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TIME-TRANSFORMATIONS FOR THE EVENT LOCATION

IN DISCONTINUOUS ODES

L. LOPEZ AND S. MASET

Abstract. In this paper, we consider numerical methods for the location of
events of ordinary differential equations. These methods are based on partic-
ular changes of the independent variable, called time-transformations. Such a
time-transformation reduces the integration of an equation up to the unknown

point, where an event occurs, to the integration of another equation up to a
known point. This known point corresponds to the unknown point by means
of the time-transformation. This approach extends the one proposed by Dieci
and Lopez [BIT 55 (2015), no. 4, 987–1003], but our generalization permits,
amongst other things, to deal with situations where the solution approaches
the event in a tangential way. Moreover, we also propose to use this approach
in a different manner with respect to that of Dieci and Lopez.

1. Introduction

Recently the topic of discontinuous ordinary differential equations (ODEs) has
attracted a lot of interest either from a theoretical or computational point of view
and because of its different applications (see for example [1, 8, 10, 11, 15–17]).

An important task, in the numerical solution of discontinuous ODEs is the loca-
tion of the events on the discontinuity surface (see for instance [3,6,7,9,12,13,18]).
Here we propose a time-transformation method to compute efficiently such event
points.

Let us consider the region

R :=
{
x ∈ R

d : h (x) < 0
}
,

with border

Σ := ∂R =
{
x ∈ R

d : h (x) = 0
}
,

where h : Rd → R, and the ordinary differential equation

(1)

{
x′ (t) = f (x (t)) , t ≥ 0,
x (0) = x0,

where f : Rd → R
d and x0 ∈ R

d is such that x0 ∈ R. We assume that h and f are
sufficiently smooth functions and that the ODE (1) has a unique solution x. We
observe that, in the applications, h(x) is often linear or quadratic with respect to
x (see [10]).
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The ODE (1) has to be integrated up to the first point tf > 0, which is unknown,
such that

(2) x (tf ) ∈ Σ,

i.e., we have to locate the event (2) during the integration of the ODE (1).
Assume that a numerical integration of (1) is accomplished over a mesh

(3) t0 < t1 < t2 < · · ·
with stepsizes τn+1 = tn+1 − tn, n = 0, 1, 2, . . ., by a Runge-Kutta (RK) method
(A, b, c). The method yields a sequence {xn}, n = 0, 1, 2, . . ., where xn is an ap-
proximation of x (tn), recursively given by

xn+1 = xn + τn+1

ν∑
i=1

bif
(
Xn+1

i

)
,

Xn+1
i = xn + τn+1

ν∑
j=1

aijf
(
Xn+1

j

)
, i = 1, . . . , ν.

The classical approach for locating the event (2), described for example in [6]
and [18], is as follows. We proceed up to the first point tn+1 such that

h (xn)h (xn+1) < 0.

Then, by using a continuous numerical solution η (t), t ∈ [tn, tn+1], given for exam-
ple by a continuous RK method (A, b (·) , c) as

(4) η (xn + θτn+1) = xn + τn+1

ν∑
i=1

bi (θ) f
(
Xn+1

i

)
, θ ∈ [0, 1] ,

an approximation t̃f of tf can be obtained by solving the scalar equation

(5) h (η (t)) = 0.

Of course, by assuming that equation (5) is solved exactly, the order of the

approximations t̃f of tf and η
(
t̃f
)
of x (tf ) is the order of the continuous approx-

imation η of x, which is in general less than the order p of the RK method, the
order which is computed with the discrete approximations xn.

In order to recover the order p, one can consider as an approximation of tf a new

unknown mesh point t̂n+1 (successive to tn) and as an approximation of x (tf ) a

corresponding new discrete approximation x̂n+1, at the mesh point t̂n+1, such that
h (x̂n+1) = 0. So, we have

t̂n+1 = tn + τ̂n+1,

x̂n+1 = xn + τ̂n+1

ν∑
i=1

biK̂
n+1
i ,

where K̂n+1
i , i = 1, . . . , ν, and τ̂n+1 are obtained by solving the equations

K̂n+1
i = f

(
xn + τ̂n+1

ν∑
i=1

aijK̂
n+1
j

)
, i = 1, . . . , ν,

h

(
xn + τ̂n+1

ν∑
i=1

biK̂
n+1
i

)
= 0.(6)
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This approach is described in [2,14] in the context of the computation of breaking
points of delay differential equations. Note that now we have to solve a square
system of dν + 1 scalar equations instead of the sole scalar equation (5), even if we
are using an explicit method. So, this approach is particularly suitable when an
implicit method is used, as in the case of stiff problems.

Recently, a new approach to the event location was introduced in [12] where, by
a suitable change of the variable time t, the ODE (1) is reduced to another ODE
and the location of the event (2) is known in advance.

In the present paper, we propose a generalization of this approach which permits,
amongst other things, to deal with situations where the solution x lands on the
border Σ in a tangential way. Moreover, we also propose to use this approach in a
different manner with respect to [12].

Here is the plan of the paper: Section 2 describes the generalized approach and
the new proposed manner of how to use it; Section 3 contains a convergence analysis
for the new manner; Section 4 studies exact numerical landing on the border Σ and
one-sided integration. Finally, Section 5 deals with tangential landing on Σ and
conclusions are drawn in Section 6.

2. Time-transformations

We apply to the event location problem of the ODE (1) the idea of the time-
transformations introduced in [4,5] in the context of the delay differential equations.
The resulting approach includes as a particular case the approach presented in [12].

The idea is to introduce a strictly increasing function α : [s0, 0] → [0, tf ], where
s0 < 0, such that α(s0) = 0 and α(0) = tf , and then to set

y (s) := x (α (s)) , s ∈ [s0, 0] ,

where x is the solution of (1). Then, y satisfies

y′ (s) = f (y (s))α′ (s) , s ∈ [s0, 0] .

The function α is called a time-transformation.
Now, we look for a time-transformation α such that

(7) h (x (α (s))) = h (y (s)) = κ (s) , s ∈ [s0, 0] ,

where κ : [s0, 0] → [h(x0), 0] is a given strictly increasing function of class C1 such
that κ(s0) = h(x0) < 0 and κ(0) = 0.

In the following, we assume there exist δ, c0 > 0 such that

(8) h′ (x) f (x) ≥ δ, x ∈ R ∪ Σ such that h(x) > −c0,

where h′(x) is the row-vector gradient of h at the point x. Moreover, we assume
h (x0) > −c0.

By differentiating (7) we obtain

h′ (y (s)) y′ (s) = h′ (y (s)) f (y (s))α′ (s) = κ′ (s) ,

and then the transformed ODE

(9)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[
y′ (s)
α′ (s)

]
= κ′(s)

h′(y(s))f(y(s))

[
f (y (s))

1

]
, s ∈ [s0, 0] ,

[
y (s0)
α (s0)

]
=

[
x0

0

]
,
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where

s0 = κ−1(h(x0)).

Observe that in (9) we have

h′ (y (s)) f (y (s)) ≥ δ, s ∈ [s0, 0] ,

since (8) holds and

h (y (s)) = κ (s) ∈ [h(x0), 0] ⊆ (−c0, 0], s ∈ [s0, 0] .

By integrating the ODE (9), we obtain y and α, and then x can be reconstructed
by

y (s) = x (α (s)) , s ∈ [s0, 0] .

We have

h (y (s)) = κ(s), s ∈ [s0, 0] ,

and this means that in the transformed ODE (9) the solution y approaches the
border Σ, where it lands at s = 0, in the manner prescribed in advance by the
function κ.

In the s-time, the event is located at 0 with value y(0). In the original t-time,
the event is located at tf = α (0) with value x (tf ) = y (0) .

The approach presented in [12] corresponds to the set

(10) κ (s) = s, s ∈ [s0, 0] ,

where s0 = h(x0).
By numerically integrating the ODE (9) by the RK (A, b, c) method over the

mesh

s0 = κ−1(h(x0)) < s1 < · · · < sN = 0,

with stepsizes σn+1 = sn+1 − sn, n = 0, 1, . . . , N − 1, we obtain the scheme[
yn+1

αn+1

]
=

[
yn
αn

]
+ σn+1

ν∑
i=1

bi
κ′ (sn+1

i

)
h′
(
Y n+1
i

)
f
(
Y n+1
i

) [ f
(
Y n+1
i

)
1

]
,

[
Y n+1
i

Λn+1
i

]
=

[
yn
αn

]
+ σn+1

ν∑
j=1

aij
κ′ (sn+1

j

)
h′
(
Y n+1
j

)
f
(
Y n+1
j

) [ f
(
Y n+1
j

)
1

]
,

i = 1, . . . , ν and n = 0, 1, . . . , N − 1,

where

sn+1
i := sn + ciσn+1, i = 1, . . . , ν.

Numerically, in the t-time the event is located at αN ≈ α (0) = tf with value
yN ≈ y (0) = x (tf ).

Observe that in this approach no additional algebraic equation like (5) or (6)
has to be solved in order to locate the event (2): if an explict RK method is used
for integrating (9), then the process of localizations turns out to be explicit.

On the other hand, we can observe that the dimension of the state space is
augmented by one, since now the time-transformation appears as a component in
the new state space. However, we can avoid computing the time transformation if
we are only interested in the state y(tf ) when the event happens and not the time
tf .
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In the following, as concrete examples of function κ, we consider the functions
κm,C given by

(11) κm,C (s) = −C (−s)m = −C|s|m, s ∈ [s0, 0] ,

where m ≥ 1 and C > 0. They are the simplest examples of function κ that one
can conceive: they are strictly increasing one-term polynomial functions with value
0 at 0 and with negative values at negative arguments.

2.1. Procedures A and B. We can use this approach of the time-transformations
by following two procedures, A and B, now described.

A. Transform the problem from the beginning, as described up to now, by
solving (9).

B. Numerically integrate the original equation (1), not the transformed equa-
tion (9), as previously described in Section 1 up to the first point tn+1 such
that

h (xn)h (xn+1) < 0.

Only now, the problem is transformed by solving⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[
y′ (s)
α′ (s)

]
= κ′(s)

h′(y(s))f(y(s))

[
f (y (s))

1

]
, s ∈ [s0, 0] ,

[
y (s0)
α (s0)

]
=

[
xn

0

]
,

where
s0 = κ−1(h(xn)).

One step of an RK method now provides approximations α1 of tf and y1
of x (tf ).

The paper [12] deals with the particular time-transformation (10) as applied
in procedure A. The present paper deals with a general time-transformation as
applied in both procedures A and B.

In procedure B, the numerical integration over one step by a RK method (A, b, c)
is given by[

y1
α1

]
=

[
xn

0

]
+ (−s0)

ν∑
i=1

bi
κ′ (s1i )

h′ (Y 1
i ) f (Y 1

i )

[
f
(
Y 1
i

)
1

]
,

[
Y 1
i

Λ1
i

]
=

[
xn

0

]
+ (−s0)

ν∑
j=1

aij
κ′ (s1j)

h′
(
Y 1
j

)
f
(
Y 1
j

) [ f
(
Y 1
j

)
1

]
,(12)

i = 1, . . . , ν,

where s0 = κ−1(h(xn)) and

s1i := s0 + ci (−s0) = (1− ci) s0, i = 1, . . . , ν.

The next theorem shows that, for functions κm,C in (11), we can always reduce
the situation to one with κ (s) = s in the procedure B.

Theorem 1. Assume that the RK method (A, b, c) is applied over one step to the
problem

(13)

{
z′(s) = κ′(s)G(z(s)), s ∈ [s0, 0],
z(s0) = z0,
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with κ = κm,C . The numerical solution z1 and the stage values Z1
i , i = 1, . . . , ν,

are the numerical solution and the stage values, respectively, provided by the RK
method

(
A(m), b(m), c

)
with

b
(m)
i = bim (1− ci)

m−1
, i = 1, . . . , ν,

a
(m)
ij = aijm (1− cj)

m−1
, i, j = 1, . . . , ν,

as applied over one step to

(14)

{
u′(s) = G(u(s)), s ∈ [κm,C(s0), 0],
u(κm,C(s0)) = z0

which is the problem (13) with κ (s) = s.

Proof. By applying the RK method (A, b, c) over one step to the problem (13) with
κ = κm,C , we obtain

z1 = z0 + (−s0)
ν∑

i=1

biCm
(
−s1i
)m−1

G
(
Z1
i

)
= z0 + (−s0)

ν∑
i=1

biCm ((1− ci) (−s0))
m−1 G

(
Z1
i

)
= z0 + C(−s0)

m︸ ︷︷ ︸
=−κm,C(s0)

ν∑
i=1

bim (1− ci)
m−1 G

(
Z1
i

)
and, analogously,

Z1
i = z0 + C(−s0)

m︸ ︷︷ ︸
=−κm,C(s0)

ν∑
j=1

aijm (1− cj)
m−1G

(
Z1
j

)
, i = 1, . . . , ν.

This means that z1 and Z1
i , i = 1, . . . , ν, are the numerical solution and the stage

values, respectively, provided by the RK method
(
A(m), b(m), c

)
when it is applied

over one step to the problem (14). �

As a consequence of this result, we obtain that, when in procedure B we solve
over one step the transformed equation with

κ = κm,C and s0 = κ−1
m,C(h(xn))

by the RK method (A, b, c), the numerical solution and the stage values are the
same as to how to numerically solve over one step the transformed equation with

κ (s) = s and s0 = κm,C(κ
−1
m,C(h(xn))) = h(xn)

by the RK method
(
A(m), b(m), c

)
.

Remark 2. This means that in procedure B we cannot obtain any advantage by
choosing a function κ = κm,C different from κ(s) = s, since the change from
k(s) = s to κ = κm,C corresponds to using k(s) = s with another RK method. For
this reason, from now on we always use k(s) = s in procedure B.

On the other hand, in procedure A we can have advantages in using a function
κ different from κ(s) = s; for example, in the situation of tangential landing on the
border Σ, as described in Section 5. Another situation, where a function κ that is
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different from k(s) = s can be used, is when we are interested not only in the event
(2) but also in a sequence of events

(15) h(x(t)) = hi, i = 1, 2, . . . , q,

where
h(x0) < h1 < h2 < · · · < hq < 0,

because, for example, we need to check the approach to the border Σ. In this case,
we can integrate the transformed equation (9) with a function κ such that

κ

(
q + 1− i

q + 1
s0

)
= κ

(
s0 +

i

q + 1
(−s0)

)
= hi, i = 1, 2, . . . , q.

So, by numerically integrating the transformed equation with constant stepsize

σ =
−s0

(q + 1)M
,

where M is a positive integer, the events (15) will be located at the s-times siM ,
i = 1, 2, . . . , q, with numerical value yiM .

3. Convergence results

As for procedure A, under the assumption that κ is sufficientely smooth on [s0, 0],
we have ∥∥∥∥[ yN

αN

]
−
[

x (tf )
tf

]∥∥∥∥
∞

= O (σq) , σ → 0,

where σ is the maximum of the stepsizes σn+1, n = 0, 1, . . . , N − 1, and q is the
order of the RK method used in the integration of the transformed equation.

As for procedure B, we begin with the following lemma. In this lemma and in
the following, τ denotes the maximum stepsize in the mesh (3) up to tn+1.

Lemma 3. In procedure B we have

|h (xn)| = O (τn+1) , τ → 0.

Proof. Let η be the continuous approximation given in (4) and let t̃f be such that

h
(
η
(
t̃f
))

= 0.

Then
|h (xn)| =

∣∣h (xn)− h
(
η
(
t̃f
))∣∣ ≤ L

∣∣xn − η
(
t̃f
)∣∣ ,

where L is a Lipschitz constant of the function h in a suitable neighborhood of
x (tf ), and, by recalling (4),∣∣xn − η

(
t̃f
)∣∣ ≤ τn+1

ν∑
i=1

|bi (θ)|
∣∣f (Y n+1

i

)∣∣ = O (τn+1) , τ → 0,

where t̃f = tn + θτn+1. �

Here is the convergence result for procedure B.

Theorem 4. In procedure B with κ(s) = s assume that:

B1) the integration of the original equation is accomplished by an RK method
of order p over the mesh (3);

B2) the integration of the transformed equation over one step is accomplished
by an RK method of local order q + 1.
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Then ∥∥∥∥[ y1
α1

]
−
[

x(tf )
tf

]∥∥∥∥
∞

= O
(
τmin{p,q+1}

)
, τ → 0.

Proof. By the previous lemma, we obtain

|s0| = O (|h(xn)|) = O (τn+1) , τ → 0.

Now, let x∗ be the solution of{
(x∗)′ (t) = f (x∗ (t)) , t ≥ tn,
x∗ (tn) = xn,

and let t∗f be the first point such that

x∗ (t∗f) ∈ Σ.

By B2) we have∥∥∥∥∥
[

y1
α1

]
−
[

x∗
(
t∗f

)
t∗f

]∥∥∥∥∥
∞

= O
(
|s0|q+1

)
= O

(
τ q+1
n+1

)
, τ → 0.

On the other hand, by B1) we have∥∥∥∥∥
[

x∗
(
t∗f

)
t∗f

]
−
[

x (tf )
tf

]∥∥∥∥∥
∞

= O (‖xn − x (tn)‖∞) = O (τp) , τ → 0,

and so ∥∥∥∥[ y1
α1

]
−
[

x (tf )
tf

]∥∥∥∥
∞

= O (τp) +O
(
τ q+1
n+1

)
, τ → 0. �

The previous proposition says that, in case of an explicit RK method integrating
the original equation with order p and of an explicit RK method integrating the
transformed equation over one step with order q + 1 ≥ p, we can explicitly find
approximations of x (tf ) and tf of order p.

Example 5. Consider the problem taken from [12]:

f (x) =

(
x2,−x1 +

1

1.2− x2

)
, t0 = 0, x0 = (−0.2,−0.2) ,

h (x) = x1 + x2 − 0.4 .

By integrating the original ODEs by the Heun method, whose order is p = 2, with
constant stepsize τ = 10−2, we stop at

tn = 0.61, xn = (−0.12374, 0.51048) .

By integrating the transformed equation for κ(s) = s with the explicit Euler
method, whose local order is q + 1 = 2, over one-step the event is numerically
located at

tf ≈ s1 = 0.61636, x (tf ) ≈ y1 = (−0.12049, 0.52049) .

In Figure 1, we see the trajectory of the solution in the phase space. Observe that
the landing on the border h(x) = 0 is not tangential. Indeed, we have h(y1)f(y1) =
2.1126.
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The next table gives the estimated errors

|α1 − tf |, ‖ y1 − x (tf ) ‖∞
for τ = 10−k, k = 1, . . . , 4, where tf and x (tf ) are estimated by using τ = 10−5.

τ |α1 − tf | ratios ‖y1 − x (tf )‖∞ ratios
10−1 4.49 · 10−4 13.4 1.02 · 10−3 50.0
10−2 3.35 · 10−6 1449.1 2.05 · 10−5 152.7
10−3 2.31 · 10−8 126.0 1.33 · 10−7 108.4
10−4 1.83 · 10−10 1.23 · 10−9

In this table and in the next tables, the ith row of a column named “ratios”
denotes the ratio between the errors in the previous column at the ith and (i+1)th
rows. For a method of order p this ratio is expected to be about 10p.

The whole method, given by the integration of the original equation by the Heun
method and the integration of transformed equation by the explicit Euler method
over one step, exhibits order O

(
τ2
)
as predicted by the previous theorem (the

geometric means of the ratios are 134.8 for |α1 − tf | and 93.9 for ‖y1 − x (tf )‖∞).

−0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

x
1

x
2

x(t 0)

x(t f)

h(x)=0

Figure 1. The trajectory x(t) in the phase space.

4. Exact landing and one-sided integration

The fact h (yN ) = 0 in procedure A and h(y1) = 0 in procedure B guarantees
that the numerical integration of the transformed equation lands exactly on the
border Σ. If a sliding motion takes place after the event, an exact landing on Σ is
particularly important since the annoying phenomenon of numerical chattering can
be avoided.

Moreover, in case of an explicit method, the facts

h(Y n+1
i ) ≤ 0, i = 1, . . . , ν and n = 0, . . . , N − 1,
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in procedure A and

h(Y 1
i ) ≤ 0, i = 1, . . . , ν,

in procedure B guarantee that the integration is one-sided, i.e., during the integra-
tion it is never required to compute f on arguments outside Σ∪R in (12) (see [11]).
A one-sided integration is particularly important when it is not easy to smoothly
extend the function f outside Σ ∪R.

In this section, for a general RK method not necessarily explicit, we study these
aspects in the cases of h linear, i.e.,

h (x) = dTx+ e, x ∈ R
n,

where d, e ∈ R
n, and h quadratic, i.e.,

h (x) = xTMx+ dTx+ e, x ∈ R
n,

where M ∈ R
n×n and d, e ∈ R

n.
In the applications, often the surface Σ is defined by a linear or quadratic function

h. This is the reason for which we consider, in detail, these two cases.
In the following the quadrature rule

(β − α)
l∑

k=1

wkf (α+ γk (β − α))

of weights wk and nodes γk for the integral

β∫
α

f (x) dx

is denoted by (wk, γk)k=1,...,l.

4.1. The case h linear.

Theorem 6. Assume that h is linear and that the function κ in the transformed
equation is a polynomial of degree m. Moreover, assume that the RK method
(A, b, c) is used for the integration of the transformed equation.

If the quadrature rule (bi, ci)i=1,...,ν has polynomial order m− 1, then

h (yn+1) = h (yn) + κ (sn+1)− κ (sn) , n = 0, 1, 2, . . . .

Moreover, for i = 1, . . . , ν such that ci 
= 0, if the quadrature rule
(

aij

ci
,
cj
ci

)
j=1,...,ν

has polynomial order m− 1, then

(16) h
(
Y n+1
i

)
= h (yn) + κ

(
sn+1
i

)
− κ (sn) , n = 0, 1, 2, . . . .

Proof. Observe that

h′ (x) = dT , x ∈ R
d

and

h (x+ z) = h (x) + dT z, x, z ∈ R
d.
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We have

h (yn+1) = h

(
yn + σn+1

ν∑
i=1

bi
κ′ (sn+1

i

)
f
(
Y n+1
i

)
dT f

(
Y n+1
i

) )

= h (yn) + σn+1

ν∑
i=1

biκ
′ (sn+1

i

)
= h (yn) + σn+1

ν∑
i=1

biκ
′ (sn + ciσn+1)

= h (yn) +

sn+1∫
sn

κ′ (s) ds

if the quadrature rule (bi, ci)i=1,...,ν has polynomial order m − 1. Moreover, for
i = 1, . . . , ν such that ci 
= 0, we have

h
(
Y n+1
i

)
= h

⎛⎝yn + σn+1

ν∑
j=1

aij
κ′ (sn+1

j

)
f
(
Y n+1
j

)
dT f

(
Y n+1
j

)
⎞⎠

= h (yn) + σn+1

ν∑
j=1

aijκ
′ (sn+1

j

)
= h (yn) + ciσn+1

ν∑
j=1

aij
ci

κ′
(
sn +

cj
ci
ciσn+1

)

= h (yn) +

sn+1
i∫

sn

κ′ (s) ds

= h (yn) + κ
(
sn+1
i

)
− κ (sn)

if the quadrature rule
(

aij

ci
,
cj
ci

)
i=1,...,ν

has polynomial order m− 1. �

Observe that (16) holds also for ci = 0 if

Y n+1
i = yn, n = 0, 1, 2, . . . ,

and this happens, for example, when aij = 0, j = 1, . . . , ν.
As a consequence of the previous theorem, in case of a linear function h, we can

conclude as follows.
In procedure A, if the function κ is a polynomial of degreem and the transformed

equation is integrated by the RK method (A, b, c) such that the quadrature rule
(bi, ci)i=1,...,ν has polynomial order m− 1, then

h (yn) = κ (sn) , n = 0, 1, . . . , N,

and so h (yN ) = 0. Moreover, if the quadrature rule
(

aij

ci
,
cj
ci

)
j=1,...,ν

has polynomial

order m− 1 for any i = 1, . . . , ν such that ci 
= 0 and

Y n+1
i = yn, n = 0, 1, . . . , N − 1
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for any i = 1, . . . , ν such that ci = 0, then

(17) h(Y n+1
i ) = κ

(
sn+1
i

)
≤ 0, i = 1, . . . , ν and n = 0, . . . , N − 1.

Observe that for the explicit RK method (A, b, c), the quadrature rule(
a2j
c2

,
cj
c2

)
j=1,...,ν

relevant to the index i = 2 is the one-node quadrature rule of weight a21

c2
and

node 0, whose polynomial order is 0. So, for an explicit RK method integrating
the transformed equation in procedure A, one cannot guarantee (17) in case of
polynomial function κ of degree m > 1.

In procedure B with κ(s) = s, if the transformed equation is integrated over one
step by the RK method (A, b, c) such that

ν∑
i=1

bi = 1

(so the quadrature rule (bi, ci)i=1,...,ν has polynomial order 0) and

ν∑
i=1

aij = ci, i = 1, . . . , ν,

(so the quadrature rule
(

aij

ci
,
cj
ci

)
j=1,...,ν

has polynomial order 0 for ci 
= 0 and

Y n+1
i = yn for ci = 0), then

h (y1) = 0

and
h(Y 1

i ) = κ
(
s1i
)
≤ 0, i = 1, . . . , ν.

So, exact landing on Σ and one-sided integration can be obtained by explicit
methods in the case of h linear for both procedures A and B.

4.2. The case h quadratic.

Theorem 7. Assume that h is quadratic and that the function κ in the transformed
equation is a polynomial of degree m. Moreover, assume that a RK method (A, b, c)
is used for the integration of the transformed equation.

If the quadrature rule (bi, ci)i=1,...,ν has polynomial order m− 1, then

h (yn+1) = h (yn) + κ (sn+1)− κ (sn)

+σ2
n+1

ν∑
i=1

ν∑
j=1

(bibj − biaij − bjaji)
κ′ (sn+1

i

)
κ′ (sn+1

j

)
f
(
Y n+1
i

)T
Mf

(
Y n+1
j

)
h′
(
Y n+1
i

)
f
(
Y n+1
i

)
· h′
(
Y n+1
j

)
f
(
Y n+1
j

)
n = 0, 1, 2, . . . .

Proof. Observe that

h (x+ z) = (x+ z)
T
M (x+ z) + dT (x+ z) + e

= xTMx+ dTx+ e+ xTMz + zTMx︸ ︷︷ ︸
=xTMT z

+ dT z + zTMz

= h (x) + xT
(
M +MT

)
z + dT z + zTMz, x, z ∈ R

d,

and so
h′ (x) = xT

(
M +MT

)
+ dT , x ∈ R

d,
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and
h (x+ z) = h (x) + h′ (x) z + zTMz.

We have

h (yn+1) = h

(
yn + σn+1

ν∑
i=1

bi
κ′ (sn+1

i

)
f
(
Y n+1
i

)
h′
(
Y n+1
i

)
f
(
Y n+1
i

))

= h (yn) + σn+1

ν∑
i=1

bi
h′ (yn)κ

′ (sn+1
i

)
f
(
Y n+1
i

)
h′
(
Y n+1
i

)
f
(
Y n+1
i

)
+σ2

n+1

ν∑
i=1

ν∑
j=1

bibj
κ′ (sn+1

i

)
κ′ (sn+1

j

)
f
(
Y n+1
i

)T
Mf

(
Y n+1
j

)
h′
(
Y n+1
i

)
f
(
Y n+1
i

)
· h′
(
Y n+1
j

)
f
(
Y n+1
j

) .
Now, for i = 1, . . . , ν,

h′ (yn) = yTn
(
M +MT

)
+ dT

=

⎛⎝Y n+1
i − σn+1

ν∑
j=1

aij
κ′ (sn+1

j

)
f
(
Y n+1
j

)
h′
(
Y n+1
j

)
f
(
Y n+1
j

)
⎞⎠T (

M +MT
)
+ dT

= h′ (Y n+1
i

)
− σn+1

ν∑
j=1

aij
κ′ (sn+1

j

)
f
(
Y n+1
j

)T (
M +MT

)
h′
(
Y n+1
j

)
f
(
Y n+1
j

)
and then

σn+1

ν∑
i=1

bi
κ′ (sn+1

i

)
h′ (yn+1) f

(
Y n+1
i

)
h′
(
Y n+1
i

)
f
(
Y n+1
i

)
= σn+1

ν∑
i=1

bi
κ′ (sn+1

i

)
h′ (Y n+1

i

)
f
(
Y n+1
i

)
h′
(
Y n+1
i

)
f
(
Y n+1
i

)
−σ2

n+1

ν∑
i=1

ν∑
j=1

biaij
κ′ (sn+1

i

)
κ′ (sn+1

j

)
f
(
Y n+1
j

)T
Mf

(
Y n+1
i

)
h′
(
Y n+1
i

)
f
(
Y n+1
i

)
· h′
(
Y n+1
j

)
f
(
Y n+1
j

)
−σ2

n+1

ν∑
i=1

ν∑
j=1

biaij
κ′ (sn+1

i

)
κ′ (sn+1

j

)
f
(
Y n+1
j

)T
MT f

(
Y n+1
i

)
h′
(
Y n+1
i

)
f
(
Y n+1
i

)
· h′
(
Y n+1
j

)
f
(
Y n+1
j

)
= σn+1

ν∑
i=1

biκ
′ (sn+1

i

)
−σ2

n+1

ν∑
j=1

ν∑
i=1

bjaji
κ′ (sn+1

j

)
κ′ (sn+1

i

)
f
(
Y n+1
i

)T
Mf

(
Y n+1
j

)
h′
(
Y n+1
j

)
f
(
Y n+1
j

)
· h′
(
Y n+1
i

)
f
(
Y n+1
i

)
−σ2

n+1

ν∑
i=1

ν∑
j=1

biaij
κ′ (sn+1

i

)
κ′ (sn+1

j

)
f
(
Y n+1
i

)T
Mf

(
Y n+1
j

)
h′
(
Y n+1
i

)
f
(
Y n+1
i

)
· h′
(
Y n+1
j

)
f
(
Y n+1
j

)
= σn+1

ν∑
i=1

biκ
′ (sn+1

i

)
−σ2

n+1

ν∑
i=1

ν∑
j=1

(biaij + bjaji)
κ′ (sn+1

i

)
κ′ (sn+1

j

)
f
(
Y n+1
i

)T
Mf

(
Y n+1
j

)
h′
(
Y n+1
i

)
f
(
Y n+1
i

)
· h′
(
Y n+1
j

)
f
(
Y n+1
j

) .
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We conclude that

h (yn+1) = h (yn) + σn+1

ν∑
i=1

biκ
′ (sn+1

i

)
+ σ2

n+1

ν∑
i=1

ν∑
j=1

(bibj − biaij − bjaji)
κ′ (sn+1

i

)
κ′ (sn+1

j

)
f
(
Y n+1
i

)T
Mf

(
Y n+1
j

)
h′
(
Y n+1
i

)
f
(
Y n+1
i

)
· h′
(
Y n+1
j

)
f
(
Y n+1
j

)
and if the quadrature rule (bi, ci)i=1,...,ν has polynomial order m− 1, then

σn+1

ν∑
i=1

biκ
′ (sn+1

i

)
= κ (sn+1)− κ (sn) . �

Observe that we have

h (yn+1) = h (yn) + κ (sn+1)− κ (sn) , n = 0, 1, 2, . . . ,

if
bibj − biaij − bjaji = 0, i, j = 1, . . . , ν,

holds. This is the condition for preserving quadratic first integrals and it cannot
be satisfied if (A, b, c) is an explicit RK method (A, b, c). On the other hand, it is
satisfied if (A, b, c) is a gaussian RK method.

In the case of h quadratic, both in procedure A and procedure B, an integration
of the transformed equation by a gaussian RK method guarantees exact numerical
landing on Σ.

As for the one-sided integration, we can give the following interesting result for
procedure B with κ (s) = s.

Theorem 8. Assume that h is quadratic and that in procedure B with κ(s) = s
the transformed equation is integrated over one step by an RK method (A, b, c) such
that

ν∑
j=1

aij = ci, i = 1, . . . , ν.

Then, for i = 1, . . . , ν, we have

h(Y 1
i ) = h(xn) (1− ci +O (τ )) , τ → 0.

Proof. Similarly to the proof of the previous theorem, we can show for i = 1, . . . , ν,
that

h
(
Y 1
i

)
= h (y0) + σ1

ν∑
j=1

aij

+σ2
1

ν∑
j=1

ν∑
k=1

(aijaik − aijajk − aikakj)
f
(
Y 1
j

)T
Mf

(
Y 1
k

)
h′
(
Y 1
j

)
f
(
Y 1
j

)
· h′ (Y 1

k ) f (Y 1
k )

.

Thus, since σ1 = −h(y0) = −h(xn) we have

h
(
Y 1
i

)
= (1− ci)h(xn)

+h (xn)
2

ν∑
j=1

ν∑
k=1

(aijaik − aijajk − aikakj)
f
(
Y 1
j

)T
Mf

(
Y 1
k

)
h′
(
Y 1
j

)
f
(
Y 1
j

)
· h′ (Y 1

k ) f (Y 1
k )

= h(xn) (1− ci +O (h(xn)))

= h(xn) (1− ci +O (τ )) , τ → 0,

by recalling Lemma 3. �
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So, for i = 1, . . . , ν such that ci 
= 1 and small τ , we have

h
(
Y 1
i

)
= h(xn) (1− ci +O (τ )) = (1− ci)h (xn) (1 +O (τ )) ≈ (1− ci)h (xn) < 0.

In the case of h quadratic, a one-sided integration in procedure B can be indeed
realized by using an explicit RK method with c1, . . . , cν < 1.

Example 9. Consider the problem with h quadratic:

f (x) =

(
x2,−x1 +

1

1.2− x2

)
, t0 = 0, x0 = (−0, 2,−0.2) ,

h (x) = x2
1 + x2

2 + x1 + x2 − 0.4.

In procedure B, we integrate the original equation by the Heun method and the
transformed equation with κ (s) = s by the explicit midpoint method, whose tableau
is

0 0 0
1
2

1
2 0
0 1

.

We obtain the following table:

τ |ε2| ratios
10−1 9.94 · 10−3 4.50
10−2 2.21 · 10−3 7.85
10−3 2.81 · 10−4 20.9
10−4 1.35 · 10−5 6.75
10−5 1.99 · 10−6

The relative error ε2 =
h(Y 1

2 )−(1−c2)h(xn)
(1−c2)h(xn)

exhibits order O(τ ) (the geometric mean

of the ratios is 8.40).

5. Tangential landing on Σ

Now we consider the situation of tangential landing on the border Σ, i.e., we
have

h′ (x) f (x) > 0, x ∈ R such that h(x) > −c,

instead of (8), and

h′(x(tf ))f(x(tf )) = 0.

In procedure A, assume that κ(s) = s in the transformed equation (9). Since in a
tangential landing on Σ the quantity h′ (y (s)) f (y (s)) becomes zero as s approaches
zero, a numerical method integrating the transformed equation (9) encounters dif-
ficulties due to the blowing up of the right-hand side:

κ′(s)

h′ (y (s)) f (y (s))

[
f (y (s))

1

]
=

1

h′ (y (s)) f (y (s))

[
f (y (s))

1

]
.

Clearly, the situation of tangential landing on Σ is one where a function κ dif-
ferent from the simplest choice κ(s) = s should be used.

Let us define

β (t) = h(x(t)), t ∈ [0, tf ] ,

and then

β′ (t) = h′(x(t))f (x (t)) , t ∈ [0, tf ] .
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The situation of tangential landing on Σ is characterized by

β (tf ) = β′ (tf ) = 0.

Proposition 10. Let k be the positive integer such that

(18) β(i) (tf ) = 0, i = 0, 1, . . . , k, and β(k+1) (tf ) 
= 0.

If

(19)
κ′(s)

|κ (s) | k
k+1

, s ∈ [s0, 0]

is a smooth function, then

κ′(s)

h′(y(s))f (y (s))
, s ∈ [s0, 0],

in (9) is a smooth function.

Proof. We have

|β (t) | = a (tf − t)k+1 · (1 +R(t)) , t ∈ [t0, tf ],

where

a = (−1)k
β(k+1) (tf )

(k + 1)!

and R is a smooth function such that

R(t) → 0, t → tf .

Moreover,

β′ (t) = a1 (t− tf )
k · (1 +R1(t)) , t ∈ [t0, tf ],

where

a1 = (−1)k
β(k+1) (tf )

k!
and R1 is a smooth function such that

R1(t) → 0, t → tf .

Thus, we have

α′(s) =
κ′(s)

h′(y(s))f (y (s))
=

κ′(s)

β′(α(s))

=
κ′(s)

|κ (s) | k
k+1

· 1
a1(α(s)−tf )

k·(1+R1(α(s)))

|β(α(s))|
k

k+1

since κ(s) = β(α(s))

=
κ′(s)

|κ (s) | k
k+1

· 1
a1·(1+R1(α(s)))

a
k

k+1 (1+R(α(t))
k

k+1

, s ∈ [s0, 0].

If (19) is a smooth function, then also the solution α of this differential equation is
a smooth function and so

κ′(s)

h′(y(s))f (y (s))
= α′(s), s ∈ [s0, 0]

is a smooth function. �
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In the case of functions κ of type κm,C given in (11), we obtain

κ′
m,C (s)

|κm,C (s) | k
k+1

=
mC (−s)m−1

C
k

k+1 (−s)
k

k+1m
= mC

1
k+1 (−s)

m
k+1−1

, s ∈ [s0, 0].

By taking a function κm,C with m ≥ k + 1, we can avoid the blow-up in (9) and
have a smooth solution of (9).

The next example shows that a function κ different from the simplest choice
κ (s) = s can work better in the case of a tangential landing.

Example 11. Consider the problem

f (x) = Ax, t0 = 0, x0 = e−Aa,

h (x) = x1 + x2 − 3,

where

A =

[
1 1

−2 1

]
, a = (2, 1).

The solution is

x (t) = etA, t ≥ 0,

and the event

h(x(t)) = 0

is located at tf = 1 with value x (tf ) = a.
We have β (t) = h (x (t)) with

β (0) = 0, β′ (0) = 0, β′′ (0) = −9.

So, we are in the situation of a tangential landing. In Figure 2, we see the trajectory
of the solution in the phase space.

In procedure A, we integrate by the Heun method the transformed equation with
κ (s) = s, κ (s) = −s2 and κ(s) = s3. We obtain the following errors:

|αN − tf |, ‖ yN − x (tf ) ‖∞
for a constant stepsize σ = 10−k, k = 1, . . . , 4, where tf and x (tf ) are exactly
known and αN and yN are their numerical approximations.

For κ (s) = s:

τ |αN − tf | ratios ‖yN − x (tf )‖∞ ratios
10−1 8.24 · 10−2 4.19 2.38 · 10−1 4.05
10−2 1.97 · 10−2 3.46 5.88 · 10−2 3.44
10−3 5.69 · 10−3 3.24 1.71 · 10−3 3.24
10−4 1.76 · 10−3 3.19 5.26 · 10−3 3.18
10−5 5.51 · 10−4 1.65 · 10−3

For κ (s) = −s2:

τ |αN − tf | ratios ‖yN − x (tf )‖∞ ratios
10−1 8.95 · 10−2 9.53 2.57 · 10−1 9.18
10−2 9.39 · 10−3 9.98 2.80 · 10−2 9.92
10−3 9.41 · 10−4 10.0 2.82 · 10−3 9.99
10−4 9.41 · 10−5 10.1 2.82 · 10−4 10.1
10−5 9.36 · 10−6 2.81 · 10−5
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x(t0) x(t f)

h(x)=0

Figure 2. The trajectory x(t) in the phase space.

For κ (s) = s3:

τ |αN − tf | ratios ‖yN − x (tf )‖∞ ratios
10−1 1.07 · 10−1 9.45 3.16 · 10−1 9.35
10−2 1.13 · 10−2 10.0 3.38 · 10−2 9.99
10−3 1.13 · 10−3 10.0 3.38 · 10−3 10.0
10−4 1.13 · 10−4 9.97 3.38 · 10−4 9.97
10−5 1.13 · 10−5 3.39 · 10−5

Thus, by replacing the simplest choice κ(s) = s with the quadratic function
κ(s) = −s2 or the cubic function κ(s) = s3, we can improve the order of convergence
from one-half to one, although we do not reach the order two of the non-tangential
situation.

Now, we try to explain why there is such an order reduction for the Heun method
in the tangential situation. We show that the usual argument used for proving that
the Heun method has convergence order two fails in this situation.

Consider the Heun method as applied to a general equation

y′(s) = G(s, y(s)), s ∈ [s0, 0],

with stepsize σ. As usual, we split the error yn+1 − y(sn+1) at the (n+ 1)-th step
as

yn+1 − y(sn+1) = yn+1 − zn+1 + zn+1 − y(sn+1),

where zn+1 is the numerical solution at the (n+1)-th step when we replace yn with
y(sn). Fixed an arbitrary ε > 0, the local error zn+1 − y(sn+1) can be bounded by

‖zn+1 − y(sn+1)‖ ≤
(

5

12
max

s∈[sn,sn+1]
‖y′′′(s)‖+ 1

4
Ln+1 max

s∈[sn,sn+1]
‖y′′(s)‖

)
σ3,

where

Ln+1 = max
s∈[sn,sn+1] and ‖w‖≤ε

∥∥∥∥∂G∂z (s, y(s) + w)

∥∥∥∥ ,
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whenever
1

2
max

s∈[sn,sn+1]
‖y′′(s)‖σ2 ≤ ε.

Here ‖ · ‖ denotes an arbitrary vector norm on R
d and the same symbol also

denotes the induced matrix norm on R
d×d. Moreover, the propagated error yn+1−

zn+1 can be bounded by

‖yn+1 − zn+1‖ ≤
(
1 + τLn+1 +

(τLn+1)
2

2

)
‖yn − y(sn)‖

whenever
(1 + τLn+1) ‖yn − y(sn)‖ ≤ ε.

Now, we consider the transformed equation

y′ (s) =
κ′ (s)

h′f (y (s))
f (y (s)) , s ∈ [s0, 0],

with h′ constant, i.e., the case h linear, as in the previous example. Here, we have

G(s, y) =
κ′ (s)

h′f (y)
f (y) , s ∈ [s0, 0] and y ∈ R

n,

and so

∂G

∂y
(s, y)p =

κ′(s)

h′f(y)
f ′(y)− h′f ′(y)p

h′f(y)
G(s, y), s ∈ [s0, 0] and y, p ∈ R

d.

According to Proposition 10, the use of a suitable function κ guarantees that the
terms involving the second and third derivatives of the solution in the bound of the
local error do not blow up as sn approaches zero. On the other hand, we have

Ln+1 ≈ max
s∈[sn,sn+1]

∥∥∥∥∂G∂z (s, y(s))

∥∥∥∥
with

∂G

∂z
(s, y(s))p =

κ′(s)

h′f(y(s))
f ′(y(s))− h′f ′(y(s))p

h′f(y(s))
G(s, y(s)), s ∈ [s0, 0] and p ∈ R

d.

Observe that the denominator h′f(y(s)) tends to zero as s → 0, but, unlike the
first term, this cannot be controlled by a suitable function κ in the second term.
Therefore, Ln+1 blows up as sn approaches zero. This explains why the full order
two of the Heun method fails in the tangential situation.

However, we remark that, although the use of a function κ that is different from
the simplest choice κ(s) = s cannot recover the full order two of the Heun method,
it can be recommended because it already improves the order of convergence as it
is shown in the previous example. The study of these reduced orders appearing in
the tangential situation will be addressed in a future paper.

6. Conclusion

In this paper, we have presented an approach for the location of events for
ordinary differential equations based on suitable transformations of the independent
variable time called time-transformations. The approach is implemented in two
procedures called A and B. Procedure A is a generalization of a method proposed
in [12] and this generalization permits to deal better critical situations as in case
of a solution reaching the event in a tangential way. On the other hand, procedure
B should be used in the non-tangential case and it is the neatest and most efficient
manner to use the time-transformations since they are used only when they become
necessary.
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