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REGULARITY OF THE SOLUTION TO 1-D

FRACTIONAL ORDER DIFFUSION EQUATIONS

V. J. ERVIN, N. HEUER, AND J. P. ROOP

Abstract. In this article we investigate the solution of the steady-state frac-
tional diffusion equation on a bounded domain in R

1. The diffusion operator
investigated, motivated by physical considerations, is neither the Riemann-
Liouville nor the Caputo fractional diffusion operator. We determine a closed
form expression for the kernel of the fractional diffusion operator which, in
most cases, determines the regularity of the solution. Next we establish that
the Jacobi polynomials are pseudo eigenfunctions for the fractional diffusion
operator. A spectral type approximation method for the solution of the steady-
state fractional diffusion equation is then proposed and studied.

1. Introduction

In recent years the fractional derivative has received increased attention in mod-
eling a variety of physical phenomena. Most often cited are applications in contam-
inant transport in ground water flow [3], viscoelasticity [19], turbulent flow [19,24],
and chaotic dynamics [31]. As interest in the fractional derivative has increased
so has the approximation methods to solve equations involving fractional deriva-
tives. Generally speaking (for the 1-D case), approximation methods which exist
for integer order differential equations have been successfully adapted to the frac-
tional order case. Specifically, to mention a few (a complete list is beyond the focus
of this article), finite difference methods [6, 17, 21, 26, 27], finite element methods
[10, 13, 18, 28], discontinuous Galerkin methods [30], mixed methods [4], spectral
methods [5, 16, 20, 29, 32], enriched subspace methods [12]. To date most of the
approximation schemes have focused on the one-sided fractional diffusion equation

(1.1) Lα
1u(x) := −Dαu(x) = f(x), x ∈ (0, 1), u(0) = u(1) = 0 ,

for 1 < α < 2. (A formal definition of Dαu(x) is given in the following section.)
Another interesting historical fact, a point of particular interest in this article, is

the definition of the fractional derivative. Or more precisely stated, definitions of
the fractional derivative. There has been a number of definitions of the fractional
derivatives studied. Most relevant to our discussion are the Riemann-Liouville
fractional derivative and the Caputo fractional derivative. We refer the reader
to the monographs [2, 7, 14, 22, 23] for a detailed discussion of various fractional
derivatives. Also, of particular note is the recent approach to modeling nonlocal
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diffusion problems using a linear integral operator introduced by Du, Gunzburger,
Lehoucq, and Zhou (see [8]).

Motivated by our interest in physical applications, in the following section we
present the Riemann-Liouville and Caputo fractional derivatives on a finite interval,
which for the sake of specificity we take to be I := (0, 1). (In the case where a
function and its (integer) derivatives vanish at the endpoint of the interval the
Riemann-Liouville and Caputo fractional derivatives agree.)

The motivation for this article was to investigate the regularity of the solution
to the two-sided fractional diffusion equation
(1.2)
Lα
r u(x) := − (rDαu(x) + (1− r)Dα∗u(x)) = f(x), x ∈ (0, 1), u(0) = u(1) = 0

for 1 < α < 2, and 0 < r < 1, which we think is a more physical model of diffusion
than (1.1). (In (1.2) diffusion occurs to both the left and right of any point in
the domain.) A variational formulation of the solution to (1.2) was studied in
[10], together with a finite element error analysis. The error analysis was based on
assumptions on the regularity of the true solution u, which has been pointed out by
a number of other authors, is not justified for a general right-hand side function f .
In [13] Jin et al. presented a very nice analysis and discussion of the regularity of the
solution to (1.1) for Dα interpreted as the Riemann-Liouville fractional derivative
and as the Caputo fractional derivative. In general, the solution of (1.1) has a
singularity in the derivative at x = 0. Very helpful in studying the regularity of
the solution to (1.1) is the existence of an explicit inverse to Lα

1 which satisfies

(Lα
1 )

−1 f(0) = 0. We do not have an explicit inverse for Lα
r . Subsequently we have

to think more generally about the operator Lα
r and, in particular, the definition of

Dα in the context of diffusion problems.
In [9, Section 3] we considered the underlying model of fractional diffusion in the

setting of the 1-D heat equation. We concluded that in the context of a diffusion
operator the appropriate interpretation of the fractional derivative is neither the
Riemann-Liouville definition nor the Caputo definition. Rather, for 1 < α < 2,

(1.3) Dαu(x) := DD−(2−α) Du(x) .

The kernel of the operator Lα
r , ker(Lα

r ) plays a key role in determining the reg-
ularity of the solution of (1.2). Thus the definition of Dα is central in determining
the regularity of the solution to (1.2). In Section 3 we discuss the regularity of
the solution to (1.2), using the definition of Dα given in (1.3). Somewhat of a
surprise is that the regularity of the solution depends upon r. In order to numeri-
cally illustrate the regularity of the solution to (1.2) in Section 4 we present Finite
Element Method (FEM) computations. The experimental rates of convergence of
the FEM approximations are consistent with the regularity of the solution obtained
in Section 3.

In Section 5 we establish that Jacobi polynomials are pseudo eigenfunctions for
the fractional diffusion operator. Specifically (see Lemma 5.2) we show that

Lα
r ω(x)Gn(x) = λn G∗

n(x) ,

where Gn(x) and G∗
n(x) are Jacobi polynomials, ω(x) is the Jacobi weight, and

λn the pseudo eigenvalue. Using this property we propose and study a spectral
type approximation method for the solution of steady-state fractional diffusion
equations. Two numerical examples are given to illustrate the performance of
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the method. Recently Mao, Chen, and Shen in [20] proposed and analyzed an
analogous spectral type approximation scheme for Lα

1/2u(x) = f(x). Recognizing

that Lα
1/2u(x) = f(x) corresponds to a Riesz fractional differential equation, they

were able to use known properties (from [22]) of the action of the Riesz kernel on
weighted Jacobi polynomials to build the spectral approximation method.

2. Notation and Properties

For u a function defined on (a, b), and σ > 0, we have that the left and right
fractional integral operators are defined as:
Left Fractional Integral Operator:

aD
−σ
x u(x) :=

1

Γ(σ)

∫ x

a

(x− s)σ−1 u(s) ds .

Right Fractional Integral Operator:

xD
−σ
b u(x) :=

1

Γ(σ)

∫ b

x

(s− x)σ−1 u(s) ds .

Then, for μ > 0, n the smallest integer greater than μ (n − 1 ≤ μ < n), σ =
n−μ, and D the derivative operator, the left and right Riemann-Liouville fractional
differential operators are defined as:
Left Riemann-Liouville Fractional Differential Operator of order μ:

RL
a Dμ

xu(x) := Dn
aD

−σ
x u(x) =

1

Γ(σ)

dn

dxn

∫ x

a

(x− s)σ−1 u(s) ds .

Right Riemann-Liouville Fractional Differential Operator of order μ:

RL
x Dμ

b u(x) := (−D)nxD
−σ
b u(x) =

(−1)n

Γ(σ)

dn

dxn

∫ b

x

(s− x)σ−1 u(s) ds .

The Riemann-Liouville and Caputo fractional differential operators differ in the
location of the derivative operator.
Left Caputo Fractional Differential Operator of order μ:

C
a D

μ
xu(x) := aD

−σ
x Dnu(x) =

1

Γ(σ)

∫ x

a

(x− s)σ−1 dn

dsn
u(s) ds .

Right Caputo Fractional Differential Operator of order μ:

C
x D

μ
b u(x) := (−1)nxD

−σ
b Dnu(x) =

(−1)n

Γ(σ)

∫ b

x

(s− x)σ−1 dn

dsn
u(s) ds .

As our interest is in the solution of fractional diffusion equations on a bounded,
connected subinterval of R, without loss of generality, we restrict our attention to
the unit interval (0, 1).

For s ≥ 0 let Hs(0, 1) denote the Sobolev space of order s on the interval (0, 1),

and H̃s(0, 1) the set of functions in Hs(0, 1) whose extension by 0 are in Hs(R).

Equivalently, for u defined on (0, 1) and ũ its extension by zero, H̃s(0, 1) is the
closure of C∞

0 (0, 1) with respect to the norm ‖u‖H̃s(0,1) := ‖ũ‖Hs(R). With respect

to L2 duality, for s ≥ 0 we let H−s(0, 1) :=
(
H̃s(0, 1)

)′
, the dual space of H̃s(0, 1).

Useful below in establishing results about the kernel of the fractional diffusion
operator is the hypergeometric function [15, 25].
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Definition 1. The Gaussian three-parameter hypergeometric function 2F1(·, · ; ·; x)
for |x| < 1, is defined by an integral and series as follows:
(2.1)

2F1(a, b; c; x)=
Γ(c)

Γ(b) Γ(c− b)

∫ 1

0

zb−1(1−z)c−b−1(1 − zx)−a dz=

∞∑
n=0

(a)n (b)n x
n

(c)n n!
,

with convergence only if Re(c) > Re(b) > 0.

In (2.1) (q)n := Γ(q + n)/Γ(q) denotes the (rising) Pochhammer symbol.
From the series representation of 2F1(a, b; c; x) the following result is easy to

see.

Proposition 1 (Interchange property). For Re(c) > Re(b) > 0 and Re(c) >
Re(a) > 0, we have that

(2.2) 2F1(a, b; c; x) = 2F1(b, a; c; x) .

For ease of notation, we use

D−σ := 0D
−σ
x , and D−σ∗ := xD

−σ
1 .

3. Kernel of the operator rDα + (1− r)Dα∗

In this section we establish the kernel for the operator

(3.1) Lα
r = − (rDα + (1− r)Dα∗) ,

where 1 < α < 2.
Important in the discussion is the precise definition of the operator (3.1). For our

interest, arising from fractional advection-diffusion equations, the operator (3.1) is
interpreted as
(3.2)

Lα
r u = − (rDα + (1− r)Dα∗)u := −

(
rDD−(2−α)D + (1− r)DD−(2−α)∗D

)
u .

Remark. The definition given in (3.2) differs from the Riemann-Liouville definition
for Dα, where both integer order derivatives occur after the fractional integral.
These different interpretations represent different operators and hence they have
different kernels. For example, u = constant is in the kernel of the operator defined
in (3.2). However, u = constant is not in the kernel of (3.1) using the Riemann-
Liouville definition of the fractional differential operators.

Lemma 3.1. For α − 2 ≤ p, q < 0, k(x) := xp (1 − x)q, K(x) :=
∫ x

0
k(s) ds,

we have that K(x) ∈ ker(Lα
r ) if:

(i) 3− α+ p+ q = 1 , and(3.3)

(ii) r sin(π(−q)) = (1− r) sin(π(−p)) .(3.4)
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Proof. Using the definition of the fractional integral, we have

D−(2−α)k(x) =
1

Γ(2− α)

∫ x

0

(x− s)1−α sp (1− s)q ds

=
1

Γ(2− α)
x2−α+p

∫ 1

0

(1− z)1−α zp (1 − zx)q dz (using z = s/x)

=
1

Γ(2− α)
x2−α+pΓ(p+ 1) Γ(2− α)

Γ(3− α+ p)
2F1(−q, p+ 1; 3− α+ p; x)

(provided 3− α+ p > p+ 1 > 0, which is true for 1 < α < 2)

=
Γ(p+ 1)

Γ(3− α+ p)
x2−α+p

2F1(p+ 1, −q; 3− α+ p; x)

(using Proposition 1, provided 3− α+ p > −q > 0)

=
Γ(p+ 1)

Γ(3− α+ p)
x2−α+p

· Γ(3− α+ p)

Γ(−q) Γ(3− α+ p+ q)

·
∫ 1

0

(1− z)2−α+p+q z−q−1 (1 − zx)−p−1 dz

(using z = s/x)

=
Γ(p+ 1)

Γ(−q) Γ(3− α+ p+ q)
x2−α+p x−(2−α+p)

·
∫ x

0

(x− s)2−α+p+q s−q−1 (1 − s)−p−1 ds

=
Γ(p+ 1)

Γ(−q) Γ(3− α+ p+ q)

·
∫ x

0

(x− s)2−α+p+q s−q−1 (1 − s)−p−1 ds

=
Γ(p+ 1)

Γ(−q)
D−(3−α+p+q)x−q−1 (1 − x)−p−1 .(3.5)
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Next,

D−(2−α)∗k(x) =
1

Γ(2− α)

∫ 1

x

(s− x)1−α sp (1− s)q ds

=
1

Γ(2− α)
(1− x)2−α+q

∫ 1

0

(1− z)1−α zq (1 − z(1− x))p dz

(using z = (1− s)/(1− x))

=
1

Γ(2− α)
(1− x)2−α+q Γ(q + 1) Γ(2− α)

Γ(3− α+ q)

· 2F1(−p, q + 1; 3− α+ q; (1− x))

(provided 3− α+ q > q + 1 > 0, which is true for 1 < α < 2)

=
Γ(q + 1)

Γ(3− α+ q)
(1− x)2−α+q

2F1(q + 1, −p; 3− α+ q; (1− x))

(using Proposition 1, provided 3− α+ q > −p > 0)

=
Γ(q + 1)

Γ(3− α+ q)
(1− x)2−α+q

· Γ(3− α+ q)

Γ(−p) Γ(3− α+ p+ q)

·
∫ 1

0

(1− z)2−α+p+q z−p−1 (1 − z(1− x))−q−1 dz

=
Γ(q + 1)

Γ(−p) Γ(3− α+ p+ q)
(1− x)2−α+q (1− x)−(2−α+q) ·

∫ 1

x

(s− x)2−α+p+q s−q−1 (1− s)−p−1 ds

(using z = (1− s)/(1− x))

=
Γ(q + 1)

Γ(−p) Γ(3− α+ p+ q)

∫ 1

x

(s− x)2−α+p+q s−q−1 (1− s)−p−1 ds

=
Γ(q + 1)

Γ(−p)
D−(3−α+p+q)∗x−q−1 (1− x)−p−1 .(3.6)

Comparing (3.5) and (3.6), r DD−(2−α)k(x) + (1− r)DD−(2−α)∗k(x) = 0 if

(i) 3− α+ p+ q = 1 ,(3.7)

(ii) r
Γ(p+ 1)

Γ(−q)
= (1− r)

Γ(q + 1)

Γ(−p)

⇐⇒ r Γ(−p) Γ(1− (−p)) = (1− r) Γ(−q) Γ(1− (−q))

⇐⇒ r
π

sin(π(−p))
= (1− r)

π

sin(π(−q))

(using Γ(1− z) Γ(z) = π/ sin(πz) , valid for z �= 0, ±1, ±2, . . .)

⇐⇒ r sin(π (−q)) = (1− r) sin(π (−p)).(3.8)

�
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For the case α = 1.6 a plot of p vs. r satusftubg (3.7) and (3.8) is given in
Figure 3.1.

Remark. For 0 ≤ r ≤ 1, 1 < α < 2 given, p and q satisfying (3.3) and (3.4)
can be equivalently expressed as q = α − 2 − p and α − 2 ≤ p ≤ 0 satisfying
h(p) := r − sin(πp)/(sin(π(α−p)) + sin(πp)) = 0. The existence and uniqueness
of p and q satisfying (3.3) and (3.4) follows from noting that h(α− 2) = r− 1 ≤ 0,
h(0) = r ≥ 0, and that h′(p) > 0.

Corollary 3.1. The kernel of Lα
r (·), ker(Lα

r ), is given by ker(Lα
r ) = span{1,K(x)},

where K(x), given in Lemma 3.1, may be written as

K(x) =

∫ x

0

k(s) ds =
1

p+ 1
xp+1

2F1(−q, p+ 1 ; p+ 2 ; x).

Proof. From above it is clear that span{1,K(x)} ⊂ ker(Lα
r ). What remains is to

show that dim(ker(Lα
r )) = 2.

With z(x) = 1+ x and f(x) = −r 1
Γ(2−α) x

1−α + (1− r) 1
Γ(2−α) (1− x)1−α, a

straightforward calculation shows that Lα
r z(x) = f(x) on I. As K(1) �= 0 we can

choose c1 and c2 such that ẑ(x) := z(x) + c11 + c2K(x) satisfies ẑ(0) = ẑ(1) = 0
and Lα

r ẑ(x) = f(x).
Suppose there was another linearly independent function s(x) ∈ ker(Lα

r ). With-
out loss of generality we may assume that s(0) = s(1) = 0. (If this was not the case
we would form a linear combination of s(x) with the other two linearly independent
kernel function 1 and K(x).) Then z̃(x) := ẑ(x) + s(x) satisfies z̃(0) = z̃(1) = 0
and Lα

r z̃(x) = f(x). However, the existence of z̃(x) �= ẑ(x) contradicts the unique-
ness of the solution to Lα

r u(x) = f(x), with u(0) = u(1) = 0, [10, Theorem
3.5]. �

A plot of K(x) for α = 1.6 and r = 0.2764 (i.e., p = 0.1, q = −0.3) is given in
Figure 3.2.

Example 3.1. The case r = 1/2. This corresponds to Lα
1/2. For r = 1/2, from

(3.8), p = q. Then, using (3.7), we have p = q = α/2 − 1.

Example 3.2. The case r → 1. This corresponds to Lα
1 (u) = −DD−(2−α)D(u).

For this case the kernel is span{1, xα−1}.
Now, from (3.8), as r → 1 then

sin(π(−q)) → 0 =⇒ q → 0 .

Hence from (3.7) p → α− 2 =⇒ K(x) = xα−1.

Lemma 3.2. For 1 ≤ α < 1.5, DD−(2−α)D maps from Hα(I) onto L2(I).

Proof. We have that D : Hα(I) −→ Hα−1(I). Now, for 1 < α < 1.5, then

0 < α−1 < 0.5, hence Hα−1(I) = H̃α−1(I). As DD−(2−α) = RL
0 Dα−1

x , then from

Theorem 3.1 [13] DD−(2−α) : H̃α−1(I) −→ L2(I).
To establish that the mapping is onto, we have that for

f ∈ L2(I), DD−(2−α)Du = f,

where u = 1
Γ(α)

∫ x

0
(x − s)α−1 f(s) ds. �

Corollary 3.2. For 1 ≤ α < 1.5, r ∈ R, Lα
r maps from Hα(I) into L2(I).
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Figure 3.1. p val-
ues solving (3.7) and
(3.8) for α = 1.6.

Figure 3.2. Plot of
K(x) for α = 1.6 and
r = 0.2764 (i.e., p =
−0.1, q = −0.3).

Proof. An analogous argument to that given in the proof of Lemma 3.2 establishes
thatDD−(2−α)∗D maps fromHα(I) onto L2(I). The stated result then follows. �

In order to give a concise description of the range of Lα
r , with domain Hα(I), let

X(1−α) := {f : f(x) = cx1−α, c ∈ R}
and

X(1−α)∗ := {f : f(x) = c(1− x)1−α, c ∈ R} .

Lemma 3.3. For 1 ≤ α < 2 Lα
r maps from Hα(I) into L2(I)⊕X(1−α)⊕X(1−α)∗.

Proof. The case for 1 ≤ α < 1.5 is covered by Corollary 3.2. For f(x) ∈ Hα(I), α ≥
1.5, let p(x) denote the Hermite cubic interpolating polynomial of f(x). Namely,

p(x) = (2x3 − 3x2 + 1)f(0) + (x3 − 2x2 + x)f ′(0)

+ (−2x3 + 3x2)f(1) + (x3 − x2)f ′(1)

= (−2(1− x)3 + 3(1− x)2)f(0) + (−(1− x)3 + (1− x)2)f ′(0)

+ (2(1− x)3 − 3(1− x)2 + 1)f(1)

+ (−(1− x)3 + 2(1− x)2 − (1− x))f ′(1) .

Also, let f̃(x) = f(x)− p(x) ∈ H̃α(I). From Theorem 2.1 of [13], Lα
r f̃(x) ∈ L2(I).

Now,

Lα
r f(x) =Lα

r f̃(x) + r (f(0))Dα1 + r (f ′(0))Dαx

+ r (−3f(0) − 2f ′(0) + 3f(1) − f ′(1))Dαx2

+ r (2f(0) + f ′(0) − 2f(1) + f ′(1))Dαx3 + (1− r) (f(1))Dα∗1

+ (1− r) (−f ′(1))Dα∗(1− x)

+ (1− r) (−3f(1) + 2f ′(1) + 3f(0) + f ′(0))Dα∗(1− x)2

+ (1− r) (2f(1) − f ′(1) − 2f(0) − f ′(0))Dα∗(1− x)3 .
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As Dα1 = Dα∗1 = 0; Dαx ∈ X(1−α), Dα(1 − x) ∈ X(1−α)∗; Dαx2, Dαx3,
Dα∗(1− x)2, Dα∗(1− x)3 ∈ L2(I), the stated result follows. �

4. Convergence of the finite element method approximation

In a finite element method (FEM) approximation to (1.2) the regularity of the
solution u plays a fundamental role in the rate of convergence of the approxima-
tion uh to u. In this section we present four numerical experiments and compare
the numerical rate of convergence of the FEM approximation to that predicted
theoretically.

From [10], with X = H̃α/2(I), the weak formulation of (1.2) is: Given f ∈
H−α/2(I) determine u ∈ X satisfying

(4.1) B(u , v) = 〈f , v〉 ∀v ∈ X ,

where, 〈· , ·〉 denotes the L2 duality pairing between H−α/2(I) and H̃α/2(I), and
B(·, ·) : X ×X −→ R is defined by

B(w, v) := r
(
D−(2−α)/2Dw , D−(2−α)/2∗Dv

)
(4.2)

+ (1− r)
(
D−(2−α)/2∗Dw , D−(2−α)/2Dv

)
.

For 0 = x0 < x1 < · · · < xN = 1 denoting a quasi-uniform partition of I := (0, 1),
Xh ⊂ X denoting the space of continuous, piecewise polynomials of degree ≤ k on
the partition, the finite element approximation uh ∈ Xh to u is given by

(4.3) B(uh , vh) = 〈f, vh〉 ∀vh ∈ Xh .

Assuming that f is sufficiently regular such that the regularity of u is determined
by the kernel of Lα

r , we have the following a priori error bounds, for C > 0 a constant
and any ε > 0 and δ > 0, [10, Corollary 4.3].

‖u − uh‖H̃α/2 ≤ C inf
vh∈Xh

‖u − vh‖H̃α/2

≤ C

{
h1/2−ε‖u‖Hα/2+1/2−ε , r = 1/2 ,

hmin{p,q}+3/2−α/2−ε‖u‖Hmin{p,q}+3/2−ε , r �= 1/2 ,
(4.4)

where p and q satisfy (3.7) and (3.8).
An application of the Aubin-Nitsche trick yields the following L2 a priori error

bounds, [10, Theorem 4.4].

(4.5) ‖u − uh‖ ≤ C

{
h1− 2ε‖u‖Hα/2+1/2−ε , r = 1/2 ,

h2(min{p,q}+3/2−α/2)− 2ε‖u‖Hmin{p,q}+3/2−ε , r �= 1/2 .

For the Aubin-Nitsche trick the regularity of the associated adjoint problem is the
same as that for u (assuming f ∈ L2(I)). Hence the L2 a priori error bound is
simply twice that for Hα/2.

For Examples 1 and 2 the true solution u was chosen to be x + kerfun(x), with
kerfun(x) ∈ ker(Lα

r ) chosen such that u satisfies u(0) = u(1) = 0. In Examples 3
and 4 the right-hand side f(x) was chosen to be a constant. Results are reported for
α = 1.4 and α = 1.6. Computations were also performed for α = 1.2 and α = 1.8
(not included) which exhibited similar behavior. The approximation space Xh used
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was the continuous, affine functions (i.e., k = 1) on a uniform partition of I. The
|u− uh|Hα/2 data presented in the tables denotes the Slobodetskii semi-norm,

|w|Hα/2 :=

(∫
I

∫
I

|w(x) − w(y)|2
|x − y|1+α

dx dy

)1/2

.

Example 1. With α = 1.4, r = 1/2,

(4.6) u(x) = x − C xα/2
2F1(α/2 , 1− α/2 ; 1 + α/2 , x) ,

where C = (2F1(α/2 , 1− α/2 ; 1 + α/2 , 1))
−1

.
The corresponding right-hand side is

(4.7) f(x) =
−1

2

1

Γ(2− α)
x1−α +

1

2

1

Γ(2− α)
(1− x)1−α .

The numerical results are presented in Table 4.1.

Table 4.1. Example 1. Convergence rates for α = 1.4 and r = 1/2.

h |u− uh|Hα/2(I) Cvg. rate ‖u− uh‖L2(I) Cvg. rate

1/64 4.209E-02 8.402E-04
1/128 2.962E-02 0.51 4.016E-04 1.07
1/256 2.088E-02 0.50 1.936E-04 1.05
1/512 1.475E-02 0.50 9.407E-05 1.04
1/1024 1.042E-02 0.50 4.598E-05 1.03
1/2048 7.364E-03 0.50 2.258E-05 1.03
Pred. 0.50 1.0

Example 2. With α = 1.4, p = −0.15, q = α − p − 2, r = sin(πp)/(sin(πp) +
sin(πq)),

(4.8) u(x) = x − C x(p+1)
2F1(−q , p+ 1 ; p+ 2 , x) ,

where C = (2F1(−q , p+ 1 ; p+ 2 , 1))
−1

.
The corresponding right-hand side is

f(x) = −r
1

Γ(2− α)
x1−α + (1− r)

1

Γ(2− α)
(1− x)1−α .(4.9)

The numerical results are presented in Table 4.2.

Table 4.2. Example 2. Convergence rates for α = 1.4 and r = 0.3149.

h |u− uh|Hα/2(I) Cvg. rate ‖u− uh‖L2(I) Cvg. rate

1/64 1.463E-01 1.609E-03
1/128 1.146E-01 0.35 7.847E-04 1.04
1/256 8.990E-02 0.35 3.831E-04 1.03
1/512 7.052E-02 0.35 1.872E-04 1.03
1/1024 5.532E-02 0.35 9.157E-05 1.03
1/2048 4.340E-02 0.35 4.482E-05 1.03
Pred. 0.35 0.70
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Example 3. With α = 1.6, r = 1/2,

(4.10) u(x) = xα/2(1− x)α/2 .

The corresponding right-hand side is

(4.11) f(x) = −Γ(1 + α) cos(πα/2) .

The numerical results are presented in Table 4.3.

Table 4.3. Example 3. Convergence rates for α = 1.6 and r = 0.5.

h |u− uh|Hα/2(I) Cvg. rate ‖u− uh‖L2(I) Cvg. rate

1/64 3.502E-02 6.559E-04
1/128 2.461E-02 0.51 3.081E-04 1.09
1/256 1.734E-02 0.50 1.479E-04 1.06
1/512 1.224E-02 0.50 7.205E-05 1.04
1/1024 8.651E-03 0.50 3.542E-05 1.02
1/2048 6.115E-03 0.50 1.752E-05 1.02
Pred. 0.50 1.0

Example 4. With α = 1.6, p = 0.9, q = α− p, r = sin(π(p+1))/(sin(π(p+1))−
sin(π(α− p))),

(4.12) u(x) = xp(1− x)q .

The corresponding right-hand side is

(4.13) f(x) = −(1− r) Γ(1 + α)
sin(πα)

sin(π(α− p))
.

The numerical results are presented in Table 4.4.

Table 4.4. Example 4. Convergence rates for α = 1.6 and r = 0.2764.

h |u− uh|Hα/2(I) Cvg. rate ‖u− uh‖L2(I) Cvg. rate

1/64 7.732E-02 7.083E-04
1/128 5.827E-02 0.41 3.216E-04 1.14
1/256 4.402E-02 0.40 1.485E-04 1.12
1/512 3.331E-02 0.40 6.947E-05 1.10
1/1024 2.522E-02 0.40 3.289E-05 1.08
1/2048 1.910E-02 0.40 1.572E-05 1.06
Pred. 0.40 0.80

The numerical results are consistent with the theoretical predictions. Of partic-
ular note is that changing the convex combination of the adjoint operators in the
definition of Lα

r , i.e., the factor r, changes the regularity of the solution, and hence
the convergence rate of the FEM approximation.
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5. Spectral type method for the solution of Lα
r u = f

In this section we discuss a “spectral type” approximation method for the nu-
merical solution of Lα

r u = f . Recently Mao, Chen and Shen in [20] proposed
and analyzed an analogous spectral type approximation scheme for the special case
Lα
1/2 u = f . Recognizing that Lα

1/2u(x) = f(x) corresponds to a Riesz fractional

differential equation, they were able to use known properties (from [22]) of the
action of the Riesz kernel on weighted Jacobi polynomials to build the spectral
approximation method.

Central to the method we propose is the following result.

Lemma 5.1. For 1 < α < 2, 0 < β < α, and r satisfying

(5.1) r =
sin(πβ)

sin(π(α− β)) + sin(πβ)

for n = 0, 1, 2, . . .,

Lα
r xβ(1− x)α−β xn =

n∑
j=0

an,j x
j , where(5.2)

an,j = (−1)(n+1)(1− r)
sin(π α)

sin(π(α− β))
Γ(1 + α− β)

· (−1)j Γ(1 + α+ j)

Γ(1 + α− β − n+ j) Γ(1 + n− j) Γ(j + 1)
.

Proof. For 0 < r < 1, with u(x) = xβ(1− x)(α−β) xn using Maple (see [9]),

(5.3) D−(2−α)u(x) =
Γ(1 + β + n)

Γ(3− α+ β + n)
xn+2−α+β

· 2F1(1 + β + n , −α+ β ; 3− α+ β + n ; x) ,

and

D−(2−α)∗u(x) =
Γ(−2 + α− β − n)

Γ(−β − n)
xn+2−α+β(5.4)

· 2F1(1 + β + n , −α+ β ; 3− α+ β + n ; x)

+ (−1)n Γ(1 + α− β)

×
n+2∑
k=0

(−1)k csc(π(α− β) + kπ) sin(πα + kπ)Γ(−1 + α+ k)

Γ(−1 + α− β − n+ k) Γ(3 + n− k) Γ(k + 1)
xk.

Using the identity

(5.5) Γ(1− z) =
π

sin(πz)

1

Γ(z)
,

with z = 1 + β + n, i.e., 1− z = −β − n,

Γ(−β − n) =
π

sin(π(1 + β + n))

1

Γ(1 + β + n)

=
π

sin(πβ) cos(π(n+ 1))

1

Γ(1 + β + n)

=
(−1)(n+1) π

sin(πβ) Γ(1 + β + n)
.(5.6)
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Again using (5.5) with z = 3− α+ β + n,

Γ(−2 + α− β − n) =
π

sin(π(3− α+ β + n))

1

Γ(3− α+ β + n)

=
π

sin(−π(α− β)) cos(π(n+ 3))

1

Γ(3− α+ β + n)

=
(−1)(n+4) π

sin(π(α− β)) Γ(3− α+ β + n)
.(5.7)

Using (5.6) and (5.7)

(5.8)
Γ(−2 + α− β − n)

Γ(−β − n)
=

− sin(πβ) Γ(1 + β + n)

sin(π(α− β)) Γ(3− α+ β + n)
.

The coefficient of xn+2−α+β
2F1(·) in the linear combination(

rD−(2−α) + (1− r)D−(2−α)∗
)
u(x)

is

r
Γ(1 + β + n)

Γ(3− α+ β + n)
+ (1− r)

Γ(−2 + α− β − n)

Γ(−β − n)

=
Γ(1 + β + n)

Γ(3− α+ β + n)

(
r + (1− r)

− sin(πβ)

sin(π(α− β))

)
(using (5.8))

= 0 ,

provided r is given by (5.1).
Using standard trigonometric identities it is straightforward to show

csc(π(α− β) + kπ) sin(πα + kπ) =
sin(πα)

sin(π(α− β))
.

Thus,

−DD
(
rD−(2−α) + (1− r)D−(2−α)∗

)
u(x)

= (−1)(n+1)(1− r) Γ(1 + α− β)

×
n+2∑
k=2

(−1)k k (k − 1) sin(πα)
sin(π(α−β)) Γ(−1 + α+ k)

Γ(−1 + α− β − n+ k) Γ(3 + n− k) Γ(k + 1)
x(k−2)

which, after reindexing, yields (5.2).
For the one-sided operators Lα

0 and Lα
1 , corresponding to r = 0, (β = 0) and

r = 1, (β = α), we have [14]

Lα
0 (1−x)α(1−x)n =

Γ(α+ n+ 1)

Γ(n+ 1)
(1−x)n and Lα

1x
αxn =

Γ(α+ n+ 1)

Γ(n+ 1)
xn.

�

Jacobi polynomials play a key role in the approximation schemes. We briefly
review their definition and properties central to the method [1, 25].

Usual Jacobi polynomials, P
(α,β)
n (x), on (−1 , 1).

Definition: P
(α,β)
n (x) :=

∑n
m=0 pn,m (x− 1)(n−m)(x+ 1)m, where

(5.9) pn,m :=
1

2n

(
n+ α
m

) (
n+ β
n−m

)
.
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Orthogonality:

∫ 1

−1

(1− x)α(1 + x)β P
(α,β)
j (x)P

(α,β)
k (x) dx =

{
0, k �= j ,

|‖P (α,β)
j |‖2 , k = j ,

where |‖P (α,β)
j |‖ =

(
2(α+β+1)

(2j + α + β + 1)

Γ(j + α+ 1) Γ(j + β + 1)

Γ(j + 1) Γ(j + α+ β + 1)

)1/2

.

(5.10)

Jacobi polynomials, Gn(p, q, x), on (0 , 1).
Definition: Gn(p, q, x) :=

∑n
j=0 gn,j x

j , where

(5.11) gn,j := (−1)(n−j) Γ(q + n)

Γ(p+ 2n)

Γ(n+ 1)

Γ(j + 1) Γ(n− j + 1)

Γ(p+ n+ j)

Γ(q + j)
.

Orthogonality:

∫ 1

0

x(q−1)(1− x)(p−q)Gj(p, q, x)Gk(p, q, x) dx =

{
0, k �= j ,

|‖G(p,q)
j |‖2 , k = j ,

where |‖G(p,q)
n |‖ =

(
Γ(n+ 1) Γ(n+ q) Γ(n+ p) Γ(n+ p− q + 1)

(2n+ p) Γ2(2n+ p)

)1/2

.

(5.12)

Note that Gn(p, q, x) = Γ(n+1) Γ(n+p)
Γ(2n+p) P

(p−q , q−1)
n (2x− 1).

The weighted L2(0, 1) spaces, L2
ρ(0, 1).

The weighted L2(0, 1) spaces are convenient for analyzing the convergence of the
spectral type methods presented below. For ρ(x) > 0, x ∈ (0, 1), let

L2
ρ(0, 1) := {f(x) :

∫ 1

0

ρ(x) f(x)2 dx < ∞} .

Associated with L2
ρ(0, 1) is the inner product, 〈·, ·〉ρ, and norm, ‖ · ‖ρ, defined by

〈f , g〉ρ :=

∫ 1

0

ρ(x) f(x) g(x) dx and

‖f‖ρ := (〈f , f〉ρ)1/2 .

5.1. Spectral type method approximation to Lα
r u = f . For the general case

Lα
r u = f , r �= 1/2, the operator Lα

r · is not symmetric. Hence the singular behavior
of the adjoint problem (Lα

r )
∗ · = Lα

1−r· does not match that of Lα
r ·. In order to

conveniently present the approximation method and its properties, in this section
we use the following notation.
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For 1 < α < 2 and r given, and β determined by (5.1),

(5.13)

Lα
r u = r Dαu + (1− r)Dα∗u,

Lα∗
r u = r Dα∗u + (1− r)Dαu′;

ω(x) = xβ (1− x)α−β,

ω∗(x) = xα−β (1− x)β;

Gn(x) = Gn(α+ 1 , β + 1 , x),

G∗
n(x) = Gn(α+ 1 , α− β + 1 , x);

λn = −(1− r)
sin(π α)

sin(π(α− β))

Γ(n+ 1 + α)

Γ(n+ 1)
,

λ∗
n = −r

sin(π α)

sin(π(α− β))

Γ(n+ 1 + α)

Γ(n+ 1)
.

From (5.12) we have the following orthogonality properties:

∫ 1

0

ω(x)Gj(x)Gk(x) dx = 0 , k �= j ,

∫ 1

0

ω∗(x)G∗
j (x)G∗

k(x) dx = 0 , k �= j ,

and

‖Gn‖2ω = ‖Gn(α+ 1 , β + 1 , x)‖2ω

=
Γ(n+ 1) Γ(n+ α+ 1) Γ(n+ β + 1) Γ(n+ α− β + 1)

(2n + α + 1) Γ2(2n + α + 1)

= ‖Gn(α+ 1 , α− β + 1 , x)‖2ω∗

= ‖G∗
n‖2ω∗ .(5.14)

Additionally, {Gj(x)}∞j=0 and {G∗
j (x)}∞j=0 are orthogonal basis for L2

ω(0, 1) and

L2
ω∗(0, 1), respectively.
Using Stirling’s formula we have that

(5.15) lim
n→∞

Γ(n+ μ)

Γ(n)nμ
= 1 , for μ ∈ R.

(5.16)

Thus λn > 0 for all n = 0, 1, 2, . . ., and as n → ∞ λn sin−(1− r) sin(π α)
sin(π(α−β)) (n+ 1)α.

Lemma 5.2. For n = 0, 1, 2, . . .,

Lα
r ω(x)Gn(x) = λn G∗

n(x) ,(5.17)

Lα
1−r ω

∗(x)G∗
n(x) = λ∗

n Gn(x) .(5.18)

Proof. Up to a multiplicative constant, Gn(x) and G∗
n(x) are, respectively, deter-

mined by (Gn(x) , p(x))ω = 0 and (G∗
n(x) , p(x))ω∗ = 0 for all p(x) ∈ Pn−1(x).
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Let p(x) ∈ Pn−1(x). Then, from Lemma 5.1 there exists p̂(x) ∈ Pn−1(x) such
that Lα

1−rω
∗(x) p(x) = p̂(x). Then,

(Lα
r (ω(x)Gn(x)) , p(x))ω∗ =

∫ 1

0

ω∗(x)Lα
r (ω(x)Gn(x)) p(x) dx

=

∫ 1

0

Lα
r (ω(x)Gn(x)) ω

∗(x) p(x) dx

=

∫ 1

0

ω(x)Gn(x)Lα
1−r (ω

∗(x) p(x)) dx

=

∫ 1

0

ω(x)Gn(x) p̂(x) dx

= 0 .

Hence, Lα
r ω(x)Gn(x) = C G∗

n(x), for C ∈ R.
As the coefficient of xn in Gn(x) and G∗

n(x) is 1, then from Lemma 5.1,

C = −(1− r)
sin(π α)

sin(π(α− β))

Γ(n+ 1 + α)

Γ(n+ 1)
= λn .

An analogous argument to the above establishes (5.18). �

Remark. Note that f(x) ∈ L2
ω∗(0, 1) may be expressed as

f(x) =

∞∑
i=0

f∗
i

‖G∗
i ‖2ω∗

G∗
i (x),

where f∗
i is given by

(5.19) f∗
i :=

∫ 1

0

ω∗(x) f(x)G∗
i (x) dx .

With f∗
i defined in (5.19), let

(5.20) uN (x) = ω(x)
N∑
i=0

ci Gi(x) , where ci =
1

λi ‖G∗
i ‖2ω∗

f∗
i .

Theorem 5.1. Let f(x) ∈ L2
ω∗(0, 1) and uN (x) be as defined in (5.20). Then,

u(x) := lim
N→∞

uN (x) = ω(x)

∞∑
j=0

cj Gj(x) ∈ L2
ω−1(0, 1).

In addition, Lα
r u(x) = f(x).

Proof. For fN (x) =
∑N

i=0
f∗
i

‖G∗
i ‖2

ω∗
G∗
i (x), we have that f(x) = limN→∞ fN (x),

and {fN (x)}∞N=0 is a Cauchy sequence in L2
ω∗(0, 1). A straightforward calculation
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shows that uN (x) ∈ L2
ω−1(0, 1). Then (without loss of generality, assume M > N),

‖uN (x)− uM (x)‖2ω−1 =

⎛
⎝ω−1(x) ω(x)

M∑
j=N+1

cj Gj(x) , ω(x)

M∑
j=N+1

cj Gj(x)

⎞
⎠

=

⎛
⎝ω(x)

M∑
j=N+1

f∗
j

λj ‖G∗
j ‖2ω∗

Gj(x) ,
M∑

j=N+1

f∗
j

λj ‖G∗
j ‖2ω∗

Gj(x)

⎞
⎠

=
M∑

j=N+1

f∗2
j

λ2
j ‖G∗

j ‖4ω∗
‖Gj‖2ω

=
M∑

j=N+1

f∗2
j

λ2
j ‖G∗

j ‖2ω∗
(using (5.14))

≤C

⎛
⎝ω∗(x)

M∑
j=N+1

f∗
j

‖G∗
j ‖2ω∗

G∗
j (x) ,

M∑
j=N+1

f∗
j

‖G∗
j ‖2ω∗

G∗
j (x)

⎞
⎠

(using λj ’s are bounded away from zero)

= C ‖fN (x) − fM (x)‖2ω∗ .

Hence {uN (x)}∞N=0 is a Cauchy sequence in L2
ω−1(0, 1). As L2

ω−1(0, 1) is complete
[11], u(x) := limN→∞ uN (x) ∈ L2

ω−1(0, 1). Next, as fN (x) → f(x) in L2
ω∗(0, 1),

given ε > 0 there exists Ñ such that for N > Ñ , ‖f(x) − fN (x)‖ω∗ < ε. Then,

for N > Ñ , using Lemma 5.2,

‖f(x) − Lα
r uN (x)‖ω∗ = ‖f(x) − Lα

r

⎛
⎝ω(x)

N∑
j=0

f∗
j

λj ‖G∗
j ‖2ω∗

Gj(x)

⎞
⎠ ‖ω∗

= ‖f(x) −
N∑
j=0

f∗
j

‖G∗
j ‖2ω∗

G∗
j (x)‖ω∗

= ‖f(x) − fN (x)‖ω∗ < ε .

Hence, f(x) = Lα
r u(x). �

5.1.1. Invertibility of Lα
r · on L2(0, 1). We return to the question alluded to by

Lemmas 3.2 and 3.3 in Section 3, namely the invertibility of Lα
r · on L2(0, 1).

Theorem 5.1, together with (5.20) and (5.19) gives an explicit inverse for Lα
r · on

L2
ω∗(0, 1) ⊃ L2(0, 1). Hence we have the following.

Corollary 5.1. For 1 < α < 2, 0 < r < 1, β chosen such that (5.1) is satisfied, ω
and ω∗ as in (5.13), given f ∈ L2(0, 1) there exists a unique solution u ∈ L2

ω−1(0, 1)
such that Lα

r u = f and u(0) = u(1) = 0. (For a solution to the nonhomogeneous
boundary condition problem: Lα

r unh = f subject to unh(0) = A, unh(1) = B, the
homogeneous boundary condition for u is combined with a suitable function chosen
from the kernel of Lα

r · (see Corollary 3.1).) �

5.1.2. A priori error estimate for u − uN . We have the following statement for the
error between u − uN .
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Theorem 5.2. For f(x) ∈ L2
ω∗(0, 1) and uN (x) given by (5.20), there exists C > 0

such that

(5.21) ‖u − uN‖ω−1 ≤ 1

λN+1
‖f‖ω∗ ≤ C (N + 2)−α ‖f‖ω∗ .

Proof. With the definition of the ‖ · ‖ω−1 norm, and (5.15)

‖u − uN‖2ω−1 =

∫ 1

0

ω−1(x)

(
ω(x)

∞∑
i=0

f∗
i

(λi ‖G∗
i ‖2ω∗)

Gi(x)

− ω(x)

N∑
i=0

f∗
i

(λi ‖G∗
i ‖2ω∗)

Gi(x)

)2

dx

≤ max
N+1≤ i

(
1

λ2
i

) ∫ 1

0

ω(x)

( ∞∑
i=N+1

f∗
i

‖G∗
i ‖2ω∗

Gi(x)

)2

dx

≤ 1

λ2
N+1

∞∑
i=N+1

f∗2
i

‖G∗
i ‖4ω∗

‖Gi‖2ω

=
1

λ2
N+1

∞∑
i=N+1

f∗2
i

‖G∗
i ‖4ω∗

‖G∗
i ‖2ω∗ (using (5.14))

≤
(
− sin(π (α− β))

(1− r) sin(π α)

Γ(N + 2)

Γ(N + 2 + α)

)2

·
∫ 1

0

ω∗(x)
∞∑

i=0

(
f∗
i

‖G∗
i ‖2ω∗

G∗
i (x)

)2

dx

=

(
− sin(π (α− β))

(1− r) sin(π α)

Γ(N + 2)

Γ(N + 2 + α)

)2 ∫ 1

0

ω∗(x) f(x)2 dx

≤
(
− sin(π (α− β))

(1− r) sin(π α)

Γ(N + 2)

Γ(N + 2 + α)

)2

‖f‖2ω∗

≤ C (N + 2)−2α ‖f‖2ω∗ . �

Corollary 5.2. For f(x) ∈ L2
ω∗(0, 1) and uN (x) given by (5.20), there exists C > 0

such that

(5.22) ‖u − uN‖ ≤ 1

λN+1
‖f‖ω∗ ≤ C (N + 2)−α ‖f‖ω∗ .

As ω(x) = xβ(1− x)α−β < 1, for 0 < x < 1, then ‖u − uN‖ ≤ ‖u − uN‖ω−1 .
Hence the bound (5.22) follows immediately from (5.21).

5.2. Numerical Examples. In this section we demonstrate the spectral type ap-
proximation methods discussed in Section 5.1 on Examples 1 and 2 presented in
Section 4.

Example 1 (cont.). For this example α = 1.4, r = 1/2 and β = 0.7. Hence we
have from (5.13) that ω(x) = ω∗(x) = xβ(1 − x)α−β = x0.7(1 − x)0.7, Gn(x) =
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G∗
n(x), and from (5.19) and (5.20),

uN (x) = x0.7(1− x)0.7
N∑
j=0

f∗
j

λj ‖Gj‖2w
Gj(x) .

Presented in Figure 5.1 is a plot of the true solution given in (4.6). Figure 5.2
contains a plot of the error, u(x) − u8(x), which exhibits a Gibbs type phenomena
at the endpoints. Presented in Figure 5.3 is a plot of the L2

ω and L2 errors for
the approximations. The convergence of the approximations is consistent with the
theoretical results given in (5.21) and (5.22).

Figure 5.1. Solution of
Example 1, u(x) given
in (4.6).

Figure 5.2. Plot of
u(x) − u8(x) for Ex-
ample 1.

log
10

N
0.2 0.4 0.6 0.8 1 1.2

lo
g

10
(E

rr
or

)

-4

-3.5

-3

-2.5

-2

-1.5
L2
ω

-1 error

L2 error
slope = -1.4

Figure 5.3. L2
ω−1

and L2 errors for
Example 1.

Figure 5.4. Solution of
Example 2, u(x) given
in (4.8).
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Example 2 (cont.). For this example α = 1.4, r = 0.3149, p = −0.15 and
q = −0.45. For these values the corresponding value for β is 0.85 (see (5.1)). From
Section 5.1, (5.13), ω(x) = xβ(1 − x)α−β = x0.85(1 − x)0.55, and from (5.19) and
(5.20),

uN (x) = x0.85(1− x)0.55
N∑
j=0

f∗
j

λj ‖G∗
j ‖2w∗

Gj(x) .

Presented in Figure 5.4 is a plot of the true solution given in (4.8). Figure 5.5
contains a plot of the error, u(x) − u8(x). Presented in Figure 5.6 is a plot of the
L2
ω and L2 errors for the approximations. The convergence of the approximations

is consistent with the theoretical results given in (5.21) and (5.22).

Figure 5.5. Plot of
u(x) − u8(x) for Ex-
ample 2.

log
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Figure 5.6. L2
ω−1

and L2 errors for
Example 2.
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tion of Lévy motion, Water Resour. Res. 36 (2000), no. 6, 1413–1424.

[4] H. Chen and H. Wang, Numerical simulation for conservative fractional diffusion equa-
tions by an expanded mixed formulation, J. Comput. Appl. Math. 296 (2016), 480–498,
DOI 10.1016/j.cam.2015.09.022. MR3430153

[5] S. Chen, J. Shen, and L.-L. Wang, Generalized Jacobi functions and their applications
to fractional differential equations, Math. Comp. 85 (2016), no. 300, 1603–1638, DOI
10.1090/mcom3035. MR3471102

http://www.ams.org/mathscinet-getitem?mr=0167642
http://www.ams.org/mathscinet-getitem?mr=2894576
http://www.ams.org/mathscinet-getitem?mr=3430153
http://www.ams.org/mathscinet-getitem?mr=3471102


REGULARITY OF 1-D FRACTIONAL ORDER DIFFUSION EQUATIONS 2293

[6] M. Cui, Compact finite difference method for the fractional diffusion equation, J. Comput.
Phys. 228 (2009), no. 20, 7792–7804, DOI 10.1016/j.jcp.2009.07.021. MR2561843

[7] K. Diethelm, The analysis of fractional differential equations, Lecture Notes in Mathematics,
vol. 2004, Springer-Verlag, Berlin, 2010. An application-oriented exposition using differential
operators of Caputo type. MR2680847

[8] Q. Du, M. Gunzburger, R. B. Lehoucq, and K. Zhou, Analysis and approximation of nonlo-
cal diffusion problems with volume constraints, SIAM Rev. 54 (2012), no. 4, 667–696, DOI

10.1137/110833294. MR3023366
[9] V.J. Ervin, N. Heuer, and J.P. Roop. Regularity of the solution to 1-D fractional order

diffusion equations. Preprint: http://arxiv.org/abs/1608.00128, 2016.
[10] V. J. Ervin and J. P. Roop, Variational formulation for the stationary fractional advection

dispersion equation, Numer. Methods Partial Differential Equations 22 (2006), no. 3, 558–576,
DOI 10.1002/num.20112. MR2212226

[11] J. S. Hesthaven, S. Gottlieb, and D. Gottlieb, Spectral Methods for Time-dependent Problems,
Cambridge Monographs on Applied and Computational Mathematics, vol. 21, Cambridge
University Press, Cambridge, 2007. MR2333926

[12] B. Jin, R. Lazarov, X. Lu, and Z. Zhou, A simple finite element method for boundary value
problems with a Riemann-Liouville derivative, J. Comput. Appl. Math. 293 (2016), 94–111,
DOI 10.1016/j.cam.2015.02.058. MR3394205

[13] B. Jin, R. Lazarov, J. Pasciak, and W. Rundell, Variational formulation of problems involving
fractional order differential operators, Math. Comp. 84 (2015), no. 296, 2665–2700, DOI
10.1090/mcom/2960. MR3378843

[14] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional
Differential Equations, North-Holland Mathematics Studies, vol. 204, Elsevier Science B.V.,
Amsterdam, 2006. MR2218073

[15] N. N. Lebedev, Special Functions and their Applications, Dover Publications, Inc., New York,
1972. Revised edition, translated from the Russian and edited by Richard A. Silverman;
Unabridged and corrected republication. MR0350075

[16] C. Li, F. Zeng, and F. Liu, Spectral approximations to the fractional integral and deriva-
tive, Fract. Calc. Appl. Anal. 15 (2012), no. 3, 383–406, DOI 10.2478/s13540-012-0028-x.

MR2944106
[17] F. Liu, V. Anh, and I. Turner, Numerical solution of the space fractional Fokker-Planck

equation, Proceedings of the International Conference on Boundary and Interior Layers—
Computational and Asymptotic Methods (BAIL 2002), J. Comput. Appl. Math. 166 (2004),
no. 1, 209–219, DOI 10.1016/j.cam.2003.09.028. MR2057973

[18] Q. Liu, F. Liu, I. Turner, and V. Anh, Finite element approximation for a modified
anomalous subdiffusion equation, Appl. Math. Model. 35 (2011), no. 8, 4103–4116, DOI
10.1016/j.apm.2011.02.036. MR2793693

[19] F. Mainardi, Fractional calculus: some basic problems in continuum and statistical mechan-
ics, Fractals and fractional calculus in continuum mechanics (Udine, 1996), CISM Courses
and Lect., vol. 378, Springer, Vienna, 1997, pp. 291–348, DOI 10.1007/978-3-7091-2664-6 7.
MR1611587

[20] Z. Mao, S. Chen, and J. Shen, Efficient and accurate spectral method using generalized Jacobi
functions for solving Riesz fractional differential equations, Appl. Numer. Math. 106 (2016),
165–181, DOI 10.1016/j.apnum.2016.04.002. MR3499964

[21] M. M. Meerschaert and C. Tadjeran, Finite difference approximations for fractional
advection-dispersion flow equations, J. Comput. Appl. Math. 172 (2004), no. 1, 65–77, DOI
10.1016/j.cam.2004.01.033. MR2091131

[22] I. Podlubny, Fractional Differential Equations, An Introduction to Fractional Derivatives,
Fractional Differential Equations, to Methods of their Solution and Some of their Applica-
tions, Mathematics in Science and Engineering, vol. 198, Academic Press, Inc., San Diego,
CA, 1999. MR1658022

[23] S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives: Theory
and applications, Gordon and Breach Science Publishers, Yverdon, 1993. MR1347689

[24] M. F. Shlesinger, B. J. West, and J. Klafter, Lévy dynamics of enhanced diffusion: appli-
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