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STRONG-STABILITY-PRESERVING ADDITIVE

LINEAR MULTISTEP METHODS

YIANNIS HADJIMICHAEL AND DAVID I. KETCHESON

Abstract. The analysis of strong-stability-preserving (SSP) linear multistep
methods is extended to semi-discretized problems for which different terms on
the right-hand side satisfy different forward Euler (or circle) conditions. Opti-
mal perturbed and additive monotonicity-preserving linear multistep methods
are studied in the context of such problems. Optimal perturbed methods at-
tain larger monotonicity-preserving step sizes when the different forward Euler
conditions are taken into account. On the other hand, we show that optimal
SSP additive methods achieve a monotonicity-preserving step-size restriction
no better than that of the corresponding nonadditive SSP linear multistep
methods.

1. Introduction

We are interested in numerical solutions of initial value ODEs,

u′(t) = F (u(t)), t ≥ t0,

u(t0) = u0,
(1.1)

where F : Rm → R
m is a continuous function and u : [t0,∞) → R

m satisfies a
monotonicity property

‖u(t+Δt)‖ ≤ ‖u(t)‖ ∀Δt ≥ 0,(1.2)

with respect to some norm, semi-norm or convex functional ‖ · ‖ : Rm → R. In
general, F (u(t)) may arise from the spatial discretization of partial differential
equations, for example, hyperbolic conservation laws. A sufficient condition for
monotonicity is that there exists some ΔtFE > 0 such that the forward Euler
condition

‖u+ΔtF (u)‖ ≤ ‖u‖, 0 ≤ Δt ≤ ΔtFE,(1.3)

holds for all u ∈ R
m. In this paper we focus on linear multistep methods (LMMs) for

the numerical integration of (1.1). We denote by un the numerical approximation
to u(tn), evaluated sequentially at times tn = t0 + nΔt, n ≥ 1. At step n, a k-step
linear multistep method applied to (1.1) takes the form

un =

k−1∑
j=0

αjun−k+j +Δt

k∑
j=0

βjF (un−k+j),(1.4)

and if βk = 0, then the method is explicit.
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We would like to establish a discrete analogue of (1.2) for the numerical solution
un in (1.4). Consider the explicit case, and assume F satisfies the forward Euler
condition (1.3) and all αj , βj are nonnegative. Then, convexity of ‖ · ‖ and the

consistency requirement
∑k−1

j=0 αj = 1 imply that ‖un‖ ≤ maxj ‖un−k+j‖ whenever

Δtβj/αj ≤ ΔtFE for each j ∈ {0, . . . , k − 1}. Hence, the monotonicity condition

‖un‖ ≤ max{‖un−1‖, . . . , ‖un−k‖}(1.5)

is satisfied under a step-size restriction,

Δt ≤ CLMMΔtFE,(1.6)

where CLMM = minj αj/βj . The ratio αj/βj is taken to be infinity if βj = 0. The
above also holds for implicit methods under a technical rescaling of the coefficients1.
See [3, Chapter 8] and references therein for a review of strong-stability-preserving
linear multistep methods (SSP LMMs).

Most LMMs have one or more negative coefficients, so the foregoing analysis
leads to CLMM = 0 and thus monotonicity condition (1.5) cannot be guaranteed
by positive step sizes. Typical numerical methods for hyperbolic conservation laws
Ut +∇·f(U) = 0 involve upwind-biased semi-discretizations of the spatial deriva-
tives. In order to preserve monotonicity when using methods with negative coeffi-
cients for such semi-discretizations, downwind-biased spatial approximations may

be used. Let F and F̃ be, respectively, upwind- and downwind-biased approxima-

tions of −∇·f(U). It is natural to assume that F̃ satisfies

‖u−ΔtF̃ (u)‖ ≤ ‖u‖, 0 ≤ Δt ≤ ΔtFE(1.7)

for all u ∈ R
m. A linear multistep method that uses both F and F̃ can be then

written as

un =
k−1∑
j=0

αjun−k+j +Δt
k∑

j=0

(
βjF (un−k+j)− β̃jF̃ (un−k+j)

)
.(1.8)

If all coefficients αj , βj , β̃j are nonnegative, then the SSP coefficient of method (1.8)
is [10, Section 3]

C̃LMM = sup
{
r | αj − r(βj + β̃j) ≥ 0

}
= min

j

αj

βj + β̃j

.

If F and F̃ satisfy (1.3) and (1.7), then the solution given by (1.8) satisfies (1.5)
whenever the time step satisfies

Δt ≤ C̃LMMΔtFE.

Downwind LMMs were originally introduced in [20, 21], with the idea that F

be replaced by F̃ whenever βj < 0. Optimal explicit linear multistep schemes of
order up to six, coupled with efficient upwind and downwind WENO discretizations,
were studied in [4]. Coefficients of optimal upwind- and downwind-biased methods
together with a reformulation of the nonlinear optimization problem involved as a
series of linear programming feasibility problems can be found in [10]. Bounds on

1For implicit methods convexity can be used after rescaling the coefficients of (1.4) by mul-
tiplying both sides by 1 − αk, where αk = CLMMβk/(1 + CLMMβk). Under this rescaling, the
coefficients of (1.4) become ᾱj = (1 − αk)αj , j ∈ {0, . . . , k − 1}, ᾱk = αk, β̄j = (1 − αk)βj ,

j ∈ {0, . . . , k}, and hence consistency implies
∑k

j=0 ᾱj = 1.
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the maximum SSP step size for downwind-biased methods have been analyzed in
[11].

Method (1.8) can also be written in the perturbed form

un =

k−1∑
j=0

αjun−k+j +Δt

k∑
j=0

(
“βjF (un−k+j) + β̃j

(
F (un−k+j)− F̃ (un−k+j)

))
,

(1.9)

where “βj = βj − β̃j . We say method (1.9) is a perturbation of the LMM (1.4) with

coefficients “βj , and the latter is referred to as the underlying method for (1.9). By

replacing F̃ with F in (1.9) one recovers the underlying method. The notion of a
perturbed method can be useful beyond the realm of downwinding for hyperbolic
PDE semi-discretizations. If F satisfies the forward Euler condition (1.3) for both

positive and negative step sizes, then we can simply take F̃ = F . In such cases, the
perturbed and underlying methods are the same, but analysis of a perturbed form
of the method can yield a larger step size for monotonicity, giving more accurate
insight into the behavior of the method. See [7] for a discussion of this in the
context of Runge–Kutta methods, and see Example 2.17 herein for an example
using multistep methods. As we will see in Section 2, the most useful perturbed
LMMs (1.9) take a form in which either βj or β̃j is equal to zero for each value

of j ∈ {0, . . . , k}. Thus C̃LMM = minj{αj/βj , αj/β̃j}, and the class of perturbed
LMMs (1.9) coincides with the class of downwind LMMs in [20, 21].

In this work, we adopt form (1.8) for perturbed LMMs and consider their ap-

plication to the more general class of problems (1.1) for which F and F̃ satisfy
forward Euler conditions under different step-size restrictions:

‖u+ΔtF (u)‖ ≤ ‖u‖ ∀u ∈ R
m, 0 ≤ Δt ≤ ΔtFE,(1.10a)

‖u−ΔtF̃ (u)‖ ≤ ‖u‖ ∀u ∈ R
m, 0 ≤ Δt ≤ Δ̃tFE.(1.10b)

For a fixed order of accuracy and number of steps, an optimal SSP method is defined
to be any method that attains the largest possible SSP coefficient. The choice of
optimal monotonicity-preserving method for a given problem will depend on the

ratio ΔtFE/Δ̃tFE. We analyze and construct such optimal methods. We illustrate
by examples that perturbed LMMs with larger step sizes for monotonicity can be
obtained when the different step sizes in (1.10) are accounted for.

The perturbed methods (1.8) are reminiscent of additive methods, and the latter
can be analyzed in a similar way. Consider the problem

u′(t) = F (u(t)) + F̂ (u(t)),

where F and F̂ may represent different physical processes, such as convection and
diffusion, or convection and reaction. Additive methods are expressed as

un =

k−1∑
j=0

αjun−k+j +Δt

k∑
j=0

(
βjF (un−k+j) + β̂jF̂ (un−k+j)

)
,

where F and F̂ may satisfy the forward Euler condition (1.3) under possibly differ-
ent step-size restrictions. We prove that optimal SSP explicit or implicit additive

methods have coefficients βj = β̂j for each j ∈ {0, . . . , k}, hence they lie within the
class of ordinary (not additive) LMMs.
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The rest of the paper is organized as follows. In Section 2 we analyze the mono-
tonicity properties of perturbed LMMs for which the upwind and downwind oper-
ators satisfy different forward Euler conditions. Optimal methods are derived, and
their properties are discussed. Their effectiveness is illustrated by some examples.
Additive linear multistep methods are presented in Section 3 where we prove that
optimal SSP additive LMMs are equivalent to the corresponding nonadditive SSP
LMMs. Monotonicity of IMEX linear multistep methods is discussed, and finally
in Section 4 we summarize the main results.

2. Monotonicity-preserving perturbed linear multistep methods

The following example shows that using upwind- and downwind-biased operators
allows the construction of methods that have positive SSP coefficients, even though
the underlying methods are not SSP.

Example 2.1. Let u′(t) = F (u(t)) be a semi-discretization of ut + f(u)x = 0,
where F ≈ −f(u)x. Consider the two-step, second-order explicit linear multistep
method

un =
1

2
un−2 −

1

4
ΔtF (un−2) +

1

2
un−1 +

7

4
ΔtF (un−1).(2.1)

The method has SSP coefficient equal to zero. Let us introduce a downwind-biased

operator F̃ ≈ −f(u)x such that (1.7) is satisfied. Then, a perturbed representation
of (2.1) is

un =
1

2
un−2 +

1

4
ΔtF (un−2)−

1

2
ΔtF̃ (un−2)

+
1

2
un−1 + 2ΔtF (un−1)−

1

4
ΔtF̃ (un−1),

(2.2)

in the sense that the underlying method (2.1) is retrieved from (2.2) by replacing

F̃ with F . The perturbed method has SSP coefficient C̃LMM = 2/9. There are
infinitely many perturbed representations of (2.1), but an optimal one is obtained

by simply replacing F with F̃ at terms with negative coefficients in (2.1), yielding

un =
1

2
un−2 −

1

4
ΔtF̃ (un−2) +

1

2
un−1 +

7

4
ΔtF (un−1),(2.3)

with SSP coefficient C̃LMM = 2/7.

Remark 2.2. A LMM (1.4) has SSP coefficient CLMM = 0 if any of the following
three conditions hold:

(1) αj < 0 for some j;
(2) βj < 0 for some j;
(3) αj = 0 for some j for which βj �= 0.

By introducing a downwind operator we can remedy the second condition, but not
the first or the third. Most common methods, including the Adams–Bashforth,
Adams–Moulton, and BDF methods, satisfy condition (1) or (3), so they cannot
be made SSP via downwinding.

We consider a generalization of the perturbed LMMs described previously, by

assuming different forward Euler conditions for the operators F and F̃ (see (1.10)).
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Definition 2.3. A perturbed LMM of the form (1.8) is said to be strong-stability-

preserving (SSP) with SSP coefficients (C, C̃) if conditions

βj , β̃j ≥ 0, j ∈ {0, . . . , k},
αj − rβj − r̃β̃j ≥ 0, j ∈ {0, . . . , k − 1},

(2.4)

hold for all 0 ≤ r ≤ C and 0 ≤ r̃ ≤ C̃.

By plugging the exact solution into (1.8), setting F̃ (u(tn)) = F (u(tn)), and
taking Taylor expansions around tn−k, it can be shown that a perturbed LMM is
order p accurate if

k−1∑
j=0

αj = 1,
k−1∑
j=0

jαj +
k∑

j=0

(βj − β̃j) = k,

k−1∑
j=0

αjj
i +

k∑
j=0

(βj − β̃j)ij
i−1 = ki, i ∈ {2, . . . , p}.

(2.5)

The step-size restriction for monotonicity of an SSP perturbed LMM is given by
the following theorem.

Theorem 2.4. Let F and F̃ be given such that the forward Euler conditions (1.10)

are satisfied for some ΔtFE > 0 and Δ̃tFE > 0. Let a consistent perturbed LMM

(1.8) be given with SSP coefficients (C, C̃). Then the numerical solution satisfies the
monotonicity condition (1.5) if

0 ≤ Δt ≤ min{CΔtFE, C̃ Δ̃tFE}.(2.6)

Proof. Since the method is SSP with coefficients (C, C̃), then conditions (2.4) hold

with r = C and r̃ = C̃. Let α̂j = Cβj and αj = α̂j + α̃j for j ∈ {0, . . . , k− 1}. Then
(2.4) yields α̃j ≥ C̃β̃j and βj ≥ 0, β̃j ≥ 0. Define

αk :=
Cβk + C̃β̃k

1 + Cβk + C̃β̃k

,

and multiply both sides of (1.8) by 1−αk. Rearranging terms, the perturbed LMM
(1.8) can be expressed as

un =
k∑

j=0

(
α∗
jun−k+j +Δtβ∗

jF (un−k+j)−Δtβ̃∗
j F̃ (un−k+j)

)
,(2.7)

where

α∗
j =

{
(1− αk)αj , if j ∈ {0, . . . , k − 1},
αk, if j = k,

β∗
j = (1− αk)βj ,

β̃∗
j = (1− αk)β̃j ,

j ∈ {0, . . . , k}.

Note that 0 ≤ αk < 1, hence the nonnegativity of αj , βj , β̃j implies that all

α∗
j , β

∗
j , β̃

∗
j are also nonnegative. We can split α∗

j , j ∈ {0, . . . , k − 1} into two parts,

such that α∗
j = α̂∗

j + α̃∗
j , where α̂

∗
j = (1−αk)α̂j = Cβ∗

j , and α̃∗
j = (1−αk)α̃j ≥ C̃β̃∗

j .

Consistency requires
∑k−1

j=0 αj = 1, hence
∑k

j=0 α
∗
j = 1. Also, let α∗

k = α̂∗
k + α̃∗

k,
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where α̂∗
k = Cβk/(1 + Cβk + C̃β̃k) and α̃∗

k = C̃β̃k/(1 + Cβk + C̃β̃k). Thus, the right-
hand side of (2.7) can be expressed as a convex combination of forward Euler steps,
yielding

un =

k∑
j=0

α̂∗
j

(
un−k+j +Δt

β∗
j

α̂∗
j

F (un−k+j)
)
+

k∑
j=0

α̃∗
j

(
un−k+j −Δt

β̃∗
j

α̃∗
j

F̃ (un−k+j)
)
.

Taking norms and using convexity we have

‖un‖ ≤
k∑

j=0

α̂∗
j

∥∥∥un−k+j +Δt
β∗
j

α̂∗
j

F (un−k+j)
∥∥∥

+
k∑

j=0

α̃∗
j

∥∥∥un−k+j −Δt
β̃∗
j

α̃∗
j

F̃ (un−k+j)
∥∥∥.

Under the step-size restriction Δt ≤ min{CΔtFE, C̃ Δ̃tFE} we get

Δt
β∗
j

α̂∗
j

≤ ΔtFE and Δt
β̃∗
j

α̃∗
j

≤ Δ̃tFE,

for each j ∈ {0, . . . , k}. Since F and F̃ satisfy (1.10a) and (1.10b), respectively, we
have

(1− αk)‖un‖ ≤
k−1∑
j=0

α̂∗
j‖un−k+j‖+

k−1∑
j=0

α̃∗
j‖un−k+j‖,

and hence

‖un‖ ≤
k−1∑
j=0

αj‖un−k+j‖ ≤ max
0≤j≤k−1

‖un−k+j‖
k−1∑
j=0

αj .

Recall that
∑k−1

j=0 αj = 1 and therefore the monotonicity condition (1.5) follows. �

2.1. Optimal SSP perturbed linear multistep methods. We now turn to the
problem of finding, among methods with a given number of steps k and order of

accuracy p, the largest SSP coefficients. Since C, C̃ are continuous functions of the
method’s coefficients, we expect that the maximal step size (2.6) is achieved when

C = C̃ Δ̃tFE/ΔtFE. It is thus convenient to define ξ := ΔtFE/Δ̃tFE.

Definition 2.5. For a fixed ξ ∈ [0,∞) we say that a perturbed LMM (1.8) has
SSP coefficient

C(ξ) := sup {r > 0 | monotonicity conditions (2.4) hold with r̃ = ξr}

and its corresponding downwind SSP coefficient is C̃(ξ) = ξ C(ξ).

Whenever the set in Definition 2.5 is empty, then the method is non-SSP; in such
cases we say the method has SSP coefficient equal to zero. In the next definition,
we refer to a perturbed method (1.8) by its coefficients (α,β, β̃), and we write Pk,p

to denote the set of all methods having at most k steps and satisfying the order
conditions up to (at least) order p.
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Definition 2.6. An explicit (implicit) method in Pk,p is called optimal if no explicit
(implicit) method in Pk,p has larger SSP coefficient. Given ξ ∈ [0,∞), we denote
the largest SSP coefficient for explicit (implicit) k-step methods (1.8) of order p by

Ck,p(ξ) := sup
(α,β,β̃)∈Pk,p

{
C(ξ) > 0

∣∣ C(ξ) is the SSP coefficient of an explicit

(implicit) method (1.8) with coefficients (α,β, β̃)
}
.

In the trivial case that the set over which the supremum is taken above is empty,
we write Ck,p(ξ) = 0.

Note that, because the inequalities involved are nonstrict (see (2.4)), the supremum
in the last definition is always attained by some method.

Next we prove that for a given SSP perturbed LMM with SSP coefficient
C(ξ), we can construct another SSP method (1.8) with the property that for each

j ∈ {0, . . . , k}, either βj or β̃j is zero. Example 2.1 is an application of this result.

Lemma 2.7. Consider a k-step perturbed LMM (1.8) of order p with SSP coef-
ficient C(ξ) for a given ξ ∈ [0,∞). Then, we can construct a k-step SSP method

(1.8) of order p with SSP coefficient at least C(ξ) that satisfies βj β̃j = 0 for each
j ∈ {0, . . . , k}. Moreover, both perturbed methods correspond to the same underlying
method.

Proof. Suppose there exists a k-step SSP method (1.8) of order p with SSP coeffi-

cient C(ξ) for some ξ ∈ [0,∞), such that βj ≥ β̃j > 0 for j ∈ J1 ⊆ {0, 1, . . . , k} and

β̃j > βj > 0 for j ∈ J2 ⊆ {0, 1, . . . , k}. Clearly J1 ∩ J2 = ∅. Define

β∗
j :=

{
βj − β̃j , if j ∈ J1,

0, if j /∈ J1,
β̃∗
j :=

{
0, if j /∈ J2,

β̃j − βj , if j ∈ J2.

Observe that conditions (2.4) with r = C(ξ), r̃ = C̃(ξ) and the order conditions

(2.5) are satisfied when βj , β̃j are replaced by β∗
j , β̃

∗
j . Therefore, the method with

coefficients (α,β∗, β̃∗) has SSP coefficient at least C(ξ) and satisfies β∗
j β̃

∗
j = 0 for

each j ∈ {0, . . . , k}. Finally, the definition of β∗
j and β̃∗

j leaves βj − β̃j invariant,

thus substituting F̃ = F in method (1.8) with coefficients (α,β, β̃) or (α,β∗, β̃∗)
yields the same underlying method. �

The next Corollary is an immediate consequence of Lemma 2.7.

Corollary 2.8. Let k, p and ξ be given such that Ck,p(ξ) > 0. Then there exists
an optimal SSP perturbed LMM (1.8) with SSP coefficient Ck,p(ξ) that satisfies

βj β̃j = 0 for each j ∈ {0, . . . , k}.

Optimal explicit k-step SSP perturbed LMMs (1.8) of first order are simply the
explicit Euler method. To see that, first define

γj := αj − rβj − r̃β̃j , for j ∈ {0, . . . , k − 1}.(2.8)
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Then, the conditions of order one in (2.5) become

k−1∑
j=0

γj + rβj + r̃β̃j = 1,(2.9)

k−1∑
j=0

j(γj + rβj + r̃β̃j) +
k−1∑
j=0

(βj − β̃j) = k.(2.10)

Multiplying (2.9) by k, subtracting (2.10) and rearranging terms yields

k−1∑
j=0

(k − j)γj + (r(k − j)− 1) βj + (r̃(k − j) + 1) β̃j = 0.(2.11)

Monotonicity conditions (2.4) require that all γj , βj , β̃j are nonnegative; thus, the
first and last term in (2.11) are also nonnegative. In order (2.11) to hold, the
coefficients of βj must be nonpositive, and therefore r ≤ 1/(k − j). The maximum
value r = 1 is attained when j = k−1, and in such case the only nonzero coefficient
in (2.11) is βk−1. From (2.8) and (2.9) we get that the optimal explicit k-step, first-
order method (1.8) has nonzero coefficients αk−1 = βk−1 = 1 and SSP coefficient
Ck,1(ξ) = 1 for all ξ ∈ [0,∞) and k ≥ 1.

Arbitrary large SSP coefficient C(ξ) can be obtained for implicit first-order SSP
methods (1.8). This was shown in [16,19,22] for SSP LMMs without downwinding.
An optimal implicit k-step perturbed LMM (1.8) of first-order with Ck,1(ξ) = ∞
for all ξ ∈ [0,∞) and k ≥ 1 has coefficients

αj ≥ 0, βj = β̃j = 0, j ∈ {0, . . . , k − 1}, βk ≥ 0, β̃k ≥ 0

with

k−1∑
j=0

αj = 1, and βk − β̃k = k −
k−1∑
j=0

jαj .

If we consider optimal methods that satisfy βj β̃j = 0 for each j ∈ {0, . . . , k}, then
β̃k must be set to zero. Otherwise, if βk = 0, then β̃k =

∑k−1
j=0 jαj − k ≤ −1 which

violates the nonnegativity of the method’s coefficients.
Based on Corollary 2.8 we have the following upper bound for the SSP coefficient

of any perturbed LMM (1.8) of order greater than one. This extends [11, Theo-
rem 2.2].

Theorem 2.9. Given ξ ∈ [0,∞), any zero-stable perturbed LMM (1.8) of order
greater than one satisfies C(ξ) ≤ 2.

Proof. Consider a second-order optimal SSP perturbed LMM with SSP coefficient

C = C(ξ) and C̃ = ξ C(ξ) for some ξ ∈ [0,∞). Then, from Corollary 2.8 there exists

an optimal method with at least SSP coefficient C and coefficients (α,β, β̃) such

that βj β̃j = 0 for each j ∈ {0, . . . , k}.
Suppose ξ > 0 and define δj := βj + ξβ̃j and

σj :=

{
1, if β̃j = 0,

−1/ξ, if βj = 0,

where j ∈ {0, . . . , k}. Note that the nonnegativity of βj , β̃j implies that there is at

least one index j such that δj > 0 (otherwise, βj = β̃j = 0, for each j ∈ {0, . . . , k},
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and the method is not zero-stable2). Also, since either βj or β̃j is zero, then

βj − β̃j = σjδj for each j. Let γj = αj − Cδj for j ∈ {0, . . . , k − 1}. Taking p = 2,

r = C, and r̃ = C̃ in (2.5), the second-order conditions can be written as

k−1∑
j=0

γj + Cδj = 1,(2.12)

k−1∑
j=0

jγj + (jC + σj)δj = k − σkδk,(2.13)

k−1∑
j=0

j2γj + (j2C + 2jσj)δj = k(k − 2σkδk).(2.14)

Multiplying (2.12), (2.13), and (2.14) by −k2, 2k and −1, respectively, and adding
all three expressions gives

k−1∑
j=0

−(k − j)2γj +
(
−C(k − j)2 + 2σj(k − j)

)
δj = 0.(2.15)

Since the method satisfies conditions (2.4) for r = C and r̃ = C̃, then all coefficients
γj and δj are nonnegative. Therefore, there must be at least one index j0 such that
the coefficient of δj0 in (2.15) is nonnegative. Note that if βj0 = 0, then σj0 < 0;

hence it can only be that β̃j0 = 0 and βj0 > 0, yielding δj0 > 0. Thus,

−C(k − j0)
2 + 2(k − j0) ≥ 0,

which implies

C ≤ 2

k − j0
≤ 2,(2.16)

since k − j0 ≥ 1.
If now ξ = 0, define δj := βj + β̃j and σj := sign(βj − β̃j) for each j ∈ {0, . . . , k}.

Using γj = αj − Cβj and performing the same algebraic manipulations as before
we get

k−1∑
j=0

−(k − j)2γj − C(k − j)2βj + 2(k − j)σjδj = 0.(2.17)

In the sum of (2.17), consider the two sets of indexes J0 = {j | βj = 0} and

J+ = {j | βj > 0}. If βj = 0, then we have σjδj = −β̃j ≤ 0 and therefore
−C(k − j)2βj + 2σj(k − j)δj ≤ 0; these terms are nonpositive for all indexes j ∈ J0

and are considered together with terms −(k − j)2γj ≤ 0. As the sum is equal to
zero, then the set J+ must be nonempty. Hence, there is an index j0 ∈ J+ such
that βj0 > 0 and

−C(k − j0)
2βj0 + 2(k − j0)σj0δj0 ≥ 0.(2.18)

Since βj0 > 0, then β̃j0 = 0 and σj0δj0 = βj0 > 0. We divide by βj0 in (2.18),
reorganize terms and inequality (2.16) is obtained. �

2Let the first characteristic polynomial of (1.8) be ρ(ζ) = ζk −
∑k−1

j=0 αjζ
j . If βj = β̃j = 0, for

each j ∈ {0, . . . , k}, then a method of at least order one should satisfy ρ(1) = ρ′(1) = 0. Hence,
in such case ζ = 1 is a double root and the root condition for zero-stability is violated.
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Remark 2.10. For given values k, p, ξ, it may be that there exists no method with
positive SSP coefficients. However, from (2.4) and Theorem 2.9 if a method exists
with bounded SSP coefficient, then the existence of an optimal method follows since
the feasible region is compact.

The upper bound of the SSP coefficient can be only achieved in the case of im-
plicit second-order SSP perturbed LMM (1.8). In view of the proof of Theorem 2.9,
by taking j0 = k− 1 in (2.16) we have C = C(ξ) = 2. In that case βk−1 > 0 and we
can choose all other terms in (2.15) (or (2.17) if ξ = 0) to be equal to zero. Then,
from (2.12) and (2.13) we obtain that the nonzero coefficients are

αk−1 = 1, βk−1 = βk =
1

2
.

Hence, an optimal k-step, second-order SSP perturbed LMM (1.8) with SSP coef-
ficient Ck,2(ξ) = 2 for all ξ ∈ [0,∞) and k ≥ 1 is simply the trapezoidal rule. As we
will see later, we can prove that the trapezoidal rule is in fact the unique optimal
second-order SSP perturbed LMM . Therefore, downwinding does not result in any
improvement to the SSP coefficient for the class of implicit second-order LMMs.

By combining conditions (2.4) and (2.5), and using (2.8), the problem of finding
optimal SSP perturbed LMMs (1.8) can be formulated as a linear programming
feasibility problem.

LP 1. For fixed k ≥ 1, p ≥ 1 and a given ξ ∈ [0,∞), determine whether there exist

nonnegative coefficients γj , j ∈ {0, . . . , k − 1} and βj , β̃j , j ∈ {0, . . . , k} such that

k−1∑
j=0

γj + rβj + r̃β̃j = 1,
k−1∑
j=0

j(γj + rβj + r̃β̃j) +
k∑

j=0

(βj − β̃j) = k,

k−1∑
j=0

(γj + rβj + r̃β̃j)j
i +

k∑
j=0

(βj − β̃j)ij
i−1 = ki, i ∈ {2, . . . , p},

(2.19)

for some value r ≥ 0 and r̃ = ξr.

Expressing (2.19) in a compact form facilitates the analysis of the feasible prob-
lem LP 1. Let the vector

aj := (1, j, j2, . . . , jp)ᵀ ∈ R
p+1,(2.20)

and denote by a′
j the derivative of aj with respect to j, namely

a′
j = (0, 1, 2j, . . . , pjp−1)ᵀ.

Define

b±j (x) :=

{
±xa′

k, if j = k,

aj ± xa′
j , otherwise.

(2.21)

The conditions (2.19) can be expressed in terms of vectors aj and b±j (·):
k−1∑
j=0

γjaj + r

k∑
j=0

βjb
+
j (r

−1) + r̃

k∑
j=0

β̃jb
−
j (r̃

−1) = ak.(2.22)

The number of nonzero coefficients of an optimal SSP perturbed LMM is given
by Theorem 2.13. The proof of Theorem 2.13 relies on the following two lemmata.
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Lemma 2.11. Consider a matrix

A(r) =

[
ψ1(r) . . . ψm(r)

]
∈ R

n×m,

where the columns ψj(r) ∈ R
n, j ∈ {1, . . . ,m} are functions of a variable r ∈ R

and m ≥ n. Let c ∈ R
n and r∗ ∈ R be given. Let each ψj(r) be a continuous

function of r for values in some neighborhood of r∗, and let the system A(r∗)x = c
have a nonnegative solution with at least n strictly positive elements

xi1 , xi2 , . . . , xis , n ≤ s ≤ m.

If the set {ψi1(r
∗), . . . ,ψis(r

∗)} spans R
n, then there exists ε > 0 such that the

system A(r∗ + ε)x = c also has a nonnegative solution.

Proof. Let c ∈ R
n and r∗ ∈ R be given, and assume that A(r∗)x = c has a solution

x ≥ 0 with at least n strictly positive elements

xi1 , xi2 , . . . , xis , n ≤ s ≤ m.

Let S(r) = {ψi1(r), . . . ,ψis(r)} be a subset of the columns of A(r) ∈ R
n×m, and

assume S(r∗) spans R
n. Then, there exists a subset of the columns in S(r∗) that

forms a basis for Rn, so we can permute the columns of A(r) in such a way that the
first n columns are in S(r) and for r = r∗ they are linearly independent. This yields
Ap(r) = [B(r) | N(r)], where B(r∗) ∈ R

n×n has full rank and N(r) ∈ R
n×(m−n).

We can permute the entries of x in the same way, yielding xp = (xB ,xN ), where
xB ∈ R

n is a strictly positive vector, xN ∈ R
m−n is nonnegative, and Ap(r

∗)xp = c.
A simple calculation gives xB = B−1(r∗)

(
c−N(r∗)xN

)
. With this motivation we

define x̂B(r) := B−1(r)
(
c−N(r)xN

)
and x̂p(r) := (x̂B(r),xN ). Direct calculation

shows that Ap(r)x̂p(r)=c as long as x̂p(r) is well-defined. By continuity, B−1(r∗+ε)
exists for small enough ε > 0, so x̂B(r) is well-defined in some neighborhood of
r∗. Moreover, x̂B(r) is (in some neighborhood of r∗) a continuous function of r, so
continuity implies that x̂B(r

∗+ε) > 0, for ε sufficiently small. Therefore, x̂p(r
∗+ε)

is nonnegative and

Ap(r
∗ + ε)x̂p(r

∗ + ε) =

(
B(r∗ + ε)

∣∣∣ N(r∗ + ε)

)(
x̂B(r

∗ + ε)
xN

)
= B(r∗ + ε)

(
B−1(r∗ + ε)

(
c−N(r∗ + ε)xN

))
+N(r∗ + ε)xN

= c. �

The next lemma is a consequence of Carathéodory’s theorem [17, Theorem 17.1],
which states that a vector x belongs to the convex hull of a set S ⊆ R

n, if and only
if x can be expressed as a convex combination of n+ 1 vectors in S. The proof of
Lemma 2.12 appears in Appendix A.

Lemma 2.12. Consider a set S = {ψ1, . . . ,ψm} of distinct vectors ψj ∈ R
n,

j ∈ {1, . . . ,m}. Let C = conv(S) be the convex hull of S. Then the following
statements hold:

(a) Any nonzero vector in C can be expressed as a nonnegative linear combi-
nation of linearly independent vectors in S.

(b) Suppose the vectors in S lie in the hyperplane {(1,v) | v ∈ R
n−1} of Rn.

Then any nonzero vector in C can be expressed as a convex combination of
linearly independent vectors in S.
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We can now characterize the coefficients of an optimal perturbed LMM as follows.

Theorem 2.13. Let k, p be positive integers such that 0 < Ck,p(ξ) < ∞ for a given
ξ ∈ [0,∞). Then there exists an optimal perturbed LMM (1.8) with SSP coefficient
Ck,p(ξ) that has at most p nonzero coefficients in the set

{γ0, . . . , γk−1, β0, . . . , βk, β̃1, . . . , β̃k}.

Proof. Let 0 < Ck,p(ξ) < ∞ for given k, p and ξ. Since the inequalities involved
in (2.4) are not strict, then the supremum in Definition 2.6 is always attained

by some method. Consider an optimal LMM (1.8) with coefficients (α,β, β̃) and
SSP coefficient 0 < Ck,p(ξ) < ∞, for a given ξ ∈ [0,∞). From Corollary 2.8 an

optimal method can be chosen such that βj β̃j = 0 for each j ∈ {0, . . . , k}. Using
(2.8) we can perform a change of variables and consider the vector of coefficients

x =
(
γ,β, β̃

)
∈ R

3k+2, where x ≥ 0.
We will show that x has at most p nonzero coefficients. Suppose to the contrary

that x has at least p+ 1 nonzero coefficients

γi1 , . . . , γim , βj1 , . . . , βjn , β̃l1 , . . . , β̃ls ,

where 0 ≤ i1 < · · · < im ≤ k − 1, 0 ≤ j1 < · · · < jn ≤ k and 0 ≤ l1 < · · · < ls ≤ k,
such that m+ n+ s ≥ p+ 1. Let r̃ = ξr; then the system (2.22) can be written as

A(r)x = ak,(2.23)

where

A(r) =

⎡⎢⎣ a0 . . . ak−1 rb+0

(
1
r

)
. . . rb+k

(
1
r

)
ξrb−0

(
1
ξr

)
. . . ξrb−k

(
1
ξr

) ⎤⎥⎦ ,
and the solution x = x(r) depends on r. In particular, the coefficients of an optimal
method solve (2.23) with r = Ck,p(ξ), and x

(
Ck,p(ξ)

)
≥ 0. Define the set

S(r) =
{
ai1 , . . . ,aim , b+j1

(
1
r

)
, . . . , b+jn

(
1
r

)
, b−l1

(
1
ξr

)
, . . . , b−ls

(
1
ξr

)}
.

Case 1. Assume S(r) spans R
p+1 for r = Ck,p(ξ). By our assumption, x has at

least p+1 nonzero elements; thus by using Lemma 2.11 there exists ε > 0 such that
the system (2.23) has a nonnegative solution x∗ for r = Ck,p(ξ)+ε. This contradicts
the optimality of the method, since we can construct a k-step SSP perturbed LMM
of order p with coefficients given by x∗ and SSP coefficient Ck,p(ξ) + ε.

Case 2. Now, assume that the set S(r) does not span R
p+1 for r = Ck,p(ξ);

therefore, the largest size of a linearly independent subset of S
(
Ck,p(ξ)

)
is p.

Case 2a. If the method is explicit, then βk = β̃k = 0, and from (2.20) and
(2.21) the vectors in set S

(
Ck,p(ξ)

)
lie in the hyperplane {(1, v) | v ∈ R

p} ⊂ R
p+1,

since none of these vectors have index equal to k. Moreover, from the first condition
of (2.19) and equation (2.22) the vector ak lies in the convex hull of S(r) for
r = Ck,p(ξ). Therefore, from part (b) of Lemma 2.12, vector ak can be expressed as
a convex combination of linearly independent vectors in S

(
Ck,p(ξ)

)
. Such a set can

have no more than p elements, so it must be expressible as a convex combination
of at most p vectors in S

(
Ck,p(ξ)

)
.

Case 2b. If the method is implicit, assume without loss of generality that
βk > 0 and β̃k = 0. Again, by using the first condition of (2.19) we have that the
sum of the coefficients in (2.22) divided by ak(1 + rβk) sum to unity. Therefore,
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the vector ak/(1+rβk) belongs to the convex hull of S(r), for r = Ck,p(ξ), and thus
from part (a) of Lemma 2.12 it can be written as a nonnegative linear combination
linearly independent vectors in S

(
Ck,p(ξ)

)
. Again, such a set can have no more

than p elements. �

Furthermore, uniqueness of optimal perturbed LMMs can be established under
certain conditions on the vectors aj and b±j . The following lemma is a generalization

of [12, Lemma 3.5].

Lemma 2.14. Consider an optimal perturbed LMM (1.8) with SSP coefficient

C = Ck,p(ξ) > 0 and C̃ = ξ Ck,p(ξ) for a given ξ ∈ [0,∞). Let the indexes

0 ≤ i1 < · · · < im ≤ k − 1, 0 ≤ j1 < · · · < jn ≤ k, 0 ≤ l1 < · · · < ls ≤ k,

where m+n+s ≤ p be such that γi1 , . . . , γim , βj1 . . . , βjn , β̃l1 , . . . , β̃ls are the positive
coefficients in (1.8). Let us also denote the sets I = {0, . . . , k}, J1 = {i1, . . . , im},
J2 = {j1, . . . , jn}, J3 = {l1, . . . , ls}. Assume that the function

F (v) = det

(
v,ai1 , . . . ,aim , b+j1

(
1
C

)
, . . . , b+jn

(
1
C

)
, b−l1

(
1

C̃

)
, . . . , b−ls

(
1

C̃

))
is either strictly positive or strictly negative, simultaneously for all v = ai,
i ∈ I \ (J1 ∪ {k}), v = b+j (1/C), j ∈ I \ J2 and v = b−l

(
1/C̃
)
, l ∈ I \ J3. Then

(1.8) is the unique optimal k-step SSP perturbed LMM of order p.

Proof. Assume there exists another optimal k-step method (1.8) of order least p

with coefficients (α∗,β∗, β̃∗). Define γ∗
i := α∗

i −Cβ∗
i −C̃β̃∗

i , i ∈ {0, . . . , k−1}, then
by the monotonicity conditions (2.4) and order conditions (2.5) we have

γ∗
i ≥ 0, i ∈ {0, . . . , k − 1},

β∗
j ≥ 0, β̃∗

l ≥ 0, j ∈ {0, . . . , k}, l ∈ {0, . . . , k},
k−1∑
i=0

γ∗
i ai + C

k∑
j=0

β∗
j b

+
j

(
1
C

)
+ C̃

k∑
l=0

β̃∗
l b

−
l

(
1

C̃

)
= ak.

Since the method (1.8) with coefficients (α,β, β̃) is optimal, then ak can be also
written as a nonnegative linear combination of vectors in the set

{
ai1 , . . . ,aim , b+j1

(
1
C

)
. . . , b+jn

(
1
C

)
, b−l1

(
1

C̃

)
, . . . , b−ls

(
1

C̃

)}
.(2.24)

Consider the first condition in (2.19) and (2.20). In the case the optimal method
is explicit, then the vector ak belongs in the convex hull of the set (2.24). If the
optimal method is implicit, assume without loss of generality that βk > 0 and
β̃k = 0. Then, the vector ak/(1+ Cβk) belongs in the convex hull of the set (2.24).
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Therefore, from Lemma 2.12 the vectors in (2.24) are linearly independent. Hence,

0 =det

(
ak,ai1 , . . . ,aim , b+j1

(
1
C

)
, . . . , b+jn

(
1
C

)
, b−l1

(
1

C̃

)
, . . . , b−ls

(
1

C̃

))

=

k−1∑
i=0

γ∗
i det

(
ai,ai1 , . . . ,aim , b+j1

(
1
C

)
, . . . , b+jn

(
1
C

)
, b−l1

(
1

C̃

)
, . . . , b−ls

(
1

C̃

))

+ C
k∑

j=0

β∗
j det

(
b+j

(
1
C

)
,ai1 , . . . ,aim , b+j1

(
1
C

)
, . . . , b+jn

(
1
C

)
, b−l1

(
1

C̃

)
, . . . , b−ls

(
1

C̃

))

+ C̃
k∑

l=0

β̃∗
l det

(
b−l

(
1

C̃

)
,ai1 , . . . ,aim , b+j1

(
1
C

)
, . . . , b+jn

(
1
C

)
, b−l1

(
1

C̃

)
, . . . , b−ls

(
1

C̃

))
.

By positivity of coefficients γ∗
i , β

∗
j , β̃

∗
j and the assumptions of the lemma, we

have γ∗
i = 0, i /∈ J1, β

∗
j = 0, j /∈ J2 and β̃∗

l = 0, l /∈ J3. Linear independence of

the vectors in (2.24) implies that γ∗
i = γi, i ∈ J1 and β∗

j = βj , j ∈ J2 and β̃∗
l = β̃l,

l ∈ J3 and the statement of the lemma is proved. �

Lemma 2.14 can be applied to prove that the trapezoidal rule is the unique
optimal perturbed LMM (1.8) of second-order with Ck,2 = 2 for k ≥ 1. The

trapezodium rule has coefficients βk−1 = βk = 1/2, whereas all other γj , βj , β̃j are
equal to zero. Therefore, according to Lemma 2.14 it is sufficient to check the sign
of

F (v) = det

(
v, b+k−1

(
1
2

)
, b+k

(
1
2

))
(2.25)

for all v = ai, i ∈ {0, . . . , k−1}, v = b+j (1/2), j ∈ {0, . . . , k−2} and v = b−l (1/(2ξ)),

l ∈ {0, . . . , k} for all ξ ∈ [0,∞). After some simple calculations we can show that
all determinants (2.25) are strictly positive.

Fixing the number of steps k, and the order of accuracy p, the feasibility problem
LP 1 has been numerically solved for different values of ξ by using linprog from
MATLAB’s optimization toolbox. Optimal explicit and implicit perturbed LMMs (not
shown here) were found for k ∈ {1, . . . , 50} and p ∈ {1, . . . , 15}. For ξ = 1, the
SSP coefficients of optimal methods coincide with those in [10, Section 3]. All code
to generate the coefficients of SSP perturbed LMMs and SSP IMEX methods dis-
cussed in Section 3 is available at https://github.com/numerical-mathematics/
ssp-almm_RR.

Remark 2.15. In all cases we have investigated, the SSP coefficient C(ξ) (see Defi-
nition 2.5) is a strictly decreasing function of ξ. Similarly, the corresponding SSP

coefficient C̃(ξ) is strictly increasing. Assume that F and F̃ satisfy (1.10), and fix
the number of stages and order of accuracy. The monotone behavior of C(ξ) and

C̃(ξ) suggests that the optimal perturbed LMM obtained by considering the differ-
ent step sizes in (1.10) allows larger step sizes for monotonicity than what is allowed
by the optimal downwind SSP method, obtained just by taking the minimum of the
two forward Euler step sizes. If we use an optimal downwind LMM, then a suffi-

cient condition for monotonicity is Δt ≤ C̃LMMΔtFE if ξ < 1, or Δt ≤ C̃LMMΔ̃tFE if
ξ > 1. On the other hand, using a perturbed LMM a sufficient step-size restriction

is given by Δt ≤ C(ξ)ΔtFE = C̃(ξ)Δ̃tFE. Since C̃LMM = C(1) < C(ξ) if ξ < 1 and

C̃LMM < C̃(ξ) if ξ > 1, then the perturbed LMM allows larger step sizes. This

https://github.com/numerical-mathematics/ssp-almm_RR
https://github.com/numerical-mathematics/ssp-almm_RR
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behavior is shown in Figure 1 for the class of explicit two-step, second-order SSP
perturbed LMMs.

Remark 2.16. The dependence of the SSP coefficient C(ξ) with respect to ξ can
be explained in view of inequalities (2.4) and forward Euler conditions (1.10). As

the step-size restriction in (1.10a) becomes more severe, then ξ = ΔtFE/Δ̃tFE
approaches zero. However, since r̃ = ξr, inequalities (2.4) depend less on coefficients

β̃j enabling larger SSP coefficients to be obtained. On the other hand, as the step-
size restriction of forward Euler condition (1.10b) is stricter, then ξ tends to infinity

and coefficients β̃j must approach zero in order (2.4) to hold. In other words,
the best possible SSP method in this case would be a method without downwind
and thus the SSP coefficient C(ξ) approaches the corresponding SSP coefficient of
traditional LMMs (1.4). Finally, for a fixed order of accuracy the SSP coefficient

C(ξ) tends to C̃LMM as we increase the number of steps.

2.2. Examples. Here we illustrate the effectiveness of perturbed LMMs by pre-
senting two examples. We consider the following assumptions:

(A1) Condition (1.3) holds only for operator F .

(A2) Conditions (1.10) hold for F and F̃ under a step-size restriction

Δt ≤ min{ΔtFE, Δ̃tFE}.
(A3) Conditions (1.10) hold for F and F̃ under different step-size restrictions.

In the literature, traditional SSP LMMs applied to problems satisfying assump-
tion (A1) have been extensively studied; for example, see [9, 12, 13]. Downwind
SSP LMMs [10, 11, 18, 20, 21] were introduced for problems that comply with as-
sumption (A2), whereas methods for problems satisfying assumption (A3) are the
topic of this work.

Example 2.17. Consider the ODE problem

u′(t) = u(t)2
(
u(t)− 1

)
, t ≥ 0,

u(t0) = u0.
(2.26)

The right-hand side is Lipschitz continuous in u in a close interval containing [0, 1].
Thus, there exists a unique solution and it is easy to see that existence holds for
all t. Therefore, if u(t0) = 0 or u(t0) = 1, then u(t) = 0 or u(t) = 1, respectively,
for all t. If u0 ∈ [0, 1], uniqueness implies that u(t) ∈ [0, 1] for all t. It can also be
shown that if u ∈ [0, 1], then

0 ≤ u+Δt u2(u− 1) ≤ 1 for 0 ≤ Δt ≤ 4,

0 ≤ u−Δt u2(u− 1) ≤ 1 for 0 ≤ Δt ≤ 1.

Applying method (1.8) where F = u2(u − 1), it is natural to take F̃ = F , and

then we have that (1.10) holds with ΔtFE = 4 and Δ̃tFE = 1. For method (2.1),
in practice we observe that un ∈ [0, 1] whenever Δt ≤ 8/7. The method has
CLMM = 0, so applying only assumption (A1) above we cannot expect a monotone
solution under any step size. Using assumption (A2), and writing the method in the
form (2.3) (notice that perturbations do not change the method at all in this case,

since F̃ = F ) we obtain a step-size restriction Δt ≤ C̃LMM min{ΔtFE, Δ̃tFE} = 2/7,

as C̃LMM = 2/7. Finally, using assumption (A3) to take into account the different
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Figure 1. Functions C2,2(ξ) and C̃2,2(ξ) for the class of explicit
two-step, second-order perturbed LMMs. The dotted line shows

C̃LMM = C2,2(1) for this particular class of methods.

forward Euler step sizes for F and F̃ , we obtain the step-size restriction Δtmax =

C̃LMMΔtFE = 8/7, which matches the experimental observation.
An even larger step-size restriction can be achieved by finding the optimal per-

turbed LMM among the class of two-step, second-order perturbed LMMs. In this

case ξ = ΔtFE/Δ̃tFE = 4 and the optimal perturbed LMM has SSP coefficient
C2,2(4) = 0.3465, thus the numerical solution is guaranteed to lie in the interval
[0, 1] if the step size is at most Δtmax = C2,2(4)ΔtFE = 1.386. The coefficients of
this method can be found in Appendix B.

For purely hyperbolic problems the spatial discretizations are usually chosen

in such a way that F and F̃ satisfy (1.10) under the same step-size restriction.
However, in many other cases (e.g., advection-reaction problems) this is not the
case, as shown in Example 2.19. First, we mention the following lemma which is
an extension of [1, Proposition 5.4]; its proof can be found in Appendix A.

Lemma 2.18. Consider the function

f(u) =
n∑

i=1

fi(u),

and assume that there exist εi > 0 such that ||u + τfi(u)|| ≤ ||u|| for 0 ≤ τ ≤ εi,
i ∈ {1, . . . , n}, where || · || is a convex functional. Then ||u + τf(u)|| ≤ ||u|| for
0 ≤ τ ≤ ε, where

ε =

(
n∑

i=1

1

εi

)−1

.

Example 2.19. Consider the LeVeque and Yee problem [1, 14],

Ut + f(U)x = s(U), U(x, 0) = U0(x), x ∈ R, t ≥ 0,
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where s(U) = −μU(U − 1)(U − 1
2 ) and μ > 0. Let ui(t) ≈ U(xi, t); then first-order

upwind semi-discretization yields

u′(t) = F (u(t)) = D(u(t)) + S(u(t)), u(0) = u0, t > 0,

where

Di(u) = −f(ui)− f(ui−1)

Δx
, Si(u) = s(ui).

Consider also the downwind discretizations

D̃i(u) = −f(ui+1)− f(ui)

Δx
, S̃i(u) = s(ui),

and let F̃ = D̃ + S̃. If u ∈ [0, 1], it can be easily shown that

0 ≤ u+Δt S(u) ≤ 1 for 0 ≤ Δt ≤ ΔtFE =
2

μ
,

0 ≤ u−Δt S̃(u) ≤ 1 for 0 ≤ Δt ≤ Δ̃tFE =
16

μ
.

Using Lemma 2.18 we then have that

0 ≤ u+Δt F (u) ≤ 1 for 0 ≤ Δt ≤ ΔtFE =
2τ

2 + μτ
,

0 ≤ u−Δt F̃ (u) ≤ 1 for 0 ≤ Δt ≤ Δ̃tFE =
16τ

16 + μτ
,

where τ > 0 is such that

0 ≤ u+ΔtD(u) ≤ 1 for 0 ≤ Δt ≤ τ,

0 ≤ u−Δt D̃(u) ≤ 1 for 0 ≤ Δt ≤ τ.

Note that ΔtFE < Δ̃tFE for all positive values of μ and τ . Therefore, under assump-
tions (A1) and (A2) above, the forward Euler step size must be ΔtFE = 2τ/(2+μτ )
so that the numerical solution is stable. Let

ξ = ΔtFE/Δ̃tFE =
16 + μτ

8(2 + μτ )
,

then for all ξ < 1 we have C̃LMM = C(1) < C(ξ); hence not considering SSP
perturbed LMMs will always result in a stricter step-size restriction. Suppose μ
is relatively small so that the problem is not stiff and explicit methods could be
used. For instance, among the class of explicit two-step, second-order LMMs, there
is no classical SSP method and the optimal downwind method has SSP coefficient

C̃LMM = 1/2. Let for example μτ = 2/3, then the step-size bound for downwind SSP

methods such that the solution remains in [0, 1] is Δt ≤ C̃LMMΔtFE = 0.375τ . Using
the optimal two-step, second-order SSP perturbed LMM (see Appendix B) larger
step sizes are allowed, since for ξ = 25/32 we have Δt ≤ C( 2532 )ΔtFE = 0.3928τ .

3. Monotonicity of additive linear multistep methods

Following the previous example, it is natural to study the monotonicity prop-
erties of additive methods applied to problems which consist of components that
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describe different physical processes. A k-step additive LMM for the solution of
the initial value problem

u′(t) = F (u(t)) + F̂ (u(t)), t ≥ t0,

u(t0) = u0,
(3.1)

takes the form

un =

k−1∑
j=0

αjun−k+j +Δt

k∑
j=0

(
βjF (un−k+j) + β̂jF̂ (un−k+j)

)
.(3.2)

The method is explicit if βk = β̂k = 0 and implicit if none of βk or β̂k is equal to
zero. It can be shown that method (3.2) is order p accurate if

k−1∑
j=0

αj = 1,

k−1∑
j=0

jαj +

k∑
j=0

βj = k,

k−1∑
j=0

jαj +

k∑
j=0

β̂j = k,

k−1∑
j=0

αjj
i +

k∑
j=0

βjij
i−1 = ki,

k−1∑
j=0

αjj
i +

k∑
j=0

β̂jij
i−1 = ki, i ∈ {2, . . . , p}.

(3.3)

The operators F and F̂ generally approximate different derivatives and also have
different stiffness properties. We extend the analysis of monotonicity conditions for

LMMs by assuming that F and F̂ satisfy

‖u+ΔtF (u)‖ ≤ ‖u‖ ∀u ∈ R
m, 0 ≤ Δt ≤ ΔtFE,(3.4a)

‖u+ΔtF̂ (u)‖ ≤ ‖u‖ ∀u ∈ R
m, 0 ≤ Δt ≤ Δ̂tFE,(3.4b)

respectively.

Definition 3.1. An additive LMM (3.2) is said to be strong-stability-preserving
(SSP) if the following monotonicity conditions

βj , β̂j ≥ 0, j ∈ {0, . . . , k},
αj − rβj − r̂β̂j ≥ 0, j ∈ {0, . . . , k − 1}.

(3.5)

hold for r ≥ 0 and r̂ ≥ 0. For a fixed ξ = r̂/r the method has SSP coefficients

(C(ξ), Ĉ(ξ)), where

C(ξ) = sup {r > 0 | monotonicity conditions (3.5) hold with r̂ = ξr}(3.6)

and Ĉ(ξ) = ξ C(ξ).

As in Section 2, it is clear that whenever the set in (3.6) is empty, then the
method is non-SSP; in such cases we say the method has SSP coefficient equal to
zero.

Define the vectors aj and b+j (·) ∈ R
p+1 as in (2.20) and (2.21). Then, by using

the substitution

γj := αj − rβj − r̂β̂j for j ∈ {0, . . . , k − 1},(3.7)



SSP ADDITIVE LMMs 2313

the order conditions (3.3) can be expressed in terms of vectors aj and b+j :

k−1∑
j=0

(γj + r̂β̂j)aj +

k∑
j=0

rβjb
+
j (r

−1) = ak,(3.8a)

k−1∑
j=0

(γj + rβj)aj +
k∑

j=0

r̂β̂jb
+
j (r̂

−1) = ak.(3.8b)

The above equations suggest a change of variables. Instead of considering the
method’s coefficients in terms of the column vectors

α = (α0, . . . , αk−1)
ᵀ, β = (β0, . . . , βk)

ᵀ, β̂ = (β̂0, . . . , β̂k)
ᵀ,

and the order conditions independent of r and r̂, one can consider the coefficients
γ,β, β̂ under the substitution (3.7). Let r̂ = ξr, then the order conditions can be
written as functions of r. In particular, the system of p+1 equations (3.8a) can be
written as A(r)x(r) = ak, where

A(r) =

⎡⎢⎣ a0 . . . ak−1 rb+0 (r
−1) . . . rb+k−1(r

−1) rb+k (r
−1)

⎤⎥⎦
and x(r) =

(
δ(r),β

)
∈ R

2k+1 with δj(r) = γj + ξrβ̂j , j ∈ {0, . . . , k − 1}. Define
the feasible set

P (r) = {x ∈ R
2k+1 | A(r)x(r) = ak, x(r) ≥ 0}.(3.9)

For a given ξ, if there exists a k-step, p-order accurate SSP additive LMM (3.2)
with SSP coefficient C(ξ), then P

(
C(ξ)

)
is nonempty.

Consider the class of additive LMMs (3.2) having at most k steps and order of
accuracy at least p, denoted by Ak,p. Since we would like to obtain the method
with the largest possible SSP coefficient, then for a fixed k ≥ 1, p ≥ 1 and a given
ξ ∈ [0,∞), we define optimal additive LMMs as follows.

Definition 3.2. An explicit (implicit) additive LMM (3.2) in Ak,p is called optimal
if no explicit (implicit) method in Ak,p has larger SSP coefficient. Given ξ ∈ [0,∞),
we denote the largest SSP coefficient for k-step explicit (implicit) additive LMMs
(3.2) of order p by

Ck,p(ξ) = sup
(α,β,β̂)∈Ak,p

{
C(ξ) > 0 | C(ξ) is the SSP coefficient of an explicit

(implicit) method (3.2) with coefficients (α,β, β̂)
}
.

In the trivial case that the set over which the supremum is taken above is empty,
we write Ck,p(ξ) = 0.

The following theorem and lemma characterize the coefficients of an optimal
additive LMM.

Theorem 3.3. Let k ≥ 1, p ≥ 1 be given such that 0 < Ck,p(ξ) < ∞ for a
given ξ ∈ [0,∞). Then, there exists a k-step optimal SSP additive LMM (3.2)
of order p with at most p nonzero coefficients δj, βi, where δj = αj − Ck,p(ξ)βj,
j ∈ {0, . . . , k − 1} and i ∈ {0, . . . , k}.
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Proof. Let 0 < Ck,p(ξ) < ∞, where k ≥ 1, p ≥ 1 and ξ ∈ [0,∞) are given. Since
the inequalities involved in (3.5) are not strict, the supremum in Definition 3.2 is
always attained by some method. Consider an optimal k-step SSP additive LMM

(3.2) of order p with SSP coefficient Ck,p(ξ). Define γj = αj −Ck,p(ξ)βj − Ĉk,p(ξ)β̂j

and δj = γj + Ĉk,p(ξ)β̂j for j ∈ {0, . . . , k− 1}. Then the vector x = (δ,β) ∈ R
2k+1

belongs to the feasible set (3.9) when r = Ck,p(ξ).
If x has p or fewer nonzero entries, we are done. Suppose x has more than

p nonzero entries and let S(r) be the set of columns of the matrix A(r) in (3.9)
corresponding to the nonzero elements of x.

We distinguish two cases. First, assume that the set S
(
Ck,p(ξ)

)
does not span

R
p+1. Then, similarly to Case 2 of the proof of Theorem 2.13, the vectors ak

(explicit case) and ak/(1 + rβk) (implicit case) belong to the convex hull of S(r),
for r = Ck,p(ξ). Then from Lemma 2.12, ak and ak/(1+ Ck,p(ξ)βk) can be written,
respectively, as a convex and nonnegative combination of p vectors in S

(
Ck,p(ξ)

)
.

Therefore, there exists a different method with the SSP coefficient Ck,p(ξ) and at
most p nonnegative coefficients δj , j ∈ {0, . . . , k− 1} and βi, i ∈ {0, . . . , k}. On the
other hand, if S

(
Ck,p(ξ)

)
spans Rp+1, then by using Lemma 2.11 there exists ε > 0

and x∗ = (δ∗,β∗) with nonnegative entries such that A(Ck,p(ξ) + ε)x∗ = ak. For

each index j in x∗ such that δ∗j > 0, we can choose γ∗
j so that β∗

j = β̂∗
j . Then, x∗

satisfies (3.8b) as well. But this contradicts the optimality of the method since we
have constructed a k-step SSP additive LMM of order p with coefficients given by
x∗ and SSP coefficient Ck,p(ξ) + ε. �

Lemma 3.4. For a given k ≥ 1, p ≥ 1 an optimal additive LMM (3.2) has βj = β̂j

for all j ∈ {0, . . . , k}.

Proof. Consider an optimal method (3.2) of order p. From Theorem 3.3 at most p

coefficients δj , βi, j ∈ {0, . . . , k−1}, i ∈ {0, . . . , k} are nonzero. Let v = β−β̂, then
v has at most p nonzero elements. Subtracting the order conditions (3.8) results in∑

i∈I

viāi = 0,

where I is the set of distinct indexes for which vi’s are nonzero. The vectors
āi = (1, i, . . . , ip−1)ᵀ, i ∈ I are linearly independent (see [5, Chapter 21]), therefore

v must be identically equal to zero. Hence, βj = β̂j for each j ∈ {0, . . . , k}. �

The main result of this section relies on Theorem 3.3 and Lemma 3.4 and is
given by the following theorem.

Theorem 3.5. For a given k ≥ 1, p ≥ 1 an optimal additive LMM with SSP

coefficient Ck,p and corresponding SSP coefficient Ĉk,p is equivalent to the optimal

k-step optimal SSP LMM (1.4) of order p with SSP coefficient Ck,p + Ĉk,p.

Proof. Consider an optimal method (3.2) of order p with SSP coefficient Ck,p and

Ĉk,p = ξ Ck,p for some ξ ∈ [0,∞). From Lemma 3.4 we have βj = β̂j for each

j ∈ {0, . . . , k}, therefore monotonicity conditions (3.5) yield minj
αj

βj
= Ck,p + Ĉk,p.

Thus the additive LMM is equivalent to the optimal k-step SSP LMM method of

order p with SSP coefficient Ck,p + Ĉk,p. �
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3.1. Monotone IMEX linear multistep methods. Based on Theorem 3.5, it
is only interesting to consider Implicit-Explicit (IMEX) SSP LMMs. Such methods
are particularly useful for initial value problems (3.1) where F represents a nonstiff

or mild stiff part of the problem, and F̂ a stiff term for which implicit integration
is required. The following theorem provides sufficient conditions for monotonicity
for the numerical solution of an IMEX method.

Theorem 3.6. Consider the additive problem (3.1) for which F and F̂ satisfy

(3.4), for some ΔtFE > 0 and Δ̂tFE > 0. Let an IMEX LMM (3.2) with coefficients

βk = 0, β̂k �= 0 be strong-stability-preserving with SSP coefficients (C(ξ), Ĉ(ξ)) for

ξ = ΔtFE/Δ̂tFE. Then, the numerical solution satisfies the monotonicity condition
(1.5) under a step-size restriction

Δt ≤ min{CΔtFE, Ĉ Δ̂tFE}.(3.10)

Proof. The proof is similar to that of Theorem 2.4. �

As in Section 2, the minimum step size in (3.10) occurs when CΔtFE = Ĉ Δ̂tFE.
For a given k ≥ 1 and p ≥ 1, we would like to find the largest possible value Ck,p(ξ)
such that an optimal IMEX method is SSP with coefficients (Ck,p, Ck,p ΔtFE/Δ̂tFE).

Setting ξ := ΔtFE/Δ̂tFE, and combining the inequalities (3.5) and the order condi-
tions (3.3), we can form the following optimization problem:

max
{γ,β,β̂,r}

r, subject to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k−1∑
j=0

γj + r(βj + ξβ̂j) = 1,
k−1∑
j=0

(
γj + r(βj + ξβ̂j)

)
j + βj = k,

k−1∑
j=0

(
γj + r(βj + ξβ̂j)

)
ji + βjij

i−1 = ki, i ∈ {2, . . . , p},

k−1∑
j=0

(βj − β̂j)− β̂k = 0,
k−1∑
j=0

(βj − β̂j)j
i − β̂kk

i = 0, i ∈ {1, . . . , p− 1},

γj ≥ 0, βj ≥ 0, j ∈ {0, . . . , k − 1},

β̂j ≥ 0, j ∈ {0, . . . , k},

r ≥ 0.

(3.11)

By using bisection in r, the optimization problem (3.11) can be viewed as a sequence
of linear feasible problems, as suggested in [10]. We solved the above problem using
linprog in MATLAB with the active-set algorithm and found optimal IMEX SSP
methods for k ∈ {1, . . . , 50}, p ∈ {1, . . . , 15} and for different values of ξ. Similarly
to additive Runge–Kutta methods [6], we can define the feasibility SSP region of
IMEX SSP methods for a fixed k ≥ 1 and p ≥ 1 by

Rk,p =
{
(r, r̂) | ξ ∈ R

+ and monotonicity conditions (3.5) hold for r ≥ 0, r̂ = ξr
}
.
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For instance, the feasibility SSP regions for three-step, second-order and six-step,
fourth-order IMEX methods are shown in Figure 2.

(a) Three-step, second-order IMEX SSP region (b) Six-step, fourth-order IMEX SSP region

Figure 2. SSP regions of IMEX LMMs. The intersection of the
line r̂ = ξr, ξ > 0 with the boundary of the SSP region corresponds
to an optimal IMEX LMM with SSP coefficient C(ξ).

As mentioned in [8, Section 2.2] the SSP coefficients of IMEX SSP methods

in the case that the forward Euler ratio ξ = ΔtFE/Δ̂tFE is equal to one are not
large. The same seems to hold when considering SSP IMEX methods for additive
problems (3.1) satisfying (3.4) for any values ξ ≥ 0 (see Figure 2). Thus, instead
of requiring both parts of an IMEX method to be SSP, one can impose SSP con-
ditions only on the explicit part and optimize stability properties for the implicit
method. Second-order methods among this class of methods have been studied in
[2], whereas in [8] higher order IMEX methods with optimized stability features
were constructed based on general monotonicity and boundedness properties of the
explicit component.

4. Conclusion and future work

We have investigated a generalization of the linear multistep methods with
upwind- and downwind-biased operators introduced in [20,21], by considering prob-
lems in which the downwind operator satisfies a forward Euler condition with dif-
ferent step-size restriction than that of the upwind operator. We expressed the
perturbed LMMs in an additive form and analyzed their monotonicity properties.
By optimizing in terms of the upwind and downwind Euler step sizes, methods with
larger SSP step sizes are obtained for such problems. We studied additive problems
in the same framework, and we have shown that when both parts of the method are
explicit (or both parts are implicit), the optimal additive SSP methods lie within
the class of traditional (nonadditive) SSP linear multistep methods. Finally, we
have seen that IMEX SSP methods for additive problems allow relatively small
monotonicity-preserving step sizes.
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The concepts of additive splitting and downwind semi-discretization can be com-
bined to yield downwind IMEX LMMs of the form (applying downwinding to the
nonstiff term):

un =

k−1∑
j=0

αjun−k+j +Δt

k−1∑
j=0

(
βjF (un−k+j)− β̃jF̃ (un−k+j)

)

+Δt

k∑
j=0

β̂jF̂ (un−k+j),

(4.1)

where F and F̃ satisfy the forward Euler conditions (1.10) and the explicit part
is an SSP perturbed LMM. Preliminary results show that it is possible to obtain
second-order IMEX linear multistep methods with two or three steps, where the
implicit part is A-stable and the explicit part is an optimal SSP perturbed LMM.
This generalization allows the construction of new IMEX methods with fewer steps
for a given order of accuracy and with larger SSP coefficients (for the explicit
component). Moreover, the best possible IMEX method can be chosen based on
the ratio of forward Euler step sizes of the nonstiff term in (3.1). Also, it is worth
investigating the possibility of obtaining A(α)-stable implicit parts whenever A-
stability is not feasible. Work on optimizing the stability properties of the IMEX
methods (4.1) is ongoing and will be presented in a future work. Analysis of SSP
perturbed LMMs with variable step sizes and monotonicity properties of perturbed
LMMs with special starting procedures can also be studied.

Appendix A. Proofs of lemmata in section 2

In this section we present the proofs of some technical lemmata that were omitted
in the previous sections.

Proof of Lemma 2.12. Consider a set of distinct vectors S = {ψ1, . . . ,ψm} in R
n.

Let a nonzero vector z ∈ C be given, where C = conv(S) is the convex hull of S.
Then there exist nonnegative coefficients λj that sum to unity such that

z =

m∑
j=1

λjψj .

If ψ1, . . . ,ψm are linearly independent, it must be that m ≤ n and both parts (a)
and (b) of the lemma hold trivially. Therefore, assume the vectors in S are linearly
dependent. Then, we can find μj not all zero and at least one which is positive,
such that

m∑
j=1

μjψj = 0.

Define

ν := min
1≤j≤m

{
λj

μj
| μj > 0

}
=

λj0

μj0

,

then we have νμj ≤ λj for all j ∈ {1, . . . ,m}, where equality holds for at least

j = j0. Let λ̃j = λj − νμj for j ∈ {1, . . . ,m}. By the choice of ν, all coefficients λ̃j
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are nonnegative and at least one of them is equal to zero. Note that

z =

m∑
j=1

λjψj − ν

m∑
j=1

μjψj =

m∑
j=1

λ̃jψj ,

hence z can be expressed as a nonnegative linear combination of at most m−1 vec-
tors in S. The above argument can be repeated until z is written as a nonnegative
linear combination of linearly independent vectors ψ1, . . . ,ψr, r ≤ n. This proves
part (a).

For part (b), suppose ψ1, . . . ,ψm are linearly dependent and belong in {(1,v) | v
∈ R

n−1}. Then, any nonzero vector z ∈ C has the form (1,v)ᵀ, v ∈ R
n−1 and

from part (a) can be written as a nonnegative combination of at most n linearly

independent vectors in S with coefficients λ̃j . In addition
∑m

j=1 λ̃j = 1, since the

first component of vector z and all ψj , j ∈ {1, . . . ,m} is equal to unity. �

Proof of Lemma 2.18. Let pi(u; εi) := u+ εifi(u), then we have

fi(u) =
pi(u; εi)− u

εi
for i ∈ {1, . . . , n}.

Using
∑n

i=1 ε/εi = 1 and the assumption of the lemma, it can be shown that

‖u+ εf(u)‖ =

∥∥∥∥∥u+

n∑
i=1

ε

εi
(pi(u; εi)− u)

∥∥∥∥∥
=

∥∥∥∥∥
n∑

i=1

ε

εi
pi(u; εi)

∥∥∥∥∥
≤

n∑
i=1

ε

εi
‖u‖ = ‖u‖.

The rest of the proof relies on [15, Lemma II.5.1]. If 0 < τ < ε, then there
exist 0 < ρ < 1 such that τ = (1 − ρ)ε. Then u + τf(u) = u + (1 − ρ)εf(u) =
ρu+ (1− ρ) (u+ εf(u)) and hence

‖u+ τf(u)‖ − ‖u‖ ≤ ρ‖u‖+ (1− ρ)‖u+ εf(u)‖ − ‖u‖
= (1− ρ) (‖u+ εf(u)‖ − ‖u‖)
≤ ‖u+ εf(u)‖ − ‖u‖.

This implies that ‖u+ τf(u)‖ ≤ ‖u+ εf(u)‖. If τ = 0 or τ = ε, then the inequality
‖u+ τf(u)‖ ≤ ‖u‖ is trivial; hence the lemma’s result holds for all 0 ≤ τ ≤ ε. �

Appendix B. Coefficients of methods used in Section 2.2

The coefficients of the optimal explicit two-step, second-order SSP perturbed
LMM used in Example 2.17 are given by:

α0 = 0.409332709113745, β0 = 0.0, β̃0 = 0.295333645443128,

α1 = 0.590667290886257, β1 = 1.704666354556872, β̃1 = 0.0.

The method is related to a ratio of forward Euler step sizes ΔtFE/Δ̃tFE = 4, and
has SSP coefficient C2,2(4) = 0.3465.
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The optimal explicit two-step, second-order SSP perturbed LMM used in Exam-
ple 2.19 has coefficients

α0 = 0.169849709137948, β0 = 0.0, β̃0 = 0.415075145431026,

α1 = 0.830150290862053, β1 = 1.584924854568973, β̃1 = 0.0,

and is related to a ratio of forward Euler step sizes ΔtFE/Δ̃tFE = 25/32 with SSP
coefficient C2,2( 2532 ) = 0.5238.
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