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ON THE ERROR ESTIMATES OF THE VECTOR
PENALTY-PROJECTION METHODS: SECOND-ORDER SCHEME

PHILIPPE ANGOT AND RIMA CHEAYTOU

ABSTRACT. In this paper, we study the vector penalty-projection method for
incompressible unsteady Stokes equations with Dirichlet boundary conditions.
The time derivative is approximated by the backward difference formula of
second-order scheme (BDF2), namely Gear’s scheme, whereas the approxi-
mation in space is performed by the finite volume scheme on a Marker And
Cell (MAC) grid. After proving the stability of the method, we show that it
yields second-error estimates in the time step for both velocity and pressure
in the norm of 1*°(L2(Q)) and 12(L?(£)), respectively. Also, we show that
the splitting error for both velocity and pressure is of order O(v/e §t) where
€ is a penalty parameter chosen as small as desired and 6t is the time step.
Numerical results in agreement with the theoretical study are also provided.

1. INTRODUCTION

For T > 0, we consider the time-dependent incompressible Navier-Stokes equa-
tions in the primitive variables on a finite time interval [0,T]:

(1.1) p(%—?—l—(v-V)v) —pAV+Vp=f=f in Qx]0,T7,
(1.2) V-v=0 in Qx]0,T7,
(1.3) v=0 on I'x]0, 77,

where 2 C R? (d = 2 or 3 in practice) is an open bounded and connected domain
with a Lipschitz continuous boundary I' = 0). The generic point in €2 is denoted by
x. We denote by v=(u,v)T the fluid velocity with initial value v(t = 0) = v, p the
pressure field, p the fluid density (the density is taken equal to 1), u the dynamic
viscosity (here, p = 1/Re with Re a Reynolds number), and f the external body
forces. We impose homogeneous Dirichlet condition (L3]) on the whole boundary
I" for the sake of simplicity. Finally, the reader will keep in mind that bold letters
such as v, f, etc., indicate vector valued quantities.

One of the main numerical difficulties in solving (LI)—(L3) arises from the cou-
pling between the velocity and the pressure by the incompressibility constraint at
each time step. Undoubtedly, the most popular way to overcome this difficulty
consists of using the projection methods introduced initially by Chorin [I5] and
Temam [43] in the late sixties. Projection methods are fractional-step schemes
which consist in splitting the time evolution into two sub-steps. In the first step,
an intermediate velocity, that does not satisfy the incompressibility constraint, is
computed by solving an advection diffusion problem. In the second step, according
to the Helmholtz-Hodge decomposition [I7], the intermediate velocity is projected
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to the space of the divergence-free vector fields to get the pressure and the corrected
velocity that satisfies the incompressibility condition. Projection methods gained
popularity due to the fact that the computations of the velocity and the pressure
are decoupled by the two-step predictor-corrector procedure which significantly
reduces the computational cost. However, Chorin-Temam’s projection method suf-
fers from an inconsistent Neumann boundary condition satisfied by the pressure
approximation. This artificial condition induces a loss of the temporal accuracy
in the solution; hence the numerical scheme is not satisfactory since its splitting
error is irreducibly of O(dt) [39] where 6t is the time step. Over the years, several
variants of projection methods have been developed to improve the temporal accu-
racy among which are pressure-correction methods [20L2T1261[32[45] (incremental or
rotational form), velocity-correction methods [25L[36,37] (incremental or rotational
form), consistent splitting scheme [24,[31,42], scalar penalty-projection methods
[18,[30,40] and more recently vector penalty-projection methods [ILB]. Hereafter
we present a short review on some theoretical results obtained from some of these
variants in the presence of Dirichlet boundary conditions.

Incremental pressure-correction methods [20432] were widely used in practice and
have been rigorously analyzed by E and Li [16] and Shen [41] in the semi-discrete
case and by Guermond [2I] in the fully discrete case. Second-order accuracy in
time on the velocity in L?2-norm has been proved but only O(8t) estimates on the
pressure approximation are available due to the presence of a numerical boundary
layer.

Timmermans et al. [45] proposed a modified version of the incremental pressure-
correction methods, referred to by Guermond and Shen in [2320] as incremental
pressure-correction methods in rotational form. Brown, Cortez, and Minion [12]
showed, using normal mode analysis in a periodic channel, that the pressure ap-
proximation in this particular case is second-order accurate. In this regard, a
rigorous normal mode error analysis was carried out by Pyo and Shen [38] for two
second-order projection type methods. Finally, Guermond and Shen showed in [26]
that the best possible convergence rate for pressure approximation in the L2-norm
is of order 3/2 in general domains.

Another class of projection methods namely velocity correction methods has been
introduced and rigorously analyzed (in its incremental and rotational form) by
Guermond and Shen [25]. Error estimates lead to a second-order accuracy for the
velocity in the L2-norm for both versions. In addition, they proved better error
estimates for the rotational form, i.e., O(5t3/2) in the H'-norm of the velocity and
the L2-norm of the pressure (see also [28] for the fully discrete case). It was also
shown that this family of projection methods can be related to a set of methods in
[33.136].

For more details regarding both numerical and theoretical results of different
projection methods, the reader can refer to the complete review of Guermond et al.
[21].

Moreover, the scalar penalty projection method is another variant of projection
methods, proposed and numerically investigated by Jobelin et al. [30]. It was
also theoretically analyzed in [10] and verified later by Févriere et al. [I8] using a
spatial discretization by finite volumes on staggered grids. The basic idea behind
the development of this scheme originated from a paper of Shen in 1992 [40] and
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consists in adding to the velocity prediction step a penalty term similar to the aug-
mentation term used in the so-called Augmented Lagrangian method (e.g. [19]),
which constrains the divergence of the intermediate velocity. The same idea has
been exploited independently later, in 1999, by Caltagirone and Breil [13] with a
different projection step called by the authors “vector projection step”. From the
point of view of convergence properties, the authors show in [10] that for low value
of the penalty parameter r, splitting error estimates of the so-called rotational pro-
jection scheme are recovered, i.e., O(6t?) and O(§t3/?) convergence for the velocity
and the pressure, respectively. Indeed, for high values of the penalty parameter,
they obtain the dt/r behavior for the velocity splitting error known for the penalty
scheme.

In 2008, Angot et al. [3] introduced a new fractional-step scheme called Vec-
tor Penalty-Projection (V PP) methods to solve incompressible fluid flows and to
overcome most of the drawbacks of the usual projection methods. This family of
methods represents a compromise between the best properties of both classes: the
Augmented Lagrangian (without iterations) and splitting methods under a vector
form. In fact, an original penalty-correction step for the velocity replaces the stan-
dard scalar pressure-correction step to calculate flows with divergence-free velocity.
This allows us to impose the desired boundary condition to the end-of-step velocity
pressure variables. The VPP methods were improved in [I,[4,[5] where they showed
that such methods are also very efficient to compute incompressible multiphase vis-
cous flows or Darcy flows whatever the density, viscosity or permeability jumps are
and also in the presence of outflow boundary conditions [8/9]. Indeed, they showed
to favorably compete with the best incremental projection methods or Augmented
Lagrangian methods in terms of accuracy, cheapness and robustness.

In [1,BL4], the VPP methods were implemented using the first-order Euler im-
plicit scheme in time with Dirichlet conditions on the boundary. The authors found
that the scheme is O(h?) in space for velocity and pressure, where h is the spatial
mesh step of the MAC scheme and O(dt) in time for velocity and pressure (4t is
the time step). However, in the literature, the VPP methods concern only the
case of the first-order time discretization with Dirichlet boundary conditions. The
present paper is devoted to the extension of such methods to a second-order time
discretization. Remember that in view of all the previous results of different types
of projection methods, one can notice that, while a temporally second-order conver-
gence for the velocity can be readily obtained analytically, the computed pressure
can not reach the full second-order accuracy in time. We believe that this paper
provides interesting results in this regard as well as for the splitting error of the
scheme.

The main task of the present paper is to provide stability and rigorous error anal-
ysis of the second-order vector penalty-projection method with Dirichlet boundary
conditions. Our results indicate that the VPP method guarantees O(dt?) for both
velocity and pressure in the norm of [°°(L?(Q)) and [?(L?(12)), respectively. Also,
we show that the splitting error of the method varies as O(e) where the penalty
parameter € can be chosen as small as desired. This feature is very interesting since
it offers the possibility to reduce the splitting error, up to make it negligible with
respect to the consistency error of higher-order schemes.

The rest of the paper is organized as follows. In Section Pl we describe the
vector penalty-projection method using a second-order scheme to discretize in time
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and we underline the role of each step of the method. In Section B we show the
well-posedness and the stability of the method. Section M is devoted to giving the
error estimates for the VPP method. In Section Bl we present some numerical
experiments which are consistent with the theoretical results. Concluding remarks
are reported in Section Gl

2. VECTOR PENALTY-PROJECTION METHOD

In this section, we describe the vector penalty-projection method for the incom-
pressible Navier-Stokes problem using a second-order backward difference formula
(BDF2) to march in time. In addition, we highlight briefly the role of each step of
the method.

2.1. Description of the scheme. Before presenting the scheme, let us first in-
troduce the following functional spaces:

L2(Q) = (£3(2)",
H'(Q) = {u e L?(Q); Vu € (L*(Q))**¢},

L%(Q)_{qeLQ(Q);/ﬂqu_O}.

We denote L?(Q)-norm by || . ||o, the H!(Q)-norm by || . ||, the H~1(Q)-norm by
| . |=1 and L?(2)-inner product by (., .)o.

Now, let 0 = t° < t! < ... < t¥ = T be a partition of the time interval of
computation [0,T] which we suppose uniform for the sake of simplicity. We denote
by 6t = t"t1 —¢" > 0 the time step. Let ¢°, ¢', . . . ,¢"V be a sequence of functions
in a Hilbert space H. We denote this sequence by ¢s5; and we define the following
discrete norm: || ¢s¢ [li2(my:= (6t Zﬁ;o | ¢ 11%)"/%. The notation v" is used to
represent an approximation of v(¢™), where t" = n ét.

We use a semi-implicit time-integration scheme. We approximate the time de-
rivative the BDF2 scheme. The convective term is handled explicitly. Finally, the
viscous term is treated implicitly. Hence, the VPP method reads as follows.

Let n > 1 such that (n +1)dt < T, v0,v!,v0 vl € L3(Q) and p°,p! € L3(Q)
given. Find (v**1 p"*1) such that:

e Vector penalty-prediction step with an augmentation parameter

r >0
(2.1) V- 4? +v + NLT, — p AV — (V-1
. + Vpth =t in Q,
(2.2) vt =0 onT,
where p*"*t! is the second-order Richardson extrapolation for p™*1:
prrtt=2p = pn

and N LT is the second-order extrapolated nonlinear term:

NLT; =2(v*-V)¥" — (v L. v)v" L.
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e Vector penalty-projection step with a penalty parameter 0 < ¢ < 1:

3{;71-&-1 _ 4{;71 + Gn—l

o Ssn+l 0 = Lontl
(2.3) 551 + NLTy, — p AV EV(V v
1
= EV (V-¥"t) inQ,
(2.4) vl =0 onT,

where N LT5 is the second-order extrapolated nonlinear term:
NLT; =2(v"-V)¥" — (v L. v)v" L.

e Correction step for velocity and pressure:

(2‘5) Vn+1 _ vn+1_’_vn+1’

1 ~
(2.6) p"tt o= 2 —pnl - (Vv — VL
€

Remark 2.1 (Nonlinear term in the projection step). It is useful to mention
that the nonlinear term in the velocity correction step can be omitted since the
purpose of this step is to perform an approximate divergence-free projection; see
[BL[7]. Hence, we can take NLT, = 0 and consequently replace the nonlinear term
NLT; in the prediction step by

NLT, =2(v*-V)v" — (v 1. V)v" 1,
which is better for the consistency of the scheme.

2.2. Vector penalty-prediction step. Contrary to the first penalty-projection
method introduced by Shen in [40], the augmentation parameter r in the prediction
step of the VPP method is totally independent from the time step dt as it is also the
case of the scalar penalty-projection method presented by Jobelin et al. in [30]. It is
useful to note that the augmentation parameter r plays the role of a preconditioner
for the prediction step. Indeed, the parameter r is kept constant (r can be strictly
positive or equal 0) and within small values (r < 1) to avoid to degrade too severely
the conditioning of the linear system associated with the prediction step.

Remark 2.2. From a numerical point of view, we observe that for » = 0, there is a
poor convergence in time for velocity and pressure with very small values of ¢ and
this is due to the accumulation of the round-off errors when ¢ is relatively small
[9]. Hence, in order to improve the convergence rate, it was proposed in [I}[4[6]
to reconstruct the pressure field from its gradient to avoid the effect of round-off
errors when ¢ is very small. Thus, in the numerical experiments (see Section [])
with » = 0, the following estimation of the gradient of the pressure will be used
directly for the pressure gradient correction:

3vn+1 _ 4671 + Qn—l

2. n+l _ 2 n o n—1 _
(2.7) Vp Vp" = Vp 591

+ p AV
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2.3. Vector penalty-projection step. The vector penalty-projection step is
based on the Helmholtz-Hodge decompositions of L2(£2) vector fields for bounded
domains (see e.g. [343544]). Besides, we notice that the vector penalty-projection
step can be written as follows:

ontl  osn
(T e )
2.8

28) —v(V-¥"TH =v(v-3*"th  inQ,

vt =0 on T,

where we use the implicit Euler scheme to discretize in time for the sake of simplicity.
Formally speaking, as ¢ is taken small enough, the right-hand side in the projection
step lies in the range of the left-hand side. Hence, the vector penalty-projection step
appears to be very fast and cheap in terms of the number of iterations whatever
the spatial mesh size is. This crucial result was already shown theoretically in
[6, Theorem 1.1 and Corollary 1.3] and in [5, Theorem 3.1] and also numerically
confirmed in [BL6LOL14]. Finally, the vector correction step (2.3)-(23])) carries out an
approximate divergence-free projection of the velocity with the penalty parameter
€ > 0 chosen as small as desired.

Remark 2.3 (Vector penalty-projection methods with variable density).
The vector penalty-projection methods can be generalized in a natural way for
variable density as done recently in [2] where it is shown that the velocity correction
step can be made completely independent on the mass density. Thus, this step is
fully kinematic and only concerned with the Helmholtz-Hodge decomposition of the
predicted velocity.

Remark 2.4 (Vector penalty-projection method with open boundary con-
ditions). The vector penalty-projection methods can naturally be extended also
to the case of incompressible viscous flows with open boundary conditions. In fact,
in [89], the authors described in detail the VPP methods in this case and showed
that for a second-order scheme used for time discretization, the VPP methods yield
approximately O(6t?) for both the velocity and the pressure for the homogeneous
as well as and nonhomogeneous open boundary conditions.

3. WELL-POSEDNESS AND STABILITY

Before starting the analysis, let us note that since the treatment of the nonlinear
term does not affect in an essential way the analysis of the vector penalty-projection
method, we shall carry out the well-posedness, the stability and later, the error es-
timates for the linearized Navier-Stokes equations only as in [25L26], thus avoiding
technicalities associated with the nonlinearities which obscure the essential difficul-
ties. Moreover, we suppose that the temporal derivative of the velocity is approx-
imated by a second-order scheme in time, the pressure field is approximated by a
first-order scheme in time, i.e, p*"™*! = p™ and the augmentation parameter r is
set to O for the sake of simplicity.

Thus, to fix the ideas, the vector penalty-projection method is written now as
follows. For given v°,v! vY vl and p', we are looking for (v"*!, p"*1) such that
for all n > 1 with (n+ 1)t < T
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e Vector penalty-prediction step:

3;'”,%*1 _ 4;77, + vnfl
(3.1) 25t
vl =o on I

—p AV L vpt = i Q)

e Vector penalty-projection step with a penalty parameter 0 < ¢ < 1:

36n+1 _ 4Gn + Gn—l
20t

— p AT - év (Vo)

(32) _ év (V-G”“) in Q,

V"™ =0 on T.

e Correction step for the velocity and the pressure:

n+l _ q,n-i-l + sn+1

v vy

(3.3) 1
pn+1 — pn _ g (V . vn+1).

Finally, the discrete problem resulting from the sum of the two steps, taking into
account (B.3]), becomes

3vn+1 — 4y + vnfl

(3.4) 551 — pAvrtl 4 ypntl = gl in Qx]0,T,
anrl _ pn

(3.5) (65t)T +V.vrtl =0 in Qx]0,T,

3.6 vl =0 on I'x]0,T7.

(3.6)

Remark 3.1. The initial condition on the velocity is v? = v with v° = v? = v
and v% = 0. To start the second-order VPP scheme, we need v! and p'. For
this reason, we first solve the VPP method using Euler scheme of first-order for a
given v instead of the BDF2 scheme. This permits us to calculate v! and ¥! and
consequently to find v! and p'.

3.1. Well-posedness of the scheme.

Lemma 1 (Well-posedness of the prediction step). For given f € L%(2), v°,
vl e L2(Q), p* € L3(Q2) given, and for all 6t > 0, there exists at each time step a
unique solution V"1 € H}(Q) to the penalty-prediction step ([B.)).

Sketch of the proof. We take first the inner product of (BI) with a test function ¢
in Hj(Q).

It is an easy matter to prove with the Lax-Milgram theorem that there exists a
unique solution v**! to the prediction step ([B.I) in the Hilbert space H}(2). O

Lemma 2 (Well-posedness of the projection step). For given f € L2(2) and
vitl € H(Q), with 0 < e < 1 and 6t > 0, there exists at each time step a unique
solution V"1 € HY(Q) to the penalty-projection step ([B.2)).

Sketch of the proof. We take the inner product of [B.2]) with a test function ¢ €
H(Q).
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Thanks to the Lax-Milgram theorem, it is an easy matter to show that the
projection step ([B.2]) has a unique solution v"*! in the Hilbert space H}(Q). O

Lemma 3 (Global solvability of the VPP method). For given f € L?(Q2), v°,
vl € L3(Q) and p' € L3(Q), for all0 <5t <T,0<e <1 and for all n € N* such
that (n + 1)6t < T, there exists a unique solution (V"1 v+l prtly in HI(Q) x
HY(Q) x L3(Q2) to the VPP scheme such that:

3 n+1 _4 n n—1
v 2(;; +v . /J,AVn+1 + vpn-i-l _ fn+1 n Q,

(3.8) ("™t —p")+V -v*T =0 inQ.

Proof. The proof is made by induction for all » in N* such that (n + 1)6t < T
starting with the given initial conditions v%, v in L2()¢ and p! in L3(2). Thanks
to Lemma [I] there exists a unique solution v"*1 in H}(Q) to the prediction step

@I). Moveover, according to Lemma [ there exists a unique solution v**! in

H}(2) to the projection step ([B.2). Hence, we deduce that v+ = vntl 4 yntl ¢
H}(Q) with V- vt e L3(Q).

Finally, since p!, V- v"*l and V- vl € L3(Q), it is easy to verify using the
expression of the pressure [3.3)), that p" ™1 € L3(Q), which concludes the proof. [

We are now in position to establish the stability of the scheme.

3.2. Stability.

Theorem 3.2 (Stability of the scheme). For given f € L?(0,T; L?(Q)?), v°,v?
€ L*(Q)? and p' € LE(2), there exists a positive constant

Co = Co(, T, . ||| 20,7y x2)» [V los [[vH]os [P lo)

such that, for all 0 < 5t < T, for 0 < ¢ < 1, the solution (v, p"*t1) of the VPP
method satisfies the following estimation for all n € N* with (n+1)0t <T':

n n
IV A+ 129 =[S+ D NSRS+ 2 ) 6t [VVETS
k=1 k=1

n
+ 268l R 2> bl - pH3
k=1
< (.



ON THE ERROR ESTIMATES OF THE VPP METHODS 2167

Proof.
Step 1: Taking the inner product of ([B.4) with 45t v"*t! applying Green’s
formula and using the algebraic relation

2(ak+1’3ak+1 _ 4ak + ak—l) — Hak+1”2 + H2ak+1 _ ak||2 _ HakHZ
(3.9) = l12a" = a* P+ (162" 7,

with §2aFt1 = §(6a**1) and §ak*+! = aF*+1 — a¥, we obtain, taking into account the
fact that v**! = 0 on the whole boundary T,

V™IS = [V 1IE A 12 v = v I§ = (129" = v G + (|62 S
+ 4t ||VvrT 2 — 46t (pn TV v
(3.10) =44t (£ v,

Step 2: Taking the inner product of [B.5) with 46tp"*! and using the algebraic
identity

(3'11) 2(ak+1,ak+1 _ karl) _ ||ak+1||2 _ ||bk+1”2 + Hak:+1 _ karlHQ,
one gets:
(3.12)  2edt (|lp" "G — [lp" 1§ + [l = p"[[5) + 4t (p" T,V - v = 0.
Step 3: Summing BI0) and (BI2), we obtain the following relation:
VSIS = [ 11+ N2 v =™ I5 = 12 v™ = v G + [|0*v™ [
(3.13) +Apdt|[VvrHE 228t (Jlp" G — 115 + (1" = p"([5)
= 4 5t(f" T v,

The term in the right-hand side of the inequality above, which we denote by
T1, may be bounded using the Cauchy-Schwarz inequality, Young inequality and
Poincaré inequality. We shall repeatedly use this standard trick hereafter without
mentioning it again:

71 < 4dt][v™ ol £ o

A

2ot 93+ 22 gy
where ¢,(12) is the Poincaré constant.
Using this bound in BI3]), we get
[V = IV IE + 1129 = v IF = (129" = v H[G + [16%v" I3

+ 2068t ||V G 4+ 228t ([[p"HIE = (1" (15 + " = p"115)

2¢,(Q)?
< M&}Hf’l"‘l”g.
1

We now write the previous inequality with the index k instead of n, and then
sum it up for ¥ = 1,...,n. This yields, for all 0 < ¢ < 1 and 0 < 0t < T, the
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following energy estimate for all n € N* with (n+ 1)t < T*

n n
VIS + 1129 = v+ DO HEVEIS 2 Y stV VE S
k=1 h=1

n
+2e0t][p" TG + 22 Y ot |t — p¥(I
k=1

1112 1 0112 1112 2%(9)2 . k+1(2
<Ivilg+I2v —v H0+255t”p”o+T pxall samalr
k=1
< Co(0 T, 1, [If]| 20,1y %), [1VO]0s [V [0, 112 []0),
which concludes the proof. (Il

Remark 3.3. The vector penalty-projection method is also stable for r > 0. We
note that the VPP method with r > 0 was also studied in [3L[6] using a first-order
scheme in time.

4. ERROR ESTIMATES

4.1. Notations and assumptions. Let v(¢"*1) = v" ™! and p(t"*!) = p"*! the
exact solution of the Stokes problem at time t"*! and let v**! and p™*+! the solution
obtained by the vector penalty-projection method BI)—(B3). Then, we define the
velocity and the pressure error respectively:

n+1 — vn+1 _

e vn+1 — v(thrl) _ Vn+1

)

7_‘_n+1 —_ 1—?n+1 _ pn+1 _ p(tn-l—l) _ pn-&-l.

In addition, we assume that the solution of the continuous Stokes problem sat-
isfies the following regularity conditions:
2

T 3
(4.1) / 6—§ dt < M,
o o8,
and
T 2
(4.2) / W1 g < .
o |t

We will use M as a generic positive constant which depends eventually on Q, T, f,
w and vg.

Moreover, we need to assume that the initial errors are sufficiently controlled,
i.e., there exists a constant ¢’ > 0 such that

(4.3) llet|2 + 12! — |2 +2¢e 4t ||nt|3 < ¢
and
(4.4) pot||Vel|[§ < .

Finally, we define R"*! as
Bv(t"th) —dv(t") +v(" ) av(th)
26t o

Finally, throughout this paper, we will make use of the following theorems whose
proofs can be found in [11].

Rn+1 _
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Theorem 4.1. Let Q be an open, bounded, and Lipshitz domain of R?. There
exists a constant ¢; > 0 such that for all u € L?(£2),

(4.5) lullo < e ([lull -1 + [[Vul[-1)-

Theorem 4.2. Let Q be an open, bounded, connected, lipshitz domain of R®. There
exists a constant ca > 0 such that, for all u € L*(),

/udw
Q

Lemma 4. For given f and vo which are smooth enough and assuming that the
solution (v,p) of the Stokes problem is smooth enough in space and time such that
v € W32(0,T;L%(Q)) and p € WH2(0,T; L2(R)), then, there exists a constant
M(Q, T, u,f,vo) > 0 such that the following estimations are satisfied for all n € N*
with (n+1) 6t <T':

1
(4.6) lall1 < ez <|Vu||1 ro

4.2. Basic error estimates.

(a) > ORI < M(Q,T, 1, £, v0) 6t
k=1

(b) Y stllepF G < M(,T, p, £, vo) 6t
k=1

(c) kz::lét H 5

Sketch of the Proof. Note that we can reformulate Rt as a residual integral of
Taylor series

2

< M(Qa Tv/’(‘a f7v0)~
0

3v(tht) —dv(th) + v(th=1)  Ov(tFt)
20t ot
4 (tF — )2 93v (1) 1 (tF=1 — )2 93 (t)
T 20t /tk 2 o8 T 26t S 2 o’

Then, the proof of (a) can be concluded as done in [18].
For the proof of (b), we proceed as follows:

Rk—',—l

tk+1 tk+1

dt.

(Rl
(5ﬁk+1 _ p(tk'H) _ p(tk) _ / ap(t) dt,
t' 8t
then
k+1 2
165512 < 6t/t Ole) " gy
- th t 0

We obtain, after summing it for k = 1,...,n and using (£2),

n T
ZétHéﬁ’““H% < 5t2/ Hap(t)
|| o

k=1

2
dt < M 6t2,
0

which concludes the proof of (b).
The inequality (c) is a direct consequence of (b). O
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Theorem 4.3. Under Lemma M and the assumption [A3]) and for all 0 < e < 1,
0 < §t <max(1,T), there exists a positive constant
Co = Co(Q, T, 1, |I£]| 20,7y 2)+ [1€° [0 | 1€ [0 |7 ]0)

such that the solution of the VPP method BI)-B3)) verifies for all n > 1 such
that (n + 1) 6t < T, the following:

n n
(@) lle™ I+ 2™ —e"[[g + D _[18%e" 5 + 2 ) 6tl[Ver |3
k=1 k=1

+2e 6t 3+ ot||lrt T — b (|F < Co (5t + £ 6t),
k=1

(i) > ot||V-eFTE < Co (687 + ) e dt.
k=1
Proof. (i) Error estimate for the velocity.
Step 1: We have for the Stokes equations at time ¢"*+1:
3v(tnth) —dv(t") + v(t" L)
20t

(4.7) — p Av(t"TY) + Vp(tt ) = £t + R

with
Iv(tnt) —av(t™) +v(trh)  ov(tnt)
20t o
By subtracting ([3.4) from (&), we get the following error equation:
3entl —4e” 4+ e !

(4.8) 591 — pAe"tt 4 vttt = R

Taking the inner product of (8] with 46t e"™! and taking into account that e"*1 =
0 on I', we obtain:

le" M5 — lle™|[5 + 112" — e[
(4.9) —[[2e" —e" M [g +[16%e" T |§ + 4t || Ve |3
—46t(7" T V- ey = 45t(R™TE e,
Step 2: By adding +ep(t"t!) and —ep(t"*!) to the pressure equation (B.5)
and by adding +e p(t") and —e p(t") to (BH), we get
(4.10) ("t — 7™M + V- et = egp" T,

where V- v+l = —V . e"*! and 6p"t! = pntt —p".
Taking the inner product of ([I0) with 46¢ 7"+ and using the identity (S.I1]),
we obtain:

(4.11) 2e8t (|| G = (|75 + |7 = 7"|[5) +46t(x" T, V- &™)
= 4e 6t (7", 55",

Step 3: Summing (@J) and @II) and writing 7”*! in the right-hand side of
@EII) as 7t = 7" + (7"F1 — 77), we obtain

le" I3 — [le”][3 +[12e" " —e”|[5 —[|2e™ — e |5 + [|0%e™ |3
(4.12) +4pdt||Ver g+ 280t (|G — (171G + [l = 7[F)
= e §t(n", 69" )g + de St(n" L — 7 65" g + 4.6t (R, "),

Rn+1 _
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where the terms in the right-hand side of ([@I2) are denoted, respectively, by T'1,
T2, T3, so that

2

5—n+1
IT1| < 4et]|7™ o] |05 o < 2 62|72 + 2 6¢2 p& :
0
5—n+1 2
72| < de 8t |7 — 7(|o||05" |0 < £ 8t [|a™+! — 7|2 + 4e 5t3 p& :
0

2¢,(Q)

2
T3] < 45| R [o][le" |0 < St{[R"FH[G + 2 10 6t][Ve |3

with ¢, () the constant of Poincaré.

Step 4: Combining the bounds obtained above with ([@I2]) and replacing the
index n by k and then summing for kK = 0, ..., n, yield the following energy estimate
for all n € N* such that (n+ 1)t < T

n n
lle™ ][5 + 112"t — e[| + D [16% M [E + 240 Y 6t Ver 5
k=1 k=1

n
+2e6t|[n" (G + e > ottt — 7k
k=1

n
<2e6ty 8tl|x|[5 + lle'|[§ + |2 e — €[5 + 2 ot |
k=1

2%(9)2 < k+1((2 2 =
L D St|RFYG + (260t +4e6t7) Y ot
k=1 k=1

6pk+1 2

ot

0

Finally, using assumption (£3]), Lemma M and applying the discrete Gronwall
Lemma, we conclude the proof. (Il

(ii) Error estimate for the velocity divergence.

Based on ({I0)), the velocity divergence error can be written as follows:
Ve =gop"tt — g (n" T — ™).

Thanks to LemmaMland to part (i) of Theorem[4.3] we get the desired estimation
for 6t < max(1,7):

> 6t]|V - eF TS < 2 M e 62 + 22 Co (5t + £ 6t)
k=1

< Co(, T, 1, ||| 20,1y x2)- 11€°]]0, 1€ o, 1|7 |o) (68% + €) € 6t
which concludes the proof. O

Remark 4.4 (Convergence rate and splitting error of the velocity approx-
imation). Theorem 3] (part (i)) shows that the second-order vector penalty-
projection method yields optimal error estimates in time for the velocity; par-
ticularly, we obtain a convergence rate of O(§t?) for the velocity in [°°(L?(f)).
The same result for the velocity (in [°°-norm) was already obtained in [I§] with
the second-order scalar penalty-projection method and also in [26,27] with the
incremental and rotational pressure-correction methods (in /2-norm).
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Indeed, the interesting result is that the velocity splitting error is of order
O(Vedt) in 1°°(L2(Q)) NI2(HY(R)). Practically speaking, if we choose the penalty
parameter € equal to §t°, for example, the splitting error of the velocity will be
of order O(6t3) and hence, the second-order accuracy in time for the velocity is
provided.

Now, in order to derive an error estimate for the pressure approximation, we
need the following lemma.

Lemma 5.

n
Z H3ek+l —4ek 4 ek:—1||(2)
k=1

< OOl T 1 8]l (0 - 1 [V o [ o) (58 + < 60)

Sketch of the Proof.

Step 1: After rewriting 3e" ™ —4e" +e" ! in (@A) as:

3en+1 —4e" + enfl — (en+1 —2e" 4+ enfl) +2 (en+1 _ en)

(4.13) = §%e"T f2(e"t —em),
we take the inner product of [L8) with 2 §t(e" ™! — e™). We derive

(529n+1,en+1 _ en)o 4 2 Hen—&-l _ en||(2)
(4.14) + pt(|[Ver FH|E — |[Ven|[g + [V (et —e™)[[5)

—20t(a" TV - (e"Tt —e™))g = 20t(R"TH e T — &™),

Step 2: Now, we write ([LI0) at time t"*! and ", respectively, and we subtract
after that the resulted equations. Hence, it yields

"t 41V - (e"M —e") =e6%p" T, where 27" = 7t —2p™ 4L
Taking the inner product of the previous equation with 2t 7”t! and rewriting
2antt as 277 = (3t — 4 g 4+ ) — 2(7" T — 7)) yields
et (|la"*HG — |lm™ 1§ + (127" — a"||g — [[27" — 7" H[F + [|o%7"H[F)
=28t (||7" Y3 = |7 |[g + [|7"F — 7[[5)
(4.15) +20t(x" V- (e"F —e))g =26t (7", 67",
Step 8: Summing (@I4) and ({IH), we find after writing 7°*! in the right-
hand side of ([EIH) as 7"t = 7" + (77! — 77):
2|le" ! —e"|[g + pdt (|[VeTHIg — [[Ve" I3 + [[V(e"™ —e™)][f)
+eot(||l7"FHIG — [I7"[5)
+edt (|27 =2 |f — |27 — 7" |F + (|82 A" TH[)
(4.16) =20t (||l7" g — ll7"|I5) + 2 ot [|a"+ — 7|3

+ 25t(Rn+1,en+1 o en) o (52en+17en+1 o en)o

+2e6¢? <7T" 5Qp”+1> + 2e 63 (71'”+1 — " 525n+1>
0 0

ot ot
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where we denote by T'1, T2, T3, T'4 the last four terms in the right-hand side of

#I18), so that

1
T1 < 26t [R™ lole™ " —e"[lo < 208 ||R™ [ + Sl — ™[5,
1 1
T2] < l6%e" lolle™ " — e[l < |67 5 + S lle" T — e|l5,
§2pntl s2pnt |2
T3] < 2e82(7"|o | 22 < 52|72 + e 0t | 22 :
st |, st |,
2—n+1 2-—n+1 2
T4 < 2662 — 2o || 22 < o2 — a2 4 e g2 || OE .
0 0
st |, st |,

Now combine the above inequalities with (£I€). Then, replace the index n by k
in the resulting inequality and sum it for £ = 1 to n. After that, apply the discrete
Gronwall lemma by taking into account assumptions ([@3) and ([@4]), Lemma [H]

_ 2
Theorem E3 and the fact that Y., 5t‘ % . < M 6t? (see Lemma [)), it
yields

n n
Do e — Mg+t [Ver TR 4+ Y 8tV (et —eb)||
k=1 k=1

+edt||am Y +edt|2am T — 78 420ty ||0% 7R3
k=1
(4.17) < C(Q, T, [[f]] 20,7y x2)- €% €1 [[Vel o, |7 ||o) (58" + & 6t).

Since we have |[3e" ™! —4e" + e"_lHi < 2(||6%e™ |2 + 4]je™ ! — em||3), it is an
easy matter to show (thanks to ([@I7) and Theorem [L3) that

D [3eRtt —aet ek 02 7 2(][8% T + 4o — o)
k=1 k=1
< Col T, [IF]l 2 0.1y ", 7€ o, 1 o) (8¢ + < ). 0

Now, we can get the approximation for the pressure.

Theorem 4.5. Under the assumptions of Theorem 3] and using Lemma Bl and
forall0 < e <1,0<dt <max(1,T), there exists a positive constant,

Co = Co(Q, T, i, ||f|| 2 (0,7)x ) |1€°] [0 1€ [0 |7 ]]o),

such that the solution of the VPP method BI)-B3) verifies for all n > 1 with
(n+ 1)t < T the following inequality:

> ot [T IR < Co (687 +€).
k=1
Sketch of the Proof.
Step 1: We rearrange (L)) as

n+1 n n—1
Varth = R 4 Ae™ T — <3e -de"te )

20t
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Using, respectively, both inequalities (a —b)? < 2(a?+b?) and (a+b)? < 2(a®+b?),
owing to Sobolev injection L?(2) — H~1(Q2) and to the injection of the Laplacian
A: HY Q) — H1(), one gets:

— 2
3en+1 —48”4—8" 1

24t

V1P, < ARMR 4+ 42 e 2 + 2 H

0
Taking into account that e"*! € H}(Q), we have ||e"*!||? = ||[Ve"t!||2. Multi-

plying then the above inequality by 6t and summing it up for k& from 1 to n, we
get

n n n
(18)  SEIVAE, <4 ST ARME +4u2 Y6t [[Ver 3
k=1 k=1 k=1
2

24t

n ekt _ 4k k—1
+2Z§tH el —dever |
k=1 0

Step 2: Using Negds inequality, there exists a constant C' > 0 such that
(4.19) 7" o < CIVA™ |-y
Finally, using ([@I8]) and thanks to Lemma [ Lemma [l and part (i) of Theorem

A3l we derive the desired estimation.

4.3. Improvement of the basic error estimates. In order to improve the basic
error estimates for the velocity divergence and the pressure, the critical step here
consists in establishing estimates for the time increment.

First, we impose the following regularities on the continuous Stokes problem

(4.20) a?’avtgt) € L*(0,T;L*(Q))
and
(4.21) a;igt) € L2(0,T; L2(9)).

Then, we define the increment error in time
5Rn+1 _ RnJrl _ Rn

62]3714-1 _ 5]3n+1 _ 52—)71
)
n+1 _ _n+1 n
de =e —e",
5,n_n+1 _ ﬂ_nJrl o 7_rn

Finally, we suppose that the initial errors are well-controlled as follows, i.e, there
exists a constant ¢’ > 0 such that

(4.22) le!][5 +112e" — e®[[§ +2edt ||| < °,
(4.23) 16e!|[3 < ¢,

Lemma 6. For f and vo given and smooth enough, we suppose that the solu-
tion (v,p) of the Stokes problem is smooth enough in space and time such that
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v € W2(0,T;L2(Q)) and p € W22(0,T; L*(2)). Then, there exists a constant
M(Q,T,f,vq) > 0 such that

n
(a) Y Ot|[oRFS < M(Q,T.f,v0) 5t°,
k=2
n

(b) D 6t|[o*pF (G < M(Q, T, £, vo) 6t*,
k=1

(c) Z ot

Sketch of the proof. We can reformulate R*T! and R* as the residual integral of the
Taylor series. Then, thanks to the regularity hypothesis imposed on the velocity,
we obtain as in [22]26]:

2
< M(Q,T,f,vq) 6t2.
0

62 =k+1

n n
> St|SRFFH[G = ot [RFM — R¥|[§ < M 4t

k=2 k=2

which concludes the proof of (a).
For the proof of (b), we note that 625" is defined as follows:

FPP = 8(0p™) = o(p(t" ) — p(th)) = p(t* ) = 2p(t*) + p(¢" ).
By reformulating 62p**! as the residual integral of the Taylor series, it yields

lp(t*+1) = 2p(t*) + p(t")I[3
k k41 2
i 8%p(t) o 0%p(t)
k-1 k41
/t (1) T2 gy g /t (1 C 2 gy

k—1 k
0
th th 2 2
0°p(t
§2/ (t—tk_l)zdt/ I "
tk—l tk—l 8t2 0

(Rl tht1 82p(t)

2 thtl — )2 dt/
* /tk ( ) th ot?

Therefore, using the assumption ([@21]), we deduce

2

dt.
0

> ot][6*PH|G < Mot
k=1

which concludes (b).
Finally, the proof of (c) is deduced easily from (b). O

Lemma 7. Provided that 8t3) € L*>=(0,T;L*(Q)) and % € L>(0,T; L*(Q)
and using both assumptions [@22) and (m and Lemma B with 0 < ¢ < 1,
0 < 0t <max(1,T), then there exists a positive constant

)

Co = Co (,T, i, |[f]| 20,7y x )+ [1€°]0: ||€ [[0, [|6€* [0, || [[0)
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such that for all n > 2,

[15e™ 1R + 126"+ — se |5 + D 182615 + 24 Y 6tV (e )3
k=2 k=2

+ 22 6t|[0x T[S + &) otl[srt T — mk|[§ < Co (56 + 2 6t7).
k=2

Sketch of the Proof. The proof of this lemma follows the same principle adopted in
the proof of Theorem 3] (part (i)). First, we form the equation which governs the
error increments de™t! by subtracting the error equation for the velocity at two
consecutive discrete times. We do the same thing with the error equation for the
pressure in order to form the equation governing the error increments d7"+!.

Second, we take the scalar product of of the equation which has been obtained
by de™*! and 7", respectively. Then, we proceed as for part (i) of the proof
of Theorem E.3] with the necessary modifications, i.e, by replacing e®*! by det1,
7"t by o7t R*H by JR™t! and 6p" ! by 625711

Owing to assumptions ([@22]) and (23], we can show that

(4.24) ||6€? ||3 + |2 0e* — de'|[3 + 2 at||om2 |5 < I +e8t?).

Finally, by using Lemma [B] the majoration ([@24) and by applying the discrete
Gronwall lemma, we get the desired estimate.

Corollary 1. Based on Lemma [ and Lemma [[ and for all0 < e < 1,0 < 6t <
max(1,T), there exists a positive constant

Co = Co (. T, p, |If]| 20,7 2)» 11€°]lo. |1€*|[o. [|5€" [0 [|7*]]o)
such that

(i) Y 6t||V-e" TS < Co (6% + )e ot
k=1

(i) Y ot||m* TG < Co (5t* + £ ot).

k=1

Sketch of the Proof. (i) Error estimate for the velocity divergence.

Using (£10), we have
Vet =cop" Tt — e (a T — ).

Therefore, Lemma [4] and Lemma [7] allow us to conclude the proof as follows:

n
>tV e
k=1

2 n
+e ) 2e6t]|ort 3
0 k=1

n 5]_?k+1
2 ¢y2
2526t ;&H 5

< O (5% 4 ) e 6t2.

IN

Remark 4.6. The error analysis carried out here shows that the splitting error of
the velocity divergence is of order O(g §t) in the norm ?(L?(Q)).

(ii) Error estimate for the pressure.



ON THE ERROR ESTIMATES OF THE VPP METHODS 2177

The key of the improvement of the approximation of the pressure lies in writing
3entl —4em + e ! as the velocity error increment in time, i.e.:

3e"l —4e" 4 e" ! =3(e"T! —e") — (e" —e" ) = 30e" ! — de.
Thus,
[3e"*! —de" +e" Mg < 2(9le"t! —e"|[f + |l — e H[5)
2 (9/6e™ I3 + [l0e™][3) -

Hence, thanks to Lemma [7 we infer

n n
(4.25) ) otl[3eM ! —def +eF (G <20 > 4t]|0eM |5 < Co(0t° + £ 6t7).
k=1 k=1
Finally, thanks to Ne¢ds’ inequality and using inequality ([{25]), Lemma [ and
Theorem [L3] the desired estimate of the pressure is concluded for 6t < max(1,T).

Remark 4.7 (Another improvement of the splitting errors). It is worth men-
tioning that the splitting error of the velocity can be also improved to reach the
order of O(Vedt3 +26t2) in 1°°(L2(Q)) N I2(H'(Q)). The key improvement is
to treat directly the term 4e 6t (7" +1,6p"!)g in (4.11) by using the Necds lemma
and the equation (4.8). Note that this improvement will consequently affect the
splitting errors of Corollary 1 and improve them. Hence, it is no more useful to use
the discrete Gronwall inequality and the resulting splitting error of the velocity in
Theorem 4.3.

Remark 4.8 (Convergence rate and splitting error of the pressure approx-
imation). There exists in the literature a large number of works dedicated to
theoretical investigations on the convergence rate of the pressure. In fact, the stan-
dard form of the second-order pressure-correction scheme guarantees a convergence
rate only of order 1 for the pressure in [°°(L?(Q2)). The rotational form of this
method improves the convergence rate to 3/2 in [?(L?(Q2)). Note also that the
second-order velocity-correction method in its rotational form [25] as well as the
scalar penalty-projection method [I§] provide also a convergence rate of order 3/2
in [2(L?(€2)). To the best of our knowledge, this is the best possible convergence
rate established for the pressure approximation.

However, the result in part (ii) of Corollary [Il deserves attention since it shows
that the second-order vector penalty-projection method yields optimal error es-
timates in time for the pressure. In fact, the temporal convergence rate of the
pressure obtained here is of order 2 in [?(L?(Q)) and this is because, contrary to
the usual projection methods, there is no artificial Neumann boundary condition
for the pressure, which, if it exists, will thus limit the accuracy of the scheme.

Finally, we notice that the pressure splitting error is of order O(v/z 6t) in I?(L?(£2))
which is a remarkable result because the splitting error can be made as small as de-
sired (with e small enough) until machine precision and thus completely negligible
with respect to the time error of the scheme, i.e, O(dt?) in the present case.

5. NUMERICAL EXPERIMENTS

In this section, we give some numerical results in order to verify the theoretical
results obtained in Section Ml First, we examine the accuracy of the method on
a standard Navier-Stokes benchmark, namely the computation of Taylor-Green
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vortices. Second, we test the time accuracy of the velocity and the pressure in
the case of the Stokes flow with Dirichlet boundary conditions. In addition, we
check the L2-norm of the velocity divergence. Finally, we conduct a comparative
and qualitative study between the VPP method presented in this paper and some
pressure-correction schemes often used in the literature for the solution of non-
stationary incompressible flow problems (see, e.g., [18,27]).

Before presenting the numerical experiments, we note that the simulations pre-
sented are performed with a formally second-order scheme in time, i.e., the second-
order backward difference formula (BDF2) to march in time and the second-order
Richardson’s extrapolation to extrapolate the pressure. Concerning the spatial dis-
cretization, the VPP method is implemented with a finite volume solver on the
classical Marker and Cells grid (MAC mesh) of Harlow and Welch [29]. In our
implementations, pressure unknowns are calculated at the cell-center and velocity
components at mid-faces. Additionally, the method is initialized with a first time
step performed with a standard backward Euler scheme. Finally, in order to solve
the symmetric linear systems obtained in the prediction and projection steps, we
are running the Conjugate Gradient (CG) method with the zero-order Incomplete
Cholesky (IC(0)) as a preconditioner. The stopping criterion for the iterative (CG)
method is chosen such that ||res||a < 1075, where res denotes the residuals at the
current CG iteration.

5.1. Taylor-Green vortex. As a first benchmark for the proposed method, the
nondimensional unsteady incompressible nonlinear Navier-Stokes equations are
solved on a two-dimensional square domain for the Taylor-Green vortex decay-
ing problem. In fluid dynamics, the Taylor-Green vortex is a two-dimensional,
unsteady flow of a decaying vortex which has exactly the same closed form solution
of incompressible Navier-Stokes equations in Cartesian coordinates. We adjust the
source term f in such a way that the exact solutions of the nonlinear Navier-Stokes
problem for velocity and pressure become

u(z,y,t) = —Sin(g—x) COS(%) exp(—2ut),
v(z,y,t) = cos(%x) sin(%) exp(—2ut),
p(x,y,t) = % (cos(mz) + cos(my)) exp(—4ut).

The chosen computational domain is the square ]0,1[x]0,1[ and the velocity is
1

imposed on the whole boundary. The viscosity is set to u = 0.01 where u = 5.
We vary the time step 6t to investigate the temporal accuracy. We choose dt
sufficiently small to satisfy the usual CFL condition.

Figure [1l shows the difference between the numerical and the analytical solution
at T = 2 measured in the L?-norm for the velocity and for the pressure. These
curves are drawn for the 128 x 128 mesh with » = 1072 and e=10"'°. In both cases,
the error decreases with the time step. We observe that the convergence rate is of
order 1.85 for the velocity and the pressure. Note that the saturations observed for
very small time steps are due to the approximation error in space which becomes
dominant for very small time steps.

Moreover, we compute the L?-norm of the velocity divergence as a function of
€. We repeat this test for two different values of Reynolds number: Re = 1 and

Re = 100. The time step 6t is set to 5x 10~ !. The results are illustrated in Figure 2l
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FIGURE 1. Taylor-Green vortex (Nonlinear case) - Error on the
velocity and the pressure in L?-norm vs 6t for Re = 100, r = 1072
and e=10"10.
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FIGURE 2. Taylor-Green vortex (Nonlinear case) - Velocity diver-
gence L?-norm vs € at T = 2 with 1/h = 128, for Re = 1 and
Re = 100, respectively.

2179



2180 PHILIPPE ANGOT AND RIMA CHEAYTOU

at the final time T = 2. Both curves show that when ¢ tends to 0, the L?-norm of
the velocity divergence tends also to 0. For example, taking ¢ = 10™* with Re =1,
the value of the L2-norm of velocity divergence is approximately equal to 1076, Tt
is equal to 107° for Re = 100. Moreover, we observe that the velocity divergence
is vanishing approximately with an order of O(edt). Finally, we notice that the
values of the L?-norm of velocity divergence for Re = 1 seem smaller than those
computed for Re = 100.

5.2. A Stokes flow with Dirichlet boundary conditions. We consider a square
domain © =]0, 1[?> and we enforce nonhomogeneous Dirichlet boundary conditions
on 9. The tests are performed using the following analytical solution which defines
the right-hand side of the balance momentum equation of the linearized Navier-
Stokes equations (known as Stokes equations).

v(z,y,t) = (sin(x +1t) sin(y + t),cos(z + t) cos(y + ¢)),
p(z,y,t) = cos(zx —y+t),

This test case is the same studied in [I8,[30]. In order to check the accuracy in
time, we plot the errors of the velocity and the pressure (or the pressure gradient) in
the L2-norm for different values of the augmentation parameter r ranging between 0
and 1 at time T = 2. In the computations reported herein, the mesh size h is equal
to 1/128 so that the spatial discretization errors are negligible compared with the
time discretization errors. The time steps tested are in the range 1073 < 5t < 10°.
We choose a penalty parameter small enough: ¢ = 10719,

First, we present in Figures Bl and @ the L?-norm of the error of the velocity and
the pressure gradient respectively as a function of the time step while choosing the
augmentation parameter r equal 0. We observe in Figure [3 that the convergence
rate in time for the velocity is clearly of order 2, as predicted by Theorem In
addition, a convergence order of 2 is observed for the pressure gradient in Figure [l
This result is in agreement with the error estimates established in Corollary [l

Indeed, the vector penalty-projection method with three different nonzero values
of r: 107%, 1072 and 1 gives for the velocity and the pressure the same temporal
convergence rate as the case of r = 0, i.e, we obtain a convergence order of 2 in
L2-norm for both velocity and pressure (see Figures [ and [, respectively).

As a conclusion on the convergence rate in time in presence of Dirichlet conditions
on the boundaries, the VPP method improves the order of pressure from O(dt) to
O(6t?) compared to the standard incremental pressure-correction scheme [27]. The
VPP method provides also a higher-order than the rotational incremental pressure-
correction (order of 3/2 in L°-norm) and the scalar penalty-projection scheme [I8].
However, the convergence rate of order 2 for the velocity remains the same as in
the standard and rotational pressure-correction methods [27] and also in the scalar
penalty-projection scheme [I8].

Moreover, we plot in Figure [[l the L?-norm of the velocity divergence as a func-
tion of the penalty parameter e. We fix 6t at 10! and the augmentation parameter
r at 0. The curve shows that when the penalty parameter is chosen small enough
and tends to 0, the velocity divergence decreases and tends also to 0. Additionally,
we observe that the L?-norm of the velocity divergence vanishes roughly as O(gdt)
with e sufficiently small. Finally, Figure { illustrates the L?-norm of the velocity
divergence as a function of the time step dt with e = 1075. We notice that the
velocity divergence is approximately of order O(edt) with a penalty parameter €
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small enough. We repeat in Figure [9] and Figure the same tests with an aug-
mentation parameter r equal to 1072, Again, we observe that the L2-norm of the
velocity divergence vanishes as O(edt).

6. CONCLUDING REMARKS

In this article, we have analyzed the second-order vector penalty-projection
method for the incompressible Stokes problem with Dirichlet conditions enforced
on the entire boundary. Our conclusions are twofold.

First, we have shown the stability of the scheme using BDF2 to discretize in time.
Moreover, we have shown that, while the Dirichlet boundary conditions imposed
on the velocity degenerate into a nonrealistic Neumann boundary condition for
the pressure in the case of the usual projection methods [27], the second-order
vector penalty-projection method leads to optimal error estimates since it preserves
the original Dirichlet conditions. Consequently, the pressure approximation is no
longer plagued by an artificial Neumann boundary condition. As a result, the VPP
method provides optimal temporal convergence of order 2 theoretically as well as
numerically; more precisely, the vector penalty-projection method yields O(6t?)
accuracy for both the velocity and the pressure in the norm of [°°(L?(f2)) and
12(L3(€2)), respectively. The counterpart in this method is that the divergence of
the velocity at each time step is not exactly zero, as for the projection methods (at
least in the semi-discrete setting in time), since the VPP velocity correction step
is proved to be an approximate divergence-free projection [Il[7]. However, it is not
really a drawback since the velocity divergence is in practice of order O(edt) with
a penalty parameter ¢ taken as small as desired up to machine precision.

Second, we have shown that this family of methods opens the way to the splitting
methods with an order of time convergence greater than 2 since the splitting error
for velocity and pressure varies as O(e) which can be made negligible with respect
to the consistency error of higher-order schemes when ¢ is chosen sufficiently small.
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