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CYCLOTOMIC DIFFERENCE SETS IN FINITE FIELDS

BINZHOU XIA

Abstract. The classical problem of whether mth-powers with or without zero
in a finite field Fq form a difference set has been extensively studied, and is
related to many topics, such as flag transitive finite projective planes. In this
paper new necessary and sufficient conditions are established including those
via a system of polynomial equations on Gauss sums. The author thereby
solves the problem for even q which is neglected in the literature, and extends
the nonexistence list for even m up to 22. Moreover, conjectures toward the
complete classification are posed.

1. Introduction

A subset D = {a1, . . . , ak} in a group F of order v is said to be a (v, k, λ)-
difference set or simply a difference set if for each nonidentity a ∈ F there are
exactly λ ordered pairs (as, at) ∈ D × D such that asa

−1
t = a. Given a (v, k, λ)-

difference set, we obtain instantly by simple counting that

(1.1) k(k − 1) = λ(v − 1).

It is straightforward to check that any subset of a group F with size 0, 1, |F | − 1
or |F | is a (|F |, k, λ)-difference set with k − λ = 0 or 1. Conversely, if k − λ = 0 or
1, then (1.1) implies k = 0, 1, v − 1 or v. For a (v, k, λ)-difference set D, we call
the nonnegative integer n := k − λ the order of D, and say D is trivial if n � 1
and nontrivial if n > 1.

For comprehensive surveys on difference sets, the reader is referred to [7, 18 Part
VI] and [16]. In this paper we focus on the case when F is the additive group of a
finite field and the nonzero elements in D form a multiplicative subgroup of F \{0}.
Notation 1.1. Let q = mf + 1 be a power of a prime number p with m, f ∈ Z>0.
Denote the set of nonzero mth-powers in Fq by Hq,m and Mq,m := Hq,m ∪ {0}.

If Hq,m is a (q, f, λ)-difference set in F+
q , then it is called an mth-cyclotomic

difference set ormth-power residue difference set. IfMq,m is a (q, f+1, λ)-difference
set in F+

q , then it is called a modified mth-cyclotomic difference set or modified
mth-power residue difference set. When not specifying the parameters, we will
simply call them cyclotomic difference set or modified cyclotomic difference set,
respectively. In view of (1.1), a necessary condition for the cyclotomic (q, f, λ)-
difference set is

(1.2) f − 1 = λm,
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while a necessary condition for the modified cyclotomic (q, f + 1, λ)-difference set
is

(1.3) f + 1 = λm.

Research on cyclotomic and modified cyclotomic difference sets dates back to
Paley in the 1930s [19] when he used the quadratic residues in a finite field to
construct Hadamard matrices. Essentially, he proved that Hq,2 is a (q, f, (q−3)/4)-
difference set under the condition q ≡ 3 (mod 4), which is no further restriction
than (1.2). Based on this result, it is clear to see that Mq,2 is a (q, f +1, (q+1)/4)-
difference set under the condition q ≡ 3 (mod 4), which is no further restriction
than (1.3). About ten years after Paley’s construction, Chowla [5] discovered a
family of nontrivial quartic cyclotomic difference sets in Fp by showing that Hp,4

is a difference set when p = 1 + 4t2 for some odd integer t.
In 1953, Lehmer published a paper [17] investigating cyclotomic and modified

cyclotomic difference sets in Fp, where she established necessary and sufficient con-
ditions for their existence via cyclotomic numbers and applied these to get fruitful
results (see [3, Chapter 2] for an introduction to cyclotomic numbers). She proved
that neither Hp,m nor Mp,m is a nontrivial difference set in Fp with odd m, and de-
termined all the nontrivial mth-cyclotomic and modified mth-cyclotomic difference
sets in Fp for 4 � m � 8: they are

Hp,4 with p = 1 + 4t2 for some odd integer t,(1.4)

Hp,8 with p = 1 + 8u2 = 9 + 64v2 for some integers u and v,(1.5)

Mp,4 with p = 9 + 4t2 for some odd integer t,(1.6)

Mp,8 with p = 49 + 8u2 = 441 + 64v2 for some integers u and v.(1.7)

Note that the Pell equation u2 − 8v2 = 1 coming from (1.5) forces u and v to be
odd in order that 1 + 8u2 is prime ([17, page 429]), while u is odd and v is even in
(1.7) for a similar reason ([17, page 432]). On the other hand, it is not yet known
whether there exist infinitely many primes p as in (1.5) or (1.7), although Lehmer
noticed that they are quite rare by computation results.

Since Lehmer’s significant paper, cyclotomic numbers have been the main tool
for studying existence of cyclotomic and modified cyclotomic difference sets. The
criterion in terms of cyclotomic numbers established by Lehmer originally in Fp

extends to general finite fields Fq in the same form, and then it is shown that, if q
is odd, the general finite field case does not give more examples than (1.4)–(1.7) for
m odd or 4 � m � 8 [14,20]. As for the case when q = p, more nonexistence results
on mth-cyclotomic and modified cyclotomic difference sets have been proved. They
are now known to be nonexistent for m = 10 [25], 12 [26], 14 [18], 16 [9], 18 [2]
and 20 [11]. Although widely believed that for any larger even m neither Hp,m nor
Mp,m forms a difference set, it has only been proved for some values of m under
extra condition: m ≡ 6 (mod 8) with 4 ∈ Hp,m [18], and m = 24 with 2 ∈ Hp,3 or
3 ∈ Hp,4 [10]. One of the difficulties for higher powers is to evaluate the cyclotomic
numbers, and also the work is quite laborious when m grows.

In this paper, we alternate the approach by considering the relations that the
corresponding Gauss sums must satisfy, which leads to overdetermined systems of
polynomial equations. This enables us to determine mth-cyclotomic and modified
cyclotomic difference sets in Fq up to m = 22 including even q, and gives insight
for general m.
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There are definite links between difference sets and other structures (see for
example [1]). A remarkable one is that to finite projective planes, which we will
illustrate in Subsection 5.3. Physical applications of difference sets can be found in
the references listed in [4].

The layout of this paper is as follows. In Section 2 we will discuss preparing
results on multiplicative characters and Gauss and Jacobi sums as well as discrete
Fourier transform techniques which will be utilized in subsequent sections. In Sec-
tion 3, we establish new necessary and sufficient conditions for the existence of
cyclotomic and modified cyclotomic difference sets in finite fields via multiplicative
characters, Jacobi sums and Gauss sums, respectively. Based on these, we obtain
results on the existence problem of mth-cyclotomic and modified cyclotomic dif-
ference sets in Section 4. It is proved that the only existing one for odd m is the
modified 3rd-cyclotomic difference set in F16 (see Theorem 4.1), while the existence
for even m implies restrictions on the solutions of certain system of polynomial
equations. In the final section, we discuss the computation results for these sys-
tems, which yield the determination of existence up to m = 22 (see Theorem 5.1)
and suggest conjectures toward the complete classification.

2. Preliminaries

First of all, we set up some notation.

Notation 2.1. Let S1 = {z ∈ C | |z| = 1} be the unit cycle on the complex plane.
Denote ζr = e2πi/r for any r ∈ Z>0. For a field F , let F ∗ = F \ {0} be the set of
nonzero elements in F , which constitutes a group under multiplication of the field.

2.1. Multiplicative characters. Let χ be a character of the multiplicative group
F∗
q , i.e., a group homomorphism from F∗

q to C∗. For any s ∈ Z, the map χs from
F∗
q to C∗ defined by χs(α) = (χ(α))s for α ∈ F∗

q is also a character of F∗
q . Extend

the domain of χ to Fq by setting

χ(0) =

{
1, if χ is trivial,

0, if χ is nontrivial,

and call χ a multiplicative character on Fq. For any s ∈ Z, the character χs of F∗
q is

also extended to a multiplicative character on Fq, and by χs(α) we mean the image
of α ∈ Fq under χs rather than (χ(α))s. Note that the equality χs(α) = (χ(α))s

may not hold after χs is extended to a multiplicative character on Fq. For example,
if χ is nontrivial and s is a positive integer such that χs is trivial, then χs(0) = 1 �=
0 = (χ(0))s.

Through this section, we will evaluate some multiplicative character sums, which
turns out to play a central role in the subsequent section. For any nontrivial
multiplicative character χ on Fq, it is well known (see for example [3, Page 9]) that

(2.1)
∑
α∈Fq

χ(α) = 0

Lemma 2.2. Let χ be a multiplicative character of order m on Fq and s ∈ Z. Then∑
β,γ∈Hq,m

χs(β − γ) = f
∑

α∈Hq,m

χs(1− α).
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Proof.

∑
β,γ∈Hq,m

χs(β − γ) =
∑

β∈Hq,m

∑
γ∈Hq,m

χs(1− β−1γ)

=
∑

β∈Hq,m

∑
α∈Hq,m

χs(1− α) = f
∑

α∈Hq,m

χs(1− α). �

Notation 2.3. For any multiplicative character χ of order m on Fq and γ ∈ F
∗
q , let

Aχ,γ = {α ∈ Hq,m | χ(1−α) = χ(γ)}, Bq,m,γ = {(α, β) ∈ Hq,m×Hq,m | α−β = γ}
and Cq,m,γ = {(α, β) ∈ Mq,m ×Mq,m | α− β = γ}.

The following lemma is apparent.

Lemma 2.4. Let χ be a multiplicative character of order m on Fq and γ ∈ F∗
q .

Then the following statements hold.

(a) (α, β) �→ α−1β is a bijection from Bq,m,γ to Aχ,γ. In particular, |Aχ,γ | =
|Bq,m,γ |.

(b) |Cq,m,γ | = |Bq,m,γ |+ |Cq,m,γ ∩ (Hq,m × {0})|+ |Cq,m,γ ∩ ({0} ×Hq,m)|.

We express the multiplicative character sum in the next lemma in terms of |Aχ,γ |.

Lemma 2.5. Let χ be a multiplicative character of order m on Fq and γ ∈ F∗
q .

Then

m−1∑
s=0

χ−s(γ)
∑

α∈Hq,m

χs(1− α) = m|Aχ,γ |+ 1.

Proof. We have

m−1∑
s=0

χ−s(γ)
∑

α∈Hq,m

χs(1− α)

=
∑

α∈Hq,m

m−1∑
s=0

χ−s(γ)χs(1− α)

=
∑

α∈Hq,m\{1}

m−1∑
s=0

χ−s(γ)χs(1− α) +

m−1∑
s=0

χ−s(γ)χs(0)

=
∑

α∈Hq,m\{1}
χ(1−α)=χ(γ)

m−1∑
s=0

1 +
∑

α∈Hq,m\{1}
χ(1−α) �=χ(γ)

m−1∑
s=0

(
χ(1− α)

χ(γ)

)s

+

m−1∑
s=0

χ−s(γ)χs(0).

For any α ∈ Hq,m \ {1} such that χ(1− α) �= χ(γ),

m−1∑
s=0

(
χ(1− α)

χ(γ)

)s

=

(
χ(1−α)
χ(γ)

)m

− 1

χ(1−α)
χ(γ) − 1

=
1− 1

χ(1−α)
χ(γ) − 1

= 0.
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Hence it follows that
m−1∑
s=0

χ−s(γ)
∑

α∈Hq,m

χs(1− α) =
∑

α∈Hq,m\{1}
χ(1−α)=χ(γ)

m−1∑
s=0

+

m−1∑
s=0

χ−s(γ)χs(0)

=
∑

α∈Hq,m\{1}
χ(1−α)=χ(γ)

m+ χ0(γ)χ0(0)

=
∑

α∈Hq,m

χ(1−α)=χ(γ)

m+ 1 = m|Aχ,γ |+ 1. �

2.2. Gauss and Jacobi sums. For a multiplicative character χ on Fq, the Gauss
sum Gq(χ) is defined by

Gq(χ) =
∑
α∈Fq

χ(α)ζtr(α)p ,

where tr is the trace map from Fq to Fp. For multiplicative characters χ, ψ on Fq,
the Jacobi sum Jq(χ, ψ) is defined by

Jq(χ, ψ) =
∑
α∈Fq

χ(α)ψ(1− α).

It is immediate from the definition that Jq(ψ, χ) = Jq(χ, ψ).
We only list here some basic facts about Gauss and Jacobi sums which will be

used in the sequel, and refer to [3, Chapters 1 and 2] for their proof and more
properties of Gauss and Jacobi sums.

Proposition 2.6. Let χ be a multiplicative character of order m on Fq, and s, t ∈
Z. Then the following statements hold.

(a)

|Gq(χ
s)| =

{√
q, if s �≡ 0 (mod m),

0, if s ≡ 0 (mod m).

(b) If s �≡ 0 (mod m), then

Gq(χ
s)Gq(χ

−s) = χs(−1)q.

(c) If s �≡ 0 (mod m) or t �≡ 0 (mod m), then

Jq(χ
s, χt) =

{
Gq(χ

s)Gq(χ
t)/Gq(χ

s+t), if s+ t �≡ 0 (mod m),

−χs(−1), if s+ t ≡ 0 (mod m).

(d) If m is even and s �≡ 0 (mod m), then

χs(4)Jq(χ
s, χs) = Jq(χ

s, χm/2).

The following lemma evaluates sums of Jacobi sums with one character fixed.

Lemma 2.7. Let χ be a multiplicative character of order m on Fq. If s �≡ 0
(mod m), then

m−1∑
t=1

Jq(χ
s, χt) = 1 +m

∑
α∈Hq,m

χs(1− α).
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Proof. Note that

m−1∑
t=1

Jq(χ
s, χt) =

m−1∑
t=1

∑
β∈Fq

χs(β)χt(1− β)

=
∑
β∈Fq

χs(β)
m−1∑
t=1

χt(1− β)

=
∑

1−β∈Hq,m

χs(β)(m− 1) +
∑

1−β∈F∗
q\Hq,m

χs(β)

m−1∑
t=1

χt(1− β)

=
∑

1−β∈Hq,m

χs(β)(m− 1) +
∑

1−β∈F∗
q\Hq,m

χs(β)
m−1∑
t=0

χt(1− β)

−
∑

1−β∈F∗
q\Hq,m

χs(β)χ0(1− β).

For any β ∈ Fq such that 1− β ∈ F∗
q \Hq,m, as χ(1− β) �= 1, we have

m−1∑
t=0

χt(1− β) =
(χ(1− β))m − 1

χ(1− β)− 1
=

1− 1

χ(1− β)− 1
= 0.

It follows that

m−1∑
t=1

Jq(χ
s, χt) =

∑
1−β∈Hq,m

χs(β)(m− 1)−
∑

1−β∈F∗
q\Hq,m

χs(β)χ0(1− β)

=(m− 1)
∑

1−β∈Hq,m

χs(β)−
∑

1−β∈F∗
q\Hq,m

χs(β)

=(m− 1)
∑

α∈Hq,m

χs(1− α)−
∑

α∈F∗
q\Hq,m

χs(1− α)

=m
∑

α∈Hq,m

χs(1− α)−
∑
α∈F∗

q

χs(1− α)

=m
∑

α∈Hq,m

χs(1− α)−
∑
α∈Fq

χs(1− α) + χs(1)

=1 +m
∑

α∈Hq,m

χs(1− α). �

2.3. Discrete Fourier transform. For a complex-valued function X on Z/rZ,

the discrete Fourier transform (DFT) of X, denoted by X̂, is the complex-valued
function on Z/rZ defined by

X̂(s) =

r−1∑
t=0

ζ−st
r X(t), s = 0, . . . , r − 1.

Here are two basic formulae for DFT, the convolution formula and the inverse
formula, see for example [21, page 36] for a proof.
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Proposition 2.8. The following statements hold.

(a) If W , X and Y are complex-valued functions on Z/rZ with

W (s) =
r−1∑
t=0

X(t)Y (s− t), s = 0, . . . , r − 1,

then Ŵ (s) = X̂(s)Ŷ (s) for all s ∈ Z/rZ.

(b) If X is a complex-valued function on Z/rZ, then X(s) =
ˆ̂
X(−s)/r for all

s ∈ Z/rZ. In particular, DFT is an isomorphism on the complex vector
space of complex-valued functions on Z/rZ.

We note that since complex-valued functions on Z/rZ are determined by their
values on the r points 0, . . . , r − 1, Proposition 2.8 can be translated into the
language of r-dimensional complex vectors. This will be more convenient to apply
in cases.

3. Necessary and sufficient conditions

3.1. Cyclotomic difference sets. Before we give the existence criterions for cy-
clotomic difference sets, recall the necessary condition (1.2) for cyclotomic (q, f, λ)-
difference sets.

Theorem 3.1. Suppose f−1 = λm and let χ be a multiplicative character of order
m on Fq. Then Hq,m is a (q, f, λ)-difference set in Fq if and only if

(3.1)
∑

α∈Hq,m

χs(1− α) = 0, s = 1, . . . ,m− 1.

Proof. First suppose that Hq,m is a (q, f, λ)-difference set. In view of (2.1) we then
have for s = 1, . . . ,m− 1 that∑

β,γ∈Hq,m

χs(β − γ) =
∑

β,γ∈Hq,m

β �=γ

χs(β − γ) = λ
∑
α∈F∗

q

χs(α) = 0.

This leads to (3.1) by Lemma 2.2.
Next suppose that (3.1) holds. Let γ be an arbitrary element in F∗

q . Then

m−1∑
s=0

χ−s(γ)
∑

α∈Hq,m

χs(1− α) =
∑

α∈Hq,m

χ0(1− α) = f.

It follows that |Aχ,γ | = (f−1)/m = λ by Lemma 2.5, and so |Bq,m,γ | = λ according
to Lemma 2.4(a). By the definition of difference sets, this completes the proof. �

Combining Lemma 2.7 and Theorem 3.1 we obtain a necessary and sufficient
condition of cyclotomic difference sets via Jacobi sums.

Theorem 3.2. Suppose f − 1 = λm, and let χ be a multiplicative character of
order m on Fq. Then Hq,m is a (q, f, λ)-difference set in Fq if and only if

(3.2)

m−1∑
t=1

Jq(χ
s, χt) = 1, s = 1, . . . ,m− 1.

In light of Proposition 2.6(c), (3.2) can be rewritten by Gauss sums.
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Theorem 3.3. Suppose f − 1 = λm, and let χ be a multiplicative character of
order m on Fq. Then Hq,m is a (q, f, λ)-difference set in Fq if and only if

(3.3)
m−1∑
t=1
t�=s

χt(−1)Gq(χ
t)Gq(χ

s−t) = (1 + χs(−1))Gq(χ
s), s = 1, . . . ,m− 1.

Proof. Utilizing Proposition 2.6, we reformulate (3.2) to

m−1∑
t=1

s+t�=m

Gq(χ
s)Gq(χ

t)

Gq(χs+t)
− χs(−1) = 1, s = 1, . . . ,m− 1,

which is equivalent to

m−1∑
t=1

t�=m−s

χt(−1)Gq(χ
t)Gq(χ

m−s−t)

Gq(χm−s)
= 1 + χs(−1), s = 1, . . . ,m− 1.

After multiplying both sides by Gq(χ
m−s) and replacing s by m− s, this turns out

to be (3.3). Hence the theorem follows by Theorem 3.2. �

3.2. Modified cyclotomic difference sets. Parallel with cyclotomic difference
sets we can establish existence criterions for modified cyclotomic difference sets. Re-
call the necessary condition (1.3) for the modified cyclotomic (q, f +1, λ)-difference
sets.

Theorem 3.4. Suppose f + 1 = λm, and let χ be a multiplicative character of
order m on Fq. Then Mq,m is a (q, f + 1, λ)-difference set in Fq if and only if

(3.4)
∑

α∈Hq,m

χs(1− α) = −1− χs(−1), s = 1, . . . ,m− 1.

Proof. First suppose that Mq,m is a (q, f + 1, λ)-difference set. Then for s =
1, . . . ,m− 1, ∑

β,γ∈Mq,m

χs(β − γ) =
∑

β,γ∈Mq,m

β �=γ

χs(β − γ) = λ
∑
α∈F∗

q

χs(α) = 0.

On the other hand,∑
β,γ∈Mq,m

χs(β − γ) =
∑

β,γ∈Hq,m

χs(β − γ) +
∑

β∈Hq,m

χs(β) +
∑

γ∈Hq,m

χs(−γ)

=
∑

β,γ∈Hq,m

χs(β − γ) + f + fχs(−1).

Hence ∑
β,γ∈Hq,m

χs(β − γ) = −f(1 + χs(−1)), s = 1, . . . ,m− 1,

and thus we get (3.4) by virtue of Lemma 2.2.
Now suppose conversely that (3.4) holds. Let γ be an arbitrary element in F∗

q .
Then

m−1∑
s=0

χ−s(γ)
∑

α∈Hq,m

χs(1− α) = f −
m−1∑
s=1

χ−s(γ)(1 + χs(−1)).



CYCLOTOMIC DIFFERENCE SETS IN FINITE FIELDS 2469

We thereby deduce from Lemmas 2.4 and 2.5 that

(3.5) m|Bq,m,γ |+ 1 = f −
m−1∑
s=1

χ−s(γ)(1 + χs(−1)).

Recall that Cq,m,γ = {(α, β) ∈ Mq,m × Mq,m | α − β = γ}. It suffices to show
|Cq,m,γ | = λ by the definition of difference set. Observe that χ(γ) �= 1 implies
|Cq,m,γ ∩ (Hq,m×{0})| = 0 while χ(γ) �= χ(−1) implies |Cq,m,γ ∩ ({0}×Hq,m)| = 0.
The cases for χ(γ) are divided into the following four.

Case 1. χ(γ) �= 1 or χ(−1). In this case

m−1∑
s=1

χ−s(γ)(1 + χs(−1)) = −2,

whence (3.5) gives |Bq,m,γ | = λ. We then conclude |Cq,m,γ | = |Bq,m,γ | = λ viewing
Lemma 2.4(b).

Case 2. χ(γ) = 1 �= χ(−1). Then (3.5) gives m|Bq,m,γ |+ 1 = f − (m− 1− 1), i.e.,
|Bq,m,γ | = λ− 1. Moreover,

(3.6) Cq,m,γ ∩ (Hq,m × {0}) = {(γ, 0)},

so |Cq,m,γ | = |Bq,m,γ |+ 1 = λ by Lemma 2.4(b).

Case 3. χ(γ) = χ(−1) �= 1. In this case, (3.5) leads to |Bq,m,γ | = λ − 1, and it
follows by Lemma 2.4(b) that |Cq,m,γ | = |Bq,m,γ |+ 1 = λ since

(3.7) Cq,m,γ ∩ ({0} ×Hq,m) = {(0,−γ)}.

Case 4. χ(γ) = 1 = χ(−1). In this case, (3.5) leads to |Bq,m,γ | = λ − 2, and it
follows by Lemma 2.4(b) that |Cq,m,γ | = |Bq,m,γ |+ 2 = λ since we have both (3.6)
and (3.7).

�

Combination of Lemma 2.7 and Theorem 3.4 leads to a necessary and sufficient
condition of modified cyclotomic difference sets via Jacobi sums.

Theorem 3.5. Suppose f + 1 = λm, and let χ be a multiplicative character of
order m on Fq. Then Mq,m is a (q, f + 1, λ)-difference set in Fq if and only if

(3.8)
m−1∑
t=1

Jq(χ
s, χt) = 1−m−mχs(−1), s = 1, . . . ,m− 1.

Along the same lines as Theorem 3.3, we can reformulate (3.8) by Gauss sums
as follows.

Theorem 3.6. Suppose f + 1 = λm, and let χ be a multiplicative character of
order m on Fq. Then Mq,m is a (q, f + 1, λ)-difference set in Fq if and only if

(3.9)

m−1∑
t=1
t�=s

χt(−1)Gq(χ
t)Gq(χ

s−t) = (1−m)(1+χs(−1))Gq(χ
s), s = 1, . . . ,m−1.
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4. Existence conditions via polynomial equations

4.1. System on g-level. We investigate the existence problem for cyclotomic and
modified cyclotomic difference sets based on the criterions obtained in the previous
section.

First we embark on the case when m is odd. It is already known in this case that
neither Hq,m nor Mq,m form a nontrivial difference set in Fq if q is odd [20, Chapter
1, Part 1]. However, the parity argument for cyclotomic numbers used to prove this
fact does not appeal to even q’s. In Theorem 4.1 below, we deal with the case when
m is odd in a uniform way for both even and odd q’s. It turns out that the only
existent one is M16,3, which is not mentioned in the literature.

Theorem 4.1. Suppose that m is odd. Then the following statements hold.

(a) Hq,m is never a nontrivial difference set in Fq.
(b) Mq,m is a nontrivial difference set in Fq if and only if (q,m) = (16, 3).

Proof. Suppose that Hq,m or Mq,m is a nontrivial difference set. As a consequence,
both m and f are greater than 1. Let χ be a multiplicative character of order m
on Fq. Define a function g on Z/mZ by

g(s) = Gq(χ
s)/

√
q, s = 1, . . . ,m− 1,

and

g(0) =

{
−1/

√
q, if Hq,m is a nontrivial difference set,

(m− 1)/
√
q, if Mq,m is a nontrivial difference set.

Noticing χ(−1) = 1 as m is odd, we have

(4.1)

m−1∑
t=0

g(t)g(s− t) = 0, s = 1, . . . ,m− 1

by Theorems 3.3 and 3.6, and

(4.2) g(s)g(−s) = 1, s = 1, . . . ,m− 1

by Proposition 2.6(b). Define a complex-valued function W on Z/mZ by

W (s) =

m−1∑
t=0

g(t)g(s− t), s ∈ Z.

It follows that W (1) = · · · = W (m− 1) = 0 and

W (0) = g(0)2 +
m−1∑
t=1

g(t)g(−t) = g(0)2 +m− 1.

Relying on Proposition 2.8 we have

ĝ(s)2 = Ŵ (s) =

m−1∑
t=0

ζ−st
m W (t) = W (0) = g(0)2 +m− 1, s ∈ Z,

(4.3)
m−1∑
r=0

ζsrm ĝ(r)

m−1∑
t=0

ζ−st
m ĝ(t) = ˆ̂g(−s)ˆ̂g(s) = m2g(s)g(−s) = m2, s = 1, . . . ,m− 1
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and

(4.4)

m−1∑
s=0

ĝ(s) = ˆ̂g(0) = mg(0).

Therefore, ĝ(s) = ε(s)
√
g(0)2 +m− 1 with ε(s) = ±1 for s ∈ Z, and substituting

this into (4.3) and (4.4) we get

(4.5)

m−1∑
r=0

ζsrm ε(r)

m−1∑
t=0

ζ−st
m ε(t) =

m2

g(0)2 +m− 1
, s = 1, . . . ,m− 1

and

(4.6)
m−1∑
s=0

ε(s) =
mg(0)√

g(0)2 +m− 1
.

Note that
∑m−1

s=0 ε(s) is an odd integer as m is odd. We proceed according to the
three cases below.

Case 1. Hq,m is a nontrivial difference set. We deduce from (4.6) that(
mg(0)√

g(0)2 +m− 1

)2

� 1,

i.e., g(0)2 � 1/(m+ 1). This yields q � m+ 1, which violates the condition f > 1.

Case 2. p > 2 and Mq,m is a nontrivial difference set. In this case,

m2(m− 1)

m− 1 + q
=

(
mg(0)√

g(0)2 +m− 1

)2

is an odd integer by (4.6). However, this is a contradiction as m − 1 is even and
m− 1 + q is odd.

Case 3. p = 2 andMq,m is a nontrivial difference set. SupposeMq,m is a (q, f+1, λ)-
difference set. Then q = mf + 1 = λm2 −m+ 1 by (1.3). In view of (4.5),

q

λ(m− 1)
=

m2

g(0)2 +m− 1

is an algebraic integer, and thus an integer as it is rational. On the other hand,
(m−1)/λ = m2(m−1)/(m−1+q) is an odd integer as shown in the previous case.
We thereby conclude that λ = m − 1 is a power of 2, whence q = λm2 −m + 1 =
(m− 1)2(m+ 1). This implies that m+ 1 is also a power of 2, so we have m = 3.
Thus λ = 2 and q = 16.

Conversely, consider F16 as the splitting field of x4 + x+ 1 over F2. Let ω be a
root of x4 + x+ 1 = 0 in F16 and χ be a multiplicative character on F16 such that
χ(ω) = ζ3. It is easy to check that 1 − ω3 = ω14, 1 − ω6 = ω13, 1 − ω9 = ω7 and
1− ω12 = ω11. Now for s = 1, 2

∑
α∈H16,3

χs(1− α) =
4∑

t=0

χs(1− ω3t) = ζ2s3 + ζs3 + ζs3 + ζ2s3 = −2.

Thus M16,3 is a (16, 6, 2)-difference set by Theorem 3.4.

�
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During the proof of Theorem 4.1, it is the relations of Gauss sums, with no need
to evaluate them, from (3.3) and (3.9) as well as Proposition 2.6 that rule out the
possibility of cyclotomic and modified cyclotomic difference sets. This suggests us
to approach the case whenm is even in the same vein, namely studying the relations
that Gauss sums necessarily satisfy.

Theorem 4.2. Suppose m is even. If Hq,m or Mq,m is a difference set in Fq, then
the system of equations

(4.7)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2s∑
t=0

(−1)tgtg2s−t +
m−1∑

t=2s+1
(−1)tgtgm+2s−t = 0, s = 1, . . . , m2 − 1,

gsgm−s = (−1)s, s = 1, . . . , m
2 ,

hsgsgm
2 +s = g2sgm

2
, s = 1, . . . , m

2 − 1,

h
m
2 = 1

in the unknowns g0, g1, . . . , gm−1, h has a solution in R × (S1)m with g0 = −1/
√
q

or (m− 1)/
√
q, respectively.

Proof. Let χ be a multiplicative character of order m on Fq,

gs = Gq(χ
s)/

√
q, s = 1, . . . ,m− 1,

g0 =

{
−1/

√
q, if Hq,m is a difference set,

(m− 1)/
√
q, if Mq,m is a difference set,

and h = χ(4). Since m is even, we derive from (1.2) and (1.3) that f is odd, and
thus χ(−1) = −1. It follows from Theorems 3.3 and 3.6 that

s∑
t=0

(−1)tgtgs−t +

m−1∑
t=s+1

(−1)tgtgm+s−t = 0, s = 1, . . . ,m− 1.

In particular, taking even s gives the first line of (4.7). By Proposition 2.6 we have
|g1| = · · · = |gm−1| = 1,

gsgm−s = (−1)s, s = 1, . . . ,m− 1

and

(4.8) hs gsgs
g2s

=
gsgm

2

gm
2 +s

, s = 1, . . . ,
m

2
− 1.

Hence the second line of (4.7) holds, and (4.8) implies the third line of (4.7). Finally,
h = χ2(2) satisfies hm/2 = 1 and |h| = 1. This completes the proof. �

For an even m, we call (4.7) the system of order m on g-level. Note that if we
count the subscript of g modulo m in the system of order m on g-level, then the
first line of (4.7) can be written more concisely as

m−1∑
t=0

(−1)tgtg2s−t = 0, s = 1, . . . ,
m

2
− 1.

Notation 4.3. Denote the affine variety consisting of solutions (g0, g1, . . . , gm−1, h)
∈ Cm+1 to the system of order m on g-level by Lm.

Here are some observations on Lm.
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Proposition 4.4. Suppose that m is even.

(a) If (g0, g1, . . . , gm−1, h) ∈ Lm, then (−g0,−g1, . . . ,−gm−1, h) ∈ Lm.
(b) If (g0, g1, . . . , gm−1, h) ∈ Lm, then for any integer r,

(g0, ζ
r
mg1, . . . , ζ

(m−1)r
m gm−1, h) ∈ Lm.

(c) If (g0, g1, . . . , gm−1, h) ∈ Lm, then for any integer r which is coprime to m,
(g0, gr, . . . , g(m−1)r, h) with subscripts modulo m lies in Lm.

(d) There exists (g0, g1, . . . , gm−1, h) ∈ Lm such that g0 = m/2 − 1; if m + 1
is a prime power then there exists (g0, g1, . . . , gm−1, h) ∈ Lm such that
g20 = 1/(m+ 1). In particular, Lm is nonempty.

Proof. Parts (a)–(c) are straightforward. We only need to prove (d). If m ≡ 0
(mod 4), then take g0 = m/2− 1,

gs = (−1)
(s−1)(s−2)

2 ζsm
2
, s = 1, . . . ,m− 1

and h = −1. If m ≡ 2 (mod 4), then take g0 = (−1)(m+6)(m−6)/32(m/2− 1),

gs = (−1)
(4s+m+2)(4s+m−2)

32 ζs2m, s = 1, . . . ,m− 1

and h = 1. One verifies directly that (g0, g1, . . . , gm−1, h) is a solution of (4.7)
with g0 = ±(m/2 − 1). Thus by part (a) we conclude that (4.7) has a solution
with g0 = m/2 − 1. Now suppose that m + 1 is a prime power. Then {1} is an
mth-cyclotomic (m + 1, 1, 0)-difference set in Fm+1. By Theorem 4.2, (4.7) has a
solution (g0, g1, . . . , gm−1, h) with g20 = 1/(m+ 1). �

Theorem 4.5. Suppose that m is even.

(a) If each (g0, g1, . . . , gm−1, h) ∈ Lm ∩ (R∗ × (S1)m) satisfies g20 � 1/(m+ 1),
then Hq,m is not a nontrivial difference set in Fq.

(b) If each (g0, g1, . . . , gm−1, h) ∈ Lm ∩ (R∗ × (S1)m) satisfies either g20 � 1 or
g20 = 1/(m+ 1), then neither Hq,m nor Mq,m is a nontrivial difference set
in Fq.

Proof. First we prove part (a). Suppose that Hq,m is a nontrivial difference set
in Fq. Then as Theorem 4.2 asserts, (4.7) has a solution (g0, g1, . . . , gm−1, h) ∈
R × (S1)m such that g0 = −1/

√
q. However, g20 � 1/(m + 1), whence q = m + 1.

It follows that f = 1 and thus Hq,m is a trivial difference set. This contradiction
shows that (a) is true.

Now we turn to the proof for part (b). Under the assumption in (b), since we can
deduce that g20 � 1/(m+ 1), Hq,m is not a nontrivial difference set in Fq. Suppose
that Mq,m is a nontrivial (q, f+1, λ)-difference set in Fq. By Theorem 4.2, (4.7) has
a solution (g0, g1, . . . , gm−1, h) ∈ R × (S1)m such that g0 = (m − 1)/

√
q. Viewing

(1.3), we then have

g20=
(m− 1)2

q
=

(m− 1)2

mf + 1
=

(m− 1)2

m(λm− 1) + 1
=

(m− 1)2

λm2 −m+ 1
<

(m− 1)2

m2 − 2m+ 1
=1.

Hence the assumption in (b) forces g20 = 1/(m + 1), i.e., q = (m − 1)2(m + 1).
This implies that m − 1 and m + 1 are both powers of p. If m > 2, then p = 2
since 2 = (m + 1) − (m − 1) is divisible by p, but this results in a contradiction
that m is odd as m divides q − 1. When m = 2, however, we get q = 3 and
|Mq,m| = 2, contrary to the assumption that Mq,m is a nontrivial difference set.
Thus (b) holds. �
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4.2. System on (ĝ, θ)-level. Assume that m is even for the rest of the section. In
this subsection, we apply DFT to the system on g-level, which will lead to equivalent
systems. Given an integer θ, we introduce the system of equations

(4.9)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

m2ĝsĝm
2 +s =

(
m−1∑
t=0

ĝt

)2

+m2(m− 1), s = 0, . . . , m2 − 1,

m
m−1∑
t=0

ĝtĝs+t =

(
m−1∑
t=0

ĝt

)2

−m2, s = 0, . . . , m
2 − 1,

m−1∑
t=0

(−1)tĝtĝ2s−2θ−t =
(
ĝs + ĝm

2 +s

)m−1∑
t=0

(−1)tĝt, s = 0, . . . , m2 − 1,

in the unknowns ĝ0, ĝ1, . . . , ĝm−1, where subscripts of ĝ’s are counted modulo m,
and call it the system of order m on (ĝ, θ)-level.

Notation 4.6. For any θ ∈ Z, denote the affine variety consisting of solutions
(ĝ0, ĝ1, . . . , ĝm−1) ∈ Cm to the system of order m on (ĝ, θ)-level by L̂m,θ.

The following proposition holds readily.

Proposition 4.7. Let θ and θ′ be integers.

(a) If θ′ ≡ θ (mod m/2), then L̂m,θ′ = L̂m,θ.

(b) If (ĝ0, ĝ1, . . . , ĝm−1) ∈ L̂m,θ, then (−ĝ0,−ĝ1, . . . ,−ĝm−1) ∈ L̂m,θ.

(c) If (ĝ0, ĝ1, . . . , ĝm−1) ∈ L̂m,θ and r is an integer which is coprime to m, then

(ĝ0, ĝr, . . . , ĝ(m−1)r) with subscripts modulo m lies in L̂m,rθ.

Theorem 4.8. The map given by

(4.10) gs =
1

m

m−1∑
t=0

ζstm ĝt, s = 0, 1, . . . ,m− 1

and h = ζθm/2 is a bijection from
⋃m/2−1

θ=0 L̂m,θ to Lm.

Proof. First of all, we note that (4.10) gives a one-to-one correspondence between
the points (g0, g1, . . . , gm−1) and (ĝ0, ĝ1, . . . , ĝm−1) in Cm.

Suppose (g0, g1, . . . , gm−1, h) ∈ Lm. Then h = ζθm/2 for some θ ∈ {0, 1, . . . ,m/2−
1} since hm/2 = 1, and (4.10) determines a point (ĝ0, ĝ1, . . . , ĝm−1) ∈ Cm. Define a
function g on Z/mZ by letting g(s) = gt whenever s ≡ t (mod m), t = 0, . . . ,m−1.
According to Proposition 2.8(b) and (4.10) we get that ĝ(s) = ĝt whenever s ≡ t
(mod m), t = 0, . . . ,m− 1. For each s ∈ Z, let

W (s) =
m−1∑
t=0

(−1)tg(t)g(s− t).

One readily sees that W is a function on Z/mZ, and W (s) = 0 when s is odd. It
then follows by (4.7) that W (1) = · · · = W (m− 1) = 0 and

W (0) = g(0)2 +
m−1∑
t=1

(−1)tg(t)g(−t) = g(0)2 +m− 1.

In light of Proposition 2.8 we have

ĝ(s)ĝ
(m
2

+ s
)
= Ŵ (s) =

m−1∑
t=0

ζ−st
m W (t) = W (0) = g(0)2 +m− 1, s ∈ Z
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and

g(0) =
1

m
ˆ̂g(0) =

1

m

m−1∑
t=0

ĝ(t),

whence

m2ĝ(s)ĝ
(m
2

+ s
)
=

(
m−1∑
t=0

ĝ(t)

)2

+m2(m− 1), s ∈ Z.

Moreover, direct calculation leads to

m
m−1∑
t=0

ĝ(t)ĝ(s+ t) = m2g(0)2 −m2 =

(
m−1∑
t=0

ĝ(t)

)2

−m2, s �≡ m

2
(mod m)

and

m−1∑
t=0

(−1)tĝ(t)ĝ(2s− 2θ − t) =
(
ĝ(s) + ĝ

(m
2

+ s
))m−1∑

t=0

(−1)tĝ(t), s ∈ Z.

Hence (ĝ0, ĝ1, . . . , ĝm−1) = (ĝ(0), ĝ(1), . . . , ĝ(m− 1)) satisfies (4.9), i.e.,

(ĝ0, ĝ1, . . . , ĝm−1) ∈ L̂m,θ.

Conversely, suppose (ĝ0, ĝ1, . . . , ĝm−1) ∈ L̂m,θ for some θ ∈ {0, 1, . . . ,m/2 − 1}
and (g0, g1, . . . , gm−1, h) ∈ Cm+1 is given by (4.10) and h = ζθm/2. We aim to show

that (g0, g1, . . . , gm−1, h) ∈ Lm. The equation hm/2 = 1 is clearly satisfied. Since∑m−1
t=0 ĝt = mg0, one derives from (4.9) that⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ĝsĝm
2 +s = g20 +m− 1, s ∈ Z,

m−1∑
t=0

ĝtĝs+t = mg20 −m, s �≡ m
2 (mod m),

m−1∑
t=0

(−1)tĝtĝ2s−2θ−t =
(
ĝs + ĝm

2 +s

)m−1∑
t=0

(−1)tĝt, s ∈ Z,

where subscripts of ĝ are counted modulo m. If we also count the subscripts of g
modulo m, then for s = 1, . . . ,m/2− 1

m−1∑
t=0

(−1)tgtg2s−t =
1

m2

m−1∑
t=0

(−1)t
m−1∑
r=0

ζtrm ĝr

m−1∑
r=0

ζ(2s−t)j
m ĝj

=
1

m2

m−1∑
r=0

m−1∑
j=0

ζ2sjm ĝr ĝj

m−1∑
t=0

ζ(m/2+r−j)t
m

=
1

m

m−1∑
r=0

ζ2s(m/2+r)
m ĝr ĝm

2 +r

=
g20 +m− 1

m

m−1∑
r=0

ζ2srm

=0.
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Thus the first line of (4.7) holds. For s = 1, . . . ,m/2,

gsgm−s =
1

m2

m−1∑
r=0

ζsrm ĝr

m−1∑
t=0

ζ(m−s)t
m ĝt

=
1

m2

m−1∑
r=0

m−1∑
t=0

ζs(r−t)
m ĝrĝt

=
1

m2

m−1∑
j=0

ζsjm

m−1∑
t=0

ĝj+tĝt

=
mg20 −m

m2

m−1∑
j=0

j �=m/2

ζsjm +
(−1)s

m2

m−1∑
t=0

ĝtĝm
2 +t

=− mg20 −m

m2
(−1)s +

g20 +m− 1

m
(−1)s

=(−1)s,

which proves the second line of (4.7). Similarly, one can show that

hsgsgm+s =
1

m2

m/2−1∑
r=0

ζ2srm

(
ĝr + ĝm

2 +r

)m−1∑
t=0

(−1)tĝt = g2sgm
2

for s = 1, . . . ,m/2 − 1, and so the third line of (4.7) is satisfied. This completes
our proof. �

Theorem 4.8 roughly says that the system of order m on g-level decomposes into
m/2 systems on (ĝ, θ)-level of the same order. This helps to reduce computation
in the next section when m gets large. In fact, we avoid the high degree equation
hm/2 = 1 in the the system of order m on g-level and instead solve τ (m/2) systems
of order m on (ĝ, θ)-level, where τ is the number-of-divisors function. To illustrate
it in more detail, we need the following number-theoretic result.

Lemma 4.9. Let θ be an integer. Then there exists a prime number r > m such
that rθ ≡ gcd(θ,m/2) (mod m/2).

Proof. Let  = m/2, d = gcd(θ, ), θ0 = θ/d and 0 = /d. Then gcd(θ0, 0) = 1,
and so there exists an integer s such that sθ0 ≡ 1 (mod 0). As gcd(s, 0) = 1,
by Dirichlet’s theorem on arithmetic progressions, there are infinitely many prime
numbers congruent to s modulo 0. In particular, there is a prime number r > m
such that r ≡ s (mod 0). It follows that rθ0 ≡ 1 (mod 0). Consequently, rθ0d ≡
d (mod 0d), which turns out to be rθ ≡ d (mod ), as desired. �

Combining Lemma 4.9 with parts (a) and (c) of Proposition 4.7 we see that,
among the systems of order m on (ĝ, θ)-level for all integers θ, it suffices to solve for
θ being the divisors of m/2. By computation in this τ (m/2) systems on (ĝ, θ)-level,
we get all the information for the system of order m on g-level via Theorem 4.8.
This is carried out in the next section up to m = 22.

5. Computation results and conjectures

5.1. Results for m � 22. One of the main tools for solving systems of polynomial
equations is the Gröbner basis computation. Generally speaking, a Gröbner basis
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is a particular kind of generating set of an ideal in a polynomial ring. (The reader
is referred to [8] for the explicit definition and an introduction to this topic.) Once
a Gröbner basis is computed, it is easy to know many important properties of the
ideal and the associated algebraic variety, such as the dimension [8, §3 Chapter 9].

Here we apply a state-of-the-art algorithm of Faugère [12] called F4 to compute
Gröbner bases of the systems of order m on (ĝ, θ)-level with m = 6, 10, 12, 14, 16,
18, 20 and 22 performed in Maple 14. For each m, we only compute for θ being
a divisor of m/2 (when θ = m/2 it is equivalent to put θ = 0). It turns out that in

these computed cases, L̂m,θ is a finite set, and thus each (ĝ0, ĝ1, . . . , ĝm−1) satisfies

Fm,θ

(
1

m

m−1∑
t=0

ĝt

)
= 0

for some univariate polynomial1 Fm,θ(x) listed in Tables 5.1–8 (Fm,θ(x) = 1 indi-

cates that L̂m,θ is empty). Now for m = 6, 10, 12, 14, 16, 18, 20 and 22, Theorem
4.8 in conjunction with Lemma 4.9 and parts (a) and (c) of Proposition 4.7 implies
that each (g0, g1, . . . , gm−1, h) satisfies Fm(g0) = 0, where

Fm(x) =
∏
θ|n

Fm,θ(x).

We list Fm(x) for these values of m in Table 92.

Table 1. F6,θ(x)

θ 0 1
F6,θ(x) (x− 2)(x+ 2) 7x2 − 1

Table 2. F10,θ(x)

θ 0 1
F10,θ(x) x(x− 4)(x+ 4) 11x2 − 1

Table 3. F12,θ(x)

θ 0 1 2 3
F12,θ(x) 1 13x2 − 1 1 (x− 3)(x+ 3)(x− 5)(x+ 5)(5x− 7)(5x+ 7)

Table 4. F14,θ(x)

θ 0 1
F14,θ(x) (x− 6)(x+ 6)(4x2 + 3) 1

1One can find them by the command Groebner[UnivariatePolynomial] in Maple 14.
2To find Fm(x), one may also compute directly in the system of order m on g-level. However,

the author’s PC failed to compute a Gröbner basis for the system on g-level when m = 22 as it is
too memory-consuming.
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Table 5. F16,θ(x)

θ 0 1 2 4
F16,θ(x) (7x− 17)(7x+ 17) 1 17x2 − 1 (x− 7)(x+ 7)

Table 6. F18,θ(x)

θ 0 1 3
F18,θ(x) x(x− 8)(x+ 8) 19x2 − 1 1

Table 7. F20,θ(x)

θ 0 1 2 5
F20,θ(x) 1 1 1 (x− 7)(x+ 7)(x− 9)(x+ 9)(9x− 31)

·(9x+ 31)(13x− 67)(13x+ 67)

Table 8. F22,θ(x)

θ 0 1
F22,θ(x) (x− 10)(x+ 10)(4x4 − 60x2 + 243) 23x2 − 1

Table 9. Fm(x)

m Fm(x)
6 (x− 2)(x+ 2)(7x2 − 1)
10 x(x− 4)(x+ 4)(11x2 − 1)
12 (x− 3)(x+ 3)(x− 5)(x+ 5)(5x− 7)(5x+ 7)(13x2 − 1)
14 (x− 6)(x+ 6)(4x2 + 3)
16 (x− 7)(x+ 7)(7x− 17)(7x+ 17)(17x2 − 1)
18 x(x− 8)(x+ 8)(19x2 − 1)
20 (x− 7)(x+ 7)(x− 9)(x+ 9)(9x− 31)(9x+ 31)(13x− 67)(13x+ 67)
22 (x− 10)(x+ 10)(4x4 − 60x2 + 243)(23x2 − 1)

Due to the these computation results we have the following theorem.

Theorem 5.1. If m � 22 is an even integer other than 2, 4 or 8, then neither
Hq,m nor Mq,m forms a nontrivial difference set in Fq.

Proof. Let (g0, g1, . . . , gm−1, h) be any point in Lm ∩ (R∗ ×Cm). Then Fm(g0) = 0
with Fm(x) lying in Table 9. Note that 4x4 − 60x2 +243 = 0 has no solution in R.
We infer from Table 9 that either g20 � 1 or g20 = 1/(m + 1). Accordingly, neither
Hq,m nor Mq,m forms a nontrivial difference set in Fq by Theorem 4.5(b). �
5.2. Conjectural classification. Let us summarize what has been known so far
about the existence of nontrivialmth-cyclotomic and modified cyclotomic difference
sets in Fq. First, the case when m is odd is dealt with in Theorem 4.1: only M16,3

arises as a difference set. Second, for even values of m up to 8, all the nontrivial
mth-cyclotomic and modified cyclotomic difference sets in Fq have been determined
due to Paley [19], Hall [14] and Storer [20]: they are the quadratic case with q ≡ 3
(mod 4) and quartic and octic case with q = p as in (1.4)–(1.7). For even values of
m from 10 to 22, Hq,m and Mq,m do not form nontrivial difference sets any more
as shown in Theorem 5.1. Now we pose a conjectural classification.
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Conjecture 5.2. Hq,m is a nontrivial difference set in Fq if and only if one of the
following appears:

(a) m = 2 and q ≡ 3 (mod 4);
(b) m = 4 and q = p = 1 + 4t2 for some odd integer t;
(c) m = 8 and q = p = 1 + 8u2 = 9 + 64v2 for some odd integers u and v.

Mq,m is a nontrivial difference set in Fq if and only if one of the following appears:

(a’) m = 2 and q ≡ 3 (mod 4);
(b’) m = 3 and q = 16;
(c’) m = 4 and q = p = 9 + 4t2 for some odd integer t;
(d’) m = 8 and q = p = 49+ 8u2 = 441+ 64v2 for some odd integer u and even

integer v.

We have seen that Conjecture 5.2 is true for odd m and even m � 22. In fact,
our verification for even values of m up to 22 other than 2, 4 or 8 builds on the
computation results that the assumptions of both (a) and (b) in Theorem 4.5 hold
for these m’s. Viewing this, we address the following conjecture, whose latter part
obviously implies the former.

Conjecture 5.3. Suppose that m is even and m �= 2, 4 or 8.

(a) Each (g0, g1, . . . , gm−1, h) ∈ Lm ∩ (R∗ × (S1)m) satisfies g20 � 1/(m+ 1).
(b) Each (g0, g1, . . . , gm−1, h) ∈ Lm ∩ (R∗ × (S1)m) satisfies either g20 � 1 or

g20 = 1/(m+ 1).

By the benefit of Theorem 4.5, it provides a possible way to tackle Conjecture
5.2 for higher powers by verifying Conjecture 5.3 for larger m: if Conjecture 5.3(b)
is true, then Conjecture 5.2 is true; if part (a) of Conjecture 5.3 is true then at least
the statement about Hq,m in Conjecture 5.2 holds. From the author’s viewpoint,
it is quite possible that, like the computation results in the previous subsection,
each (g0, g1, . . . , gm−1, h) ∈ Lm satisfies the inequalities in Conjecture 5.3. In other
words, it would probably suffice to compute the Gröbner basis for (4.7) or (4.9) for
even m � 24.

5.3. Flag-transitive projective planes. A finite projective plane of order n,
where n ∈ Z>1, is a point-line incidence structure satisfying:

(i) each line contains exactly n+1 points and each point is contained in exactly
n+ 1 lines;

(ii) any two distinct lines intersect in exactly one point and any two distinct
points are contained in exactly one line.

The incident point-line pairs are called flags. A permutation on the point set
preserving the lines and flags is called a collineation or automorphism. If the
collineation group of a finite projective plane acts 2-transitively on the points,
then it is said to be 2-transitive. If the collineation group of a finite projective
plane acts transitively on the flags, then it is said to be flag-transitive. Note that
2-transitive finite projective planes are always flag-transitive because two distinct
points determine a line.

From the definition of difference sets one sees that each (v, k, 1)-difference set D
in an abelian group F gives rise to a finite projective plane once we call elements of F
points and {D+a | a ∈ F} lines. For such consideration, (v, k, 1)-difference sets are
also called planar difference sets. A finite projective plane coordinatized by a finite
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field is said to be Desarguesian since Moufang revealed its equivalence to a certain
configurational property named in honor of G. Desargues (see for example [15]). An
elegant and celebrated theorem of Wagner [24] asserts that every finite 2-transitive
projective plane is Desarguesian, which actually classifies the 2-transitive projective
planes. Toward a generalization of Wagner’s theorem, a conjecture was made that
every finite flag-transitive projective plane is Desarguesian. This conjecture has
received attention of wide scope and is still open as it is attributed to the existence
problem of related planar difference sets by Proposition 5.4 below. For more about
the history of this longstanding conjecture including Proposition 5.4; see [22, 23].

Proposition 5.4. If there exists a finite non-Desarguesian flag-transitive projective
plane of order m with v points, then v = m2 + m + 1 is prime and Hv,m is a
(v,m+ 1, 1)-difference set in Fv with m > 8.

An important concept in the theory of difference sets is the so-called multiplier.
Its idea stems from Hall [13] when investigating the special case of planar difference
sets in cyclic groups, and has been generalized to difference sets in an arbitrary
group with a lot of outcomes (see the survey [16] for example). Nevertheless,
we will focus on the abelian group case for our purposes, where a (numerical)
multiplier of a difference set D in an abelian group F is defined to be an integer t
with gcd(t, |F |) = 1 such that tD = D + a for some a ∈ F . The following result is
due to Chowla and Ryser [6].

Proposition 5.5. Let D be a (v, k, λ)-difference set in an abelian group. If t is a
prime divisor of k − λ with gcd(t, v) = 1 and t > λ, then t is a multiplier of D.

In [17, Theorem IV], Lehmer proved that the set of multipliers of a nontrivial
cyclotomic difference set in Fp is the difference set itself. We note that this result
can be extended to Fq along the the same lines of proof. Now suppose that m is
even and Hq,m is a planar difference set. It follows that f is odd by (1.2), and thus
the order f − 1 is even. As Proposition 5.5 implies that 2 is a multiplier of Hq,m,
we then have 2 ∈ Hq,m, and so χ(4) = 1 for any multiplicative character χ of order
m on Fq. This allows us to add the equation h = 1 to (4.7) in order that Hq,m is a
planar difference set in Fq. Hence the following theorem holds as a consequence of
(1.2) and Proposition 5.4.

Theorem 5.6. If Hq,m is a planar difference set in Fq, then q = m2 +m+ 1 with
m even and the system of order m on g-level has a solution (g0, g1, . . . , gm−1, h) in
R × (S1)m with g0 = −1/

√
q and h = 1. In particular, if there does not exist an

even integer m > 8 such that v = m2 +m+ 1 is prime and the system of order m
on g-level has a solution (g0, g1, . . . , gm−1, h) in R × (S1)m with g0 = −1/

√
v and

h = 1, then every finite flag-transitive projective plane is Desarguesian.

5.4. Other problems on the systems of equations. Computation results shows
that Lm is a finite set when m � 22 is even and m �= 2, 4 or 8. We thus make
another conjecture below. Its affirmative solution for each fixed m will result in
a conclusion by Theorem 4.2 that there exist at most finitely many q’s such that
q ≡ 1 (mod m) and either Hq,m or Mq,m is a difference set in Fq for this m.

Conjecture 5.7. Lm is a finite set for m � 24 even.

Studying whether there exists (g0, g1, . . . , gm−1, h) ∈ Lm with g0 = 0 is of interest
and importance as well. One of the reasons is that it also has connection with
finiteness results by the next theorem.
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Theorem 5.8. Suppose that m is even. If Lm∩ ({0}× (S1)m) is empty, then there
exist at most finitely many q’s such that q ≡ 1 (mod m) and either Hq,m or Mq,m

is a difference set in Fq.

Proof. Let Q be the set of prime powers q such that q ≡ 1 (mod m) and Hq,m is a
difference set in Fq. For each q ∈ Q, there exists a (g0(q), g1(q), . . . , gm−1(q), h(q)) ∈
Lm ∩ (R × (S1)m) such that g0(q) = −1/

√
q by Theorem 4.2. Suppose Q to be

infinite. Then there exists an infinite increasing sequence (qn)
∞
n=1 in Q. As (S1)m is

bounded and closed, it is compact by the Heine-Borel theorem. Hence the sequence
((g1(qn), . . . , gm−1(qn), h(qn)))

∞
n=1 in (S1)m has a subsequence

((g1(qnk
), . . . , gm−1(qnk

), h(qnk
)))∞k=1

which has a limit point, say (g1, . . . , gm−1, h) ∈ (S1)m. Since

g0 = lim
k→∞

g0(qnk
) = lim

k→∞
− 1
√
qnk

= 0

and (g0(qnk
), g1(qnk

), . . . , gm−1(qnk
), h(qnk

)) satisfies (4.7) for every integer k � 1,
taking the limit k → ∞ in each polynomial equation of (4.7) we deduce that
(g0, g1, . . . , gm−1, h) satisfies (4.7). This shows that (g0, g1, . . . , gm−1, h) ∈ Lm ∩
({0} × (S1)m), contrary to the assumption of the theorem. Consequently, Q is
finite. Along similar lines one can prove the finiteness of the set of prime powers q
such that q ≡ 1 (mod m) and Mq,m is a difference set in Fq. Thus the theorem is
true. �

For the values of m in Table 9, Lm ∩ ({0}×Cm) is nonempty only when m = 10
or 18. Hence we would like to ask the following.

Question 5.9. For which even m’s is Lm ∩ ({0} × Cm) nonempty?
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Algebra 139 (1999), no. 1-3, 61–88, DOI 10.1016/S0022-4049(99)00005-5. Effective methods
in algebraic geometry (Saint-Malo, 1998). MR1700538

[13] M. Hall Jr., Cyclic projective Planes, Duke Math. J. 14 (1947), 1079–1090. MR0023536
[14] M. Hall Jr., Characters and cyclotomy, Proc. Sympos. Pure Math., Vol. VIII, Amer. Math.

Soc., Providence, R.I., 1965, pp. 31–43. MR0174549
[15] D. R. Hughes and F. C. Piper, Projective Planes, Springer-Verlag, New York-Berlin, 1973.

Graduate Texts in Mathematics, Vol. 6. MR0333959
[16] D. Jungnickel, Difference sets, Contemporary Design Theory, Wiley-Intersci. Ser. Discrete

Math. Optim., Wiley, New York, 1992, pp. 241–324. MR1178504
[17] E. Lehmer, On residue difference sets, Canadian J. Math. 5 (1953), 425–432. MR0056007
[18] J. B. Muskat, The cyclotomic numbers of order fourteen, Acta Arith. 11 (1965/1966), 263–

279. MR0193081
[19] R. E. A. C. Paley, On orthogonal matrices. J. Math. Phys., 12 (1933), 311–320.
[20] T. Storer, Cyclotomy and difference sets, Lectures in Advanced Mathematics, No. 2, Markham

Publishing Co., Chicago, Ill., 1967. MR0217033
[21] A. Terras, Fourier analysis on finite groups and applications, London Mathematical Society

Student Texts, vol. 43, Cambridge University Press, Cambridge, 1999. MR1695775
[22] K. Thas, Finite flag-transitive projective planes: a survey and some remarks, Discrete Math.

266 (2003), no. 1-3, 417–429, DOI 10.1016/S0012-365X(02)00823-3. MR1991732
[23] K. Thas and D. Zagier, Finite projective planes, Fermat curves, and Gaussian periods, J.

Eur. Math. Soc. (JEMS) 10 (2008), no. 1, 173–190, DOI 10.4171/JEMS/107. MR2349900
[24] A. Wagner, On finite affine line transitive planes, Math. Z. 87 (1965), 1–11, DOI

10.1007/BF01109922. MR0172165

[25] A. L. Whiteman, The cyclotomic numbers of order ten, Proc. Sympos. Appl. Math., Vol. 10,
American Mathematical Society, Providence, R.I., 1960, pp. 95–111. MR0113851

[26] A. L. Whiteman, The cyclotomic numbers of order twelve, Acta Arith. 6 (1960), 53–76.
MR0118709

School of Mathematics and Statistics, University of Western Australia, Crawley

6009, Western Australia, Australia

Current address: School of Mathematics and Statistics, The University of Melbourne, Parkville,
VIC 3010, Australia

Email address: binzhoux@unimelb.edu.au

http://www.ams.org/mathscinet-getitem?mr=574123
http://www.ams.org/mathscinet-getitem?mr=689481
http://www.ams.org/mathscinet-getitem?mr=1703856
http://www.ams.org/mathscinet-getitem?mr=1700538
http://www.ams.org/mathscinet-getitem?mr=0023536
http://www.ams.org/mathscinet-getitem?mr=0174549
http://www.ams.org/mathscinet-getitem?mr=0333959
http://www.ams.org/mathscinet-getitem?mr=1178504
http://www.ams.org/mathscinet-getitem?mr=0056007
http://www.ams.org/mathscinet-getitem?mr=0193081
http://www.ams.org/mathscinet-getitem?mr=0217033
http://www.ams.org/mathscinet-getitem?mr=1695775
http://www.ams.org/mathscinet-getitem?mr=1991732
http://www.ams.org/mathscinet-getitem?mr=2349900
http://www.ams.org/mathscinet-getitem?mr=0172165
http://www.ams.org/mathscinet-getitem?mr=0113851
http://www.ams.org/mathscinet-getitem?mr=0118709

	1. Introduction
	2. Preliminaries
	2.1. Multiplicative characters
	2.2. Gauss and Jacobi sums
	2.3. Discrete Fourier transform

	3. Necessary and sufficient conditions
	3.1. Cyclotomic difference sets
	3.2. Modified cyclotomic difference sets

	4. Existence conditions via polynomial equations
	4.1. System on 𝑔-level
	4.2. System on (𝑔,𝜃)-level

	5. Computation results and conjectures
	5.1. Results for 𝑚⩽22
	5.2. Conjectural classification
	5.3. Flag-transitive projective planes
	5.4. Other problems on the systems of equations

	Acknowledgment
	References

