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A MESHLESS GALERKIN METHOD FOR NON-LOCAL

DIFFUSION USING LOCALIZED KERNEL BASES

R. B. LEHOUCQ, F. J. NARCOWICH, S. T. ROWE, AND J. D. WARD

Abstract. We introduce a meshless method for solving both continuous and
discrete variational formulations of a volume constrained, non-local diffusion
problem. We use the discrete solution to approximate the continuous solu-
tion. Our method is non-conforming and uses a localized Lagrange basis that
is constructed out of radial basis functions. By verifying that certain inf-sup
conditions hold, we demonstrate that both the continuous and discrete prob-
lems are well-posed, and also present numerical and theoretical results for the
convergence behavior of the method. The stiffness matrix is assembled by a
special quadrature routine unique to the localized basis. Combining the quad-
rature method with the localized basis produces a well-conditioned, symmetric
matrix. This then is used to find the discretized solution.

1. Introduction

The contribution of our paper is a rigorous numerical analysis of a meshless
method for solving a variational formulation of a volume constrained, non-local
diffusion problem. Our method is non-conforming and uses a localized Lagrange
basis that is constructed out of radial basis functions. The analysis presented
demonstrates that the Lagrange multiplier method introduced in [6] for non-local
diffusion is well-posed, in both the discrete and continuous cases. Our paper also
replaces the Lagrange functions considered in [6] with local Lagrange functions as
in [16], leading to dramatically reduced quadrature costs.

Non-local diffusion generalizes classical diffusion by replacing the partial differ-
ential equations with integral equations. Various models have been proposed for
these cases of so-called anomalous diffusion, which include models based on inte-
gral equations and fractional derivatives. The non-local equation we consider has
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applications in a variety of fields besides anomalous diffusion such as image analy-
ses, non-local heat conduction, machine learning, and peridynamic mechanics. We
apply our radial basis method to a volume constrained diffusion equation. Volume
constraints replace the boundary conditions associated with classical diffusion, and
are needed to demonstrate that the problem is well-posed. It also provides a link
with a Markov jump process; see [8,10] for additional information, motivation and
citations to the literature.

An important distinction with the radial basis method introduced in [16] and
that of this paper, is that the former method is conforming whereas the latter
is non-conforming, an unavoidable aspect of a fully radial basis function method
given a volume constraint. The non-conforming method of local Lagrange functions
then enjoys all the benefits of a radial basis function method—error estimates and
stability estimates. This represents a powerful manner in which a class of radial
basis function methods can be used to approximate the solution of conventional
weak formulations of classical boundary value problems.

Meshfree methods obviate the need to mesh the domain. As noted in [5], the
development of meshless methods was stimulated by difficulties related to mesh
generation such as when the underlying domain has a complicated geometry or
when remeshing is required for time-dependent problems. Also mentioned in [5]
was the potential advantages of meshless methods when a Lagrangian formulation
is employed, which will be the case for this paper. Meshless methods also allow for
flexibility in the selection of approximating functions, in particular non-polynomial
approximating functions. In this paper the approximating spaces will be spanned
by certain localized kernel bases [12, 14] that are distinguished by a rigorous ap-
proximation theory and give rise to very practical and efficient numerical methods.

A conforming discontinuous Galerkin method for a non-local diffusion problem
was introduced in [9,10] where the basis functions are given by discontinuous piece-
wise polynomials. More traditional finite element methods, which are applied to
fractional Laplacians, are studied in [2]. Finally, in addition to finite element meth-
ods, finite difference methods are introduced and analyzed [23].

Assembly of the stiffness matrix, whether for finite element methods or for mesh-
less methods, requires quadrature to evaluate the entries in the matrix. This is a
challenging problem for three reasons: The first is that there are iterated integrals
over 2n dimensional regions, where n is underlying the spatial dimension, to be
numerically computed. The second is that the regions of integration involve partial
element volumes. The third is that the quadrature method has to provide a level
of accuracy commensurate with the estimations made in the rest of the problem.

Let us consider finite element quadrature methods. These require constructing
meshes for those that are able to handle complicated geometries, partial volume
elements, and higher dimensional regions. In general, standard finite elements will
have only linear accuracy.

In contrast, the primary advantage of the meshfree quadrature methods is that
entries in the stiffness matrix only require a pointwise evaluation of the kernel and
multiplication by quadrature weights; complications arising from overlapping par-
tial element volumes are irrelevant, as are complicated and/or higher dimensional
regions. Consequently, our proposed method requires only information at the ra-
dial basis function nodes or centers and also yields a straightforward assembly of
a stiffness matrix. As to accuracy, the numerical experiments in [16] show that
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the meshless RBF method gets better than a linear rate of convergence—nearly a
quadratic rate, in fact. Results in Section 6 do even better than that. This higher
rate is primarily due to the underlying approximation power of the RBF theory.

The numerical analysis provided in this paper will be based on two specific classes
of local Lagrange functions that will play the role of bases for the spaces Uh and
Λh appearing in (2.7). In [14], it was shown that for either thin-plate splines or
Matérn kernels on R

n, local Lagrange functions with each function determined by
O(logN)n points contained in a ball of radius Kh| log h| centered at a given point
ξ have very rapid decay around ξ. Moreover, such functions generate very stable
bases.

The theoretical development for such functions first appeared in [12] in the con-
text of S2. The corresponding theory for compact domains in Rn appeared in [14].
Applications using these basis functions in the context of numerical solution of cer-
tain PDEs have been given in [6, 16, 17]. In particular, stability estimates for this
class of functions will play a crucial role in Section 5.2 for the numerical solvability
of our problem.

The remainder of the paper is organized as follows. In Section 2, the variational
framework for both the continuous and discrete cases is discussed; in addition,
notation to be used throughout the paper is introduced. Section 3 contains a
review of the radial basis functions (RBFs) that give rise to the local Lagrange bases
mentioned earlier. These bases are highly localized and computationally inexpen-
sive. The main result is Theorem 3.5, which provides Sobolev error estimates when
approximation by the quasi-interpolation operator associated with the local La-
grange basis. Section 4 establishes coercivity results for the bilinear form (2.4).

The main results of the paper are presented in Section 5. The solutions to
the Euler-Lagrange formulation (2.6), for both the continuous and discrete cases,
are given in Theorem 5.4 and Theorem 5.10, respectively. Finally, in Section 6
numerical results are presented. These results are in good agreement with the
theoretical results discussed in Section 5.3.

2. Variational formulation

Consider a domain Ω = Ω ∪ ΩI , where Ω is an inner domain, ΩI is the inter-
action region. Denote the inner product and norm on L2(Ω) by 〈·, ·〉Ω and ‖ · ‖Ω,
respectively. We will use similar notation for L2(Ω) and L2(ΩI). The non-local
operator L of interest is defined by

Lu(x) := 2

∫
Ω

γ(x, y)
(
u(x)− u(y)

)
dy, u ∈ L2(Ω).(2.1)

The kernel γ(x, y) is symmetric, satisfies γ(x, y) ≥ 0 and is in L∞(Ω × Ω). In
addition, we assume that there exists an L∞ function γδ : [0,∞) → [0,∞), with
support in 0 ≤ r ≤ δ < ∞, such that there are constants c1 and c2 for which

(2.2) c1γδ(|x− y|) ≤ γ(x, y) ≤ c2γδ(|x− y|), x, y ∈ Ω.

The non-local diffusion problem that we are interested in is the analogue of a
homogeneous Dirichlet problem:

(2.3)

{
Lu = f, u ∈ L2(Ω), f ∈ L2(Ω)

subject to u = 0 over ΩI .
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This problem can be cast into variational form. We begin by defining the bilinear
form

(2.4) a(u, v) =

∫
Ω

∫
Ω

γ(x, y)
(
u(x)− u(y)

)(
v(x)− v(y)

)
dx dy, u, v ∈ L2(Ω),

and the corresponding energy functional E by

(2.5)

⎧⎨⎩E(u) =
1

2
a(u, u)− 〈u, f〉Ω,

subject to u = 0 over ΩI .

The constraint over the volume ΩI is the non-local analogue of a homogeneous
Dirichlet boundary condition; the reader is referred to [10, pp. 678–680] for de-
tails and discussion. The paper [10] demonstrated that the problem of finding the
minimum of the energy functional was shown to be well-posed for u in a variety of
volume constrained (proper) subspaces of L2(Ω). In [15], which also employs RBF
methods, a volume constraint is imposed via a Lagrange multiplier to approximate
a classical boundary condition. In contrast to these, as in [6], we minimize the
functional by the method of Lagrange multipliers because the local Lagrange basis
is not contained in the energy constrained space. The Lagrangian is defined as

L(u, λ) = E(u) + b(u, λ), where b(u, λ) := 〈u, λ〉ΩI .

Here, λ ∈ L2(ΩI) is the Lagrange multiplier.
The Euler-Lagrange formulation of the problem is then: Find u ∈ L2(Ω) such

that

(2.6)

{
a(u, v) + 〈v, λ〉ΩI = 〈v, f〉Ω for all v ∈ L2(Ω) ,

〈u,w〉ΩI = 0 for all w ∈ L2(ΩI) .

We discretize this system by choosing finite dimensional subspaces Uh ⊂ L2(Ω̄)
and Λh ⊂ L2(ΩI), where

(2.7) Uh = span{φi}Ni=1 , Λh = span{ψk}NI
k=1 .

We then approximate the pair (u, λ) by the discrete pair (uh, λh) given by the
expansions

uh =

N∑
j=1

αjφj , λh =

NI∑
k=1

βkψk .

Inserting the expansions into (2.6) and in turn selecting v and w equal to each
φi and ψk, respectively, determines the needed coefficients as the solution to the
saddle point system (

A B
BT 0

)(
α
β

)
=

(
b
0

)
,(2.8a)

with matrix, vector entries given by

Ai,j = a(φi , φj) , Bi,k = 〈φi , ψk〉ΩI , bi = 〈φi, f〉Ω .(2.8b)
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3. Radial basis functions and localized kernel bases

In this section, we give background material on interpolation and approximation
with radial basis functions (RBFs). Radial basis functions are used to construct the
approximation space for the Galerkin method we propose in Section 5.2. The inter-
ested reader should consult [24] or [11] for further details on radial basis functions
and interpolation.

3.1. Radial basis functions. A radial basis function (RBF) is a radial function
Φ(x) = φ(|x|), where φ ∈ C[0,∞), that is (strictly) positive definite on Rn [24,
Chapter 6] or (strictly) conditionally positive definite on Rn, with respect to the set
of polynomials πm−1 := πm−1(R

n) having total degree m−1 or less [24, Chapter 8].
Specifically, this means that for every pairwise distinct set X ⊂ Rn, with cardinality
|X| = N < ∞, and all non-zero a ∈ RN satisfying

∑
ξ∈X aξp(ξ) = 0, for all

p ∈ πm−1, we have that ∑
ξ∈X

∑
ζ∈X

φ(|ξ − ζ|)aξaζ > 0.

The RBFs that are conditionally positive definite with respect to πm−1 are said
to have order m ≥ 1. If an RBF is positive definite, it has order 0.

We will be especially interested in thin-plate splines (TPS) or surface splines,
because they produce Lagrange and local Lagrange functions that are well-localized
in space and have a “small” footprint among the thin-plate splines used to construct
them; see [14]. For m > n/2, a thin-plate spline is defined by

(3.1) φm(r) :=

{
r2m−n n is odd,

r2m−n log r n is even.

For each m > n/2, the TPS φm(|x|) is an order m RBF.
An example of an RBF that has properties similar to an order m TPS, but is

positive definite (order 0), is the Matérn kernel, which is defined by

(3.2) κm(r) := CKm−n/2(r) r
m−n/2, m > n/2.

The label m is used to indicate the similarity to φm. Here C is a constant depending
on m and n, and Km−n/2 is a Bessel function of the second kind.

The approximation space for any RBF Φ(x) = φ(|x|) of order m associated with
a unisolvent1 set X, which is called the set of centers, is defined by

(3.3) VX :=
{ ∑

ξ∈X

aξφ(|x− ξ|) :
∑
ξ∈X

aξ p(ξ) = 0 ∀ p ∈ πm−1

}
+ πm−1,

where π−1 = {0}. Specifically, each s ∈ VX has the form2

(3.4) s(x) =
∑
ξ∈X

aξφ(|x− ξ|) +
∑

|γ|≤m−1

βγx
γ ,

where γ = (γ1, . . . , γn) is a multi-index, |γ| = γ1 + · · ·+ γn, and
∑

ξ∈X aξp(ξ) = 0
for all p ∈ πm−1. If X is a unisolvent set for πm−1 and dη ∈ C is given at each
η ∈ X, there is a unique s ∈ VX that interpolates the dη’s; i.e., s(η) = dη. In
particular, if the data are generated by a continuous function defined on a domain

1Unisolvent with respect to πm−1 means every p ∈ πm−1 is uniquely determined by its values
on X.

2Bases other than {xγ}|γ|≤m−1 may be used for πm−1.



2238 R. B. LEHOUCQ, F. J. NARCOWICH, S. T. ROWE, AND J. D. WARD

containing X, then we may take dη = f(η), and thus (uniquely) interpolate f on
X. We denote the interpolant arrived at in this way by IXf .

3.1.1. Geometry of the set of centers. The geometry of the centers is important for
estimating the approximation quality of the RBF interpolant and for estimating
the condition number of the interpolation matrix. RBF interpolation offers the ad-
vantage of not requiring regular distributions of points; arbitrarily scattered centers
produce invertible interpolation matrices for positive definite functions.

LetD be a bounded, Lipschitz domain3 and letX ⊂ D ⊂ R
n be a set of scattered

centers. We define the fill distance (or mesh norm) h, the separation radius q and
the mesh ratio ρ to be:

(3.5) h := sup
x∈D

dist(x,X), q :=
1

2
inf
ξ∈X

dist(ξ,X\{ξ}), ρ :=
h

q
.

The mesh norm h is the radius of the largest ball in D that does not contain
any centers. The separation radius q is the radius of the largest ball that can be
placed at a center without including any other center; it is thus half of the minimal
pairwise distance between the centers. Finally, we define the mesh ratio to be h/q.
Obviously, ρ ≥ 1.

The mesh ratio measures the uniformity of the distribution of X in D. The
larger ρ is, the less uniform the distribution is. If ρ is “small”, then we say that
the point set X is quasi-uniformly distributed, or simply that X is quasi-uniform.
Geometrically, ρ controls how the centers cluster as the number of points increases.
We note that for the quasi-uniformly distributed collections of centers {Xh,q}, which
we will encounter later, we do not require any nesting of these sets of centers.

Earlier we mentioned that for a unique interpolant from VX to exist, it was
necessary that X be unisolvent with respect to πm−1. For a Lipschitz domain,
there is a constant rm,∂D such that if h ≤ rm, ∂D, then X will be unisolvent [18,
Proposition 3.5]; i.e., unisolvency holds if h is small enough.

Next, we will need a second bounded Lipschitz domain D̃ and a set of centers

X̃ ⊂ D̃ that satisfy certain conditions. Let

(3.6) rh := Kh| log h|,
where K > 0 is a parameter4 at our disposal. Then let D̃ ⊇ D ∪ {x ∈ Rn :

dist(x,D) ≤ rh}. The set of centers X̃ ⊂ D̃ is chosen so that X = X̃ ∩D, and that

h, q, and ρ for X̃ in D̃ are approximately the same as for X in D. A method for

constructing X̃ is given [14, Section 2.3].

3.1.2. Approximation spaces and interpolation operators. There are two classes of
functions, constructed from RBFs, that will play an important role below: Lagrange
functions and local Lagrange functions.

The Lagrange function centered at ξ, χξ, is defined to be the unique RBF inter-
polant satisfying χξ(η) := δξ,η, for all η in a given set of centers, which we will take

to be X̃. It is obvious that the set {χξ : ξ ∈ X̃} is a basis for V
˜X , and that the in-

terpolant for a continuous function f defined on D̃ is given by I
˜Xf =

∑
ξ∈ ˜X f(ξ)χξ.

Local Lagrange functions are defined as follows. Let Υξ := X̃ ∩Brh(ξ). As long
as h is small enough, Υξ will be unisolvent with respect to πm−1. The local Lagrange

3To avoid notation confusion, we use D rather than Ω, which is standard.
4On S2 for the m = 2 thin-plate spline, K ≈ 2.8 worked well [12, Sections 6.3 & 7].
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function at centered ξ ∈ Υξ is defined to be the unique function bξ ∈ VΥξ
for which

bξ(η) = δξ,η for all η ∈ Υξ,r. We remark that there are Lagrange functions centered
at other points in VΥξ

, but they play no role here. Note that each bξ corresponds

to exactly one center in Υξ, and since Υξ ⊂ X̃, it follows that bξ ∈ V
˜X .

We will need two additional spaces, V ′
X and ṼX ; the first is associated with

Lagrange functions, and the second with local Lagrange functions:

V ′
X := span{χξ ∈ V

˜X : ξ ∈ X},(3.7)

ṼX := span{bξ ∈ V
˜X : ξ ∈ X}.(3.8)

It is important to note that, because functions in V ′
X are constructed using

centers from X̃ \X, not just those in X, the space VX , which is constructed using
only centers in X, and V ′

X are not the same, although both are subspaces of V
˜X .

Like VX , we are able to define an interpolation operator for V ′
X . For a continuous

function f defined on a domain that includes X, we let I ′Xf =
∑

ξ∈X f(ξ)χξ. The
formula is the superficially the same as that for IXf . They are not the same,
however: IX maps to VX while I ′X maps to V ′

X �= VX .
For the local Lagrange functions, we will use quasi-interpolants, rather than

interpolants. Given a continuous function f defined on a domain containing X, let

ĨXf :=
∑

ξ∈X f(ξ)bξ. Because the bξ’s are not full Lagrange functions, when we

evaluate ĨXf at x = η ∈ X, we only get ĨXf(η) =
∑

ξ∈X f(ξ)bξ(η). In general, this

will not be equal to f(η) because, unlike χξ, for those η �∈ Υξ, bξ(η) will not be 0;

thus, ĨXf(η) �= f(η). Even so, ĨXf will behave like an interpolant; its advantage is
that it can be constructed in a computationally efficient way.

3.1.3. Fractional Sobolev spaces. Throughout this paper we will use fractional, as
well as integer, Sobolev spaces. Let β ≥ 0, k = �β� and let s = β − k. Note
that 0 ≤ s < 1. For 1 ≤ p < ∞, various equivalent norms exist for the space
W β

p (D) when β is fractional [3, Chapter VII]. We will use the intrinsic or Sobolev-
Slobodeckij norm ([3, Definition 7.43], [20, Section 2])

‖f‖p
Wβ

p (D)
:= ‖f‖p

Wk
p (D)

+
∑
|α|=k

∫
D

∫
D

|Dαf(x)−Dαf(y)|p
|x− y|n+sp

dxdy.

In what follows, we will need the following lemma.

Lemma 3.1 ([20, Lemma 5.1]). Let D, D̃ be bounded Lipschitz domains, with D ⊂
D̃, dist(∂D, ∂D̃) > 0, d1 = diam(D̃), and let S ⊂ D be compact, with d2 :=
dist(∂D, S) > 0. In addition, suppose that f ∈ W β

p (D) has support in S and that
fe extends f to all of Rn by setting it equal to 0 outside of S. Then, we have

(3.9) ‖fe‖Wβ
p ( ˜D) ≤

(
1 +

ωn−1

sp
(d−s

2 − d−s
1 )

)
‖f‖Wβ

p (D),

where ωn−1 is the volume of the n− 1 sphere.

Proof. Let β = k+s, where k = �β� and s = β−k. Repeat the proof of Lemma 5.1

in [20], keeping track of constants and adjusting for replacing Rn by D̃, to see
that ‖Dαfe‖W s

p (
˜D) ≤ ωn−1

sp (d−s
2 − d−s

1 )‖Dαf‖W s
p (D). In addition, we have that
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‖fe‖Wk
p ( ˜D) = ‖f‖Wk

p (D). Hence,

‖fe‖p
Wk+s

p ( ˜D)
= ‖f‖p

Wk
p (D)

+
∑
|α|=k

‖Dαfe‖p
W s

p (
˜D)

≤ ‖f‖p
Wk

p (D)
+
(ωn−1

sp
(d−s

2 − d−s
1 )

)p ∑
|α|=k

‖Dαf‖pW s
p (D)

≤ ‖f‖p
Wk+s

p (D)
+
(ωn−1

sp
(d−s

2 − d−s
1 )

)p‖f‖p
Wk+s

p (D)

≤
(
1 +

ωn−1

sp
(d−s

2 − d−s
1 )

)p‖f‖p
Wk+s

p (D)
.

Taking the pth root and using β = k + s, we arrive at (3.9). �
3.1.4. Approximation power. RBF interpolation and approximation provide excel-
lent approximation power when X is quasi-uniformly distributed in D. For RBFs
with Fourier transforms that behave like

(3.10) c1(1 + ‖ω‖22)−τ ≤ Φ̂(ω) ≤ c2(1 + ‖ω‖22)−τ , ω ∈ R
n,

or have a generalized Fourier transform that satisfies

(3.11) c1‖ω‖−2τ
2 ≤ Φ̂(ω) ≤ c2‖ω‖−2τ

2 , τ ∈ 2N, ω ∈ R
n \ {0},

where we take τ > n/2, we have the approximate rates in the result below.

Theorem 3.2 ([19, Theorem 4.2]). Suppose that φ is an RBF that satisfies (3.10)
or (3.11) and that X is quasi-uniformly distributed in D, with separation radius q
and mesh norm h. In addition, let IXf be the interpolant to f from VX . If τ ≥ β,

β = k + s with 0 ≤ s < 1 and k > n/2, and if f ∈ W β
2 (D), then

‖f − IXf‖Wμ
2 (D) ≤ Chβ−μρτ−μ‖f‖Wβ

2 (D), 0 ≤ μ ≤ β,

where IXf is given by (3.4).

The thin-plate splines satisfy (3.11), and both Matérn kernels and Wendland
functions satisfy (3.10). (See [24, Sections 8.3 & 9.4].)

Corollary 3.3. Suppose that φ is an RBF that satisfies (3.10) or (3.11), and that

τ > n/2 and 0 ≤ μ ≤ β ≤ τ . Also, let D, D̃, S be as in Lemma 3.1. In addition,

assume that X̃ ⊂ D̃, X ⊂ D, and let X ⊂ X̃ be quasi-uniform sets of centers in

D̃ and D, respectively, with h
˜X ≈ hX ≈ h. Then, there exists C = CD, ˜D,S,β,μ > 0

such that

(3.12) ‖f − I ′Xf‖Wμ
2 (D) ≤ Chβ−μρτ−μ‖f‖Wβ

2 (D),

where I ′Xf is the interpolant to f defined in Section 3.1.2.

Proof. Let fe be the extension of f to Rn given in Lemma 3.1. The interpolant to
fe from V

˜X is I
˜Xfe =

∑
ξ ˜X fe(ξ)χξ(x). Since f

e|
˜X\X = 0 and fe|X = fX , we have

I
˜Xfe =

∑
ξ∈X f(ξ)χξ(x) = I ′Xf ∈ V ′

X ⊂ V
˜X . Obviously,

(
fe− I

˜Xfe)|D = f − I ′Xf .
Consequently,

‖f − I ′Xf‖Wμ
2 (D) = ‖fe − I

˜Xfe‖Wμ
2 (D) ≤ ‖fe − I

˜Xfe‖Wμ
2 ( ˜D).

By Theorem 3.2 and Lemma 3.1, we have

‖fe − I
˜Xfe‖Wμ

2 ( ˜D) ≤ Chβ−μρτ−μ‖fe‖Wβ
2 ( ˜D) ≤ Chβ−μρτ−μ‖f‖Wβ

2 (D).

Combining the two previous inequalities then yields (3.12). �
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3.2. Localized kernel bases. The thin-plate splines (φm’s) and Mátern kernels
(κm’s), which are defined in (3.1) and (3.2), respectively, give rise to Lagrange func-
tions, the χξ’s, and local Lagrange functions, the bξ’s, that are localized spatially
and have a small footprint in the kernel basis; i.e., they use only relatively few
kernels in their construction.

Throughout the rest of the paper, the φm’s and the κm’s will be the only RBFs
used. Since their properties are very similar, we will denote either RBF by just φ.
The φm’s are order m, so functions in the approximation space require a polynomial
part from πm−1. On the other hand, since the κm’s are order 0, functions in the
the corresponding approximation space have no polynomial part. We will include
the polynomial part for both RBFs, with the understanding that, for κm, it should
be omitted.

3.2.1. Lagrange functions. Let D be a bounded Lipschitz domain, with boundary
∂D, and let X be a quasi-uniform set of centers in D. A Lagrange function centered
at ξ, with ξ fixed, solves the interpolation problem χξ(η) = δξ,η for all ξ, η ∈ X.
Written in terms of the φ basis for VX it has the expansion

(3.13) χξ(x) =
∑
η∈X

αη,ξφ(|x− η|) +
∑

|γ|≤m−1

βγ,ξx
γ ,

For the thin-plate splines and Mátern RBFs, there are three important features
of χξ’s. The first is a decay property of the Lagrange functions. This is what
makes them spatially localized. By [14, eqn. (3.5)], if x ∈ D, then there exist
positive constants5 ν = ν(φ, n) and C = C(φ, n) such that

(3.14) |χξ(x)| ≤ Cρm−n/2 exp

(
− ν

|x− ξ|
h

)
, x ∈ D, ξ ∈ X.

The second is that, by [14, eqn. (3.6)], the αη,ξ’s in (3.13) decay exponentially
in the distance from η to ξ:

(3.15) |αη,ξ| ≤ Cqn−2m exp

(
− ν

|η − ξ|
h

)
, ξ, η ∈ X.

Because of this decay, the χξ’s, which are given in (3.13), require only a relatively
small number of the φ(| · −η|)’s to approximately calculate them. That is, the
χξ’s have a small footprint in the space of kernels. In [12, Section 7], similar
decay in Lagrange functions constructed using spherical basis functions was used
to construct a preconditioner for solving the equations for the αη,ξ’s.

The third concerns stability of the Lagrange basis. We begin by defining the
synthesis operator T : C|X| → VX by Ta =

∑
ξ∈Ξ aξχξ =: s. In other words, T

takes a set of coefficients {aξ}ξ∈Ξ and outputs a function s ∈ VΞ satisfying s(ξ) = aξ.

If we use the �p(X) norm for C|X| and Lp(D) for VX , then the stability of the
basis, relative to these norms, is measured by comparing ‖a‖�p(X) and ‖s‖Lp(D)

[14, Proposition 3.2]):

(3.16) c ‖a‖�p(X) ≤ q−n/p‖
∑
ξ∈X

aξχξ‖Lp(D) ≤ Cρm+n/p ‖a‖�p(X) .

5To simplify the inequalities obtained from [14, eqn. (3.6)] and [14, eqn. (3.7)], we have chosen
ν to be the smaller of the two decay constants used in [14]. In addition, for the m = 2 thin-plate
spline on S2, numerical experiments yield ν ≈ 1.3 [12, Section 4].
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Finding the full set of Lagrange functions {χξ}ξ∈X requires solving an N × N
system of equations, where N = |X|, to obtain the αη,ξ’s in (3.13). If N is large, say
30,000, then finding the χξ’s essentially requires solving a 30, 000× 30, 000 system.
This is a formidable task.

The way to get around this is to make use of the exponential decay of the
coefficients, given in (3.15), to truncate the coefficients used in (3.13). The result
will be a set of local Lagrange functions, namely, the bξ’s introduced in Section
3.1.2. Finding the bξ’s requires solving a set of N relatively small linear systems,
which can be done in parallel.

The properties of RBFs guarantee that the coefficients in (3.17) always can be
solved for using the equations in (3.18). Letting Nξ = |Υξ| + dim(πm−1), we see
that the system is Nξ × Nξ. Estimating |Υξ| may be done by comparing volumes
of Bξ,rh and of Bξ,q, which has only a single point ξ in it. The result is

|Υξ| ≈ vol(Bξ,rh)/vol(Bξ,q) = rnh/q
n = Knρn| log h|n.

The same comparison yields N ≈ vol(D)/vol(Bξ,q) ≈ Cρnh−n, equivalently, h ≈
N−1/n. It follows that Nξ ≈ C(logN)n. Since there are N centers in X, deter-
mining all of the bξ’s requires solving N systems that have approximately (logN)n

variables each, if the small number of β variables are ignored. These systems are
symmetric and can be solved in parallel. This is a great improvement over solving
the N × N system required for determining the χξ’s. In fact, it is the principal
reason for introducing the local Lagrange functions.

3.3. Local Lagrange functions. Local Lagrange functions, constructed from thin-
plate splines or Mátern RBFs restricted to a sphere, were introduced in [12], where
decay properties and quasi-interpolation convergence rates were studied. Recent
work [14] has extended theoretical properties of a local Lagrange basis to bounded
Lipschitz domains in Rn. We now describe the properties that we will need here.

A local Lagrange function bξ is a Lagrange function, centered at ξ ∈ X, for

Υξ := X̃ ∩Bξ,rh . It has the form

(3.17) bξ(x) :=
∑
η∈Υξ

αη,ξφ(|x− η|) +
∑

|γ|≤m−1

βγ,ξ x
γ ,

where the coefficients are uniquely determined by the equations

(3.18) bξ(η) = δξ,η, ξ ∈ X, η ∈ Υξ and
∑
η∈Υξ

αη,ξp(η) = 0, ∀ p ∈ πm−1.

The local Lagrange functions have decay properties similar to the Lagrange func-
tions, although the rates are polynomial rather than exponential in the mesh norm
h. Let J be given by

(3.19) J :=

{
Kν/2 + 2n− 4m− 1, Mátern RBF,

Kν/2 + n− 5m, Thin-plate spline.

Then, by [14, Lemmas 4.7 & 4.9], with σ = 0 and p = ∞, we have, for x ∈ D and
ξ ∈ X, |bξ(x)− χξ(x)| ≤ Cρh

J . With a little work, this can be used to obtain the
bound below, which again holds for x ∈ D, ξ ∈ X:

(3.20) |bξ(x)| ≤ Cρ

(
1 +

|x− ξ|
h

)−J

.
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In addition to the decay result above, there is also a result concerning stability
[14, Proposition 411],

(3.21) c ‖a‖�p(X) ≤ q−n/p‖
∑
ξ∈X

aξbξ‖Lp(D) ≤ Cρm+n/p ‖a‖�p(X) ,

which holds if K > (10m− 2)/ν and 1 ≤ p ≤ ∞.
Recall that the space associated with local Lagrange functions having ξ in X is

defined by ṼX = span{bξ : ξ ∈ X}. The stability estimate in (3.21) implies that

{bξ : ξ ∈ X} is linearly independent. Consequently, it is a basis for ṼX .
There is another result that we will need below. It involves an inequality estab-

lished in the course of proving [14, Proposition 4.11].

Lemma 3.4. Suppose that K > (10m− 2)/ν. For 0 ≤ σ ≤ m− (n/2− n/p)+ and
1 ≤ p < ∞ (or σ ∈ N and 0 ≤ σ < m− n/2 when p = ∞), then there is a constant
C = C(σ, p,m,D) > 0 such that we have

(3.22) ‖
∑
ξ∈X

aξ(bξ − χξ)‖Wσ
p (D) ≤ ChJ−n( p−1

p )‖a‖�p(X).

Proof. The inequality was established in the proof of [14, Theorem 4.10]; it is
[14, eqn. (4.14)]. �

3.3.1. Quasi-interpolants and approximation power. Our aim now is to extend Corol-
lary 3.3 to the quasi-interpolant case, again with centers outside of D. This plays a
role in error estimates for the non-local diffusion problems discussed later and also
in the quadrature method given at the end of this section.

Theorem 3.5. Let k ∈ N, 0 ≤ s < 1, and n/2 < β = k + s ≤ m. Suppose that

φ is a thin-plate spline φm or a Matérn kernel κm. If f ∈ W β
2 (D) is compactly

supported in D and 0 ≤ μ ≤ β, then there is an h0 and a sufficiently large K such
that for all h ≤ h0 we have

(3.23) ‖f − ĨXf‖Wμ
2 (D) ≤ Chβ−μ‖f‖Wβ

2 (D).

Proof. Let x ∈ D and form both the interpolant I ′Xf =
∑

ξ∈X f(ξ)χξ(x) ∈ V ′
X and

the quasi-interpolant ĨXf(x) =
∑

ξ∈X f(ξ)bξ(x) ∈ ṼX for f . We have,

‖f − ĨXf‖Wμ
2 (D) ≤ ‖f − I ′Xf‖Wμ

2 (D)︸ ︷︷ ︸
A

+ ‖I ′Xf − ĨXf‖Wμ
2 (D)︸ ︷︷ ︸

B

.

By Corollary 3.3, we have A ≤ Chβ−μρτ−μ‖f‖Wβ
2 (D). To estimate B, note that

I ′Xf − ĨXf =
∑

ξ∈X f(ξ)(χξ(x) − bξ(x)). Applying Lemma 3.4, with aξ = f(ξ),
yields

(3.24) B = ‖
∑
ξ∈X

f(ξ)(bξ − χξ)‖Wμ
2 (D) ≤ ChJ−n

2 ‖f |X‖�2(X),

where J is given in (3.19). By (3.16), with aξ = f(ξ), we have

‖f |X‖�2(X) ≤ c−1q−
n
2 ‖I ′Xf‖L2(D) ≤ c−1ρ

n
2 h−n

2

(
‖I ′Xf − f‖L2(D) + ‖f‖L2(D)

)
.

Applying the estimate on A for the μ = 0 case and using the fact that ‖f‖L2(D) ≤
‖f‖Wβ

2 (D), we see that ‖f |X‖�2(X) ≤ Cq−
n
2 ‖f‖Wβ

2 (D) = Cρ
n
2 h−n

2 ‖f‖Wβ
2 (D). Using
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this to bound the right side of (3.24) results in B ≤ Cρn/2hJ−n‖f‖Wβ
2 (D). Choose

K in (3.19) so large that J ≥ β − μ+ n. This yields

(3.25) B ≤ Cρn/2hβ−μ‖f‖Wβ
2 (D).

Adding A and B then yields (3.23). �
For future reference, we wish to note that these error estimates lead to estimates

for the distance of f to span{bξ : ξ ∈ X}. Since distL2(D)(f, span{bξ : ξ ∈ X}) ≤
‖f − ĨXf‖L2(D), we have, for f ∈ W β

2 (D) having compact support in D,

(3.26) distL2(D)(f, span{bξ : ξ ∈ X}) ≤ Chβ‖f‖Wβ
2 (D).

Remark 3.6. There are two ways in which Theorem 3.5 is likely to be able to
be improved: better rates and removal of the requirement for compact support.
As we mentioned earlier, for RBF interpolation of sufficiently smooth functions,
Schaback [21, Theorem 5.1] obtained a rate double that given earlier in Theorem 3.2.
Hangelbroek [13, Corollary 5.2] established a result showing this phenomenon to be
true using the basis {χξ}, for functions in certain Besov spaces. Something similar
is certainly true for Sobolev spaces, and will be dealt with in future work. As to the
support requirement, we believe that it is an artifact of the method of proof and is
unnecessary, in view of the result [19, Theorem 4.2] holding when all of the centers
are inside of D. Showing this conjecture holds is an open problem. In Section 6,
we will discuss numerical evidence supporting our conjectures.

3.3.2. Quadrature using quasi-interpolants. We now turn to a quadrature formula

for f ∈ W β
2 (D). We will require this formula to be exact for all functions in ṼX .

To derive it, let s =
∑

ξ∈X aξbξ and observe that this requirement implies that∫
D
s(x)dx =

∑
ξ∈X aξ

∫
D
bξ(x)dx. If we replace s by the quasi-interpolant ĨXf ,

then we have

(3.27) QX(f) :=

∫
D

ĨXf(x)dx =
∑
ξ∈X

f(ξ)wξ, where wξ :=

∫
D

bξ(x)dx.

A straightforward application of Theorem 3.5 yields the following error estimates
for the quadrature formulas.

Proposition 3.7 ([16, Lemma 2]). Under the conditions of Theorem 3.5, with

β ∈ R, n/2 < β ≤ m, μ = 0, and f ∈ W β
2 (D) having compact support in D, we

have

(3.28)

∣∣∣∣ ∫
D

f(x)dx−QX(f)

∣∣∣∣ ≤ Chβ‖f‖Wβ
2 (D).

We close this section by deriving a formula for the weights in the quadrature
formula. In the formula wξ :=

∫
D
bξ(x)dx, we replace bξ by the right side of (3.17)

and integrate; this yields:

(3.29) wξ =
∑
ξ∈X

αη,ξ

∫
D

φ(x− η)dx︸ ︷︷ ︸
J(η)

+
∑

|γ|≤m−1

βγ,ξ

∫
D

xγdx︸ ︷︷ ︸
Jγ

.

It follows that if we can calculate the J(η)’s and Jγ we can obtain the weights from
the coefficients in (3.17). When D is a polygonal domain and φ a thin-plate spline,
there is a simple, exact, analytical formula for J(η), which we derive in Appendix A.
Employing this formula greatly reduces the cost of finding the weights.
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4. Coercivity

Now we will need various coercivity results for the quadratic form (2.4). (At this
point, we again use Ω, Ω, and ΩI as in Section 2.) We begin with the following
lemmas.

Lemma 4.1. Let u ∈ L2(Ω). Suppose that 0 ≤ ε < 1. If
∣∣ ∫

ΩI
u(x)dx

∣∣ ≤
ε|ΩI |1/2‖u‖ΩI , then

(4.1)
1√
|Ω|

∣∣∣∣ ∫
Ω

u(x)dx

∣∣∣∣ ≤ (√
1− �+

√
� ε

)
‖u‖Ω, � :=

|ΩI |
|Ω|

.

Furthermore, if 0 < t ≤ 1 and ε ≤ (1−t)
√
�

1+
√
1−�

, then

(4.2)
1√
|Ω|

∣∣∣∣ ∫
Ω

u(x)dx

∣∣∣∣ ≤ (
1− t�

1 +
√
1− �

)
‖u‖Ω.

Proof. Since
∫
Ω
u(x)dx =

∫
Ω
u(x)dx+

∫
ΩI

u(x)dx, by Schwarz’s inequality, we have

that ∣∣∣∣ ∫
Ω

u(x)dx

∣∣∣∣ ≤ |Ω|1/2‖u‖Ω + ε|ΩI |1/2‖u‖ΩI ≤
(
|Ω|1/2 + ε|ΩI |1/2

)
‖u‖Ω.

Divide both sides above by |Ω|1/2. Note that |Ω| = |Ω| − |ΩI |, so |Ω|/|Ω| = 1 − �.
The resulting inequality is (4.1). The second inequality follows from the first, after
a little algebra. �

Lemma 4.2. Let u ∈ L2(Ω) and 0 < t ≤ 1. If
∣∣ ∫

ΩI
u(x)dx

∣∣ ≤ ε|ΩI |1/2‖u‖ΩI , with

ε ≤ (1−t)
√
�

1+
√
1−�

, then ∥∥∥∥u− |Ω|−1

∫
Ω

u(x)dx

∥∥∥∥2
Ω

≥ t�

1 +
√
1− �

‖u‖2
Ω
.

Proof. Note that |Ω|−1
∫
Ω
u(x)dx = 〈u, e0〉Ωe0, where e0 = |Ω|−1/2 is a constant

unit vector in L2(Ω) and 〈u, e0〉Ωe0 is the orthogonal projection of u onto e0. Hence,
‖u− 〈u, e0〉Ωe0‖2Ω = ‖u‖2

Ω
− |〈u, e0〉Ω|2. Since

〈u, e0〉Ω =
1√
|Ω|

∫
Ω

u(x)dx,

we have, by Lemma 4.1, that

‖u− 〈u, e0〉Ωe0‖2Ω ≥
(
1−

(
1− t�

1 +
√
1− �

)2)
‖u‖2

Ω

≥
(
1−

(
1− t�

1 +
√
1− �

))
‖u‖2

Ω
=

t�

1 +
√
1− �

‖u‖2
Ω
.

�

We remark that if
∫
ΩI

u(x)dx = 0, then (4.1) becomes

1√
|Ω|

∣∣∣∣ ∫
Ω

u(x)dx

∣∣∣∣ ≤ (√
1− �

)
‖u‖Ω,
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and thus the lower bound in Lemma 4.2 has the form∥∥∥∥u− |Ω|−1

∫
Ω

u(x)dx

∥∥∥∥2
Ω

≥ �‖u‖2
Ω
.

The point of the lemmas proved above is this. Suppose that we have a subspace
Π of functions in L2(ΩI) with the property that distL2(ΩI)(1,Π) ≤ ε|ΩI |1/2. If we
consider all u ∈ L2(Ω) such that u|ΩI is orthogonal to Π in L2(ΩI), then we have
that, for every p ∈ Π,∣∣∣∣ ∫

ΩI

udx

∣∣∣∣ = ∣∣∣∣ ∫
ΩI

u(1− p)dx

∣∣∣∣ ≤ ‖u‖ΩI‖1− p‖ΩI .

If we minimize over all p ∈ Π, then

(4.3)

∣∣∣∣ ∫
ΩI

udx

∣∣∣∣ ≤ ‖u‖ΩI distL2(ΩI)(1,Π) ≤ ε|ΩI |1/2‖u‖ΩI .

We are now in a position to prove the lower bound for the quadratic form a(u, u).

Theorem 4.3. Suppose that distL2(ΩI)(1,Π) ≤ ε|ΩI |1/2 and that, for some 0 <

t ≤ 1, ε ≤ (1−t)
√
�

1+
√
1−�

. If
∫
ΩI

u(x)p(x)dx = 0 for all p ∈ Π, then

(4.4) a(u, u) ≥ t�λδn+2

1 +
√
1− �

‖u‖2
Ω
,

where δ and λ are defined in [4, Corollary 3.4].

Proof. By [4, Corollary 3.4], which applies because γ satisfies (2.2), we have that,
for all w ∈ L2(Ω) such that

∫
Ω
wdx = 0, a(w,w) ≥ λδn+2‖w‖2

Ω
. If u ∈ L2(Ω),

then we have w = u − |Ω|−1
∫
Ω
u(x)dx satisfies

∫
Ω
wdx = 0. Furthermore, for any

constant c, we also have that a(u − c, u − c) = a(u, u). From these facts, we thus
have

a(u, u) ≥ λδn+2
∥∥u− |Ω|−1

∫
Ω

u(x)dx
∥∥2
Ω
.

The lower bound in (4.4) follows immediately from this inequality, Lemma 4.2, and
(4.3). �

Corollary 4.4. If
∫
ΩI

udx = 0, then a(u, u) ≥ �λδn+2

1+
√
1−�

‖u‖2
Ω
.

Proof. Since
∫
ΩI

udx = 0, Lemma 4.2 applies with ε = 0 and t = 1. The result
then follows from the same argument used to prove Theorem 4.3. �

5. Lagrange multiplier formulation

We now want to discuss a family of variational problems that will include (2.5)
and its discretizations, and these problems into Lagrange-multiplier form. We will
deal with the following spaces: U ⊂ L2(Ω), Λ ⊂ L2(ΩI), and Uc := {u ∈ U : u|ΩI ∈
Λ⊥}. All of these are assumed to be closed.

We also assume that Λ satisfies these properties: First, let ε satisfy the conditions
in Theorem 4.3. Then, we require that

(5.1) distL2(ΩI)(1,Λ) ≤ ε|ΩI |1/2,
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Second, for every λ ∈ Λ there exists an extension6 λ̃ ∈ U and a constant β > 0
such that for all λ ∈ Λ we have

(5.2) 0 < β ≤ ‖λ‖ΩI

‖λ̃‖Ω
.

Our goal is to establish the following result, which encompasses the various
Lagrange multiplier problems that we wish to study.

Proposition 5.1. There exist unique functions u ∈ U and λ ∈ Λ such that for all
v ∈ U and ν ∈ Λ

(5.3)

⎧⎪⎪⎨⎪⎪⎩
a(u, v) +

∫
ΩI

λ(x)v(x)dx =

∫
Ω

v(x)f(x)dx,∫
ΩI

u(x)ν(x)dx = 0.

The proof will be carried out in several steps. We will begin with the following
inf-sup condition for the linear functional

(5.4) b(v, λ) :=

∫
ΩI

v(x)λ(x)dx, v ∈ U and λ ∈ Λ.

Lemma 5.2. There exists a constant β > 0 such that

(5.5) β ≤ inf
λ∈Λ

sup
v∈U

|b(v, λ)|
‖v‖Ω‖λ‖ΩI

.

Proof. Let λ be fixed. By the second assumption on Λ, λ has an extension λ̃ to U .
Because λ̃ ∈ U , we see that

sup
v∈U

|b(v, λ)|
‖v‖Ω‖λ‖ΩI

≥ |b(λ̃, λ)|
‖λ̃‖Ω‖λ‖ΩI

=
‖λ‖2ΩI

‖λ̃‖Ω‖λ‖ΩI

=
‖λ‖ΩI

‖λ̃‖Ω
≥ β,

where the right-hand inequality follows from the assumption (5.2). Taking the
infimum above yields (5.5). �
Lemma 5.3. There exists a unique u0 ∈ Uc such that a(u0, z) =

∫
Ω
z(x)f(x)dx

for all z ∈ Uc.

Proof. By Theorem 4.3 and the condition (5.1), the quadratic form a(u, z) is co-
ercive on Uc; consequently, the Lax-Milgram theorem implies that u0 ∈ Uc exists
and is unique. �
Proof of Proposition 5.1. With u0 in hand, the linear functional

(5.6) F (v) :=

∫
Ω

v(x)f(x)dx− a(u0, v), v ∈ U

satisfies F (z) =
∫
Ω
z(x)f(x)dx − a(u0, z) = 0 for all z ∈ Uc. In addition, the

functional b satisfies satisfies the inf-sup condition (5.5) and is bounded on U ⊗ Λ.
By Lemma 10.2.12 in Brenner and Scott [7], there exists a unique λ0 ∈ Λ such that
b(v, λ0) = F (v), where F is given in (5.6); that is,∫

ΩI

v(x)λ0(x) =

∫
Ω

v(x)f(x)dx− a(u0, v) ∀ v ∈ U,

6It might be thought that one can obtain λ̃ by simply taking λ̃ = 0 on Ω. But since we require
λ̃ ∈ U , this will not work in general; however, it will work if U = L2(ΩI). See Section 5.1.



2248 R. B. LEHOUCQ, F. J. NARCOWICH, S. T. ROWE, AND J. D. WARD

so the first equation in (5.3) holds. The second is a consequence u0 being in Uc.
Making the replacements u0 → u and λ0 → λ completes the proof. �

5.1. The continuous case with Dirichlet volume constraint. We now turn
to the problem of solving a(u, v) =

∫
Ω
v(x)f(x)dx, with u, v = 0 a.e. on ΩI .

Consider the following spaces: U = L2(Ω), Λ = L2(ΩI), and Uc := Lc
2(Ω) = {u ∈

L2(Ω): u|ΩI = 0 a.e.}. We want to cast this problem into the form (5.3).

Theorem 5.4. Let U , Λ and Uc be as above. Then there exist unique functions
u ∈ Uc and λ ∈ Λ that solve (5.3).

Proof. We begin by noting that a(u, v) is coercive on Uc. This follows from Corol-
lary 4.4, since all functions in Uc are 0 on I, they are obviously orthogonal to
span{1} on ΩI . Moreover, if λ ∈ Λ = L2(ΩI), then we may define its extension

to U = L2(Ω) by simply setting λ̃|Ω = 0. Hence, ‖λ̃‖Ω = ‖λ‖ΩI , and Λ satis-
fies the condition (5.2), with β = 1. Finally, the condition (5.1) is satisfied, since
1|ΩI ∈ L2(ΩI) implies that (5.1) holds with ε = 0. �

There is an integral-equation approach to this problem. Let λ and u be the
solutions to the Lagrange equations found above. We start by showing that λ
is given by an integral operator applied to u, and then use this fact to obtain a
Fredholm equation for u. The assertion concerning λ is proved below.

Lemma 5.5. For ν ∈ L2(ΩI), let ν̃ be the extension by 0 of ν to L2(Ω). If∫
ΩI

λ(x)ν(x)dx = −a(u, ν̃) ∀ ν ∈ L2(ΩI), then λ(x) = 2
∫
Ω
γ(x, y)u(y)dy, x ∈ ΩI .

Proof. The support of u ∈ Uc is Ω. Because ν̃ = 0 on Ω, its support is ΩI .
Thus u(x)ν̃(x) = 0 for all x ∈ Ω. This and the symmetry of γ then imply that
a(u, ν̃) = −2

∫
Ω

∫
Ω
γ(x, y)ν̃(x)u(y)dydx. Using the supports of u and ν̃ in the

previous expression yields

(5.7) a(u, ν̃) =

∫
ΩI

(
− 2

∫
Ω

γ(x, y)u(y)dy

)
ν(x)dx,

since ν̃|ΩI = ν. By assumption, we have∫
ΩI

ν(x)λ(x)dx =

∫
ΩI

(
2

∫
Ω

γ(x, y)u(y)dy

)
ν(x)dx,

which holds for all ν ∈ L2(ΩI). Comparing the two sides yields the desired formula
for λ. �

Silling [22, p. 98, eq. 37] derives a Fredholm equation of the second kind for a
generalization of the type of equilibrium problem we are dealing with here. In our
case, the integral equation is the following:

(5.8) σ(x)u(x)−
∫
Ω

γ(x, y)u(y)dy =
1

2
f(x), σ(x) =

∫
Ω

γ(x, y)dy, x ∈ Ω.

The next two results discuss this equation. We begin with the properties of σ.

Lemma 5.6. Let Bδ := {(x, y) ∈ Ω × Ω: |x − y| ≤ δ}, δ > 0. Suppose that
there are positive constants δ, c0 for which c0 ≤ γ(x, y) for all (x, y) ∈ Bδ. Then,
σ(x) ≥ c0ωn−1δ

n/n, where ωn−1 is the volume of Sn−1.
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Proof. We may assume that δ < dist(Ω,Ω
�
). For fixed x ∈ Ω, the ball centered at

x with radius δ will be in Bδ. Hence, again for fixed x ∈ Ω, γ(x, y) ≥ c0, and so
σ(x) ≥ c0

∫
|x−y|≤δ

dy = ωnc0δ
n/n. �

This lemma allows us to divide by σ, take its square root, and so on. Carrying
out such manipulations allows us to put the Fredholm equation (5.8) in the form
given below.

Proposition 5.7. With the assumptions made in Lemma 5.6, we have

(5.9) u(x)−
∫
Ω

γ(x, y)

σ(x)
u(y)dy =

f(x)

2σ(x)
, x ∈ Ω.

In addition, if we let w(x) :=
√

σ(x)u(x) and γ̃(x, y) = γ(x, y)/
√
σ(x)σ(y), then

(5.8) has the self-adjoint form

(5.10) w(x)−
∫
Ω

γ̃(x, y)w(y)dy =
f(x)√
2σ(x)

, x ∈ Ω.

For future reference, we point out that when γ(x, y) = γ(|x − y|) the function
σ(x) will be constant in Ω. To see this, suppose that the support of γ(r) is [0, δ],

where we assume that δ < dist(Ω,Ω
�
). Fix x ∈ Ω, the ball |x − y| ≤ δ is then

contained in Ω. Thus,

σ(x) =

∫
Ω

γ(|x− y|)dy =

∫
|x−y|≤δ

γ(|x− y|)dy = ωn−1

∫ δ

0

γ(r)rn−1dr := σγ .

The right side is independent of x, so σ(x) = σγ is constant on Ω. In fact, it is

constant for all x ∈ Ω for which the ball |x− y| ≤ δ is contained in Ω.

5.2. The discrete case. Discretizing the problem begins with choosing a basis
of functions to work with. For us, this will be a set of local Lagrange functions
associated with a positive definite or conditionally positive definite RBF kernel and
a set of centers7 X in Ω. We will denote the basis by B = {bξ : ξ ∈ X}. We
will use B to construct the three spaces Uh, U

c
h, and Λh. As usual, h refers to

a mesh norm. We assume that, on Ω, ΩI , and Ω, the distribution of centers is
quasi-uniform. These three spaces are defined this way: Uh = span{bξ : ξ ∈ X},
Λh := span{bξ|ΩI : ξ ∈ X ∩ ΩI}, and Uc

h = {u ∈ Uh : u|ΩI ∈ Λ⊥
h }.

We now need to discuss conditions (5.1) and (5.2) in connection with Λh. Because
RBFs have excellent approximation power, getting distL2(ΩI (1|ΩI ,Λh) to satisfy the
bound in Theorem 4.3 for any ε only requires taking h sufficiently small and the
K in rh = Kh| log(h)|, sufficiently large. Our next result proves this, along with a
coercivity result.

Lemma 5.8. Let �, ε and t be as in Theorem 4.3 and let Λh := span{bξ|ΩI :
ξ ∈ X ∩ ΩI} be as in (2.7), with ψk → bξ . Then, for h sufficiently small and K
sufficiently large, we have that

(5.11) distL2(ΩI)(1|ΩI ,Λh) ≤ ε|ΩI |1/2.

7To construct the Lagrange functions, we will make use of a slightly larger set of centers,
Y ⊃ X. The centers in Y \X will be outside of Ω.
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In addition, if uh ∈ Uc
h, then

(5.12) a(uh, uh) ≥
t�λδd+2

1 +
√
1− �

‖uh‖2Ω.

Proof. Choose α > 0 so that the set Ωε
I := {x ∈ ΩI : dist(x, ∂ΩI) ≤ αε} has

volume |Ωε
I | ≤ 1

4ε
2|ΩI |. Let ψε : ΩI → [0, 1] be a compactly supported C∞

function for which ψε = 1 on the set ΩI \ Ωε
I . Next, form the quasi-interpolant

sh := ĨX∩ΩIψε ∈ Vh. Applying Theorem 3.5, we have that

‖ψε − sh‖L2(ΩI) ≤ Ch2‖ψε‖W 2
2 (ΩI)

for all h sufficiently small and K sufficiently large. Since ε is fixed and h and K
are at our disposal, we may also choose them so that

Ch2‖ψε‖W 2
2 (ΩI) ≤

ε

2
|ΩI |1/2.

Finally, we note that ‖1|ΩI − sh‖L2(ΩI) ≤ ‖1|ΩI − ψε‖L2(ΩI) + ‖ψε − sh‖L2(ΩI).
Because ψε = 1 on ΩI \Ωε

I , we have that ‖1|ΩI −ψε‖L2(ΩI) = ‖1|ΩI −ψε‖L2(Ωε
I)

≤
‖1|ΩI‖L2(Ωε

I)
≤ ε

2 |ΩI |1/2. Hence, ‖1|ΩI − sh‖L2(ΩI) ≤ ε
2 |ΩI |1/2 + ε

2 |ΩI |1/2 =

ε|ΩI |1/2. The coercivity result (5.12) now follows directly from Theorem 4.3. �

Note that the lower bound in (5.12) is independent of h, as long as h is suffi-
ciently small; i.e., h ≤ h0. This is very important for the method we will use in
approximating u by uh. To proceed further, we also need to show that Λh satisfies
the condition in (5.2).

Lemma 5.9 (Discrete inf-sup condition). Consider λ =
∑

ξ∈X∩ΩI
cξbξ|ΩI ∈ Λh

and let λ̃ :=
∑

ξ∈X∩ΩI
cξbξ, which is an extension of λ to Uh. Then, there exist

constants β > 0 and h0 > 0, which are independent of λ, such that β‖λ̃‖Ω ≤ ‖λ‖ΩI

holds for all h ≤ h0.

Proof. From [14, Theorem 4.11] for h sufficiently small, we have

‖λ̃‖Ω ≤ Chn/2‖(cξ)ξ∈X∩ΩI‖�2 .

We will now make use of [14, Proposition 4.12]. Replace Ω in the proposition by
ΩI , s by λ, and q by h/ρ. Then, we have that

c‖(cξ)ξ∈X∩ΩI‖�2 ≤ ρn/2h−n/2‖λ‖ΩI .

Let β = (Ccρn/2)−1. Combining the inequalities then gives β‖λ̃‖Ω ≤ ‖λ‖ΩI . �

Theorem 5.10. Let Uh, Λh, h0 and Uc
h be defined as above. For all h ≤ h0, there

exist unique functions uh ∈ Uc
h and λh ∈ Λh such that for all vh ∈ Uh and νh ∈ Λh

the following discretized version of (2.6) holds:

(5.13)

⎧⎪⎪⎨⎪⎪⎩
a(uh, vh) +

∫
ΩI

λh(x)vh(x)dx =

∫
Ω

vh(x)f(x)dx,∫
ΩI

uh(x)νh(x)dx = 0.

Proof. Putting together Lemma 5.8, Lemma 5.9 and Proposition 5.1 yields the
result. �
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5.3. Error Estimates. To get error estimates, we will apply results found in Sec-
tions 10.3 and 10.5 of Brenner and Scott [7], which (in our notation) make the
assumption that Uh ⊂ U = L2(Ω) and Λh ⊂ Λ = L2(ΩI). These results hold here
because the local Lagrange basis B = {bξ : ξ ∈ X} is in U = L2(Ω); and also, the
restrictions of them to ΩI are in Λ = L2(ΩI). We can now obtain error estimates
for the case at hand.

Theorem 5.11. Adopt the notation and assumptions made in Sections 5.1 and
5.2. Then, for h ≤ h0,

‖u− uh‖Ω + ‖λ− λh‖ΩI ≤ C
(
distL2(Ω)(u, Uh) + distL2(ΩI)(λ,Λh)

)
.

Proof. We want to apply [7, Corollary 10.5.18]. There are three ingredients needed.
In order, the boundedness of a(u, v), b(v, λ), the coercivity of a(u, v), and a discrete
inf-sup condition for b(v, λ). The first of these is obvious from the definition of
a(u, v), given in (2.4), and of b(v, λ), given in (5.4). The second, the coercivity of
a, follows from Corollary 4.4 in the continuous case, and Lemma 5.8 in the discrete
case. Finally, the discrete inf-sup condition was established in Lemma 5.9. It follows
that [7, Corollary 10.5.18] implies the desired error estimate. �

At this point getting rates of convergence will depend on two factors: (1) the
smoothness of u and λ; and, (2) the RBF used in the problem. The discussion
concerning the Fredholm approach in Section 5.1 provides an approach to finding
the smoothness of u and λ. If that can be done, it will be possible to get rates.

The situations for u and λ are different. Since u|ΩI = 0, the solution u is
compactly supported in Ω and thus, by Theorem 3.5, the error rates depend only on

the smoothness of the kernel γ(x, y) and on the source f . If these yield u ∈ W β
2 (Ω),

then distance estimate in (3.26) implies that

(5.14) distL2(Ω)(u, Uh) ≤ Chβ‖u‖Wβ
2 (Ω).

It may also be possible that u turns out to be in W 2m
2 , then, in view of Remark 3.6,

we expect that the error rates should double; i.e., h2m rather than hm. This is born
out by the numerical results shown in Figure 2. The expected rate would be about
h2, but the rate we obtained is h3.3. (It’s lower than h4 because u is not quite in
W 4

2 .)
For λ, the smoothness is known. From Lemma 5.5, we have that λ(x) =

2
∫
Ω
γ(x, y)u(y)dy, x ∈ ΩI . This formula obviously holds for all x ∈ Ω and thus

extends λ to Ω. Differentiating under the integral sign implies that the extension
of λ to Ω is as smooth as γ(x, y).

We also have information about the support of λ. Since γ(x, y) = 0 for |x− y| ≥
δ > 0, the Lagrange multiplier λ(x) = 0 when dist(x ∈ ΩI ,Ω) ≥ δ. Consequently,
λ is compactly supported in Ω.

Unfortunately, this isn’t sufficient to apply Theorem 3.5 as stated. To be able
to do that, λ must be compactly supported in ΩI . The reason is that the local
Lagrange functions employed use only centers in X∩ΩI , rather than all of X. Even
so, as we conjectured in Remark 3.6, we expect the to see rates at least those given
in Theorem 3.5 to hold. The numerics again bear this out.
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6. Numerical Results

We present numerical results for experiments using the discretization described
in Section 2 and analyzed in Sections 5.2 and 5.3. The numerical method requires a
preprocessing step for constructing the basis, a step of assembling and solving the
linear system that arises from the Galerkin method discussed in Sections 5.2., and
then a post-processing step for evaluating the L2 error. We discuss the computa-
tional methods we employ for each step. The resulting experiments validate the L2

error estimates derived in Section 3.2.
We consider solving two-dimensional versions of the problems discussed in Sec-

tion 5.2, with a radial kernel Φ and two different diffusion coefficients κ; see Sec-
tions 6.1 and 6.2. For each experiment, we test with zero Dirichlet volume con-
straints although no noticeable difference occurs in the non-zero Dirichlet volume
constraint case. The domain of interest for the experiments is denoted Ω∪ΩI where
Ω = (0, 1) × (0, 1) and ΩI = [− 1

4 ,
5
4 ] × [− 1

4 ,
5
4 ] \ Ω denote the volume constraint

region or interaction domain. MATLAB is used for the experiments and plots.
Experimental results presented here are the result of directly using the MATLAB
backslash operator, which solves the linear set of equations using a sparse direct
method.

The local Lagrange functions are constructed with linear combinations of the
thin plate spline r2 log(r). Each local Lagrange function is constructed using ap-
proximately 11(logN)2 nearest neighbor centers, where N is the total number of
centers in Ω ∪ ΩI . The local Lagrange functions are constructed as discussed in
Section 3.3.

For each numerical experiment, we choose a kernel γ, an anisotropy term κ,
and a function u ∈ L2

c(Ω ∪ ΩI); i.e., u satisfies the volume constraint. The source
function f is manufactured by computing Lu(xi) = f(xi) for each center xi, where

Lu(x) :=
∫
Ω̄

(
u(x)− u(y)

)(
κ(x) + κ(y)

)
Φ(‖x− y‖) dy(6.1)

is the strong form corresponding to the bilinear form (2.4). We express the kernel
γ from (2.4) as γ(x, y) := 1

2

(
κ(x) + κ(y)

)
Φ(‖x− y‖).

The values of f(xi) are computed by using tensor products of Gauss-Legendre
quadrature nodes to approximate the integral in (6.1).

We study L2 convergence of the discrete solution by constructing sets of uni-
formly spaced centers with various mesh norms. Uniformly spaced collections of
centers Xh are constructed using grid spacing h = .04, .02, .014, and .006. The
convergence of the discrete solution uh to the solution u is measured by plotting
the L2 norm of the error ‖uh − u‖L2(Ω∪ΩI) against the mesh norm h. The error is
computed by using tensor products of Gauss-Legendre quadrature nodes over the
grid Ω̄.

6.1. Linear diffusion coefficient. We choose u, κ and the radial function Φ to
be ⎧⎪⎨⎪⎩

u(x1, x2) =
(
x1(1− x1)

) 3
2
(
x2(1− x2)

) 3
2
�Ω(x1, x2),

κ(x1, x2) = 1 + x1 + x2,

Φε(‖x− y‖) = exp
(
− (1− ε−2‖x− y‖2)−1

)
,

(6.2)

and thus γ(x, y) := 1
2

(
κ(x) + κ(y)

)
Φ(‖x− y‖), with x = (x1, x2) and y = (y1, y2).
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Table 1. The mesh norm h, number of rows n of the stiffness
matrix, and the estimated condition number for the stiffness ma-
trix with the linear diffusion coefficient (6.2) and the exponential
diffusion coefficient (6.3). The condition numbers of the stiffness
matrices do not increase as h decreases.

Approximate Condition Number

h n Linear Exponential
2.83e-2 1444 207 227
1.41e-2 5776 171 222
9.9e-3 11449 170 219
5.7e-3 35344 179 223

Figure 1 displays the observed L2 convergence rates with respect to the mesh
norm h. The log of the computed L2 error versus the log of the mesh norm is
presented along with a best fit line to estimate the convergence order of the observed
data. The smooth solution exhibits a convergence rate of approximately h3.

We mention that in this experiment the J(ξ)’s in (3.29) were computed numer-
ically using the tensor-product Gauss-Legendre method. The experiment was also
done with exact J(ξ)’s calculated analytically using the method in Appendix A.
The results were virtually the same.

Table 1 displays the condition numbers of the discrete stiffness matrices. The
observed condition numbers of the stiffness matrices do not increase as the mesh
norm decreases, which suggests that for quasi-uniformly distributed centers, the
condition number of the stiffness matrix and the mesh norm h are independent.
This prediction is supported by a similar result for the case of a conforming local
Lagrange method [16].

6.2. Exponential diffusion coefficient. For this experiment, we use the func-
tions u, κ and Φ given by⎧⎪⎨⎪⎩

u(x1, x2) = sin(2πx1) sin(2πx2)�Ω(x1, x2),

κ(x1, x2) = exp(x1 + x2),

Φε(‖x− y‖) = exp
(
− (1− ε−2‖x− y‖2)−1

)
.

(6.3)

Again, γ(x, y) := 1
2

(
κ(x) + κ(y)

)
Φ(‖x− y‖), with x = (x1, x2) and y = (y1, y2).

Figure 2 displays the L2 convergence plots for the experiments involving u2 and
κ2. The solution u is not continuously differentiable, so we expect a convergence
rate of at most h2. A convergence rate of h1.88 is observed. In this experiment the
exact J(ξ)’s in (3.29) were analytically determined via the method in Appendix A.
The experiment was also done with numerically computed J(ξ)’s. The analytical
method gave a convergence rate about 0.1 higher than the numerical method.

Appendix A

In this section we will compute the integrals for the J(ξ)’s defined in (3.29). We
will begin by translating D to D + ξ, so that in the new coordinates ξ is at the
origin and J(ξ) has the form

J(ξ) =

∫
D+ξ

φ(|x|)dxdy.
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Figure 1. The log of h versus the log of the L2 error for the linear
diffusion coefficient experiment with functions given by (6.2) is
displayed.

Figure 2. The log of h versus the log of the L2 error for the
exponential diffusion coefficient experiment with functions given
by (6.3) is displayed.

To simplify notation, we will use D rather than D + ξ, inserting the latter at the
end of the calculations.

Suppose that φ(|x|) satisfies an equation of the form ΔΦ(|x|) = φ(|x|). For

example, when φ(r) = φ2(r) = r2 log(r), we have Φ(r) = r4

32 (2 log(r)−1), where r =
|x|. When this happens, we may employ Green’s theorem to obtain the following
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formula:

J(ξ) =

∫
D

φ(|x|)dxdy =

∫
D

ΔΦ(|x|)dxdy =

∮
∂D

n̂ · ∇Φ(|x(s)|)ds,

or equivalently,

(A.1) J(ξ) =

∮
∂D

−∂Φ(|x|)
∂y

dx+
∂Φ(|x|)

∂x
dy, |x| =

√
x2 + y2.

Since
∂Φ(|x|)

∂x
=

x

|x|Φ
′(|x|) and ∂Φ(|x|)

∂y
=

y

|x|Φ
′(|x|),

we have

(A.2) J(ξ) =

∮
∂D

Φ′(|x|)
|x|

(
− ydx+ xdy

)
.

It follows that instead of using a 2D quadrature rule, one can get away with a 1D
rule. Even better, in the case where φ(r) = r2 log(r) and D is a polygonal domain,
these integrals can be computed analytically.

We begin by observing that

Φ′(r)

r
=

r2

16
(2 log(r2)− 1),

consequently,

J(ξ) =

∮
∂D

r2

16
(2 log(r2)− 1)

(
− ydx+ xdy

)
.

If D is a polygonal domain, the boundary ∂D consists of a chain of directed line
segments. A typical line segment L starts at (a,A) and ends at (b, B). Let a :=
ai+Aj, b = bi+Bj and δ := b− a. Parametrize L by x = a+ tδ, 0 ≤ t ≤ 1. It is
easy to show that −ydx+ xdy = (aB − bA)dt = (k · a× δ)dt. In addition, we have
that
(A.3)

r2 = |a+ tδ|2 = α2 + z2, where z = |δ|t+ a·δ
|δ| , α := ±

√
|a|2 − (a·δ)2

|δ|2 =
a× δ ·k

|δ| .

Thus the line integral over L may be put in the form∫
L

r2

16
(2 log(r2)− 1)

(
− ydx+ xdy

)
= α

∫ b·δ
|δ|

a·δ
|δ|

α2 + z2

16
(2 log(α2 + z2)− 1)dz.

It follows that we need to compute two indefinite integrals. First, we have∫
(z2 + α2) log(z2 + α2)dz =

∫
log(z2 + α2)d(

1

3
(z3 + 3α2z))

=
1

9
(z3 + 3α2z)

(
3 log(z2 + α2)− 2

)
+

4α2

3
tan−1(z/α)− 2α2

3
z.

Second,
∫
(z2 + α2)dz = 1

3 (z
3 + 3α2z). Combining this result with the previous

integral yields

α

∫
α2 + z2

16
(2 log(α2 + z2)− 1)dz

=
αz3 + 3α3z

144

(
6 log(z2 + α2)− 7

)
+

α4

6
tan−1(z/α)−α3

12
z =: f(z, α).
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Finally, we arrive at the integral over the line segment L:

(A.4)

∫
L

r2

16
(2 log(r2)− 1)

(
− ydx+ xdy

)
= f

(b·δ
|δ| , α

)
− f

(a·δ
|δ| , α

)
,

where α is defined in (A.3).

We can give a geometric interpretation to the parameters involved. Let δ̂ = δ/|δ|.
Then α = a × δ̂ · k is the (signed) area of the parallelogram with sides a and δ̂.

The endpoints a · δ̂ and b · δ̂ are, respectively, projections of a and b onto δ.
Restoring ξ to the problem means replacing D above by D+ ξ, and L by L+ ξ.

The effect on the integrals is to change a and b to a + ξ and b + ξ. Of course, δ
remains the same. There is one more step. To get back to the original problem,
namely calculating J(ξ) =

∫
D
φ(x − ξ)dx, observe that in a line segment Lorig

starting at aorig and ending at borg, the endpoints are related to those of Lorig + ξ
via aorig = a+ ξ and borig = b+ ξ. Thus, in the equations above one should use

a = aorig − ξ and b = borig − ξ,

δ = borig − aorig,

α =
(aorig − ξ)× δ · k

|δ| .

We conclude by pointing out that the same argument may be used to compute
J(ξ) for any TPS φm(r) = r2m log(r), m ≥ 1. Specifically, it is easy to show that

Φm(r) :=
1

4(m+ 1)3
(
(m+ 1)φm+1(r)− r2m+2

)
satisfies ΔΦm = φm. Although more complicated, the same integration-by-parts
trick still works and will allow us to evaluate J(ξ) exactly.
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