k[X], there is a real m × n
matrix M for some m > 0 such that xa < xb if and only if M · a <lex M · b.

Theorem 1.2 is actually about partial orders on Nn. For total orders on Qn,
it was first shown by Robbiano [24, Theorem 4] (see also [25, Theorem 2.4]). For
partial orders on Zn, it was shown by Ewald and Ishida [7, Theorem 2.4] from the
viewpoint of algebraic geometry. Actually, Ewald and Ishida reduced the proof to
the case of total orders on Qn. However, they were unaware of the much earlier
result of Robbiano. We will deduce Theorem 1.2 from Robbiano’s result by using
the following simple observations. These observations also explain why we have
to define a monomial preorder as above. Moreover, they will be used later in the
course of this paper.

Let S be a cancellative abelian monoid with the operation +. We call a partial
order < on S a partial order of the monoid S if it is compatible and cancellative
with +, meaning that a < b implies a + c < b + c and a + c < b + c implies a < b
for all a, b, c ∈ S.

Similarly, if E is a vector space over Q, a partial order < on E is called a partial
order of the vector space E if it is a partial order of E as a monoid and a < b implies
λa < λb for all λ ∈ Q+ and a, b ∈ E, where Q+ denotes the set of the positive
rational numbers.
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Lemma 1.3. Every partial order of the additive monoid Nn can be uniquely ex-
tended to a partial order of the vector space Qn.

Proof. Let < be a partial order of Nn. For every a ∈ Zn, there are two unique
vectors a+, a− ∈ Nn having disjoint supports such that a = a+ − a−. For arbitrary
a, b ∈ Zn we define a < b if a+ + b− < a− + b+. One can easily show that <
is a partial order of Zn extending the partial order < of Nn. Now, for arbitrary
a, b ∈ Qn, we can always find a positive integer p such that pa, pb ∈ Zn. We define
a < b if pa < pb. It is easy to see that < is a well-defined partial order of the vector
space Qn. �

It is clear from the above proof that the cancellative property of < on Nn is
necessary for the extension of < to Qn. In fact, any partial order on an abelian
group which is compatible with the group operation is also cancellative.

If < is a weak order of Nn, one can easily verify that the extended partial order
< on Qn is also a weak order.

Lemma 1.4. Let < be a weak order of the vector space Qn. Let E denote the set
of the elements which are incomparable to 0. Then E is a linear subspace of Qn

and, if we define a + E < b + E if a < b for arbitrary a, b ∈ Qn, then < is a total
order of the vector space Qn/E.

Proof. It is clear that two elements a, b ∈ Qn are incomparable if and only if
a − b �< 0 and 0 �< a − b, which means a − b ∈ E. Since the incomparability
is an equivalence relation, a, b ∈ E implies a, b are incomparable and, therefore,
a − b ∈ E. As a consequence, a ∈ E implies pa ∈ E for any p ∈ N. From this
it follows that (p/q)a = pa/q ∈ E for any q ∈ Z, q �= 0. Therefore, E is a linear
subspace of Qn and a+ E is the set of the elements which are incomparable to a.
Now, it is easy to see that the induced relation < on Qn/E is a total order of the
vector space Qn/E. �

Lemma 1.4 does not hold if < is a partial order that is not a weak order.

Example 1.5. Consider the partial order of the vector space Qn, n ≥ 2, defined
by the condition a < b if and only if a− b = λ(e1 − e2) for some λ ∈ Q+, where ei
denote the standard basis vectors. Then < is not a weak order because e1, 0 and
e2, 0 are pairs of incomparable elements, whereas e1 < e2. Clearly, E is not a linear
subspace of Qn because e1, e2 ∈ E but e1 − e2 �∈ E.

Now we will use Lemma 1.3 and Lemma 1.4 to prove Theorem 1.2.

Proof of Theorem 1.2. Let < denote the weak order of the additive monoid Nn

induced by the monomial preorder < in k[X]. By Lemma 1.3, < can be extended
to a weak order of Qn. Let E be the set of the incomparable elements to 0 in
Qn. By Lemma 1.4, E is a linear subspace of Qn and < induces a total order < of
Qn/E. By [24, Theorem 4], there is an injective linear map φ from Qn/E to Rm (as
a vector space over Q) such that a+E < b+E if and only if φ(a+E) <lex φ(b+E)
for all a, b ∈ Qn. The composition of the natural map from Qn to Qn/E with φ is
a linear map ψ from Qn to Rm such that a < b if and only if ψ(a) <lex ψ(b). Since
ψ is a linear map, we can find a real m × n matrix M such that ψ(a) = M · a for
all a ∈ Qn. Therefore, xa < xb if and only if M · a <lex M · b. �

We shall see in the following remark that a monomial preorder give rise to a
grading on k[X], which may be useful for the study of leading ideals.
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Remark 1.6. Let < be an arbitrary monomial preorder in k[X]. Let S denote the
quotient set of the monomials with respect to the equivalence relation of incom-
parability. Since < is compatible and cancellative with the product of monomials,
we can define the product of two equivalent classes to make S a totally ordered
abelian monoid. For every a ∈ Nn we denote by [a] the equivalent class of the
monomials incomparable to xa and by k[X][a] the vector space generated by the
monomials of [a]. Then k[X] =

⊕
[a]∈S k[X][a] has the structure of an S-graded

ring. For instance, if < is the weight order associated with a vector w, this grading
is given by the weighted degree deg xa = w · a. We call a polynomial or a polyno-
mial ideal <-homogeneous if it is graded with respect to this grading. It is clear
that the leading part of any polynomial is <-homogeneous. Therefore, the leading
ideal of any set in k[X] is <-homogeneous. As a consequence, the leading ideal has
a primary decomposition with <-homogeneous primary ideals and <-homogeneous
associated primes. See, e.g., [6, Exercise 3.5] for more information on rings graded
by an abelian monoid and [25] for algebraic structures over rings graded by a totally
ordered abelian group.

We can use the leading ideal of monomial preorders to study different subjects
in algebra and geometry. For instance, if < is the degree order, i.e., xa < xb if
deg xa < deg xb, then L<(f) is the homogeneous component of the highest degree
of a polynomial f . In this case, the leading ideal L<(I) of a polynomial ideal I
describes the part at infinity of the affine variety V (I) (see, e.g., [12, Definition
4.14]). If < is the reverse degree order, i.e., xa < xb if deg xa > deg xb, then
L<(f) is just the homogeneous component of the lowest degree of f . In this case,
k[X]/L<(I) is the associated graded ring of k[X]/I with respect to the maximal
homogeneous ideal, which corresponds to the concept of the tangent cone (see, e.g.,
[6, Section 5.4]).

In the following we will present a class of useful monomial preorders which arise
naturally in the study of ideals of toric rings. Recall that a toric ring is an algebra
R which are generated by a set of monomials tc1 , . . . , tcn , c1, . . . , cn ∈ Nm, in a
polynomial ring k[t1, . . . , tm]. We call an ideal of R a monomial ideal if it is gener-
ated by monomials of k[t1, . . . , tm]. Monomial ideals of R have a simple structure
and can be studied using combinatorics tools.

Let φ : k[X] → R denote the map which sends xi to tci , i = 1, . . . , n, and
� = kerφ. Then R = k[X]/�. One calls � the toric ideal of R. Every ideal of R
corresponds to an ideal of k[X] containing �. Let M be the matrix of the column
vectors c1, . . . , cn. We call the monomial preorder on k[X] associated to M the
toric preorder associated to R. This order can be used to deform every ideal of R
to a monomial ideal.

Proposition 1.7. Let R be a toric ring and � the toric ideal of R in k[X]. Let <
be the toric preorder of k[X] with respect to R. Let I be an arbitrary ideal of k[X]
which contains �. Then L<(I) ⊇ � and L<(I)/� is isomorphic to a quotient ring
of R by a monomial ideal.

Proof. It is known that � is generated by binomials of the form xa+ − xa− , where
a+, a− ∈ Nn are two vectors having disjoint supports such that a = a+ − a− is a
solution of the equation M · a = 0 [14]. Since M · xa+ = M · xa− , xa+ and xa−

are incomparable with respect to <. Hence, L<(x
a+ − xa−) = xa+ − xa− . Thus,

L<(�) = �. Since I ⊇ �, this implies L<(I) ⊇ �.
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Since L<(I)/� ∼= φ(L<(I)), it remains to show that φ(L<(I)) is a monomial
ideal of R. This follows from the general fact that for any polynomial f ∈ k[X],
φ(L<(f)) is a monomial of k[t1, . . . , tr], which we shall show below.

If f is a monomial, then L<(f) = f and φ(f) is clearly a monomial of k[t1, . . . , tr].
If f is not a monomial, L<(f) is a linear combination of incomparable monomials.
Therefore, it suffices to show that if xa, xb are two incomparable monomials, then
φ(xa) = φ(xb). Let M be the matrix defined as above. Since < is the monomial

preorder associated to M , M ·a = M · b. Hence, φ(xa) = tM ·a = tM ·b′ = φ(xb). �

Proposition 1.7 extends a technique used by Gasharov, Horwitz and Peeva to
show that if R is a projective toric ring and if Q is a homogeneous ideal in R,
then there exists a monomial ideal Q∗ such that R/Q and R/Q∗ have the same
Hilbert function [8, Theorem 2.5(i)]. In this case, we have R/Q ∼= k[X]/I and
R/Q∗ ∼= k[X]/L<(I) for some homogeneous ideal I. In the next section we will
prove the more general result that if I is an arbitrary homogeneous ideal, then
k[X]/I and k[X]/L<(I) have the same Hilbert function for any homogeneous ideal
I of k[X] and any monomial preorder <.

2. Computation of leading ideals

Let < be an arbitrary monomial preorder on k[X]. Since < is compatible with
the product operation, we have L<(fg) = L<(f)L<(g) for f, g ∈ k[X]. It follows
that the set S< := {u ∈ k[X] | L<(u) = 1} is closed under multiplication, so we
can form the localization k[X]< := S−1

< k[X].
It is easy to see that S< = {1} if and only if 1 < xi or 1 and xi are incomparable

for all i and that S< = k[X] \ (X) if and only if xi < 1 for all i. That means
k[X]< = k[X] or k[X]< = k[X](X), explaining why we call < in these cases a global
monomial preorder or local monomial preorder. For monomial orders, these notions
coincide with those introduced by Greuel and Pfister [12].

For every element f ∈ k[X]<, there exists u ∈ S< such that uf ∈ K[X]. If there
is another v ∈ S< such that vf ∈ K[X], then L(vf) = L(uvf) = L(uf) because
L(u) = L(v) = 1. Therefore, we can define L<(f) := L<(uf). Recall that for
a subset G ⊆ k[X]<, the leading ideal L<(G) of G is generated by the elements
L<(f), f ∈ G, in k[X].

The above notion of leading ideal allow us to work in both rings k[X] and k[X]<.
Actually, we can move from one ring to the other ring by the following relationship.

Lemma 2.1. Let Q be an ideal in k[X] and I an ideal in k[X]<. Then
(a) L<(Qk[X]<) = L<(Q),
(b) L<(I ∩ k[X]) = L<(I).

Proof. For every f ∈ Qk[X]<, there exists u ∈ S< such that uf ∈ Q. Therefore,
L<(f) = L<(uf) ∈ L<(Q). This means L<(QKx<) ⊆ L<(Q). Since Q ⊆ Qk[X]<,
this implies L<(Qk[X]<) = L<(Q). Now let Q = I ∩ k[X]. Then Qk[X]< = I. As
we have seen above, L<(Q) = L<(I). �

By Lemma 2.1(a), two different ideals in k[X] have the same leading ideal if they
have the same extensions in k[X]<. This explains why we have to work with ideals
in k[X]<.

For a monomial order, there is the division algorithm, which gives a remainder
h (or a weak normal form in the language of [12]) of the division of an element
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f ∈ k[X]< by the elements of G such that if h �= 0, L<(h) �∈ L<(G). This algorithm
is at the heart of the computations with ideals by monomial orders [12]. In general,
we do not have a division algorithm for monomial preorders. For instance, if <
is the monomial preorder without comparable monomials, then L<(f) = f for all
f ∈ k[X]. In this case, there is no way to construct such an algorithm. However,
we can overcome this obstacle by refining the monomial preorder <.

We say that a monomial preorder <∗ in k[X] is a refinement of < if xa < xb

implies xa <∗ xb. Notice that this implies S< ⊆ S<∗ , so k[X]< ⊆ k[X]<∗ . The
product of < with an other monomial preorder <′ is a refinement of <. Conversely,
every refinement <∗ of < is the product of < with <∗.

Lemma 2.2. Let <∗ be the product of < with a monomial preorder <′. Then

(a) L<∗(G) ⊆ L<′
(
L<(G)

)
for every subset G ⊆ k[X]<,

(b) L<∗(I) = L<′
(
L<(I)

)
for every ideal I ⊆ k[X]<,

(c) if <′ is global, then k[X]<∗ = k[X]<.

Proof. To show part (a), let f ∈ G and choose u ∈ S< with uf ∈ k[X]. Then

L<∗(f) = L<∗(uf) = L<′
(
L<(uf)

)
= L<′

(
L<(f)

)
∈ L<′

(
L<(G)

)
.

To show part (b), we only need to show that L<′
(
L<(I)

)
⊆ L<∗(I). Let g ∈

L<(I). Then g =
∑m

i=1 hiL<(fi) with hi ∈ k[X] and fi ∈ I. We may assume that
the hi are monomials, so hiL<(fi) = L<(hifi) for all i. Replacing the fi by suitable
uifi with ui ∈ S<, we may assume fi ∈ I ∩ k[X].

Let us first consider the case g is <-homogeneous. Then we may further assume
that the monomials of all L<(hifi) are equivalent to the monomials of g. Therefore,
if we set f =

∑m
i=1 hifi, then g = L<(f). Since f ∈ I, we get

L<′(g) = L<′(L<(f)) = L<∗(f) ∈ L<∗(I).

Now we drop the assumption that g is <-homogeneous. Since L<(I) is <-
homogeneous, all <-homogeneous components of g belong to L<(I). As we have
seen above, their leading parts with respect to <′ belong to L<∗(I). Let g1, . . . , gr
be those <-homogeneous components of g that contribute terms to L<′(g). Since
each term of L<′(g) occurs in precisely one <-homogeneous component of f ,

L<′(g) =

r∑

j=1

L<′(gj) ∈ L<∗(I).

Therefore, we can conclude that L<′(L<(I)) ⊆ L<∗(I).
To prove part (c) we show that S<∗ = S<. Since S< ⊆ S<∗ , we only need to

show that S<∗ ⊆ S<. Let f ∈ S<∗ . Then L<′(L<(f)) = L<∗(f) = 1. Since <′ is
a global monomial preorder, 1 <′ xa or 1 and xa are incomparable for all xa �= 1.
Therefore, we must have L<(f) = 1, which means f ∈ S<. �

The following example shows that the inclusion in Lemma 2.2(a) may be strict.

Example 2.3. Let < be the monomial preorder without any comparable mono-
mials. Then L<(f) = f for every polynomial f . Let <∗ be the degree reverse
lexicographic order. Then <∗ is the product of < with <∗. For G = {x1, x1 + x2},
we have

L<∗(L<(G)) = L<∗((x1, x1 + x2)) = (x1, x2) � (x1) = L<∗(G).
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By Lemma 2.2(b), I and L<(I) share the same leading ideal with respect to
<∗. If we choose <′ to be a monomial order, then <∗ is also a monomial order.
Therefore, we can use results on the relationship between ideals and their leading
ideals in the case of monomial orders to study this relationship in the case of
monomial preorders.

First, we have the following criterion for the equality of ideals by means of their
leading ideals.

Theorem 2.4. Let J ⊆ I be ideals of k[X]< such that L<(J) = L<(I), then J = I.

Proof. Let <∗ be the product of < with a global monomial order <′. Using Lemma
2.2(b), we have

L<∗(J) = L<′
(
L<(J)

)
= L<′

(
L<(I)

)
= L<∗(I).

Moreover, k[X]< = k[X]<∗ by Lemma 2.2(c). Since <∗ is a monomial order, these
facts imply J = I [12, Lemma 1.6.7(2)]. �

Let I be an ideal of k[X]<. We call a finite set G of elements of I a standard
basis of I with respect to < if L<(G) = L<(I). This means that L<(I) is generated
by the elements L<(f), f ∈ G. For monomial orders, our definition coincides with
[12, Definition 1.6.1]. If < is a global monomial order, then k[X]< = k[X] and a
standard basis is just a Gröbner basis.

Corollary 2.5. Let G be a standard basis of I. Then G is a generating set of I.

Proof. Let J := (G). Then J ⊆ I and L<(I) = L<(G) ⊆ L<(J) ⊆ L<(I). So
L<(J) = L<(I). Hence J = I by Theorem 2.4. �

The above results do not hold for ideals in k[X]. This can be seen from the
following observation. For every ideal Q of k[X] we define

Q∗ := Qk[X]< ∩ k[X].

Then Q ⊆ Q∗. By Lemma 2.1, L<(Q) = L<(Q
∗). Therefore, a standard basis of Q

is also a standard basis of Q∗. One can easily construct ideals Q such that Q∗ �= Q.
For instance, if Q = (uf) with 1 �= u ∈ S< and 0 �= f ∈ k[X], then f ∈ Q∗ \Q.

To compute the leading ideal L<(I) we only need to compute a standard basis
G of I and then extract the elements L<(f), f ∈ G, which generate L<(I). The
following result shows that the computation of the leading ideal can be passed to
the case of a monomial order. Note that the product of a monomial preorder with
a monomial order is always a monomial order.

Theorem 2.6. Let <∗ be the product of < with a global monomial order. Let I be
an ideal in k[X]< (which by Lemma 2.2(c) equals k[X]<∗). Then every standard
basis G of I with respect to <∗ is also a standard basis of I with respect to <.

Proof. Let <∗ be the product of < with a global monomial order <′. Let G be a
standard basis of I with respect to <∗. By Lemma 2.2(a) and (b), we have

L<′
(
L<(I)

)
= L<∗(I) = L<∗(G) ⊆ L<′

(
L<(G)

)
⊆ L<′

(
L<(I)

)
.

This implies L<′(L<(G)) = L<′(L<(I)). Therefore, applying Theorem 2.4 to <′,
we obtain L<(G) = L<(I). �
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If < is a monomial order, there is an effective algorithm that computes a standard
basis of a given ideal I ⊆ k[X]< with respect to < (see [12, Algorithm 1.7.8]). Since
monomial orders are monomial preorders, we cannot get a more effective algorithm.
For this reason we will not address computational issues like membership test and
complexity for monomial preorders.

For global monomial preorders defined by matrices of integers, Corollary 2.5 and
Theorem 2.6 were already proved by Kreuzer and Robbiano [19, Propositions 4.2.14
and 4.2.15]. Note that they use the term Macaulay basis instead of standard basis.

For an ideal I ⊆ k[X], we also speak of a standard basis of I with respect to a
monomial preorder <, meaning a standard basis G ⊆ I of Ik[X]<.

Theorem 2.7. Let I ⊆ k[X] be a polynomial ideal. Then the set of all leading ideals
of I with respect to monomial preorders is finite. Hence, there exists a universal
standard basis for I, i.e., a finite subset G ⊆ I that is a standard basis with respect
to all monomial preorders.

Proof. For monomial orders, this result was proved by Mora and Robbiano [22,
Proposition 4.1]. It can be also deduced from a more recent result of Sikora in
[27] on the compactness of the space of all monomial orders. By Theorem 2.6,
for each monomial preorder <, there exists a monomial order <∗ such that every
standard basis of I with respect to <∗ is also a standard basis of I with respect to
<. Therefore, the set of of all leading ideals of I with respect to monomial preorders
is finite. �

In the remainder of this paper, we will investigate the problem whether the
leading ideal with respect to a monomial preorder < can be used to study properties
of the given ideal.

First, we will study the case of homogeneous ideals. Here and in what follows,
the term “homogeneous” alone is used in the usual sense. In this case we can always
replace a monomial preorder < by a global monomial preorder.

Lemma 2.8. Let I be a homogeneous ideal in k[X]. Let <∗ be the product of the
degree order with <. Then 1 <∗ xi for all i and L<∗(I) = L<(I).

Proof. Let <′ denote the degree order. Then 1 <′ xi for all i. Since <∗ is a
refinement of <′, we also have 1 <∗ xi for all i. For every polynomial f , L<′(f)
is a homogeneous component of f . In particular, L<′(f) = f if f is homogeneous.
Since I is a homogeneous ideal, every homogeneous component of every polynomial
of I belongs to I. Therefore, L<′(I) = I. By Lemma 2.2(b), this implies L<∗(I) =
L<(L<′(I)) = L<(I). �
Corollary 2.9. Let I be a homogeneous ideal in k[X]. Then L<(I) is a homoge-
neous ideal.

Proof. By Lemma 2.8, L<(I) = L<∗(I). Since <∗ is a refinement of the degree
order, L<∗(I) is a homogeneous ideal. �

Let HPR(z) denote the Hilbert-Poincaré series of a standard graded algebra R
over k, i.e.,

HPR(z) :=
∑

t≥0

(dimk Rt)z
t,

where Rt is the vector space of the homogeneous elements of degree t of R and z is
a variable. Note that dimk Rt is the Hilbert function of R.
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Theorem 2.10. Let I be a homogeneous ideal in k[X]. Then

HPk[X]/I(z) = HPk[X]/L<(I)(z).

Proof. By Let <∗ be the product of < with a monomial order <′. Since <∗ is a
monomial order, we can apply [12, Theorem 5.2.6] to get

HPk[X]/I(z) = HPk[X]/L<∗(I)(z).

Since L<∗(I) = L<′(L<(I)) by Lemma 2.2(b), we can also apply [12, Theorem
5.2.6] to <′ and obtain

HPk[X]/L<(I)(z) = HPk[X]/L<∗ (I)(z).

Comparing the above formulas we obtain the assertion. �

Corollary 2.11. Let I be a homogeneous ideal in k[X]. Then

dim k[X]/I = dim k[X]/L<(I).

Proof. By Theorem 2.10, k[X]/I and k[X]/L<(I) share the same Hilbert function.
As a consequence, they share the same Hilbert polynomial. Since the dimension
of a standard graded algebra is the degree of its Hilbert polynomial, they have the
same dimension. �

We shall see in the next section that Corollary 2.11 does not hold for arbitrary
ideals in k[X] and k[X]<.

3. Approximation by integral weight orders

In the following we call a weight order <w integral if w ∈ Zn. The following
result shows that on a finite set of monomials, any monomial preorder < can be
approximated by an integral weight order. This result is known for monomial orders
[12, Lemma 1.2.11].

For a monomial preorders, the approximation may appear to be difficult since we
have to dealt with incomparable monomials, which must have the same weight. A
complicated proof for global monomial preorders was given by the first two authors
in [17, Lemma 3.3].

Lemma 3.1. For any finite set S of monomials in k[X] we can find w ∈ Zn such
that xa < xb if and only if xa <w xb for all xa, xb ∈ S.

Proof. Let < denote the weak order of Nn induced by the monomial preorder <
in k[X]. By Lemma 1.3, < can be extended to a weak order of Qn. By Lemma
1.4, the set E of the elements incomparable to 0 is a linear subspace of Qn. Let
s = dimQn/E. Let φ : Qn → Qs be a surjective map such that kerφ = E.

Set S′ = {φ(a) − φ(b)| a, b ∈ S, a < b}. If φ(a) − φ(b) = −(φ(a′) − φ(b′)) for
a, b, a′, b′ ∈ S, a < b, a′ < b′, then φ(a+a′) = φ(b+ b′). By Lemma 1.4, this implies
that a + a′ and b + b′ are incomparable, which is a contradiction to the fact that
a+ a′ < b+ b′. Thus, if c ∈ S′, then −c �∈ S′.

Now, we can find an integral vector v ∈ Zs such that v · c < 0 for all c ∈ S′.
Thus, a < b if and only if v · φ(a) < v · φ(b) for all a, b ∈ S. We can extend v to
an integral vector w ∈ Zn such that w · a = w′ · φ(a) for all a ∈ Qn. From this it
follows that a < b if and only if w · a < w · b for all a, b ∈ S. Hence xa < xb if and
only if xa <w xb. �
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Using Lemma 3.1 we can show that on a finite set of ideals, any monomial
preorder < can be replaced by an integral order. The case of several ideals will be
needed in what follows.

Theorem 3.2. Let I1, . . . , Ir be ideals in k[X]. Then there exists an integral vector
w = (w1, . . . , wn) ∈ Zn such that L<(Ii) = L<w

(Ii) for i = 1, . . . , r.

Proof. Let<∗ be the product of< with a global monomial order<′. Then k[X]<∗ =
k[X]< by Lemma 2.2(c). For each i, let Gi ⊂ k[X] be a standard basis of Iik[X]<
with respect to <∗. Then L<(Ii) = L<(Iik[X]<) = L<(Gi) by Lemma 2.1(a) and
Theorem 2.6. Since <∗ is a monomial order, there exists a finite set Si of monomials
such that Gi is a standard basis of Ii with respect to any monomial order coinciding
with <∗ on Si [12, Corollary 1.7.9].

Let S be the union of the set of all monomials of the polynomials in the Gi with⋃r
i=1 Si. By Lemma 3.1, there is an integral vector w ∈ Zn such that L<w

(f) =
L<(f) for all f ∈ S. This implies L<(Gi) = L<w

(Gi) for i = 1, . . . , r. Let <∗
w

be the product of <w with <′. For all f ∈ S, it follows from the definition of the
product of monomial orders that

L<∗
w
(f) = L<′(L<w

(f)) = L<′(L<(f)) = L<∗(f).

So <∗
w coincides with <∗ on Si. Therefore, every Gi is a standard basis of Ii with

respect to <∗
w. By Theorem 2.6, this implies L<w

(Gi) = L<w
(Ii). Summing up we

get L<(Ii) = L<(Gi) = L<w
(Gi) = L<w

(Ii). �

Working with an integral weight order has the advantage that we can link an
ideal to its leading ideal via the homogenization with respect to the weighted degree.

Let w be an arbitrary vector in Zn. For every polynomial f =
∑

cax
a ∈ k[X]

we set degw f := max{w · a| cα �= 0} and define

fhom := tdegw f
(
t−w1x1, . . . , t

−wnxn

)
,

where t is a new indeterminate and w1, . . . , wn are the components of w. Then fhom

is a weighted homogeneous polynomial in R := k[X, t] with respect to the weighted
degree deg xi = wi and deg t = 1. We may view fhom as the homogenization of f
with respect to w (see, e.g., Kreuzer and Robbiano [19, Section 4.3]). If we write
fhom as a polynomial in t, then L<w

(f) is just the constant coefficient of fhom.
For an ideal I in k[X], we denote by Ihom the ideal in k[X, t] generated by the

elements fhom, f ∈ I. We call Ihom the homogenization of I with respect to w.
Note that t is a non-zerodivisor in R/Ihom [19, Proposition 4.3.5(e)]. It is clear
that

L<w
(I) = (Ihom, t)/(t).

On the other hand, the map xi → t−wixi, i = 1, . . . , n, induces an automorphism of
R[t−1]. Let Φw denote this automorphism. Then Φw(f) = t− degwfhom. Therefore,

Φw(IR[t−1]) = IhomR[t−1].

From these observations we immediately obtain the following isomorphisms.

Lemma 3.3. With the above notations we have
(a) R/(Ihom, t) ∼= k[X]/L<w

(I),
(b) (R/Ihom)[t−1] ∼= (k[X]/I)[t, t−1].
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The above isomorphisms together with the following result show that there is
a flat family of ideals over k[t] whose fiber over 0 is k[X]/L<w

(I) and whose fiber
over t− λ is k[X]/I for all λ ∈ k \ 0.

Proposition 3.4. R/Ihom is a flat extension of k[t].

This result was already stated for an arbitrary integral order <w by Eisenbud
[6, Theorem 15.17]. However, the proof there required that all wi are positive. This
case was also proved by Kreuzer and Robbiano in [19, Theorem 4.3.22]. For the
case that wi �= 0 for all i, it was proved by Greuel and Pfister [12, Exercise 7.3.19
and Theorem 7.5.1].

Proof. It is known that a module over a principal ideal domain is flat if and only if
it is torsion-free (see Eisenbud [6, Corollary 6.3]). Therefore, we only need to show
that k[X, t]/Ihom is torsion-free. Let g ∈ k[t] \ {0} and F ∈ k[X, t] \ Ihom. Then
we have to show that gF /∈ Ihom. Assume that gF ∈ Ihom. Since Ihom is weighted
homogeneous, we may assume that g and F are weighted homogeneous polynomials.
Then g = λtd for some λ ∈ k, λ �= 0, and d ≥ 0. Since t is a non-zerodivisor in
R/Ihom, the assumption gF ∈ Ihom implies F ∈ Ihom, a contradiction. �

Now we will use the above construction to study the relationship between the
dimension of I and L<(I). We will first investigate the case I is a prime ideal.

Lemma 3.5. Let P be a prime ideal of k[X] such that L<(P ) �= k[X]. Let Q be
an arbitrary minimal prime of L<(P ). Then

dim k[X]/Q = dim k[X]/P.

Proof. By Theorem 3.2 we may assume that < is an integral weight order <w.
Let P hom denote the homogenization of P with respect to w. Then P hom is a
prime ideal [19, Proposition 4.3.10(d)]. By Lemma 3.3(a), there is a minimal prime
Q′ of (P hom, t) such that Q ∼= Q′/(t). Since t is a non-zerodivisor in R/P hom,
htQ′ = htP hom + 1 by Krull’s principal theorem. By the automorphism Φw,
htP hom = htP homR[t−1] = htPR[t−1] = htP . Therefore,

htQ = htQ′ − 1 = htP hom = htP.

Hence, dim k[X]/Q = n− htQ = n− htP = dim k[X]/P. �

It was conjectured by and Kredel and Weispfening [18] that if < is a global mono-
mial order, then k[X]/L<(P ) is equidimensional, i.e., dim k[X]/Q=dim k[X]/L<(P ),
for every minimal prime Q of L<(P ). This conjecture was settled by Kalkbrenner
and Sturmfels [16, Theorem 1] if k is an algebraically closed field (see also [15, The-
orem 6.7]). Lemma 3.5 extends their result to any monomial preorder.

Theorem 3.6. Let I be an ideal of k[X] and I∗ := Ik[X]< ∩ k[X]. Then
(a) dim k[X]/L<(I) = dim k[X]/I∗ ≤ dim k[X]/I.
(b) If k[X]/I∗ is equidimensional, then so is k[X]/L<(I).

Proof. It is clear that I∗ = k[X] if and only if 1 ∈ Ik[X]< if and only if L<(I) =
k[X]. Therefore, we may assume that I∗ �= k[X].

Let P be a minimal prime of I∗. Then P ∩ S< = ∅ because P is the contraction
of a minimal prime of Ik[X]<. This means L<(P ) �= k[X]. By Proposition 3.5,
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dim k[X]/L<(P ) = dim k[X]/P. Choose P such that dim k[X]/P = dim k[X]/I∗.
Since L<(I) ⊆ L<(P ), we have

dim k[X]/L<(I) ≥ dim k[X]/L<(P ) = dim k[X]/I∗.

To prove the converse inequality we use Theorem 3.2 to choose an integral weight
order <w such that L<(I) = L<w

(I) and L<(P ) = L<w
(P ) for all minimal primes

P of I. Then L<(I) ∼= (Ihom, t) and L<(P ) ∼= (P hom, t)/(t).
Let Q be an arbitrary minimal prime of L<(I). Then there is a minimal prime

Q′ of (Ihom, t) such that Q ∼= Q′/(t). Let P ′ be a minimal prime of Ihom contained
in Q′. Then Q′ is also a minimal prime of (P ′, t). By [19, Proposition 4.3.10],
P ′ = P hom for some minimal prime P of I. Hence, L<(P ) ∼= (P ′, t)/(t). Therefore,
Q is a minimal prime of L<(P ). By Lemma 3.5,

dim k[X]/Q = dim k[X]/P.

Since (P ′, t) ⊆ Q′, L<(P ) ⊆ Q �= k[X]. This implies P ∩ S< = ∅. Hence, P is a
minimal prime of I∗. Therefore,

dim k[X]/P ≤ dim k[X]/I∗.

Since there exits Q such that dim k[X]/Q = dim k[X]/L<(I), we obtain

dim k[X]/L<(I) ≤ dim k[X]/I∗.

So we can conlude that dim k[X]/L<(I) = dim k[X]/I∗ ≤ dim k[X]/I.
If k[X]/I∗ is equidimensional, dim k[X]/P = dim k[X]/I∗ for all minimal primes

P of I∗. As we have seen above, for every minimal prime Q of L<(I), there
is a minimal prime P of I∗ such that dim k[X]/Q = dim k[X]/P . Therefore,
dim k[X]/Q = dim k[X]/I∗. From this it follows that k[X]/L<(I) is equidimen-
sional. �

Corollary 3.7. Let I be an ideal of k[X]. Let < be a global monomial preorder.
Then

(a) dim k[X]/L<(I) = dim k[X]/I.
(b) If k[X]/I is equidimensional, then so is k[X]/L<(I).

Proof. For a global monomial preorder <, we have I∗ = I because k[X]< = k[X].
Therefore, the statements follow from Theorem 3.6. �

Remark 3.8. If n ≥ 2 and < is not a global monomial preorder, we can always find
an ideal I of k[X] such that

dim k[X]/L<(I) < dim k[X]/I.

To see this choose a variable xi < 1. Let I = (xi − 1) ∩ (X). Then I∗ = (X).
By Theorem 3.6(a), dim k[X]/L<(I) = dim k[X]/I∗ = 0, whereas dim k[X]/I =
n− 1 > 0.

Now we turn our attention to ideals in the ring k[X]<. First, we observe that
dim k[X]< = n because X generates a maximal ideal of k[X]< which has height n.
However, other maximal ideals of k[X]< may have height less than n. The following
result shows that these primes are closely related to the set

X− := {xi | xi < 1}.

Lemma 3.9. Let Q be a maximal ideal of k[X]<. Then htQ = n if and only if
X− ⊆ Q.
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Proof. Assume that htQ = n. Let Q′ = Q ∩ k[X]. Then htQ′ = htQ = n. Hence
Q′ is a maximal ideal of k[X]. This implies Q′∩k[xi] �= 0 for all i. Since Q′∩k[xi] is
a prime ideal, there is a monic irreducible polynomial fi generating Q′ ∩ k[xi]. For
xi < 1, we must have f = xi because otherwise L<(fi) is the constant coefficient
of f , which would implies Q′ ∩ S< �= ∅, a contradiction. Therefore, X− ⊆ Q′ ⊆ Q.

Conversely, assume that X− ⊆ Q. Then Q/(X−) is a maximal ideal of the ring
k[X]</(X−), which is isomorphic to the polynomial ring A := k[X \X−] because
A ∩ S< = ∅. Therefore, htQ/(X−) = dimA = n− ht(X−). Hence

htQ = htQ/(X−) + ht(X−) = n. �

Theorem 3.10. Let I be an ideal of k[X]<. Then

(a) htL<(I) = ht I,
(b) dim k[X]/L<(I) ≥ dim k[X]</I,
(c) dim k[X]/L<(I) = dim k[X]</I if and only if 1 �∈ (P,X−) for at least one

prime P of I with htP = ht I.

Proof. Let J = I ∩ k[X]. By Lemma 2.1(b), L<(I) = L<(J). Since I = Jk[X]<,
we have J∗ = J . By Theorem 3.6(a), this implies dim k[X]/L<(J) = dim k[X]/J .
Hence htL<(J) = ht J . By the correspondence between ideals in a localization and
their contractions, ht J = ht I. So we can conclude that htL<(I) = ht I.

From this it follows that

dim k[X]/L<(I) = n− htL<(I) = dim k[X]< − ht I ≥ dim k[X]</I.

The above formula also shows that dim k[X]/L<(I) = dim k[X]</I if and only
if n − ht I = dim k[X]</I. Being a localization of k[X], k[X]< is a catenary ring.
Therefore, the latter condition is satisfied if and only there exists a prime P of I
with htP = ht I such that P is contained in a maximal ideal of height n.

Assume that a prime ideal P is contained in a maximal ideal Q of height n. Then
X− ⊂ Q by Lemma 3.9. Hence, 1 �∈ (P,X−) because (P,X−) ⊆ Q. Conversely,
assume that 1 �∈ (P,X−). Then, any maximal ideal containing (P,X−) has height
n by Lemma 3.9. �

We would like to point out the phenomenon that if I is an ideal of k[X], then
dim k[X]/L<(I) ≤ dim k[X]/I by Theorem 3.6(a), whereas if I is an ideal of k[X]<,
then dim k[X]/L<(I) ≥ dim k[X]</I by Theorem 3.10(b).

Remark 3.11. It is claimed in [12, Corollary 7.5.5] that

dim k[X]</I = dim k[X]/L<(I)

for any monomial order <. This is not true. For instance, let < be the weight order
on k[x, y] with weight (1,−1), refined, if desired, to a monomial order. Consider
the irreducible polynomial f = x2y + 1 and the ideal I = (f) in k[x, y]<. Since
L<(f) = x2y, I is a proper ideal and since f is irreducible, I is a prime ideal.
Since 1 ∈ (I, y), we have dim k[x, y]</I < dim k[x, y]/L<(I) by Theorem 3.10(c).
Actually, I is a maximal ideal of k[x, y]< because any strictly bigger prime Q has
height 2 and must therefore contain y by Lemma 3.9. This implies 1 ∈ Q, a
contradiction.

The following result characterizes the monomial preorders for which the equality
in Theorem 3.10(c) always holds.
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Proposition 3.12. The implications

(a) =⇒ (b) ⇐⇒ (c) ⇐⇒ (d) ⇐⇒ (e) =⇒ (f)

hold for the following conditions on the monomial preorder <:

(a) The monomial preorder < is global or local.
(b) The monomial preorder can be defined, in the sense of Theorem 1.2, by a

real matrix ( A
B ) composed of an upper part A whose entries are all non-

positive, and a lower part B whose entries are all non-negative.
(c) If xi < 1 then t < 1 for every monomial t that is divisible by xi.
(d) Every maximal ideal of k[X]< has height n.
(e) For every ideal I ⊆ k[X]<, the equality dim k[X]/L<(I) = dim k[X]</I

holds.
(f) If I ⊆ k[X]< is an ideal such that k[X]</I is equidimensional, then also

k[X]/L<(I) is equidimensional.

Proof. It is clear that (a) implies (b) and (b) implies (c). One can deduce (b)
from (c) by using that in a matrix defining < one can add a multiple of any row to
a lower row. Moreover, (c) holds if and only if L<(1 + g) = 1 for every g ∈ (X−),
which is equivalent to the condition that for all g ∈ (X−), 1 + g is not contained in
any maximal ideal of k[X]<, or, equivalently, that X− is contained in all maximal
ideals. By Lemma 3.9, this means that the condition (d) holds.

By Theorem 3.10(c), the condition (e) holds if and only if 1 /∈ (P,X−) for all
primes P ∈ Spec(k[X]<), which is equivalent to X− ⊆ Q for all maximal ideals
Q ⊂ k[X]<. By Lemma 3.9, this means that the condition (d) holds.

We finish the proof by showing that (d) implies (f). If (d) holds, then all primes
P ⊂ k[X]< satisfy htP = n − dim k[X]</I. So if I is an ideal with k[X]</I
equidimensional, then all minimal primes of I have the same height. Therefore the
same is true for all minimal primes of J := k[X] ∩ I. So J is equidimensional,
and since J = J∗, Theorem 3.6(b) tells us that k[X]/L(J) is equidimensional. But
L(I) = L(J), and we are done. �

For a moment let I be the defining ideal of an affine variety V . If < is the degree
order, then < is a global monomial preorder. In this case, L<(I) describes the
part at infinity of V . If < is the reverse degree order, then < is a local monomial
preorder. In this case, k[X]/L<(I) corresponds to the tangent cone of V at the ori-
gin. Therefore, the implication (a) =⇒ (f) of Proposition 3.12(a) has the following
interesting consequences.

Corollary 3.13. Let V be an affine variety.

(a) If V is equidimensional, then so is its part at infinity.
(b) If V is equidimensional at the origin, then so is its tangent cone.

In this context, the question of connectedness is also interesting. A far reaching
result was obtained by Varbaro [30], whose Theorem 2.5, expressed in the language
of this paper, says the following: If I ⊆ k[X] is an ideal such that Spec(k[X]/I) is
connected in dimension k ≥ 0 (i.e., its dimension is bigger than k and removing a
closed subset of dimension less than k does not disconnect it), then for any global
monomial preorder <, also Spec(k[X]/L<(I)) is connected in dimension k. The
following examples give a negative answer to the question if this result carries over
to general or local monomial preorders. We thank F.-O. Schreyer for the second
example.
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Example 3.14. (1) Let < be the weight order on k[x1, x2] given by w = (1,−1).
For the prime ideal I ⊆ k[x1, x2]< generated by (x2

1 + 1)x2 + x1, the leading ideal
is L<(I) =

(
x1(x1x2 + 1)

)
. By Theorem 3.10, k[x1, x2]</I has dimension 1, so its

spectrum is connected in dimension 0. But Spec
(
k[x1, x2]/L<(I)

)
is not connected.

(2) In k[x0, . . . , x4] consider the polynomials

f1 = x0 + x2x3 + x1x4 − x0x4 − x2
0,

f2 = x3 − x3x4 − x1x3 + x1x2 − x0x3 + x0x2,

f3 = x4 − x2
3 + x2x3 − x2

1 − x0x4 + x0x1.

The tangent cone at the origin is given by the ideal (x0, x3, x4) and, as a short
computation shows, at the point (1, 0, 0, 0, 0) is it is given by (x0 + x4, x1, x2). The
projection π: A5 → A4 ignoring the first coordinate merges these two points, so
applying it to the variety X given by the fi will produce a new variety Y whose
tangent cone at the origin is the union of two planes meeting at one point. This can
be easily verified, at least in characteristic 0, by using a computer algebra system
such as MAGMA [1].

Being regular at the origin, X is locally integral at the origin, and so the same is
true of Y . So replacing Y by its (only) irreducible component passing through the
origin, we receive a surface that is connected in dimension 1, but its tangent space
at the origin is not.

We produced this example by starting with the equations for the component of
Y through the origin, which were provided to us by F.-O. Schreyer.

4. Descent of properties and invariants

Let < be an arbitrary monomial order in k[X]. In this section, we will again
relate properties of an ideal and its leading ideal. Our results follow the philosophy
that the leading ideal never behaves better than the ideal itself, so the passage to
the leading ideal is a “degeneration”.

First, we will concentrate on the loci of local properties. Let P denote a property
which an arbitrary local ring may have or not have. For a noetherian ring A we let
Spec

P
(A) denote the P-locus of A, i.e., the set of the primes P such that the local

ring AP satisfies P.
We say that P is an open property if for any finitely generated algebra A over

a field, Spec
P
(A) is a Zariski-open subset of Spec(A), i.e., SpecNP

(A) = V (Q) for
some ideal Q of A, where NP is the negation of P and

V (Q) := {P ∈ Spec(A) | Q ⊆ P}.
We say that P is a faithful property if for every noetherian local ring (A,m), the
following conditions are satisfied:

(F1) If A[t]mA[t] has P, where t is an indeterminate, then A has P.
(F2) If A/tA has P for some non-zerodivisor t ∈ m, then A has P.

Proposition 4.1. P is open and faithful if P is one of the following properties:
(a) regular,
(b) complete intersection,
(c) Gorenstein,
(d) Cohen-Macaulay,
(e) Sr (r ≥ 1),
(f) normal,
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(g) integral (domain),
(h) reduced.

Proof. It is known that any finitely generated algebra over a field is excellent [13,
Proposition 7.8.3(ii)]. If a ring A is excellent, then Spec

P
(A) is open when P is (a),

(d), (e), (f) [13, Proposition 7.8.3(iv)], (b), (c) [10, Corollary 3.3 and Corollary 1.5].
If P is (g) or (h), P is obviously open.

The faithfulness of (a)–(d) is more or less straightforward. Since the map A →
A[t]mA[t] is faithfully flat, we have (F1) for (e) and Rr−1 by [13, Proposition 6.4.1
and Proposition 6.5.3]. Since a local ring is reduced or normal if it satisfies S1

and R0 or S2 and R1 [13, Proposition 5.4.5 or Theorem 5.8.6], this also proves
(F1) for (f) and (h). For (e), (f) and (h) we have (F2) by [3, Proposition 2.2 and
Corollary 2.4] for the trivial grading. For (g), (F1) is clear and (F2) follows from
[13, Proposition 3.4.5]. �

The following theorem is the main result of this section.

Theorem 4.2. Let P be an open and faithful property. Let I be an ideal of k[X]<.
Then

dimSpecNP

(
k[X]</I

)
≤ dimSpecNP

(
k[X]/L<(I)

)
.

As we will see, Theorem 4.2 follows from the following stronger result, which
relates the NP-loci of k[X]</I and k[X]/L<(I).

Theorem 4.3. Let P be an open and faithful property. Let I ⊆ J be ideals in
k[X]< such that V (J/I) ⊆ SpecNP

(
k[X]</I

)
. Then

V
(
L<(J)/L<(I)

)
⊆ SpecNP

(
k[X]/L<(I)

)
.

Proof. Set I∗ = I ∩ k[X] and J∗ = J ∩ k[X]. Then I∗ ⊆ J∗. By Lemma 2.1,
L<(I) = L<(I

∗) and L<(J) = L<(J
∗). Let P be an arbitrary minimal prime of

J∗ and ℘ the corresponding minimal prime of J . Then (k[X]/I∗)P = (k[X]</I)℘.
Since V (J/I) ⊆ SpecNP

(
k[X]/I

)
, (k[X]</I)℘ does not have P. Hence, (k[X]/I∗)P

does not have P. This shows that V (J∗/I∗) ⊆ SpecNP

(
k[X]/I∗

)
.

Now, replacing I and J by I∗ and J∗ we may assume that I ⊆ J are ideals in k[X]
such that V (J/I) ⊆ SpecNP

(
k[X]/I

)
. By Theorem 3.2 we may assume that < is an

integral weight order <w. Suppose that V
(
L<(J)/L<(I)

)
�⊆ SpecNP

(
k[X]/L<(I)

)
.

Then there exists a minimal prime P of L<(J) such that
(
k[X]/L<(I)

)
P

has P.
Let R = k[X, t] and Ihom, Jhom be the homogenizations of I, J in R with respect
to w. By Lemma 3.3, we have

R/(Ihom, t) ∼= k[X]/L<(I),

R/(Jhom, t) ∼= k[X]/L<(J).

Therefore, there exists a minimal prime P ′ of (Jhom, t) such that
(
R/(Ihom, t)

)
P ′

∼=
(
k[X]/L<(I)

)
P
.

Since t is a non-zerodivisor in R/Ihom, using the faithfulness of P we can deduce
that

(
R/Ihom

)
P ′ also has P.

Let Q′ be a minimal prime of Jhom such that Q′ ⊆ P ′. Since P is an open
property,

(
R/Ihom

)
Q′ also has P. Since t is a non-zerodivisor in R/Jhom, t �∈ Q′.
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Therefore, Q′R[t−1] is a prime ideal and
(
R/Ihom

)
Q′ = (R/Ihom)[t−1]Q′R[t−1].

Let Φw be the automorphism of R[t−1] introduced before Lemma 3.3. We know that
Φw(I

homR[t−1]) = IR[t−1] and Φw(J
homR[t−1]) = JR[t−1]. Thus, Φw(Q

′R[t−1]) =
QR[t−1] for some minimal prime Q of J and

(R/Ihom)[t−1]Q′R[t−1]
∼= (R/IR)[t−1]QR[t−1].

It is easy to see that

(R/IR)[t−1]QR[t−1] = (k[X]/I)[t]QR.

Therefore, (k[X]/I)[t]QR
∼=

(
R/Ihom

)
Q′ has P. Since P is faithful, k[X]/I also has

P. So we obtain a contradiction to the assumption that V (J/I) ⊆ SpecNP

(
k[X]/I

)
.
�

Now, we are ready to prove Theorem 4.2.

Proof of Theorem 4.2. Let J be the defining ideal of the NP-locus of k[X]</I, i.e.,
V (J/I) = SpecNP

(
k[X]/I

)
. Then dimSpecNP

(
k[X]</I

)
= dim k[X]</J . By The-

orem 3.10(b), dim k[X]</J ≤ dim k[X]/L<(J). By Theorem 4.3, V
(
L<(J)/L<(I)

)

⊆ SpecNP

(
k[X]/L<(I)

)
. Hence, dim k[X]/L<(J) ≤ dimSpecNP

(
k[X]/L<(I)

)
. So

we can conclude that dimSpecNP

(
k[X]</I

)
≤ dimSpecNP

(
k[X]/L<(I)

)
. �

Remark 4.4. Theorem 4.3 still holds if we replace the assumption on the openess
of P by the weaker condition that if AP has P, then so is AQ for all primes Q ⊂ P .
This condition is actually used in the proof of Theorem 4.3. The openess of P is only
needed to have the dimension of the P-loci in Theorem 4.2. Moreover, one can also
replace property (F2) by the weaker but more complicated condition that A has P
if A/tA has P for some non-zerodivisor t of A such that A is flat over k[t], where
A is assumed to be a local ring essentially of finite type over k. In fact, we have
used (F2) for a local ring which is of this type by Proposition 3.4. This shows that
Theorems 4.2 and 4.3 extend to the case that P is one of the following properties:
the Cohen-Macaulay defect or the complete intersection defect is at most r, where
r is a fixed integer.

The proof of Theorem 4.3 shows that it also holds for ideals in k[X]. However,
the following example shows that Theorem 4.2 does not hold if I is an ideal of k[X].

Example 4.5. Consider an affine variety that has the origin as a regular point
but has singularities elsewhere, such as the curve given by I =

(
y2 − (x− 1)2x

)
⊆

k[x, y] with char(k) �= 2. In such an example, if P is the property regular, we have
dimSpecNP

(
k[X]/I

)
≥ 0 but dimSpecNP

(
k[X]/L<(I)

)
< 0.

Theorem 4.3 shows that if SpecNP
(k[X]/L<(I)) = ∅, then SpecNP

(k[X]<(I)) = ∅.
Hence, we has the following consequence.

Corollary 4.6. Let P be an open and faithful property. Let I be an ideal in k[X]<.
If P holds at all primes of k[X]/L<(I), then it also holds at all primes of k[X]</I.

For a positive integral weight order <w, Bruns and Conca [2, Theorem 3.1]
shows that the properties Gorenstein, Cohen-Macaulay, normal, integral, reduced
are passed from k[X]/L<w

(I) to k[X]/I. Their proof is based on the positively
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graded structure of k[X] induced by w, which is not available for any integral
weight order.

The following corollary gives a reason why it is often easier to work with L<(I)
instead of I.

Corollary 4.7. Let P be an open and faithful property, and assume that the mono-
mial order < is such that 1 is comparable to all other monomials. (This assumption
is satisfied if xi > 1 for all i or if < is local or if < is a monomial order.) Let
I be a proper ideal in k[X]<. If P holds at the maximal ideal m = (X)/L<(I) of
k[X]/L<(I), then it also holds at all primes of k[X]</I.

Proof. Assume that SpecNP
(k[X]</I) �= ∅. Then the ideal J in Theorem 4.3 can be

chosen to be proper. Therefore L<(J) is also a proper ideal, and from the hypothesis
on < and the fact that L<(J) is <-homogeneous it follows that L<(J) ⊆ (X). By
Theorem 4.3 this implies that P does not hold at m. �

Moreover, we can also prove the descent of primality.

Theorem 4.8. Let I be an ideal of k[X]< such that L<(I) is a prime ideal. Then
I is a prime ideal.

Proof. Choose a global monomial order <′ and let <∗ be the product of < with <′.
Then <∗ is a monomial order, and k[X]<∗ = k[X]< by Lemma 2.2(c). Let G be a
standard basis of I with respect to <∗. We have to show that if f, g ∈ k[X]< \ I,
then fg �∈ I. Without restriction we may replace f, g by their weak normal forms
with respect to G (see [12, Definition 1.6.5]). Then L<∗(f) /∈ L<∗(I) and L<∗(g) /∈
L<∗(I). Using Lemma 2.2 we obtain

L<′
(
L<(f)

)
= L<∗(f) /∈ L<∗(I) = L<′

(
L<(I)

)
,

so L<(f) /∈ L<(I). Similarly, L<(g) /∈ L<(I). By our hypothesis, this implies
L<(fg) = L<(f)L<(g) /∈ L<(I), so fg �∈ I as desired. �

According to our philosophy that the leading ideal with respect to a monomial
preorder is a deformation that is “closer” to the original ideal than the leading
ideal with respect to a monomial order, it would be interesting to see an example
where k[X]/L<(I) is Cohen-Macaulay but k[X]/L<∗(I) is not. If < is a monomial
preorder satisfying the hypothesis of the last statement from Theorem 4.3, then
the benefit arising from this is that the Cohen-Macaulay property of k[X]</I can
be verified by testing only the maximal ideal m := (X)/L<(I) of k[X]/L<(I). The
following is such an example.

Example 4.9. Consider the ideal

I =
(
x2
1, x

2
2, x

3
3, x1x2, x1x3, x1x4 − x2x3 + x1

)
⊆ k[x1, x2, x3, x4].

Let <=<w be the weight order with weight w = (1, 1, 1, 1), and let <∗ be the
product of < and the lexicographic order with x1 < x2 < x3 < x4. So <∗ is
the graded lexicographic order, and it is easy to see by forming and reducing s-
polynomials that the given basis of I is a Gröbner basis with respect to <∗. So by
Theorem 2.6, G it is also a standard basis with respect to <. So

L<(I) =
(
x2
1, x

2
2, x

3
3, x1x2, x1x3, x1x4 − x2x3

)
.
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From the leading ideal L<∗(I) =
(
x2
1, x

2
2, x

3
3, x1x2, x1x3, x1x4

)
we see that the fol-

lowing elements form a vector space basis of A := k[X]/L<(I):

xi
4, x2xi

4, x3xi
4, x2x3xi

4 (i ≥ 0), and x1.

Here the bars indicate the class in A of a polynomial. Because x2x3xi
4 = x1x

i+1
4

this implies
A = k[x4]⊕ k[x4] · x1 ⊕ k[x4] · x2 ⊕ k[x4] · x3,

and x4 is transcendental. It follows that A = k[X]/L<(I) is Cohen-Macaulay, and
so the same is true for k[X]/I.

Now we turn to A∗ := k[X]/L<∗(I). A vector space basis of A∗ is given as
above, but now the bars indicate classes in A∗. So x4 forms a homogeneous system
of parameters, but it is not regular since x1x4 = 0. Therefore A∗ = k[X]/L<∗(I)
is not Cohen-Macaulay.

In the following we will compare graded invariants of homogeneous ideals with
those of its leading ideals. The following result is essentially due to Caviglia’s proof
of Sturmfels’ conjecture on the Koszul property of the pinched Veronese [4].

Proposition 4.10. Let I, J,Q be homogeneous ideals in k[X]. Then

dimk Tor
k[X]/I
i (k[X]/J, k[X]/Q)j ≤ dimk Tor

k[X]/L<(I)
i (k[X]/L<(J), L<(Q))j

for all i ∈ N, j ∈ Z.

Proof. By Lemma 2.8 we may assume that < is a monomial preorder with 1 < xi

for all i. Applying Theorem 3.2 to I, J,Q we can find w ∈ Zn with wi > 0 for
all i such that L<(I) = L<w

(I), L<(J) = L<w
(J), and L<(Q) = L<w

(Q). For a
positive weight vector w, Caviglia [4, Lemma 2.1] already showed that

dimk Tor
k[X]/I
i (k[X]/J, k[X]/Q)j ≤ dimk Tor

k[X]/L<w (I)
i (k[X]/L<w

(J), L<w
(Q))j

for all i ∈ N, j ∈ Z. �
Recall that a k-algebra R is called Koszul if k has a linear free resolution as an

R-module or, equivalently, if TorRi (k, k)j = 0 for all j �= i.

Corollary 4.11. Let I be a homogeneous ideal in k[X]. If k[X]/L<(I)) is a Koszul
algebra, then so is k[X]/I.

Proof. We apply Lemma 4.10 to the case J = Q = (X). From this it follows that

if Tor
k[X]/L<(I)
i (k, k)j = 0, then Tor

k[X]/I
i (k, k)j = 0 for all j �= i. �

For any finitely generated graded k[X]-module E, let βi,j(E) denote the number
of copies of the graded free module k[X](−j) appearing in the ith module of the res-
olution the largest degree of a minimal graded free resolution of E. These numbers
are called the graded Betti numbers of E. In some sense, these invariants determine

the graded structure of E. It is well known that βi,j(E) = dimk Tor
k[X]
i (E, k)j for

all i ∈ N, j ∈ Z.

Proposition 4.12. Let I be a homogeneous ideal in k[X]. Then βi,j(k[X]/I) ≤
βi,j(k[X]/L<(I)) for all i ∈ N, j ∈ Z.

Proof. We apply Lemma 4.10 to the case I = 0, Q = (X) and replace J by I. Then

dimk Tor
k[X]
i (k[X]/I, k)j ≤ dimk Tor

k[X]
i (k[X]/L<(I), k)j

which implies βi,j(k[X]/I) ≤ βi,j(k[X]/L<(I)) for all i ∈ N, j ∈ Z. �
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Using the graded Betti numbers of E one can describe other important invariants
of E such as the depth and the Castelnuovo-Mumford regularity:

depthE = n−max{i| βi,j �= 0 for some j},
regE = max{j − i| βi,j �= 0}.

By this definition, we immediately obtain from Proposition 4.12 the following rela-
tionship between the depth and the regularity of k[X]/I and k[X]/L<(I).

Corollary 4.13. Let I be a homogeneous ideal in k[X]. Then

depth(k[X]/I) ≥ depth(k[X]/L<(I)),

reg(k[X]/I) ≤ reg(k[X]/L<(I)).

Let m denote the maximal homogeneous ideal of k[X]. For any finitely generated
graded k[X]-module E, we denote by Hi

m(E) the ith local cohomology module of E
with respect to m for all i ∈ N. Note that Hi

m(E) is a Zn-graded module. As usual,
we denote by Hi

m(E)j the jth component of Hi
m(E) for all j ∈ Z. It is known that

the vanishing of Hi
m(E) gives important information on the structure of E.

Proposition 4.14. Let I be a homogeneous ideal in k[X]. Then

dimk H
i
m(k[X]/I)j ≤ dimk H

i
m(k[X]/L<(I))j

for all i ∈ N, j ∈ Z.

Proof. Sbarra [26, Theorem 2.4] already proved the above inequality for an arbitrary
global monomial order. Actually, his proof shows that for an arbitrary integral
vector <w,

dimk H
i
m(k[X]/I)j ≤ dimk H

i
m(k[X]/L<w

(I))j

for all i ∈ N, j ∈ Z. By Theorem 3.2, there exists w ∈ Zn such that L<(I) =
L<w

(I). Therefore, Sbarra’s result implies the conclusion. �

Let R be a standard graded algebra over an infinite field k with d = dimR. An
ideal Q of R is called aminimal reduction of R if Q is generated by a system of linear
forms z1, . . . , zd such that k[z1, . . . , zd] ↪→ R is a Noether normalization. Let rQ(R)
denote the maximum degree of the generators of R as a graded k[z1, . . . , zd]-module.
One calls the invariant

r(R) := min{rQ(R)| Q is a minimal reduction of R}

the reduction number of R [31].
The following result on the reduction number of the leading ideal was a conjecture

of Vasconcelos for global monomial orders [31, Conjecture 7.2]. This conjecture has
been confirmed independently by Conca [5, Theorem 1.1] and the second author
[29, Corollary 3.4]. Now we can prove it for monomial preorders.

Proposition 4.15. Let I be an arbitrary homogeneous ideal in k[X]. Then

r(k[X]/I) ≤ r(k[X]/L<(I)).

Proof. By Theorem 3.2, there exists w ∈ Zn such that L<(I) = L<w
(I). By

[29, Theorem 3.3], we know that r(k[X]/I) ≤ r(k[X]/L<w
(I)) for an arbitrary

weight order <w. �
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