TIME-TRANSFORMATIONS FOR THE EVENT LOCATION IN DISCONTINUOUS ODES

L. LOPEZ AND S. MASET

Abstract

In this paper, we consider numerical methods for the location of events of ordinary differential equations. These methods are based on particular changes of the independent variable, called time-transformations. Such a time-transformation reduces the integration of an equation up to the unknown point, where an event occurs, to the integration of another equation up to a known point. This known point corresponds to the unknown point by means of the time-transformation. This approach extends the one proposed by Dieci and Lopez [BIT 55 (2015), no. 4, 987-1003], but our generalization permits, amongst other things, to deal with situations where the solution approaches the event in a tangential way. Moreover, we also propose to use this approach in a different manner with respect to that of Dieci and Lopez.

1. Introduction

Recently the topic of discontinuous ordinary differential equations (ODEs) has attracted a lot of interest either from a theoretical or computational point of view and because of its different applications (see for example [1, 8, 10, 11, 15, 17).

An important task, in the numerical solution of discontinuous ODEs is the location of the events on the discontinuity surface (see for instance [3,6,7, $9,12,13,18]$). Here we propose a time-transformation method to compute efficiently such event points.

Let us consider the region

$$
R:=\left\{x \in \mathbb{R}^{d}: h(x)<0\right\},
$$

with border

$$
\Sigma:=\partial R=\left\{x \in \mathbb{R}^{d}: h(x)=0\right\}
$$

where $h: \mathbb{R}^{d} \rightarrow \mathbb{R}$, and the ordinary differential equation

$$
\left\{\begin{array}{l}
x^{\prime}(t)=f(x(t)), t \geq 0 \tag{1}\\
x(0)=x_{0}
\end{array}\right.
$$

where $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ and $x_{0} \in \mathbb{R}^{d}$ is such that $x_{0} \in R$. We assume that h and f are sufficiently smooth functions and that the ODE (11) has a unique solution x. We observe that, in the applications, $h(x)$ is often linear or quadratic with respect to x (see [10]).

[^0]The ODE (1) has to be integrated up to the first point $t_{f}>0$, which is unknown, such that

$$
\begin{equation*}
x\left(t_{f}\right) \in \Sigma \tag{2}
\end{equation*}
$$

i.e., we have to locate the event (22) during the integration of the ODE (11).

Assume that a numerical integration of (1) is accomplished over a mesh

$$
\begin{equation*}
t_{0}<t_{1}<t_{2}<\cdots \tag{3}
\end{equation*}
$$

with stepsizes $\tau_{n+1}=t_{n+1}-t_{n}, n=0,1,2, \ldots$, by a Runge-Kutta (RK) method (A, b, c). The method yields a sequence $\left\{x_{n}\right\}, n=0,1,2, \ldots$, where x_{n} is an approximation of $x\left(t_{n}\right)$, recursively given by

$$
\begin{aligned}
x_{n+1} & =x_{n}+\tau_{n+1} \sum_{i=1}^{\nu} b_{i} f\left(X_{i}^{n+1}\right) \\
X_{i}^{n+1} & =x_{n}+\tau_{n+1} \sum_{j=1}^{\nu} a_{i j} f\left(X_{j}^{n+1}\right), i=1, \ldots, \nu
\end{aligned}
$$

The classical approach for locating the event (2), described for example in (6) and [18], is as follows. We proceed up to the first point $t_{\bar{n}+1}$ such that

$$
h\left(x_{\bar{n}}\right) h\left(x_{\bar{n}+1}\right)<0 .
$$

Then, by using a continuous numerical solution $\eta(t), t \in\left[t_{\bar{n}}, t_{\bar{n}+1}\right]$, given for example by a continuous RK method $(A, b(\cdot), c)$ as

$$
\begin{equation*}
\eta\left(x_{\bar{n}}+\theta \tau_{\bar{n}+1}\right)=x_{\bar{n}}+\tau_{\bar{n}+1} \sum_{i=1}^{\nu} b_{i}(\theta) f\left(X_{i}^{\bar{n}+1}\right), \theta \in[0,1], \tag{4}
\end{equation*}
$$

an approximation \widetilde{t}_{f} of t_{f} can be obtained by solving the scalar equation

$$
\begin{equation*}
h(\eta(t))=0 . \tag{5}
\end{equation*}
$$

Of course, by assuming that equation (5) is solved exactly, the order of the approximations \widetilde{t}_{f} of t_{f} and $\eta\left(\widetilde{t}_{f}\right)$ of $x\left(t_{f}\right)$ is the order of the continuous approximation η of x, which is in general less than the order p of the RK method, the order which is computed with the discrete approximations x_{n}.

In order to recover the order p, one can consider as an approximation of t_{f} a new unknown mesh point ${\widehat{t_{\bar{n}}+1}}$ (successive to $t_{\bar{n}}$) and as an approximation of $x\left(t_{f}\right)$ a corresponding new discrete approximation $\widehat{x}_{\bar{n}+1}$, at the mesh point $\widehat{t}_{\bar{n}+1}$, such that $h\left(\widehat{x}_{\bar{n}+1}\right)=0$. So, we have

$$
\begin{aligned}
\widehat{t}_{\bar{n}+1} & =t_{\bar{n}}+\widehat{\tau}_{\bar{n}+1} \\
\widehat{x}_{\bar{n}+1} & =x_{\bar{n}}+\widehat{\tau}_{\bar{n}+1} \sum_{i=1}^{\nu} b_{i} \widehat{K}_{i}^{\bar{n}+1}
\end{aligned}
$$

where $\widehat{K}_{i}^{\bar{n}+1}, i=1, \ldots, \nu$, and $\widehat{\tau}_{\bar{n}+1}$ are obtained by solving the equations

$$
\begin{align*}
& \widehat{K}_{i}^{\bar{n}+1}=f\left(x_{\bar{n}}+\widehat{\tau}_{\bar{n}+1} \sum_{i=1}^{\nu} a_{i j} \widehat{K}_{j}^{\bar{n}+1}\right), i=1, \ldots, \nu \\
& h\left(x_{\bar{n}}+\widehat{\tau}_{\bar{n}+1} \sum_{i=1}^{\nu} b_{i} \widehat{K}_{i}^{\bar{n}+1}\right)=0 \tag{6}
\end{align*}
$$

This approach is described in [2, 14] in the context of the computation of breaking points of delay differential equations. Note that now we have to solve a square system of $d \nu+1$ scalar equations instead of the sole scalar equation (5), even if we are using an explicit method. So, this approach is particularly suitable when an implicit method is used, as in the case of stiff problems.

Recently, a new approach to the event location was introduced in [12] where, by a suitable change of the variable time t, the ODE (11) is reduced to another ODE and the location of the event (2) is known in advance.

In the present paper, we propose a generalization of this approach which permits, amongst other things, to deal with situations where the solution x lands on the border Σ in a tangential way. Moreover, we also propose to use this approach in a different manner with respect to [12].

Here is the plan of the paper: Section 2 describes the generalized approach and the new proposed manner of how to use it; Section 3 contains a convergence analysis for the new manner; Section 4 studies exact numerical landing on the border Σ and one-sided integration. Finally, Section 5 deals with tangential landing on Σ and conclusions are drawn in Section 6.

2. Time-transformations

We apply to the event location problem of the ODE (1) the idea of the timetransformations introduced in [4/5] in the context of the delay differential equations. The resulting approach includes as a particular case the approach presented in [12].

The idea is to introduce a strictly increasing function $\alpha:\left[s_{0}, 0\right] \rightarrow\left[0, t_{f}\right]$, where $s_{0}<0$, such that $\alpha\left(s_{0}\right)=0$ and $\alpha(0)=t_{f}$, and then to set

$$
y(s):=x(\alpha(s)), s \in\left[s_{0}, 0\right],
$$

where x is the solution of (11). Then, y satisfies

$$
y^{\prime}(s)=f(y(s)) \alpha^{\prime}(s), s \in\left[s_{0}, 0\right] .
$$

The function α is called a time-transformation.
Now, we look for a time-transformation α such that

$$
\begin{equation*}
h(x(\alpha(s)))=h(y(s))=\kappa(s), s \in\left[s_{0}, 0\right] \tag{7}
\end{equation*}
$$

where $\kappa:\left[s_{0}, 0\right] \rightarrow\left[h\left(x_{0}\right), 0\right]$ is a given strictly increasing function of class C^{1} such that $\kappa\left(s_{0}\right)=h\left(x_{0}\right)<0$ and $\kappa(0)=0$.

In the following, we assume there exist $\delta, c_{0}>0$ such that

$$
\begin{equation*}
h^{\prime}(x) f(x) \geq \delta, x \in R \cup \Sigma \text { such that } h(x)>-c_{0} \tag{8}
\end{equation*}
$$

where $h^{\prime}(x)$ is the row-vector gradient of h at the point x. Moreover, we assume $h\left(x_{0}\right)>-c_{0}$.

By differentiating (7) we obtain

$$
h^{\prime}(y(s)) y^{\prime}(s)=h^{\prime}(y(s)) f(y(s)) \alpha^{\prime}(s)=\kappa^{\prime}(s),
$$

and then the transformed ODE

$$
\left\{\begin{array}{l}
{\left[\begin{array}{c}
y^{\prime}(s) \\
\alpha^{\prime}(s)
\end{array}\right]=\frac{\kappa^{\prime}(s)}{h^{\prime}(y(s)) f(y(s))}\left[\begin{array}{c}
f(y(s)) \\
1
\end{array}\right], s \in\left[s_{0}, 0\right]} \tag{9}\\
{\left[\begin{array}{c}
y\left(s_{0}\right) \\
\alpha\left(s_{0}\right)
\end{array}\right]=\left[\begin{array}{c}
x_{0} \\
0
\end{array}\right]}
\end{array}\right.
$$

where

$$
s_{0}=\kappa^{-1}\left(h\left(x_{0}\right)\right)
$$

Observe that in (9) we have

$$
h^{\prime}(y(s)) f(y(s)) \geq \delta, s \in\left[s_{0}, 0\right]
$$

since (8) holds and

$$
h(y(s))=\kappa(s) \in\left[h\left(x_{0}\right), 0\right] \subseteq\left(-c_{0}, 0\right], s \in\left[s_{0}, 0\right] .
$$

By integrating the ODE (9), we obtain y and α, and then x can be reconstructed by

$$
y(s)=x(\alpha(s)), s \in\left[s_{0}, 0\right] .
$$

We have

$$
h(y(s))=\kappa(s), s \in\left[s_{0}, 0\right]
$$

and this means that in the transformed ODE (9) the solution y approaches the border Σ, where it lands at $s=0$, in the manner prescribed in advance by the function κ.

In the s-time, the event is located at 0 with value $y(0)$. In the original t-time, the event is located at $t_{f}=\alpha(0)$ with value $x\left(t_{f}\right)=y(0)$.

The approach presented in [12] corresponds to the set

$$
\begin{equation*}
\kappa(s)=s, s \in\left[s_{0}, 0\right] \tag{10}
\end{equation*}
$$

where $s_{0}=h\left(x_{0}\right)$.
By numerically integrating the ODE (9) by the $\mathrm{RK}(A, b, c)$ method over the mesh

$$
s_{0}=\kappa^{-1}\left(h\left(x_{0}\right)\right)<s_{1}<\cdots<s_{N}=0
$$

with stepsizes $\sigma_{n+1}=s_{n+1}-s_{n}, n=0,1, \ldots, N-1$, we obtain the scheme

$$
\begin{aligned}
& {\left[\begin{array}{c}
y_{n+1} \\
\alpha_{n+1}
\end{array}\right]=\left[\begin{array}{c}
y_{n} \\
\alpha_{n}
\end{array}\right]+\sigma_{n+1} \sum_{i=1}^{\nu} b_{i} \frac{\kappa^{\prime}\left(s_{i}^{n+1}\right)}{h^{\prime}\left(Y_{i}^{n+1}\right) f\left(Y_{i}^{n+1}\right)}\left[\begin{array}{c}
f\left(Y_{i}^{n+1}\right) \\
1
\end{array}\right],} \\
& {\left[\begin{array}{c}
Y_{i}^{n+1} \\
\Lambda_{i}^{n+1}
\end{array}\right]=\left[\begin{array}{c}
y_{n} \\
\alpha_{n}
\end{array}\right]+\sigma_{n+1} \sum_{j=1}^{\nu} a_{i j} \frac{\kappa^{\prime}\left(s_{j}^{n+1}\right)}{h^{\prime}\left(Y_{j}^{n+1}\right) f\left(Y_{j}^{n+1}\right)}\left[\begin{array}{c}
f\left(Y_{j}^{n+1}\right) \\
1
\end{array}\right],} \\
& i=1, \ldots, \nu \text { and } n=0,1, \ldots, N-1,
\end{aligned}
$$

where

$$
s_{i}^{n+1}:=s_{n}+c_{i} \sigma_{n+1}, i=1, \ldots, \nu
$$

Numerically, in the t-time the event is located at $\alpha_{N} \approx \alpha(0)=t_{f}$ with value $y_{N} \approx y(0)=x\left(t_{f}\right)$.

Observe that in this approach no additional algebraic equation like (5) or (6) has to be solved in order to locate the event (2): if an explict RK method is used for integrating (9), then the process of localizations turns out to be explicit.

On the other hand, we can observe that the dimension of the state space is augmented by one, since now the time-transformation appears as a component in the new state space. However, we can avoid computing the time transformation if we are only interested in the state $y\left(t_{f}\right)$ when the event happens and not the time t_{f}.

In the following, as concrete examples of function κ, we consider the functions $\kappa_{m, C}$ given by

$$
\begin{equation*}
\kappa_{m, C}(s)=-C(-s)^{m}=-C|s|^{m}, s \in\left[s_{0}, 0\right] \tag{11}
\end{equation*}
$$

where $m \geq 1$ and $C>0$. They are the simplest examples of function κ that one can conceive: they are strictly increasing one-term polynomial functions with value 0 at 0 and with negative values at negative arguments.
2.1. Procedures A and B. We can use this approach of the time-transformations by following two procedures, A and B , now described.
A. Transform the problem from the beginning, as described up to now, by solving (9).
B. Numerically integrate the original equation (11), not the transformed equation (9), as previously described in Section 1 up to the first point $t_{\bar{n}+1}$ such that

$$
h\left(x_{\bar{n}}\right) h\left(x_{\bar{n}+1}\right)<0
$$

Only now, the problem is transformed by solving

$$
\left\{\begin{array}{l}
{\left[\begin{array}{c}
y^{\prime}(s) \\
\alpha^{\prime}(s)
\end{array}\right]=\frac{\kappa^{\prime}(s)}{h^{\prime}(y(s)) f(y(s))}\left[\begin{array}{c}
f(y(s)) \\
1
\end{array}\right], s \in\left[s_{0}, 0\right]} \\
{\left[\begin{array}{c}
y\left(s_{0}\right) \\
\alpha\left(s_{0}\right)
\end{array}\right]=\left[\begin{array}{c}
x_{\bar{n}} \\
0
\end{array}\right]}
\end{array}\right.
$$

where

$$
s_{0}=\kappa^{-1}\left(h\left(x_{\bar{n}}\right)\right)
$$

One step of an RK method now provides approximations α_{1} of t_{f} and y_{1} of $x\left(t_{f}\right)$.
The paper 12 deals with the particular time-transformation (10) as applied in procedure A. The present paper deals with a general time-transformation as applied in both procedures A and B .

In procedure B , the numerical integration over one step by a RK method (A, b, c) is given by

$$
\begin{align*}
& {\left[\begin{array}{c}
y_{1} \\
\alpha_{1}
\end{array}\right]=\left[\begin{array}{c}
x_{\bar{n}} \\
0
\end{array}\right]+\left(-s_{0}\right) \sum_{i=1}^{\nu} b_{i} \frac{\kappa^{\prime}\left(s_{i}^{1}\right)}{h^{\prime}\left(Y_{i}^{1}\right) f\left(Y_{i}^{1}\right)}\left[\begin{array}{c}
f\left(Y_{i}^{1}\right) \\
1
\end{array}\right]} \\
& {\left[\begin{array}{c}
Y_{i}^{1} \\
\Lambda_{i}^{1}
\end{array}\right]=\left[\begin{array}{c}
x_{\bar{n}} \\
0
\end{array}\right]+\left(-s_{0}\right) \sum_{j=1}^{\nu} a_{i j} \frac{\kappa^{\prime}\left(s_{j}^{1}\right)}{h^{\prime}\left(Y_{j}^{1}\right) f\left(Y_{j}^{1}\right)}\left[\begin{array}{c}
f\left(Y_{j}^{1}\right) \\
1
\end{array}\right]} \tag{12}\\
& i=1, \ldots, \nu
\end{align*}
$$

where $s_{0}=\kappa^{-1}\left(h\left(x_{\bar{n}}\right)\right)$ and

$$
s_{i}^{1}:=s_{0}+c_{i}\left(-s_{0}\right)=\left(1-c_{i}\right) s_{0}, i=1, \ldots, \nu
$$

The next theorem shows that, for functions $\kappa_{m, C}$ in (11), we can always reduce the situation to one with $\kappa(s)=s$ in the procedure B .

Theorem 1. Assume that the $R K$ method (A, b, c) is applied over one step to the problem

$$
\left\{\begin{array}{l}
z^{\prime}(s)=\kappa^{\prime}(s) G(z(s)), s \in\left[s_{0}, 0\right] \tag{13}\\
z\left(s_{0}\right)=z_{0}
\end{array}\right.
$$

with $\kappa=\kappa_{m, C}$. The numerical solution z_{1} and the stage values $Z_{i}^{1}, i=1, \ldots, \nu$, are the numerical solution and the stage values, respectively, provided by the $R K$ method $\left(A^{(m)}, b^{(m)}, c\right)$ with

$$
\begin{aligned}
b_{i}^{(m)} & =b_{i} m\left(1-c_{i}\right)^{m-1}, i=1, \ldots, \nu \\
a_{i j}^{(m)} & =a_{i j} m\left(1-c_{j}\right)^{m-1}, i, j=1, \ldots, \nu
\end{aligned}
$$

as applied over one step to

$$
\left\{\begin{array}{l}
u^{\prime}(s)=G(u(s)), s \in\left[\kappa_{m, C}\left(s_{0}\right), 0\right] \tag{14}\\
u\left(\kappa_{m, C}\left(s_{0}\right)\right)=z_{0}
\end{array}\right.
$$

which is the problem (13) with $\kappa(s)=s$.
Proof. By applying the RK method (A, b, c) over one step to the problem (13) with $\kappa=\kappa_{m, C}$, we obtain

$$
\begin{aligned}
z_{1} & =z_{0}+\left(-s_{0}\right) \sum_{i=1}^{\nu} b_{i} C m\left(-s_{i}^{1}\right)^{m-1} G\left(Z_{i}^{1}\right) \\
& =z_{0}+\left(-s_{0}\right) \sum_{i=1}^{\nu} b_{i} C m\left(\left(1-c_{i}\right)\left(-s_{0}\right)\right)^{m-1} G\left(Z_{i}^{1}\right) \\
& =z_{0}+\underbrace{C\left(-s_{0}\right)^{m}}_{=-\kappa_{m, C}\left(s_{0}\right)} \sum_{i=1}^{\nu} b_{i} m\left(1-c_{i}\right)^{m-1} G\left(Z_{i}^{1}\right)
\end{aligned}
$$

and, analogously,

$$
Z_{i}^{1}=z_{0}+\underbrace{C\left(-s_{0}\right)^{m}}_{=-\kappa_{m}, C\left(s_{0}\right)} \sum_{j=1}^{\nu} a_{i j} m\left(1-c_{j}\right)^{m-1} G\left(Z_{j}^{1}\right), i=1, \ldots, \nu
$$

This means that z_{1} and $Z_{i}^{1}, i=1, \ldots, \nu$, are the numerical solution and the stage values, respectively, provided by the RK method $\left(A^{(m)}, b^{(m)}, c\right)$ when it is applied over one step to the problem (14).

As a consequence of this result, we obtain that, when in procedure B we solve over one step the transformed equation with

$$
\kappa=\kappa_{m, C} \quad \text { and } \quad s_{0}=\kappa_{m, C}^{-1}\left(h\left(x_{\bar{n}}\right)\right)
$$

by the RK method (A, b, c), the numerical solution and the stage values are the same as to how to numerically solve over one step the transformed equation with

$$
\kappa(s)=s \text { and } s_{0}=\kappa_{m, C}\left(\kappa_{m, C}^{-1}\left(h\left(x_{\bar{n}}\right)\right)\right)=h\left(x_{\bar{n}}\right)
$$

by the RK method $\left(A^{(m)}, b^{(m)}, c\right)$.
Remark 2. This means that in procedure B we cannot obtain any advantage by choosing a function $\kappa=\kappa_{m, C}$ different from $\kappa(s)=s$, since the change from $k(s)=s$ to $\kappa=\kappa_{m, C}$ corresponds to using $k(s)=s$ with another RK method. For this reason, from now on we always use $k(s)=s$ in procedure B.

On the other hand, in procedure A we can have advantages in using a function κ different from $\kappa(s)=s$; for example, in the situation of tangential landing on the border Σ, as described in Section 5. Another situation, where a function κ that is
different from $k(s)=s$ can be used, is when we are interested not only in the event (2) but also in a sequence of events

$$
\begin{equation*}
h(x(t))=h_{i}, i=1,2, \ldots, q, \tag{15}
\end{equation*}
$$

where

$$
h\left(x_{0}\right)<h_{1}<h_{2}<\cdots<h_{q}<0
$$

because, for example, we need to check the approach to the border Σ. In this case, we can integrate the transformed equation (9) with a function κ such that

$$
\kappa\left(\frac{q+1-i}{q+1} s_{0}\right)=\kappa\left(s_{0}+\frac{i}{q+1}\left(-s_{0}\right)\right)=h_{i}, i=1,2, \ldots, q .
$$

So, by numerically integrating the transformed equation with constant stepsize

$$
\sigma=\frac{-s_{0}}{(q+1) M},
$$

where M is a positive integer, the events (15) will be located at the s-times $s_{i M}$, $i=1,2, \ldots, q$, with numerical value $y_{i M}$.

3. Convergence results

As for procedure A, under the assumption that κ is sufficientely smooth on $\left[s_{0}, 0\right]$, we have

$$
\left\|\left[\begin{array}{c}
y_{N} \\
\alpha_{N}
\end{array}\right]-\left[\begin{array}{c}
x\left(t_{f}\right) \\
t_{f}
\end{array}\right]\right\|_{\infty}=O\left(\sigma^{q}\right), \sigma \rightarrow 0
$$

where σ is the maximum of the stepsizes $\sigma_{n+1}, n=0,1, \ldots, N-1$, and q is the order of the RK method used in the integration of the transformed equation.

As for procedure B , we begin with the following lemma. In this lemma and in the following, τ denotes the maximum stepsize in the mesh (3) up to $t_{\bar{n}+1}$.

Lemma 3. In procedure B we have

$$
\left|h\left(x_{\bar{n}}\right)\right|=O\left(\tau_{\bar{n}+1}\right), \tau \rightarrow 0
$$

Proof. Let η be the continuous approximation given in (4) and let \tilde{t}_{f} be such that

$$
h\left(\eta\left(\widetilde{t}_{f}\right)\right)=0 .
$$

Then

$$
\left|h\left(x_{\bar{n}}\right)\right|=\left|h\left(x_{\bar{n}}\right)-h\left(\eta\left(\widetilde{t}_{f}\right)\right)\right| \leq L\left|x_{\bar{n}}-\eta\left(\widetilde{t}_{f}\right)\right|,
$$

where L is a Lipschitz constant of the function h in a suitable neighborhood of $x\left(t_{f}\right)$, and, by recalling (4),

$$
\left|x_{\bar{n}}-\eta\left(\widetilde{t}_{f}\right)\right| \leq \tau_{\bar{n}+1} \sum_{i=1}^{\nu}\left|b_{i}(\theta)\right|\left|f\left(Y_{i}^{\bar{n}+1}\right)\right|=O\left(\tau_{\bar{n}+1}\right), \tau \rightarrow 0
$$

where $\widetilde{t}_{f}=t_{\bar{n}}+\theta \tau_{\bar{n}+1}$.
Here is the convergence result for procedure B.
Theorem 4. In procedure B with $\kappa(s)=s$ assume that:
B1) the integration of the original equation is accomplished by an $R K$ method of order p over the mesh (3);
B2) the integration of the transformed equation over one step is accomplished by an RK method of local order $q+1$.

Then

$$
\left\|\left[\begin{array}{c}
y_{1} \\
\alpha_{1}
\end{array}\right]-\left[\begin{array}{c}
x\left(t_{f}\right) \\
t_{f}
\end{array}\right]\right\|_{\infty}=O\left(\tau^{\min \{p, q+1\}}\right), \tau \rightarrow 0
$$

Proof. By the previous lemma, we obtain

$$
\left|s_{0}\right|=O\left(\left|h\left(x_{\bar{n}}\right)\right|\right)=O\left(\tau_{\bar{n}+1}\right), \tau \rightarrow 0
$$

Now, let x^{*} be the solution of

$$
\left\{\begin{array}{l}
\left(x^{*}\right)^{\prime}(t)=f\left(x^{*}(t)\right), t \geq t_{\bar{n}} \\
x^{*}\left(t_{\bar{n}}\right)=x_{\bar{n}}
\end{array}\right.
$$

and let t_{f}^{*} be the first point such that

$$
x^{*}\left(t_{f}^{*}\right) \in \Sigma
$$

By B2) we have

$$
\left\|\left[\begin{array}{c}
y_{1} \\
\alpha_{1}
\end{array}\right]-\left[\begin{array}{c}
x^{*}\left(t_{f}^{*}\right) \\
t_{f}^{*}
\end{array}\right]\right\|_{\infty}=O\left(\left|s_{0}\right|^{q+1}\right)=O\left(\tau_{\bar{n}+1}^{q+1}\right), \tau \rightarrow 0 .
$$

On the other hand, by B1) we have

$$
\left\|\left[\begin{array}{c}
x^{*}\left(t_{f}^{*}\right) \\
t_{f}^{*}
\end{array}\right]-\left[\begin{array}{c}
x\left(t_{f}\right) \\
t_{f}
\end{array}\right]\right\|_{\infty}=O\left(\left\|x_{\bar{n}}-x\left(t_{n}\right)\right\|_{\infty}\right)=O\left(\tau^{p}\right), \tau \rightarrow 0
$$

and so

$$
\left\|\left[\begin{array}{c}
y_{1} \\
\alpha_{1}
\end{array}\right]-\left[\begin{array}{c}
x\left(t_{f}\right) \\
t_{f}
\end{array}\right]\right\|_{\infty}=O\left(\tau^{p}\right)+O\left(\tau_{\bar{n}+1}^{q+1}\right), \tau \rightarrow 0
$$

The previous proposition says that, in case of an explicit RK method integrating the original equation with order p and of an explicit RK method integrating the transformed equation over one step with order $q+1 \geq p$, we can explicitly find approximations of $x\left(t_{f}\right)$ and t_{f} of order p.
Example 5. Consider the problem taken from [12]:

$$
\begin{aligned}
& f(x)=\left(x_{2},-x_{1}+\frac{1}{1.2-x_{2}}\right), t_{0}=0, x_{0}=(-0.2,-0.2) \\
& h(x)=x_{1}+x_{2}-0.4
\end{aligned}
$$

By integrating the original ODEs by the Heun method, whose order is $p=2$, with constant stepsize $\tau=10^{-2}$, we stop at

$$
t_{\bar{n}}=0.61, x_{\bar{n}}=(-0.12374,0.51048)
$$

By integrating the transformed equation for $\kappa(s)=s$ with the explicit Euler method, whose local order is $q+1=2$, over one-step the event is numerically located at

$$
t_{f} \approx s_{1}=0.61636, x\left(t_{f}\right) \approx y_{1}=(-0.12049,0.52049)
$$

In Figure 1, we see the trajectory of the solution in the phase space. Observe that the landing on the border $h(x)=0$ is not tangential. Indeed, we have $h\left(y_{1}\right) f\left(y_{1}\right)=$ 2.1126 .

The next table gives the estimated errors

$$
\left|\alpha_{1}-t_{f}\right|,\left\|y_{1}-x\left(t_{f}\right)\right\|_{\infty}
$$

for $\tau=10^{-k}, k=1, \ldots, 4$, where t_{f} and $x\left(t_{f}\right)$ are estimated by using $\tau=10^{-5}$.

τ	$\left\|\alpha_{1}-t_{f}\right\|$	ratios	$\left\\|y_{1}-x\left(t_{f}\right)\right\\|_{\infty}$	ratios
10^{-1}	$4.49 \cdot 10^{-4}$	13.4	$1.02 \cdot 10^{-3}$	50.0
10^{-2}	$3.35 \cdot 10^{-6}$	1449.1	$2.05 \cdot 10^{-5}$	152.7
10^{-3}	$2.31 \cdot 10^{-8}$	126.0	$1.33 \cdot 10^{-7}$	108.4
10^{-4}	$1.83 \cdot 10^{-10}$		$1.23 \cdot 10^{-9}$	

In this table and in the next tables, the i th row of a column named "ratios" denotes the ratio between the errors in the previous column at the i th and $(i+1)$ th rows. For a method of order p this ratio is expected to be about 10^{p}.

The whole method, given by the integration of the original equation by the Heun method and the integration of transformed equation by the explicit Euler method over one step, exhibits order $O\left(\tau^{2}\right)$ as predicted by the previous theorem (the geometric means of the ratios are 134.8 for $\left|\alpha_{1}-t_{f}\right|$ and 93.9 for $\left.\left\|y_{1}-x\left(t_{f}\right)\right\|_{\infty}\right)$.

Figure 1. The trajectory $x(t)$ in the phase space.

4. Exact Landing and one-sided integration

The fact $h\left(y_{N}\right)=0$ in procedure A and $h\left(y_{1}\right)=0$ in procedure B guarantees that the numerical integration of the transformed equation lands exactly on the border Σ. If a sliding motion takes place after the event, an exact landing on Σ is particularly important since the annoying phenomenon of numerical chattering can be avoided.

Moreover, in case of an explicit method, the facts

$$
h\left(Y_{i}^{n+1}\right) \leq 0, i=1, \ldots, \nu \text { and } n=0, \ldots, N-1,
$$

in procedure A and

$$
h\left(Y_{i}^{1}\right) \leq 0, i=1, \ldots, \nu,
$$

in procedure B guarantee that the integration is one-sided, i.e., during the integration it is never required to compute f on arguments outside $\Sigma \cup R$ in (12) (see [11]). A one-sided integration is particularly important when it is not easy to smoothly extend the function f outside $\Sigma \cup R$.

In this section, for a general RK method not necessarily explicit, we study these aspects in the cases of h linear, i.e.,

$$
h(x)=d^{T} x+e, x \in \mathbb{R}^{n}
$$

where $d, e \in \mathbb{R}^{n}$, and h quadratic, i.e.,

$$
h(x)=x^{T} M x+d^{T} x+e, x \in \mathbb{R}^{n},
$$

where $M \in \mathbb{R}^{n \times n}$ and $d, e \in \mathbb{R}^{n}$.
In the applications, often the surface Σ is defined by a linear or quadratic function h. This is the reason for which we consider, in detail, these two cases.

In the following the quadrature rule

$$
(\beta-\alpha) \sum_{k=1}^{l} w_{k} f\left(\alpha+\gamma_{k}(\beta-\alpha)\right)
$$

of weights w_{k} and nodes γ_{k} for the integral

$$
\int_{\alpha}^{\beta} f(x) d x
$$

is denoted by $\left(w_{k}, \gamma_{k}\right)_{k=1, \ldots, l}$.

4.1. The case h linear.

Theorem 6. Assume that h is linear and that the function κ in the transformed equation is a polynomial of degree m. Moreover, assume that the $R K$ method (A, b, c) is used for the integration of the transformed equation.

If the quadrature rule $\left(b_{i}, c_{i}\right)_{i=1, \ldots, \nu}$ has polynomial order $m-1$, then

$$
h\left(y_{n+1}\right)=h\left(y_{n}\right)+\kappa\left(s_{n+1}\right)-\kappa\left(s_{n}\right), n=0,1,2, \ldots
$$

Moreover, for $i=1, \ldots, \nu$ such that $c_{i} \neq 0$, if the quadrature rule $\left(\frac{a_{i j}}{c_{i}}, \frac{c_{j}}{c_{i}}\right)_{j=1, \ldots, \nu}$ has polynomial order $m-1$, then

$$
\begin{equation*}
h\left(Y_{i}^{n+1}\right)=h\left(y_{n}\right)+\kappa\left(s_{i}^{n+1}\right)-\kappa\left(s_{n}\right), n=0,1,2, \ldots \tag{16}
\end{equation*}
$$

Proof. Observe that

$$
h^{\prime}(x)=d^{T}, x \in \mathbb{R}^{d}
$$

and

$$
h(x+z)=h(x)+d^{T} z, x, z \in \mathbb{R}^{d} .
$$

We have

$$
\begin{aligned}
h\left(y_{n+1}\right) & =h\left(y_{n}+\sigma_{n+1} \sum_{i=1}^{\nu} b_{i} \frac{\kappa^{\prime}\left(s_{i}^{n+1}\right) f\left(Y_{i}^{n+1}\right)}{d^{T} f\left(Y_{i}^{n+1}\right)}\right) \\
& =h\left(y_{n}\right)+\sigma_{n+1} \sum_{i=1}^{\nu} b_{i} \kappa^{\prime}\left(s_{i}^{n+1}\right) \\
& =h\left(y_{n}\right)+\sigma_{n+1} \sum_{i=1}^{\nu} b_{i} \kappa^{\prime}\left(s_{n}+c_{i} \sigma_{n+1}\right) \\
& =h\left(y_{n}\right)+\int_{s_{n}}^{s_{n+1}} \kappa^{\prime}(s) d s
\end{aligned}
$$

if the quadrature rule $\left(b_{i}, c_{i}\right)_{i=1, \ldots, \nu}$ has polynomial order $m-1$. Moreover, for $i=1, \ldots, \nu$ such that $c_{i} \neq 0$, we have

$$
\begin{aligned}
h\left(Y_{i}^{n+1}\right) & =h\left(y_{n}+\sigma_{n+1} \sum_{j=1}^{\nu} a_{i j} \frac{\kappa^{\prime}\left(s_{j}^{n+1}\right) f\left(Y_{j}^{n+1}\right)}{d^{T} f\left(Y_{j}^{n+1}\right)}\right) \\
& =h\left(y_{n}\right)+\sigma_{n+1} \sum_{j=1}^{\nu} a_{i j} \kappa^{\prime}\left(s_{j}^{n+1}\right) \\
& =h\left(y_{n}\right)+c_{i} \sigma_{n+1} \sum_{j=1}^{\nu} \frac{a_{i j}}{c_{i}} \kappa^{\prime}\left(s_{n}+\frac{c_{j}}{c_{i}} c_{i} \sigma_{n+1}\right) \\
& =h\left(y_{n}\right)+\int_{s_{n}}^{s_{i}^{n+1}} \kappa^{\prime}(s) d s \\
& =h\left(y_{n}\right)+\kappa\left(s_{i}^{n+1}\right)-\kappa\left(s_{n}\right)
\end{aligned}
$$

if the quadrature rule $\left(\frac{a_{i j}}{c_{i}}, \frac{c_{j}}{c_{i}}\right)_{i=1, \ldots, \nu}$ has polynomial order $m-1$.
Observe that (16) holds also for $c_{i}=0$ if

$$
Y_{i}^{n+1}=y_{n}, n=0,1,2, \ldots,
$$

and this happens, for example, when $a_{i j}=0, j=1, \ldots, \nu$.
As a consequence of the previous theorem, in case of a linear function h, we can conclude as follows.

In procedure A , if the function κ is a polynomial of degree m and the transformed equation is integrated by the RK method (A, b, c) such that the quadrature rule $\left(b_{i}, c_{i}\right)_{i=1, \ldots, \nu}$ has polynomial order $m-1$, then

$$
h\left(y_{n}\right)=\kappa\left(s_{n}\right), n=0,1, \ldots, N,
$$

and so $h\left(y_{N}\right)=0$. Moreover, if the quadrature rule $\left(\frac{a_{i j}}{c_{i}}, \frac{c_{j}}{c_{i}}\right)_{j=1, \ldots, \nu}$ has polynomial order $m-1$ for any $i=1, \ldots, \nu$ such that $c_{i} \neq 0$ and

$$
Y_{i}^{n+1}=y_{n}, n=0,1, \ldots, N-1
$$

for any $i=1, \ldots, \nu$ such that $c_{i}=0$, then

$$
\begin{equation*}
h\left(Y_{i}^{n+1}\right)=\kappa\left(s_{i}^{n+1}\right) \leq 0, i=1, \ldots, \nu \quad \text { and } \quad n=0, \ldots, N-1 \tag{17}
\end{equation*}
$$

Observe that for the explicit RK method (A, b, c), the quadrature rule

$$
\left(\frac{a_{2 j}}{c_{2}}, \frac{c_{j}}{c_{2}}\right)_{j=1, \ldots, \nu}
$$

relevant to the index $i=2$ is the one-node quadrature rule of weight $\frac{a_{21}}{c_{2}}$ and node 0 , whose polynomial order is 0 . So, for an explicit RK method integrating the transformed equation in procedure A , one cannot guarantee (17) in case of polynomial function κ of degree $m>1$.

In procedure B with $\kappa(s)=s$, if the transformed equation is integrated over one step by the RK method (A, b, c) such that

$$
\sum_{i=1}^{\nu} b_{i}=1
$$

(so the quadrature rule $\left(b_{i}, c_{i}\right)_{i=1, \ldots, \nu}$ has polynomial order 0) and

$$
\sum_{i=1}^{\nu} a_{i j}=c_{i}, i=1, \ldots, \nu
$$

(so the quadrature rule $\left(\frac{a_{i j}}{c_{i}}, \frac{c_{j}}{c_{i}}\right)_{j=1, \ldots, \nu}$ has polynomial order 0 for $c_{i} \neq 0$ and $Y_{i}^{n+1}=y_{n}$ for $c_{i}=0$), then

$$
h\left(y_{1}\right)=0
$$

and

$$
h\left(Y_{i}^{1}\right)=\kappa\left(s_{i}^{1}\right) \leq 0, i=1, \ldots, \nu
$$

So, exact landing on Σ and one-sided integration can be obtained by explicit methods in the case of h linear for both procedures A and B.

4.2. The case h quadratic.

Theorem 7. Assume that h is quadratic and that the function κ in the transformed equation is a polynomial of degree m. Moreover, assume that a $R K$ method (A, b, c) is used for the integration of the transformed equation.

If the quadrature rule $\left(b_{i}, c_{i}\right)_{i=1, \ldots, \nu}$ has polynomial order $m-1$, then

$$
\begin{aligned}
& h\left(y_{n+1}\right)=h\left(y_{n}\right)+\kappa\left(s_{n+1}\right)-\kappa\left(s_{n}\right) \\
& +\sigma_{n+1}^{2} \sum_{i=1}^{\nu} \sum_{j=1}^{\nu}\left(b_{i} b_{j}-b_{i} a_{i j}-b_{j} a_{j i}\right) \frac{\kappa^{\prime}\left(s_{i}^{n+1}\right) \kappa^{\prime}\left(s_{j}^{n+1}\right) f\left(Y_{i}^{n+1}\right)^{T} M f\left(Y_{j}^{n+1}\right)}{h^{\prime}\left(Y_{i}^{n+1}\right) f\left(Y_{i}^{n+1}\right) \cdot h^{\prime}\left(Y_{j}^{n+1}\right) f\left(Y_{j}^{n+1}\right)} \\
& n=0,1,2, \ldots
\end{aligned}
$$

Proof. Observe that

$$
\begin{aligned}
h(x+z) & =(x+z)^{T} M(x+z)+d^{T}(x+z)+e \\
& =x^{T} M x+d^{T} x+e+x^{T} M z+\underbrace{z^{T} M x}_{=x^{T} M^{T} z}+d^{T} z+z^{T} M z \\
& =h(x)+x^{T}\left(M+M^{T}\right) z+d^{T} z+z^{T} M z, x, z \in \mathbb{R}^{d},
\end{aligned}
$$

and so

$$
h^{\prime}(x)=x^{T}\left(M+M^{T}\right)+d^{T}, x \in \mathbb{R}^{d}
$$

and

$$
h(x+z)=h(x)+h^{\prime}(x) z+z^{T} M z .
$$

We have

$$
\begin{aligned}
h\left(y_{n+1}\right)= & h\left(y_{n}+\sigma_{n+1} \sum_{i=1}^{\nu} b_{i} \frac{\kappa^{\prime}\left(s_{i}^{n+1}\right) f\left(Y_{i}^{n+1}\right)}{h^{\prime}\left(Y_{i}^{n+1}\right) f\left(Y_{i}^{n+1}\right)}\right) \\
= & h\left(y_{n}\right)+\sigma_{n+1} \sum_{i=1}^{\nu} b_{i} \frac{h^{\prime}\left(y_{n}\right) \kappa^{\prime}\left(s_{i}^{n+1}\right) f\left(Y_{i}^{n+1}\right)}{h^{\prime}\left(Y_{i}^{n+1}\right) f\left(Y_{i}^{n+1}\right)} \\
& +\sigma_{n+1}^{2} \sum_{i=1}^{\nu} \sum_{j=1}^{\nu} b_{i} b_{j} \frac{\kappa^{\prime}\left(s_{i}^{n+1}\right) \kappa^{\prime}\left(s_{j}^{n+1}\right) f\left(Y_{i}^{n+1}\right)^{T} M f\left(Y_{j}^{n+1}\right)}{h^{\prime}\left(Y_{i}^{n+1}\right) f\left(Y_{i}^{n+1}\right) \cdot h^{\prime}\left(Y_{j}^{n+1}\right) f\left(Y_{j}^{n+1}\right)} .
\end{aligned}
$$

Now, for $i=1, \ldots, \nu$,

$$
\begin{aligned}
h^{\prime}\left(y_{n}\right) & =y_{n}^{T}\left(M+M^{T}\right)+d^{T} \\
& =\left(Y_{i}^{n+1}-\sigma_{n+1} \sum_{j=1}^{\nu} a_{i j} \frac{\kappa^{\prime}\left(s_{j}^{n+1}\right) f\left(Y_{j}^{n+1}\right)}{h^{\prime}\left(Y_{j}^{n+1}\right) f\left(Y_{j}^{n+1}\right)}\right)^{T}\left(M+M^{T}\right)+d^{T} \\
& =h^{\prime}\left(Y_{i}^{n+1}\right)-\sigma_{n+1} \sum_{j=1}^{\nu} a_{i j} \frac{\kappa^{\prime}\left(s_{j}^{n+1}\right) f\left(Y_{j}^{n+1}\right)^{T}\left(M+M^{T}\right)}{h^{\prime}\left(Y_{j}^{n+1}\right) f\left(Y_{j}^{n+1}\right)}
\end{aligned}
$$

and then

$$
\begin{aligned}
& \sigma_{n+1} \sum_{i=1}^{\nu} b_{i} \frac{\kappa^{\prime}\left(s_{i}^{n+1}\right) h^{\prime}\left(y_{n+1}\right) f\left(Y_{i}^{n+1}\right)}{h^{\prime}\left(Y_{i}^{n+1}\right) f\left(Y_{i}^{n+1}\right)} \\
&=\sigma_{n+1} \sum_{i=1}^{\nu} b_{i} \frac{\kappa^{\prime}\left(s_{i}^{n+1}\right) h^{\prime}\left(Y_{i}^{n+1}\right) f\left(Y_{i}^{n+1}\right)}{h^{\prime}\left(Y_{i}^{n+1}\right) f\left(Y_{i}^{n+1}\right)} \\
& \quad-\sigma_{n+1}^{2} \sum_{i=1}^{\nu} \sum_{j=1}^{\nu} b_{i} a_{i j} \frac{\kappa^{\prime}\left(s_{i}^{n+1}\right) \kappa^{\prime}\left(s_{j}^{n+1}\right) f\left(Y_{j}^{n+1}\right)^{T} M f\left(Y_{i}^{n+1}\right)}{h^{\prime}\left(Y_{i}^{n+1}\right) f\left(Y_{i}^{n+1}\right) \cdot h^{\prime}\left(Y_{j}^{n+1}\right) f\left(Y_{j}^{n+1}\right)} \\
& \quad-\sigma_{n+1}^{2} \sum_{i=1}^{\nu} \sum_{j=1}^{\nu} b_{i} a_{i j} \frac{\kappa^{\prime}\left(s_{i}^{n+1}\right) \kappa^{\prime}\left(s_{j}^{n+1}\right) f\left(Y_{j}^{n+1}\right)^{T} M^{T} f\left(Y_{i}^{n+1}\right)}{h^{\prime}\left(Y_{i}^{n+1}\right) f\left(Y_{i}^{n+1}\right) \cdot h^{\prime}\left(Y_{j}^{n+1}\right) f\left(Y_{j}^{n+1}\right)} \\
&= \sigma_{n+1} \sum_{i=1}^{\nu} b_{i} \kappa^{\prime}\left(s_{i}^{n+1}\right) \\
& \quad-\sigma_{n+1}^{2} \sum_{j=1}^{\nu} \sum_{i=1}^{\nu} b_{j} a_{j i} \frac{\kappa^{\prime}\left(s_{j}^{n+1}\right) \kappa^{\prime}\left(s_{i}^{n+1}\right) f\left(Y_{i}^{n+1}\right)^{T} M f\left(Y_{j}^{n+1}\right)}{h^{\prime}\left(Y_{j}^{n+1}\right) f\left(Y_{j}^{n+1}\right) \cdot h^{\prime}\left(Y_{i}^{n+1}\right) f\left(Y_{i}^{n+1}\right)} \\
& \quad-\sigma_{n+1}^{2} \sum_{i=1}^{\nu} \sum_{j=1}^{\nu} b_{i} a_{i j} \frac{\kappa^{\prime}\left(s_{i}^{n+1}\right) \kappa^{\prime}\left(s_{j}^{n+1}\right) f\left(Y_{i}^{n+1}\right)^{T} M f\left(Y_{j}^{n+1}\right)}{h^{\prime}\left(Y_{i}^{n+1}\right) f\left(Y_{i}^{n+1}\right) \cdot h^{\prime}\left(Y_{j}^{n+1}\right) f\left(Y_{j}^{n+1}\right)} \\
&= \sigma_{n+1} \sum_{i=1}^{\nu} b_{i} \kappa^{\prime}\left(s_{i}^{n+1}\right) \\
& \quad-\sigma_{n+1}^{2} \sum_{i=1}^{\nu} \sum_{j=1}^{\nu}\left(b_{i} a_{i j}+b_{j} a_{j i}\right) \frac{\kappa^{\prime}\left(s_{i}^{n+1}\right) \kappa^{\prime}\left(s_{j}^{n+1}\right) f\left(Y_{i}^{n+1}\right)^{T} M f\left(Y_{j}^{n+1}\right)}{h^{\prime}\left(Y_{i}^{n+1}\right) f\left(Y_{i}^{n+1}\right) \cdot h^{\prime}\left(Y_{j}^{n+1}\right) f\left(Y_{j}^{n+1}\right)} .
\end{aligned}
$$

We conclude that

$$
\begin{aligned}
& h\left(y_{n+1}\right)=h\left(y_{n}\right)+\sigma_{n+1} \sum_{i=1}^{\nu} b_{i} \kappa^{\prime}\left(s_{i}^{n+1}\right) \\
& \quad+\sigma_{n+1}^{2} \sum_{i=1}^{\nu} \sum_{j=1}^{\nu}\left(b_{i} b_{j}-b_{i} a_{i j}-b_{j} a_{j i}\right) \frac{\kappa^{\prime}\left(s_{i}^{n+1}\right) \kappa^{\prime}\left(s_{j}^{n+1}\right) f\left(Y_{i}^{n+1}\right)^{T} M f\left(Y_{j}^{n+1}\right)}{h^{\prime}\left(Y_{i}^{n+1}\right) f\left(Y_{i}^{n+1}\right) \cdot h^{\prime}\left(Y_{j}^{n+1}\right) f\left(Y_{j}^{n+1}\right)}
\end{aligned}
$$

and if the quadrature rule $\left(b_{i}, c_{i}\right)_{i=1, \ldots, \nu}$ has polynomial order $m-1$, then

$$
\sigma_{n+1} \sum_{i=1}^{\nu} b_{i} \kappa^{\prime}\left(s_{i}^{n+1}\right)=\kappa\left(s_{n+1}\right)-\kappa\left(s_{n}\right) .
$$

Observe that we have

$$
h\left(y_{n+1}\right)=h\left(y_{n}\right)+\kappa\left(s_{n+1}\right)-\kappa\left(s_{n}\right), n=0,1,2, \ldots,
$$

if

$$
b_{i} b_{j}-b_{i} a_{i j}-b_{j} a_{j i}=0, i, j=1, \ldots, \nu,
$$

holds. This is the condition for preserving quadratic first integrals and it cannot be satisfied if (A, b, c) is an explicit RK method (A, b, c). On the other hand, it is satisfied if (A, b, c) is a gaussian RK method.

In the case of h quadratic, both in procedure A and procedure B, an integration of the transformed equation by a gaussian RK method guarantees exact numerical landing on Σ.

As for the one-sided integration, we can give the following interesting result for procedure B with $\kappa(s)=s$.
Theorem 8. Assume that h is quadratic and that in procedure B with $\kappa(s)=s$ the transformed equation is integrated over one step by an RK method (A, b, c) such that

$$
\sum_{j=1}^{\nu} a_{i j}=c_{i}, i=1, \ldots, \nu
$$

Then, for $i=1, \ldots, \nu$, we have

$$
h\left(Y_{i}^{1}\right)=h\left(x_{\bar{n}}\right)\left(1-c_{i}+O(\tau)\right), \tau \rightarrow 0
$$

Proof. Similarly to the proof of the previous theorem, we can show for $i=1, \ldots, \nu$, that

$$
\begin{aligned}
h\left(Y_{i}^{1}\right)= & h\left(y_{0}\right)+\sigma_{1} \sum_{j=1}^{\nu} a_{i j} \\
& +\sigma_{1}^{2} \sum_{j=1}^{\nu} \sum_{k=1}^{\nu}\left(a_{i j} a_{i k}-a_{i j} a_{j k}-a_{i k} a_{k j}\right) \frac{f\left(Y_{j}^{1}\right)^{T} M f\left(Y_{k}^{1}\right)}{h^{\prime}\left(Y_{j}^{1}\right) f\left(Y_{j}^{1}\right) \cdot h^{\prime}\left(Y_{k}^{1}\right) f\left(Y_{k}^{1}\right)} .
\end{aligned}
$$

Thus, since $\sigma_{1}=-h\left(y_{0}\right)=-h\left(x_{\bar{n}}\right)$ we have

$$
\begin{aligned}
& h\left(Y_{i}^{1}\right)=\left(1-c_{i}\right) h\left(x_{\bar{n}}\right) \\
& \quad+h\left(x_{\bar{n}}\right)^{2} \sum_{j=1}^{\nu} \sum_{k=1}^{\nu}\left(a_{i j} a_{i k}-a_{i j} a_{j k}-a_{i k} a_{k j}\right) \frac{f\left(Y_{j}^{1}\right)^{T} M f\left(Y_{k}^{1}\right)}{h^{\prime}\left(Y_{j}^{1}\right) f\left(Y_{j}^{1}\right) \cdot h^{\prime}\left(Y_{k}^{1}\right) f\left(Y_{k}^{1}\right)} \\
& =h\left(x_{\bar{n}}\right)\left(1-c_{i}+O\left(h\left(x_{\bar{n}}\right)\right)\right) \\
& =
\end{aligned}
$$

by recalling Lemma 3

So, for $i=1, \ldots, \nu$ such that $c_{i} \neq 1$ and small τ, we have
$h\left(Y_{i}^{1}\right)=h\left(x_{\bar{n}}\right)\left(1-c_{i}+O(\tau)\right)=\left(1-c_{i}\right) h\left(x_{\bar{n}}\right)(1+O(\tau)) \approx\left(1-c_{i}\right) h\left(x_{\bar{n}}\right)<0$.
In the case of h quadratic, a one-sided integration in procedure B can be indeed realized by using an explicit RK method with $c_{1}, \ldots, c_{\nu}<1$.

Example 9. Consider the problem with h quadratic:

$$
\begin{aligned}
& f(x)=\left(x_{2},-x_{1}+\frac{1}{1.2-x_{2}}\right), t_{0}=0, x_{0}=(-0,2,-0.2), \\
& h(x)=x_{1}^{2}+x_{2}^{2}+x_{1}+x_{2}-0.4
\end{aligned}
$$

In procedure B , we integrate the original equation by the Heun method and the transformed equation with $\kappa(s)=s$ by the explicit midpoint method, whose tableau is

0	0	0
$\frac{1}{2}$	$\frac{1}{2}$	0
	0	1

We obtain the following table:

τ	$\left\|\varepsilon_{2}\right\|$	ratios
10^{-1}	$9.94 \cdot 10^{-3}$	4.50
10^{-2}	$2.21 \cdot 10^{-3}$	7.85
10^{-3}	$2.81 \cdot 10^{-4}$	20.9
10^{-4}	$1.35 \cdot 10^{-5}$	6.75
10^{-5}	$1.99 \cdot 10^{-6}$	

The relative error $\varepsilon_{2}=\frac{h\left(Y_{2}^{1}\right)-\left(1-c_{2}\right) h\left(x_{\pi}\right)}{\left(1-c_{2}\right) h\left(x_{\pi}\right)}$ exhibits order $O(\tau)$ (the geometric mean of the ratios is 8.40).

5. Tangential Landing on Σ

Now we consider the situation of tangential landing on the border Σ, i.e., we have

$$
h^{\prime}(x) f(x)>0, x \in R \text { such that } h(x)>-c,
$$

instead of (8), and

$$
h^{\prime}\left(x\left(t_{f}\right)\right) f\left(x\left(t_{f}\right)\right)=0
$$

In procedure A , assume that $\kappa(s)=s$ in the transformed equation (9). Since in a tangential landing on Σ the quantity $h^{\prime}(y(s)) f(y(s))$ becomes zero as s approaches zero, a numerical method integrating the transformed equation (9) encounters difficulties due to the blowing up of the right-hand side:

$$
\frac{\kappa^{\prime}(s)}{h^{\prime}(y(s)) f(y(s))}\left[\begin{array}{c}
f(y(s)) \\
1
\end{array}\right]=\frac{1}{h^{\prime}(y(s)) f(y(s))}\left[\begin{array}{c}
f(y(s)) \\
1
\end{array}\right] .
$$

Clearly, the situation of tangential landing on Σ is one where a function κ different from the simplest choice $\kappa(s)=s$ should be used.

Let us define

$$
\beta(t)=h(x(t)), t \in\left[0, t_{f}\right],
$$

and then

$$
\beta^{\prime}(t)=h^{\prime}(x(t)) f(x(t)), t \in\left[0, t_{f}\right] .
$$

The situation of tangential landing on Σ is characterized by

$$
\beta\left(t_{f}\right)=\beta^{\prime}\left(t_{f}\right)=0 .
$$

Proposition 10. Let k be the positive integer such that

$$
\begin{equation*}
\beta^{(i)}\left(t_{f}\right)=0, i=0,1, \ldots, k, \quad \text { and } \beta^{(k+1)}\left(t_{f}\right) \neq 0 \tag{18}
\end{equation*}
$$

If

$$
\begin{equation*}
\frac{\kappa^{\prime}(s)}{|\kappa(s)|^{\frac{k}{k+1}}}, s \in\left[s_{0}, 0\right] \tag{19}
\end{equation*}
$$

is a smooth function, then

$$
\frac{\kappa^{\prime}(s)}{h^{\prime}(y(s)) f(y(s))}, s \in\left[s_{0}, 0\right],
$$

in (9) is a smooth function.
Proof. We have

$$
|\beta(t)|=a\left(t_{f}-t\right)^{k+1} \cdot(1+R(t)), t \in\left[t_{0}, t_{f}\right],
$$

where

$$
a=(-1)^{k} \frac{\beta^{(k+1)}\left(t_{f}\right)}{(k+1)!}
$$

and R is a smooth function such that

$$
R(t) \rightarrow 0, t \rightarrow t_{f}
$$

Moreover,

$$
\beta^{\prime}(t)=a_{1}\left(t-t_{f}\right)^{k} \cdot\left(1+R_{1}(t)\right), t \in\left[t_{0}, t_{f}\right],
$$

where

$$
a_{1}=(-1)^{k} \frac{\beta^{(k+1)}\left(t_{f}\right)}{k!}
$$

and R_{1} is a smooth function such that

$$
R_{1}(t) \rightarrow 0, t \rightarrow t_{f}
$$

Thus, we have

$$
\begin{aligned}
\alpha^{\prime}(s) & =\frac{\kappa^{\prime}(s)}{h^{\prime}(y(s)) f(y(s))}=\frac{\kappa^{\prime}(s)}{\beta^{\prime}(\alpha(s))} \\
& =\frac{\kappa^{\prime}(s)}{|\kappa(s)|^{\frac{k}{k+1}}} \cdot \frac{1}{\frac{a_{1}\left(\alpha(s)-t_{f}\right)^{k} \cdot\left(1+R_{1}(\alpha(s))\right)}{\left.|\beta(\alpha(s))|\right|^{k+1}}} \text { since } \kappa(s)=\beta(\alpha(s)) \\
& =\frac{\kappa^{\prime}(s)}{|\kappa(s)|^{\frac{k}{k+1}}} \cdot \frac{1}{\frac{a_{1} \cdot\left(1+R_{1}(\alpha(s))\right)}{a^{\frac{k}{k+1}}\left(1+R(\alpha(t))^{\frac{k}{k+1}}\right.}}, s \in\left[s_{0}, 0\right] .
\end{aligned}
$$

If (19) is a smooth function, then also the solution α of this differential equation is a smooth function and so

$$
\frac{\kappa^{\prime}(s)}{h^{\prime}(y(s)) f(y(s))}=\alpha^{\prime}(s), s \in\left[s_{0}, 0\right]
$$

is a smooth function.

In the case of functions κ of type $\kappa_{m, C}$ given in (11), we obtain

$$
\frac{\kappa_{m, C}^{\prime}(s)}{\left|\kappa_{m, C}(s)\right|^{\frac{k}{k+1}}}=\frac{m C(-s)^{m-1}}{C^{\frac{k}{k+1}}(-s)^{\frac{k}{k+1} m}}=m C^{\frac{1}{k+1}}(-s)^{\frac{m}{k+1}-1}, s \in\left[s_{0}, 0\right] .
$$

By taking a function $\kappa_{m, C}$ with $m \geq k+1$, we can avoid the blow-up in (9) and have a smooth solution of (9).

The next example shows that a function κ different from the simplest choice $\kappa(s)=s$ can work better in the case of a tangential landing.

Example 11. Consider the problem

$$
\begin{aligned}
& f(x)=A x, t_{0}=0, x_{0}=\mathrm{e}^{-A a}, \\
& h(x)=x_{1}+x_{2}-3,
\end{aligned}
$$

where

$$
A=\left[\begin{array}{rr}
1 & 1 \\
-2 & 1
\end{array}\right], a=(2,1)
$$

The solution is

$$
x(t)=\mathrm{e}^{t A}, t \geq 0,
$$

and the event

$$
h(x(t))=0
$$

is located at $t_{f}=1$ with value $x\left(t_{f}\right)=a$.
We have $\beta(t)=h(x(t))$ with

$$
\beta(0)=0, \beta^{\prime}(0)=0, \beta^{\prime \prime}(0)=-9 .
$$

So, we are in the situation of a tangential landing. In Figure 2, we see the trajectory of the solution in the phase space.

In procedure A, we integrate by the Heun method the transformed equation with $\kappa(s)=s, \kappa(s)=-s^{2}$ and $\kappa(s)=s^{3}$. We obtain the following errors:

$$
\left|\alpha_{N}-t_{f}\right|,\left\|y_{N}-x\left(t_{f}\right)\right\|_{\infty}
$$

for a constant stepsize $\sigma=10^{-k}, k=1, \ldots, 4$, where t_{f} and $x\left(t_{f}\right)$ are exactly known and α_{N} and y_{N} are their numerical approximations.

For $\kappa(s)=s$:

τ	$\left\|\alpha_{N}-t_{f}\right\|$	ratios	$\left\\|y_{N}-x\left(t_{f}\right)\right\\|_{\infty}$	ratios
10^{-1}	$8.24 \cdot 10^{-2}$	4.19	$2.38 \cdot 10^{-1}$	4.05
10^{-2}	$1.97 \cdot 10^{-2}$	3.46	$5.88 \cdot 10^{-2}$	3.44
10^{-3}	$5.69 \cdot 10^{-3}$	3.24	$1.71 \cdot 10^{-3}$	3.24
10^{-4}	$1.76 \cdot 10^{-3}$	3.19	$5.26 \cdot 10^{-3}$	3.18
10^{-5}	$5.51 \cdot 10^{-4}$		$1.65 \cdot 10^{-3}$	

For $\kappa(s)=-s^{2}$:

τ	$\left\|\alpha_{N}-t_{f}\right\|$	ratios	$\left\\|y_{N}-x\left(t_{f}\right)\right\\|_{\infty}$	ratios
10^{-1}	$8.95 \cdot 10^{-2}$	9.53	$2.57 \cdot 10^{-1}$	9.18
10^{-2}	$9.39 \cdot 10^{-3}$	9.98	$2.80 \cdot 10^{-2}$	9.92
10^{-3}	$9.41 \cdot 10^{-4}$	10.0	$2.82 \cdot 10^{-3}$	9.99
10^{-4}	$9.41 \cdot 10^{-5}$	10.1	$2.82 \cdot 10^{-4}$	10.1
10^{-5}	$9.36 \cdot 10^{-6}$		$2.81 \cdot 10^{-5}$	

Figure 2. The trajectory $x(t)$ in the phase space.

For $\kappa(s)=s^{3}$:

τ	$\left\|\alpha_{N}-t_{f}\right\|$	ratios	$\left\\|y_{N}-x\left(t_{f}\right)\right\\|_{\infty}$	ratios
10^{-1}	$1.07 \cdot 10^{-1}$	9.45	$3.16 \cdot 10^{-1}$	9.35
10^{-2}	$1.13 \cdot 10^{-2}$	10.0	$3.38 \cdot 10^{-2}$	9.99
10^{-3}	$1.13 \cdot 10^{-3}$	10.0	$3.38 \cdot 10^{-3}$	10.0
10^{-4}	$1.13 \cdot 10^{-4}$	9.97	$3.38 \cdot 10^{-4}$	9.97
10^{-5}	$1.13 \cdot 10^{-5}$		$3.39 \cdot 10^{-5}$	

Thus, by replacing the simplest choice $\kappa(s)=s$ with the quadratic function $\kappa(s)=-s^{2}$ or the cubic function $\kappa(s)=s^{3}$, we can improve the order of convergence from one-half to one, although we do not reach the order two of the non-tangential situation.

Now, we try to explain why there is such an order reduction for the Heun method in the tangential situation. We show that the usual argument used for proving that the Heun method has convergence order two fails in this situation.

Consider the Heun method as applied to a general equation

$$
y^{\prime}(s)=G(s, y(s)), s \in\left[s_{0}, 0\right],
$$

with stepsize σ. As usual, we split the error $y_{n+1}-y\left(s_{n+1}\right)$ at the $(n+1)$-th step as

$$
y_{n+1}-y\left(s_{n+1}\right)=y_{n+1}-z_{n+1}+z_{n+1}-y\left(s_{n+1}\right),
$$

where z_{n+1} is the numerical solution at the $(n+1)$-th step when we replace y_{n} with $y\left(s_{n}\right)$. Fixed an arbitrary $\varepsilon>0$, the local error $z_{n+1}-y\left(s_{n+1}\right)$ can be bounded by

$$
\left\|z_{n+1}-y\left(s_{n+1}\right)\right\| \leq\left(\frac{5}{12} \max _{s \in\left[s_{n}, s_{n+1}\right]}\left\|y^{\prime \prime \prime}(s)\right\|+\frac{1}{4} L_{n+1} \max _{s \in\left[s_{n}, s_{n+1}\right]}\left\|y^{\prime \prime}(s)\right\|\right) \sigma^{3}
$$

where

$$
L_{n+1}=\max _{s \in\left[s_{n}, s_{n+1}\right] \text { and }\|w\| \leq \varepsilon}\left\|\frac{\partial G}{\partial z}(s, y(s)+w)\right\|,
$$

whenever

$$
\frac{1}{2} \max _{s \in\left[s_{n}, s_{n+1}\right]}\left\|y^{\prime \prime}(s)\right\| \sigma^{2} \leq \varepsilon
$$

Here $\|\cdot\|$ denotes an arbitrary vector norm on \mathbb{R}^{d} and the same symbol also denotes the induced matrix norm on $\mathbb{R}^{d \times d}$. Moreover, the propagated error $y_{n+1}-$ z_{n+1} can be bounded by

$$
\left\|y_{n+1}-z_{n+1}\right\| \leq\left(1+\tau L_{n+1}+\frac{\left(\tau L_{n+1}\right)^{2}}{2}\right)\left\|y_{n}-y\left(s_{n}\right)\right\|
$$

whenever

$$
\left(1+\tau L_{n+1}\right)\left\|y_{n}-y\left(s_{n}\right)\right\| \leq \varepsilon .
$$

Now, we consider the transformed equation

$$
y^{\prime}(s)=\frac{\kappa^{\prime}(s)}{h^{\prime} f(y(s))} f(y(s)), s \in\left[s_{0}, 0\right]
$$

with h^{\prime} constant, i.e., the case h linear, as in the previous example. Here, we have

$$
G(s, y)=\frac{\kappa^{\prime}(s)}{h^{\prime} f(y)} f(y), s \in\left[s_{0}, 0\right] \text { and } y \in \mathbb{R}^{n}
$$

and so

$$
\frac{\partial G}{\partial y}(s, y) p=\frac{\kappa^{\prime}(s)}{h^{\prime} f(y)} f^{\prime}(y)-\frac{h^{\prime} f^{\prime}(y) p}{h^{\prime} f(y)} G(s, y), s \in\left[s_{0}, 0\right] \text { and } y, p \in \mathbb{R}^{d}
$$

According to Proposition 10, the use of a suitable function κ guarantees that the terms involving the second and third derivatives of the solution in the bound of the local error do not blow up as s_{n} approaches zero. On the other hand, we have

$$
L_{n+1} \approx \max _{s \in\left[s_{n}, s_{n+1}\right]}\left\|\frac{\partial G}{\partial z}(s, y(s))\right\|
$$

with

$$
\frac{\partial G}{\partial z}(s, y(s)) p=\frac{\kappa^{\prime}(s)}{h^{\prime} f(y(s))} f^{\prime}(y(s))-\frac{h^{\prime} f^{\prime}(y(s)) p}{h^{\prime} f(y(s))} G(s, y(s)), s \in\left[s_{0}, 0\right] \text { and } p \in \mathbb{R}^{d} .
$$

Observe that the denominator $h^{\prime} f(y(s))$ tends to zero as $s \rightarrow 0$, but, unlike the first term, this cannot be controlled by a suitable function κ in the second term. Therefore, L_{n+1} blows up as s_{n} approaches zero. This explains why the full order two of the Heun method fails in the tangential situation.

However, we remark that, although the use of a function κ that is different from the simplest choice $\kappa(s)=s$ cannot recover the full order two of the Heun method, it can be recommended because it already improves the order of convergence as it is shown in the previous example. The study of these reduced orders appearing in the tangential situation will be addressed in a future paper.

6. Conclusion

In this paper, we have presented an approach for the location of events for ordinary differential equations based on suitable transformations of the independent variable time called time-transformations. The approach is implemented in two procedures called A and B. Procedure A is a generalization of a method proposed in [12] and this generalization permits to deal better critical situations as in case of a solution reaching the event in a tangential way. On the other hand, procedure B should be used in the non-tangential case and it is the neatest and most efficient manner to use the time-transformations since they are used only when they become necessary.

References

[1] V. Acary and B. Brogliato, Numerical Methods for Nonsmooth Dynamical Systems. Applications in Mechanics and Electronics, Lecture Notes in Applied and Computational Mechanics, Springer-Verlag, Berlin, 2008.
[2] A. Bellen and M. Zennaro, Numerical Methods for Delay Differential Equations, Numerical Mathematics and Scientific Computation, The Clarendon Press, Oxford University Press, New York, 2003. MR 1997488
[3] M. Berardi and L. Lopez, On the continuous extension of Adams-Bashforth methods and the event location in discontinuous ODEs, Appl. Math. Lett. 25 (2012), no. 6, 995-999, DOI 10.1016/j.aml.2011.11.014. MR2902368
[4] H. Brunner and S. Maset, Time transformations for delay differential equations, Discrete Contin. Dyn. Syst. 25 (2009), no. 3, 751-775, DOI 10.3934/dcds.2009.25.751. MR2533974
[5] H. Brunner and S. Maset, Time transformations for state-dependent delay differential equations, Commun. Pure Appl. Anal. 9 (2010), no. 1, 23-45, DOI 10.3934/cpaa.2010.9.23. MR 2556743
[6] M. Calvo, J. I. Montijano, and L. Rández, On the solution of discontinuous IVPs by adaptive Runge-Kutta codes, Numer. Algorithms 33 (2003), no. 1-4, 163-182, DOI 10.1023/A:1025507920426. MR2005560
[7] M. Calvo, J. I. Montijano, and L. Rández, Algorithm 968: DISODE45: a Matlab Runge-Kutta solver for piecewise smooth IVPs of Filippov type, ACM Trans. Math. Software 43 (2017), no. 3, Art. 25, 14. MR3615281
[8] N. Del Buono, C. Elia, and L. Lopez, On the equivalence between the sigmoidal approach and Utkin's approach for piecewise-linear models of gene regulatory networks, SIAM J. Appl. Dyn. Syst. 13 (2014), no. 3, 1270-1292, DOI 10.1137/130950483. MR3256793
[9] N. Del Buono and L. Lopez, Direct event location techniques based on Adams multistep methods for discontinuous ODEs, Appl. Math. Lett. 49 (2015), 152-158, DOI 10.1016/j.aml.2015.05.012. MR 3361710
[10] M. di Bernardo, C. J. Budd, A. R. Champneys, and P. Kowalczyk, Piecewise-smooth dynamical systems: Theory and applications, Applied Mathematical Sciences, vol. 163, SpringerVerlag London, Ltd., London, 2008. MR2368310
[11] L. Dieci and L. Lopez, Numerical solution of discontinuous differential systems: approaching the discontinuity surface from one side, Appl. Numer. Math. 67 (2013), 98-110, DOI 10.1016/j.apnum.2011.08.010. MR 3031657
[12] L. Dieci and L. Lopez, One-sided direct event location techniques in the numerical solution of discontinuous differential systems, BIT 55 (2015), no. 4, 987-1003, DOI 10.1007/s10543-014-0538-5. MR 3434027
[13] J. M. Esposito, V. Kumar, and G.J. Pappas, Accurate Event Detection for Simulating Hybrid Systems. M.D. Di Benedetto, A. Sangiovanni-Vincentelli (Eds.): HSCC 2001, LNCS 2034, pp. 204- 217, Springer-Verlag Berlin Heidelberg, 2001.
[14] N. Guglielmi and E. Hairer, Computing breaking points in implicit delay differential equations, Adv. Comput. Math. 29 (2008), no. 3, 229-247, DOI 10.1007/s10444-007-9044-5. MR 2438343
[15] N. Guglielmi and E. Hairer, Classification of hidden dynamics in discontinuous dynamical systems, SIAM J. Appl. Dyn. Syst. 14 (2015), no. 3, 1454-1477, DOI 10.1137/15100326X. MR3385606
[16] B. Kacewicz and P. Przybyłowicz, Complexity of the derivative-free solution of systems of IVPs with unknown singularity hypersurface, J. Complexity 31 (2015), no. 1, 75-97, DOI 10.1016/j.jco.2014.07.002. MR3284547
[17] B. Kacewicz and P. Przybyłowicz, Optimal solution of a class of non-autonomous initialvalue problems with unknown singularities, J. Comput. Appl. Math. 261 (2014), 364-377, DOI 10.1016/j.cam.2013.11.017. MR3144718
[18] L. F. Shampine and S. Thompson, Event location for ordinary differential equations, Comput. Math. Appl. 39 (2000), no. 5-6, 43-54, DOI 10.1016/S0898-1221(00)00045-6. MR1742474

Dipartimento di Matematica, Università di Bari, 70126 Bari, Italy
Email address: luciano.lopez@uniba.it
Dipartimento di Matematica e Geoscienze, Università di Trieste, 34127 Trieste, Italy
Email address: maset@units.it

[^0]: Received by the editor March 25, 2016, and, in revised form, March 24, 2017.
 2010 Mathematics Subject Classification. Primary 65L05.
 This paper was supported in part by the GNCS of the Italian "Istituto Nazionale di Alta Matematica".

