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A UNIFIED FRAMEWORK FOR TIME-DEPENDENT

SINGULARLY PERTURBED PROBLEMS WITH

DISCONTINUOUS GALERKIN METHODS IN TIME

SEBASTIAN FRANZ AND GUNAR MATTHIES

Abstract. In this paper we present a unified framework for the error analysis
of time-dependent singularly perturbed problems with discontinuous Galerkin
time discretisation. Its general analysis relies on spatial error estimates known
from stationary problems and the properties of the discontinuous Galerkin
time discretisation.

We present also applications of our framework to second- and fourth-order
singularly perturbed problems in estimation and simulation.

1. Introduction

In the context of singularly perturbed problems many results deal with stationary
problems. A widely used technique to obtain accurate solutions in layer regions is
the application of layer-adapted meshes. Doing so yields for many finite element
methods with or without stabilisation convergence results which are uniform in the
perturbation parameter called ε.

When we look at time-dependent singularly perturbed problems and layer-
adapted meshes, such uniform results in the literature are much rarer. In [16, 30]
standard discretisations in time in combination with Shishkin meshes in space were
considered for certain singularly perturbed problems. The analysis in those papers
can be extended to more general S-type meshes [24].

In our paper we show, for the first time, a general numerical analysis of time-
dependent singularly perturbed problems discretised in time by discontinuous
Galerkin methods and applicable to numerous different spatial operators. Many
of the ingredients are already known techniques, but in its generality it is a new
result. In particular, we consider for a bounded Lipschitz domain Ω ⊂ Rd, d ≥ 1,
and a final time T > 0 the general class of problems:

(1.1)

⎧⎪⎨⎪⎩
∂tu+ Lu = f in Ω× (0, T ),

Bu = 0 on ∂Ω× (0, T ),

u(0) = u0 in Ω,

where L is a possibly singularly perturbed differential operator in space, B a bound-
ary operator, and u0 an initial value in Ω. For the notation we will drop in gen-
eral the dependence on space, such that u(0) = u(0, x) for x ∈ Ω. Examples
for the application of our analysis will be given in Section 4 but for convenience
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the reader may think of Lu = −εΔu + b · ∇u + cu and Bu = u as a second-
order elliptic convection-diffusion problem with homogeneous Dirichlet conditions
or Lu = ε2Δ2u + bΔu + cu and Bu = (u, ∂nu)

� as a fourth-order problem with
homogeneous Dirichlet and Neumann conditions. For each problem we will denote
by V the corresponding Sobolev space wherein the problem is well defined. For the
two given examples we would have V = H1

0 (Ω) for the first one and V = H2
0 (Ω)

for the second one. Furthermore, let VN denote a finite element space defined on
Ω with N being a parameter associated with the number of elements.

We denote by a(t; ·, ·) the bilinear form associated with the differential operator
L evaluated at time t. In many cases the stability of the method can be increased
by adding a stabilisation term sN (t; ·, ·) which may depend on time. We set aN :=
a+ sN . Although aN may be affine linear in the first function argument and linear
in the second function argument, we refer to aN as a bilinear form.

2. Assumptions and notation

We denote by ‖·‖ and (·, ·) the standard L2-norm and the standard L2-scalar
product on Ω, respectively. The duality pairing between V and its dual space V ′

is given by 〈·, ·〉. Furthermore, we denote by W k,p(Ω) the usual Sobolev spaces
and in the case p = 2 we write Hm(Ω) instead of Wm,2(Ω). Throughout the
paper C denotes a generic constant that is independent of the meshes in time and
space, and of a possible perturbation parameter ε of the spatial operator. Labelled
constants like C1 have a fixed value but are also independent of the meshes and the
perturbation parameter.

In order to carry out our fairly general analysis, we need some assumptions.
They are collected into several groups.

The first assumption deals with the relations between different norms and the
stabilisation term sN .

Assumption 1 (Norms). There exists a norm |||·||| on V + VN such that

‖ξ‖ ≤ C1 |||ξ||| and sN (t; ξ, ξ) ≤ C2 |||ξ|||2

hold true uniformly for all ξ ∈ V + VN and all t ∈ [0, T ].

Here and further on we call a function g : N → [0,∞) ε-uniformly bounded if
there exists a function g̃ : N → [0,∞) independent of ε such that g(N) ≤ g̃(N) for
all N ∈ N and for all ε ∈ (0, 1]. This means in particular that the function g(N) is
for ε → 0 always bounded.

The second assumption considers a spatial interpolation operator IN .

Assumption 2 (Interpolation). Given the norm |||·||| from Assumption 1, there
are an integer k ∈ N, an interpolation operator IN : V → VN , and two ε-uniformly
bounded, monotonically decreasing functions gL2 : N → [0,∞) and ge : N → [0,∞)
such that

‖z − INz‖ ≤ C gL2(N)(2.1)

and

|||z − INz||| ≤ C ge(N)(2.2)

hold true, where z ∈ V ∩Hk(Ω) is the solution of the stationary problem a(t; z, v) =
〈f(t), v〉 for all v ∈ V and t ∈ [0, T ].
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Note that Assumptions 1 and 2 are fulfilled for second-order elliptic problems
discretised on properly defined S-type meshes. Here, the spatial analysis relies on
precise knowledge of the layer structure which is often given for the unit square
or smooth domains; see, e.g., [26, Ch. III.1.4]. Using a simple quasi-uniform mesh
results in bounds for the interpolation error which are usually not ε-uniformly
bounded.

The third assumption deals with the bilinear form of the stationary problem.

Assumption 3 (Bilinear form). Given the norm |||·||| from Assumption 1 and
the interpolation operator IN from Assumption 2, there exist an integer k ∈ N, a
constant γ > 0, and an ε-uniformly bounded, monotonically decreasing function
gd : N → [0,∞) such that

• The stabilised bilinear form aN is uniformly coercive on [0, T ] with respect
to |||·|||, i.e.,

(2.3) aN (t;ϕ, ϕ) ≥ γ |||ϕ|||2 for all ϕ ∈ V + VN , t ∈ [0, T ].

• The bilinear form aN provides for all vN ∈ VN ,

(2.4)
∣∣aN (t; z − INz, vN )

∣∣ ≤ Cgd(N) |||vN ||| ,

uniformly in [0, T ], where z ∈ V ∩ Hk(Ω) denotes the solution of the sta-
tionary problem a(t; z, w) = 〈f(t), w〉 for all w ∈ V .

The fourth assumption considers the used stabilisation method.

Assumption 4 (Stabilisation method). Let the stabilisation term sN either be
consistent, i.e.,

(2.5) sN (t;u, vN ) = 0 for all vN ∈ VN ,

where u denotes the solution of (1.1) or provide for all t ∈ [0, T ] the estimate

(2.6) sN (t;ϕ, ψ) ≤ sN (t;ϕ, ϕ)1/2sN (t;ψ, ψ)1/2 for all ϕ, ψ ∈ V + VN ,

together with the bound

(2.7) sN (t;ϕ, ϕ) ≤ Cg2s(N) for all ϕ ∈ V ∩Hk(Ω),

where gs : N → [0,∞) is an ε-uniformly bounded, monotonically decreansing func-
tion. In the case of a consistent stabilisation method we set gs(N) = 0 for all
N ∈ N.

In Section 4, we present examples fulfilling the above assumptions.
The final assumption deals with the time derivatives of u.

Assumption 5 (Time behaviour). For a given nonnegative integer q, we assume
that

‖∂s
t ∂

ku‖ ≤ C‖∂ku‖ for all 0 ≤ s ≤ q + 2

holds for any spatial derivative abbreviated by ∂k. This means especially that time
derivatives do not introduce negative powers of the perturbation parameter ε.

Remark 2.1. Assumption 5 restricts the applicability of our analysis to problems
with data supporting this assumption. Investigations on ε-uniform bounds on time
derivatives for a second-order example can be found in [5].
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In the subsequent analysis of this paper, let the Assumptions 1–5 be fulfilled.
We have in most applications the relations

gL2(N) ≤ Cgd(N) ≤ Cge(N)

for the different bounding functions. We will also use the abbreviation

G(N) := gL2(N) + gd(N) + ge(N) + gs(N)

for the final bounding function of the spatial influence which is ε-uniformly bounded
itself.

3. Numerical method and analysis

A weak formulation of (1.1) for a right-hand side f ∈ L2(0, T ;V ′) reads:
Find u ∈ L2(0, T ;V ) such that u′ ∈ L2(0, T ;V ′), u(0) = u0, and

(3.1)

∫
Im

〈u′, v〉 dt+
∫
Im

a(t;u, v) dt =

∫
Im

〈f, v〉 dt for all v ∈ L2(0, T ;V ).

Note that the initial condition u(0) = u0 is well defined since the function u ∈
L2(0, T ;V ) with u′ ∈ L2(0, T ;V ′) is continuous in time. Moreover, the solution u
of (1.1) solves (3.1). Note that the duality pairing 〈u′, v〉 becomes the L2-scalar
product (u′, v) for u being smooth enough in space.

Let M be a positive integer and 0 = t0 < t1 < · · · < tM = T . Using these time
mesh points, we define intervals Im := (tm−1, tm], m = 1, . . . ,M , with mesh sizes
τm := tm − tm−1 and the maximal mesh size τ := max

m=1,...,M
τm.

For a piecewise smooth time-dependent function ϕ, we define at t = tm the
one-sided limits ϕ±

m and the jump [[ϕ]]m by

ϕ±
m := lim

t→tm±0
ϕ(t), [[ϕ]]m := ϕ+

m − ϕ−
m.

Let q be the polynomial order of our elements in time. We define the discrete
function space

V τ
N :=

{
W ∈ L2(0, T ;VN ) : W |Im ∈ Pq(Im, VN ), 1 ≤ m ≤ M

}
,

where Pq(Im, VN ) denotes the space of VN -valued polynomials of degree at most q
on the time interval Im.

The dG(q) method reads as follows:
Given U−

0 ∈ VN as a suitable approximation of u0, find U ∈ V τ
N such that

M∑
m=1

{∫
Im

(U ′, V ) dt+

∫
Im

aN (t;U, V ) dt+ ([[U ]]m, V +
m )

}
=

M∑
m=1

∫
Im

〈f, V 〉 dt.

Since the test functions are allowed to be discontinuous at the time points, the
global problem decouples into a sequence of local problems on the intervals Im.
Such local problem reads:

Given U−
m ∈ VN , find U |Im ∈ Pq(Im, VN ) such that∫
Im

(U ′, V ) dt+

∫
Im

aN (t;U, V ) dt+ ([[U ]]m, V +
m ) =

∫
Im

〈f, V 〉 dt,

where U−
0 is again a suitable approximation of u0.

In order to evaluate the time integrals numerically, we use the right-sided Gauß–
Radau quadrature formula. To this end, denote by ω̂i and t̂i, i = 0, . . . , q, the
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weights and nodes of the Gauß–Radau formula with q + 1 nodes on the reference

time interval Î = (−1, 1]. Using the transformation

Tm : Î → Im, t̂ → tm−1 + tm
2

+
τm
2
t̂,

we define by

Qm [v] :=
τm
2

q∑
i=0

ω̂iv(tm,i)

with the transformed Gauß–Radau points tm,i := Tm(t̂i), i = 0, . . . , q, a quadra-
ture formula on Im which is exact for polynomials of degree at most 2q. For the
same nodes tm,i we denote by ϕm,i with i = 0, . . . , q the associated Lagrange basis
functions and define for a function v ∈ C([0, T ], V + VN ) by

(3.2) (Pv)
∣∣
Im

(t) :=

q∑
i=0

v(tm,i)ϕm,i(t), m = 1, . . . ,M,

an interpolation operator. To complete the definition, we set

(Pv)(0) = v(0).

We will use in the Lemmas 3.3 and 3.4 an additional interpolation operator which
utilises tm,−1 = tm−1 in addition to tm,i, i = 0, . . . , q. Denoting the associated
Lagrange basis functions by ψm,i, i = −1, 0, . . . , q, this interpolation operator is
given by

(3.3) (P̂ v)
∣∣
Im

(t) :=

q∑
i=−1

v(tm,i)ψm,i(t), m = 1, . . . ,M.

Note that P̂ maps to functions which are continuous in time while the image of P
is allowed to be discontinuous at the time mesh points.

The interpolation operators P and P̂ provide the error estimates

sup
t∈Im

‖(v − Pv)(t)‖ ≤ Cτ q+1
m sup

t∈Im

‖v(q+1)(t)‖, v ∈ W q+1,∞(0, T ;L2(Ω)),(3.4a)

sup
t∈Im

‖(v − P̂ v)′(t)‖ ≤ Cτ q+1
m sup

t∈Im

‖v(q+2)(t)‖, v ∈ W q+2,∞(0, T ;L2(Ω)),(3.4b)

which follow directly from polynomial interpolation theory.
We will use

‖v‖∞ := sup
t∈[0,T ]

‖v(t)‖,

‖v‖∞,d := sup
i=1,...,M

‖v(t−i )‖,(3.5)

|||v|||Q :=

(
M∑

m=1

Qm

[
|||v(t)|||2

])1/2

in the subsequent analysis and assume in the remainder of this paper that f ∈
C(0, T ;V ′) and u ∈ C1(0, T ;V ).

The fully discrete problem on Im then reads:
Given U−

m ∈ VN , find U ∈ V τ
N such that

(3.6) Qm [(U ′, V )] +Qm

[
aN

(
t;U, V

)]
+
(
[[U ]]m−1, V

+
m−1

)
= Qm [〈f, V 〉]
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for all V ∈ V τ
N . Note that U−

0 ∈ VN is a suitable approximation of the initial
condition u0.

The solution u ∈ C1(0, T ;V ) of (1.1) solves the collocation formulation:

(3.7) Qm [(u′, v)] +Qm [a(t;u, v)] = Qm [〈f, v〉] for all v ∈ {v : v(tm,i) ∈ V }.

Lemma 3.1. Let u and U denote the solutions of (1.1) and (3.6). Then the
relation

Qm [(U ′ − u′, V )] +Qm [aN (t;U − u, V )] +
(
[[U − u]]m−1, V

+
m−1

)
= Qm [sN (t, u, V )]

holds true for all V ∈ V τ
N .

Proof. This equality follows directly from the difference of (3.7) and (3.6). For a
consistent stabilisation term sN , the right-hand side is zero and the relation is the
Galerkin orthogonality. �

Let us split the error U − u = ξ − η with ξ := U − PINu and η := u − PINu.
Then from Lemma 3.1 follows the error equation

(3.8) Qm [(ξ′, V )] +Qm [aN (t; ξ, V )] +
(
[[ξ]]m−1, V

+
m−1

)
= Qm [(η′, V )] +Qm [aN (t; η, V )] +

(
[[η]]m−1, V

+
m−1

)
+Qm [sN (t, u, V )]

for all V ∈ V τ
N .

In order to estimate the left-hand side of (3.8) from below, we state the following
result.

Lemma 3.2. For χ ∈ V τ
N it holds that

(3.9) Qm [(χ′, χ)] +Qm [aN (t;χ, χ)] +
(
[[χ]]m−1, χ

+
m−1

)
≥ 1

2

(
‖χ−

m‖2 − ‖χ−
m−1‖2 + ‖[[χ]]m−1‖2

)
+ γQm

[
|||χ|||2

]
.

Proof. Let us start with the first and the last term on the left-hand side of (3.9).
Here we obtain

Qm [(χ′, χ)] +
(
[[χ]]m−1, χ

+
m−1

)
=

∫
Im

(χ′, χ) dt+
(
χ+
m−1 − χ−

m−1, χ
+
m−1

)
=

1

2

(∫
Im

d

dt
‖χ‖2 dt+ ‖χ+

m−1‖2 − ‖χ−
m−1‖2 + ‖[[χ]]m−1‖2

)
=

1

2

(
‖χ−

m‖2 − ‖χ−
m−1‖2 + ‖[[χ]]m−1‖2

)
,

where the exactness of the quadrature rule Qm for polynomials up to order 2q was
used. For the remaining term on the left-hand side of (3.9), it follows that

Qm [aN (t;χ, χ)] =
τm
2

q∑
i=0

ω̂iaN
(
tm,i;χ(tm,i), χ(tm,i)

)
≥ τm

2

q∑
i=0

ω̂iγ |||χ(tm,i)|||2 = γQm

[
|||χ|||2

]
from assumption (2.3). �

In the next lemma we use P̂ to replace P and obtain a higher order interpolation
error.
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Lemma 3.3. We have

Qm [(η′, V )] +
(
[[η]]m−1, V

+
m−1

)
= Qm

[(
(u− P̂ INu)′, V

)]
for all V ∈ V τ

N .

Proof. Recall that η = u− PINu and note that P̂ INu interpolates additionally in
tm−1 on each time interval; see (3.3). Since [[u]]m−1 = 0, m = 1, . . . ,M −1, we have
to consider only the discrete contributions. Hence, we obtain on each interval

Qm [((PINu)′, V )] + ((PINu)+m−1, V
+
m−1)− ((PINu)−m−1, V

+
m−1)

=

∫
Im

((PINu)′, V ) dt+ ((PINu)+m−1, V
+
m−1)− (INum−1, V

+
m−1)

= −
∫
Im

(PINu, V ′) dt+ ((PINu)−m, V −
m )− (INum−1, V

+
m−1)

= −Qm [(PINu, V ′)] + ((PINu)−m, V −
m )− (INum−1, V

+
m−1)

= −Qm

[
(P̂ INu, V ′)

]
+ ((P̂ INu)−m, V −

m )− (INum−1, V
+
m−1)

= −
∫
Im

(P̂ INu, V ′) dt+ ((P̂ INu)−m, V −
m )− (INum−1, V

+
m−1)

=

∫
Im

((P̂ INu)′, V ) dt+ ((P̂ INu)+m−1, V
+
m−1)− (INum−1, V

+
m−1)

= Qm

[(
(P̂ INu)′, V

)]
,

where we used the definition of the interpolators P and P̂ in tm,i (see (3.2) and (3.3)),
integration by parts and the exactness of the quadrature rule for polynomials of
degree 2q multiple times. �

Now let us bound the right-hand side of (3.8).

Lemma 3.4. Let V ∈ V τ
N arbitrary and let α, β > 0 be chosen such that αβ = 1

4 .

Provided u ∈ W q+2,∞(
0, t;L2(Ω)

)
∩ C1

(
0, T ;Hk(Ω)

)
, we have the estimates:

|Qm [aN (t; η, V )]| ≤ Cατmg2d(N) + βQm

[
|||V |||2

]
,(3.10) ∣∣Qm [(η′, V )] +

(
[[η]]m−1, V

+
m−1

)∣∣ ≤ Cατm(τ2q+2
m + g2L2(N)) + βQm

[
‖V ‖2

]
.(3.11)

If the stabilisation term is not consistent, then the bound

|Qm [sN (t;u, V )]| ≤ Cατmg2s(N) + βQm [sN (t;V, V )](3.12)

holds true.
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Proof. Let us start with (3.10). Here we have with assumption (2.4):∣∣Qm [aN (t; η, V )]
∣∣ = τm

2

∣∣∣∣∣
q∑

i=0

ω̂iaN (tm,i;u(tm,i)− PINu(tm,i), V (tm,i))

∣∣∣∣∣
=

τm
2

∣∣∣∣∣
q∑

i=0

ω̂iaN (tm,i;u(tm,i)− INu(tm,i), V (tm,i))

∣∣∣∣∣
≤ C

τm
2

q∑
i=0

ω̂igd(N) |||V (tm,i)|||

≤ Cατmg2d(N) + βQm

[
|||V |||2

]
,

where Young’s inequality was used with αβ = 1
4 in the last step.

In order to prove (3.11), we use Lemma 3.3 and obtain∣∣Qm [(η′, V )] +
(
[[η]]m−1, V

+
m−1

)∣∣
≤ τm

2

q∑
i=0

ω̂i

∣∣∣((u− P̂ INu)′(tm,i), V (tm,i)
)∣∣∣

≤ τm
2

q∑
i=0

ω̂i‖(u− P̂ u)′(tm,i)‖ ‖V (tm,i)‖

+
τm
2

q∑
i=0

ω̂i‖(P̂ u)′(tm,i)− IN (P̂ u)′(tm,i)‖ ‖V (tm,i)‖

≤ C
τm
2

q∑
i=0

ω̂iτ
q+1
m ‖V (tm,i)‖+ C

τm
2

q∑
i=0

ω̂igL2(N)‖V (tm,i)‖

≤ Cατm(τ2q+2
m + g2L2(N)) + βQm

[
‖V ‖2

]
,

where (3.4b), assumption (2.1), and Young’s inequality were used. Note that

(P̂ u)′(tm,i) can be written as a linear combination of solutions of stationary prob-
lems such that assumption (2.1) can be applied.

Now let us come to the consistency error (3.12). Assuming a nonconsistent
method, we have with assumptions (2.6) and (2.7):

|Qm [sN (t;u, V )]| ≤ Qm [sN (t;u, u)]1/2 Qm [sN (t;V, V )]1/2

≤ αQm [sN (t;u, u)] + βQm [sN (t;V, V )]

≤ Cατmg2s(N) + βQm [sN (t;V, V )] ,

where again αβ = 1
4 was used. �

Recall the definition of |||v|||Q; see (3.5).

Theorem 3.5. Let U ∈ V τ
N and u ∈ W q+2,∞(

0, t;L2(Ω)
)
∩C1

(
0, T ;Hk(Ω)

)
be the

solutions of (3.6) and (1.1), respectively. Then it holds that

‖ξ−M‖2 + γ |||ξ|||2Q +
M∑

m=1

‖[[ξ]]m−1‖2 ≤ CT
(
τ q+1 + gd(N) + gL2(N) + gs(N)

)2
for the discrete error ξ = U − PINu.
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Proof. Let us assume a nonconsistent stabilisation method. Then combining the
error representation (3.8) with Lemma 3.2 and the estimates of Lemma 3.4 leads
to

(3.13)
1

2

(
‖ξ−m‖2 − ‖ξ−m−1‖2 + ‖[[ξ]]m−1‖2

)
+ γQm

[
|||ξ|||2

]
≤ Cατm

(
gd(N) + τ q+1

m + gL2(N) + gs(N)
)2

+ β
(
Qm

[
|||ξ|||2

]
+Qm

[
‖ξ‖2

]
+Qm [sN (t; ξ, ξ)]

)
.

In order to absorb the ξ-contribution on the left-hand side, we set β = γ/(2(1 +
C2

1 + C2)) with C1, C2 from Assumption 1 and get

‖ξ−m‖2 − ‖ξ−m−1‖2 + ‖[[ξ]]m−1‖2 + γQm

[
|||ξ|||2

]
≤ Cτm

(
τ q+1
m + gd(N) + gL2(N) + gs(N)

)2
.

If the stabilisation is consistent, the estimate (3.13) holds true without the sN -term.
We have in this case gs(N) = 0 and obtain the same result.
Summation of (3.13) over m = 1, . . . , k yields

(3.14) ‖ξ−k ‖2 +
k∑

m=1

(
γQm

[
|||ξ|||2

]
+ ‖[[ξ]]m−1‖2

)
≤ ‖ξ−0 ‖2 + C

k∑
m=1

τm
(
τ q+1
m + gd(N) + gL2(N) + gs(N)

)2
.

With ξ−0 = 0, τ q+1
m ≤ τ q+1, and

∑M
m=1 τm = T , the proof is done upon setting

k = M . �

Let us now come to the interpolation error.

Lemma 3.6. We have the bounds

‖(u− INPu)−M‖ ≤ CgL2(N),

‖(u− INPu)(t)‖ ≤ C(τ q+1
m + gL2(N)), t ∈ Im,

|||u− INPu|||2Q ≤ CTg2e(N),

M∑
m=1

‖[[u− INPu]]m−1‖2 ≤ Cτ2q+1

for the interpolation error of u ∈ W q+1,∞(
0, t;L2(Ω)

)
∩ C1

(
0, T ;Hk(Ω)

)
.

Proof. The first estimate is a direct consequence of assumption (2.1). Indeed, we
have

‖(u− INPu)−M‖ = ‖(u− INu)−M‖ ≤ CgL2(N).

The second estimate follows with the triangle inequality and assumption (2.1)

‖(u− INPu)(t)‖ ≤ ‖(u− Pu)(t)‖+ ‖(Pu− INPu)(t)‖ ≤ C(τ q+1 + gL2(N)),

where we have used that (Pu)(t) can be written as a linear combination of stationary
solutions. With assumption (2.2) we have

Qm

[
|||u− INPu|||2

]
=

τm
2

q∑
i=0

ω̂i |||u(tm,i)− Inu(tm,i)|||2 ≤ Cτmg2e(N),

which upon summation over m yields the third estimate.
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Finally, we have for χ = INu− PINu:

−
∫ T

0

(χ, χ′) dt = −
M∑

m=1

∫ tm

tm−1

(χ, χ′) dt = −1

2

M∑
m=1

(‖χ−
m‖2 − ‖χ+

m−1‖2)

=
1

2

M∑
m=1

‖[[χ]]m−1‖2,

where χ−
m = 0, m = 0, . . . ,M , was used several times. Thus, we obtain

M∑
m=1

‖[[u− INPu]]m−1‖2 ≤ 2

M∑
m=1

‖[[u− INu]]m−1‖2 + 2

M∑
m=1

‖[[INu− PINu]]m−1‖2

= 2
M∑

m=1

‖[[INu− PINu]]m−1‖2 = −4

∫ T

0

(χ, χ′) dt

≤ Cτ2q+1,

because u− INu is continuous at tm−1, m = 1, . . . ,M −1, and χ is an interpolation
error in time. �

A direct consequence of Theorem 3.5 and Lemma 3.6 is the following theorem.

Theorem 3.7. Let U ∈ V τ
N be the discrete solution of (3.6) and

u ∈ W q+2,∞(
0, t;L2(Ω)

)
∩ C1

(
0, T ;Hk(Ω)

)
be the solution of (1.1). Then the error u− U can be bounded uniformly in ε by

‖(u− U)(T )‖2 + γ |||u− U |||2Q ≤ CT
(
τ q+1 +G(N)

)2
,

M∑
m=1

‖[[u− U ]]m−1‖2 ≤ CT
(
τ q+1/2 +G(N)

)2

.

Remark 3.8. Note that in the case of supercloseness of the spatial method w.r.t.
IN , the space-time method inherits this property. In these cases the rate gd(N) is
better than the rate ge(N). Examples for such methods can be found in [6,7,9–12,
14,17,20,21,25,34]. Thus, Theorem 3.5 predicts a higher rate of convergence with
respect to the spatial discretisation for the discrete error than Theorem 3.7 for the
actual error. Such a property can be used to improve the numerical solution by
means of a local interpolation into a higher order polynomial space on a macro-mesh
(in space); see, e.g., [8, 27] for more details. The resulting postprocessed numerical
solution is then superconvergent in space.

The result of Theorem 3.7 can be improved. Recall for this the definition of
‖v‖∞; see (3.5).

Theorem 3.9. Let U ∈ V τ
N be the discrete solution of (3.6) and let u ∈ W q+2,∞(

0, t;

L2(Ω)
)
∩ C1

(
0, T ;Hk(Ω)

)
be the solution of (1.1). Then the error u − U can be

bounded uniformly in ε by

‖u− U‖2∞ ≤ CT
(
τ q+1 +G(N)

)2
.

Proof. The proof imitates the one of [30]. Let us define for ξ = U − PINu ∈ V τ
N

the auxiliary function

ϕ|Im := P

(
τm

t− tm−1
ξ

)
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which yields

ϕ(tm,i) =
τm

tm,i − tm−1
ξ(tm,i).

Using [30, Lemma 5] we have

(3.15) Qm [(ξ′, 2ϕ)] + (ξ+m−1, 2ϕ
+
m−1) ≥

1

τm
Qm

[
‖ϕ‖2

]
.

Furthermore, we have

0 ≤ γQm

[
|||ξ|||2

]
= γ

τm
2

q∑
i=0

ω̂i |||ξ(tm,i)|||2

≤ τm
2

q∑
i=0

ω̂iaN
(
tm,i; ξ(tm,i), ξ(tm,i)

)
≤ τm

2

q∑
i=0

ω̂i
2τm

tm,i − tm−1
aN

(
tm,i; ξ(tm,i), ξ(tm,i)

)
=

τm
2

q∑
i=0

ω̂iaN
(
tm,i; ξ(tm,i), 2ϕ(tm,i)

)
= Qm [aN (t; ξ, 2ϕ)] ,

where 2τm/(tm,i − tm−1) ≥ 2 was used. With ξ being a discrete function, we have
the norm equivalence

sup
t∈Im

‖ξ(t)‖2 ≤ K
1

τm
Qm

[
‖ξ‖2

]
≤ K

1

τm
Qm

[
‖ϕ‖2

]
with a constant K > 0 independent of τm.

Now, with (3.15) it holds that

sup
t∈Im

‖ξ(t)‖2 +KγQm

[
|||ξ|||2

]
≤ K

(
1

τm
Qm

[
‖ϕ‖2

]
+Qm [aN (t; ξ, 2ϕ)]

)
≤ K

(
Qm [(ξ′, 2ϕ)] +Qm [aN (t; ξ, 2ϕ)]

+ (ξ−m−1, 2ϕ
+
m−1) +

(
[[ξ]]m−1, 2ϕ

+
m−1

))
.

Using the error equation (3.8) and Lemma 3.4, we continue estimating

sup
t∈Im

‖ξ(t)‖2 +KγQm

[
|||ξ|||2

]
≤ K

(
Qm [(η′, 2ϕ)] +Qm [aN (t; η, 2ϕ)] +

(
[[η]]m−1, 2ϕ

+
m−1

)
+Qm [sN (t;u, 2ϕ)] + (ξ−m−1, 2ϕ

+
m−1)

)
≤ C

(
α1τm

(
τ2q+2
m +G2(N)

)
+ α2‖ξ−m−1‖2

)
+ β1Qm

[
|||2ϕ|||2

]
+ β2‖2ϕ+

m−1‖2,

where Young’s inequality with αiβi =
1
4 , i = 1, 2, was used. With

‖2ϕ+
m−1‖2 ≤ L sup

t∈Im

‖ξ(t)‖2 and Qm

[
|||2ϕ|||2

]
≤ LQm

[
|||ξ|||2

]
,

where L is a constant depending only on the polynomial degree q, we obtain

sup
t∈Im

‖ξ(t)‖2 ≤ C
(
‖ξ−m−1‖2 + τm(τ2q+2

m +G2(N))
)
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by setting β1 = Kγ
L and β2 = 1

2L . Using (3.14), we have

‖ξ−m−1‖2 ≤ C
m∑

k=1

τk
(
τ2q+2
k +G2(N)

)
which results in

‖ξ‖2∞ = sup
t∈[0,T ]

‖ξ(t)‖2 = max
m=1,...,M

sup
t∈Im

‖ξ(t)‖2 ≤ C
M∑

m=1

τm
(
τ2q+2
m +G2(N)

)
.

The proof is completed upon exploiting the error estimate for ‖η‖ = ‖u− INPu‖
of Lemma 3.6. �

4. Applications of the general approach

Let us look at some applications of our general analysis. We will give in each
case:

• the differential equation, the domain Ω, and the space V ;
• the type of mesh used in literature;
• the convergence bound G(N) in the stationary case.

Then with Theorems 3.7 and 3.9 we have

‖u− U‖∞ + γ |||u− U |||Q ≤ C(τ q+1 +G(N)).

The polynomial spaces on Ω will in general be piecewise polynomials of order p.
We denote in this section by ū the solution of the stationary problem{

Lū = f in Ω,

Bū = 0 on ∂Ω.

4.1. Reaction-diffusion problems. Let the problem be given by

∂tu− εΔu+ cu = f in Ω× (0, T ),

u = 0 on ∂Ω× (0, T ),

u(0) = u0 in Ω

on a domain Ω ⊂ R2, where c ≥ c0 > 0 uniformly in Ω× [0, T ]. Thus, the bilinear
form associated with the stationary differential equation is given for fixed t by

a(t;u, v) := ε(∇u,∇v) + (c(t)u, v),

the suitable solution space is V = H1
0 (Ω) and |||v|||2 = ε‖∇v‖2 + c0‖v‖2. The solu-

tion u has along the whole boundary of Ω boundary layers which are of characteristic
type. Therefore, a layer-adapted mesh has to be refined along all boundaries.

Assuming ∂Ω being smooth and ū ∈ Hp+1(Ω), [31] gives convergence results on
standard Shishkin meshes for higher-order elements and the Galerkin method. The
results can easily be extended to S-type meshes and give

G(N) = (h+N−1 max |ψ′|)p,
where ψ is a mesh-characterising function (see [24]), and h the maximal mesh size
orthogonal to the boundary in the layer region. Using standard assumptions on
the solution decomposition, the proof can also be given on the unit square. In [1],
so-called A-meshes are used on the unit square. They are constructed similar to
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S-type meshes with the exception that the transition points use | ln ε| instead of
lnN . Then we have for ū ∈ Hp+1(Ω) the bound

G(N) = N−p(ε1/2| ln ε|p+1/2 +N−1).

Note that in this case G is not independent of ε, but ε-uniformly bounded.

4.2. Convection-diffusion problems. In this subsection we consider the singu-
larly perturbed convection-diffusion problem given on Ω = (0, 1)2 by

∂tu− εΔu− b · ∇u+ cu = f in Ω× (0, T ),

u = 0 on ∂Ω× (0, T ),

u(0) = u0 in Ω,

where c + 1
2div b ≥ c0 > 0 holds uniformly in Ω × [0, T ]. Then the bilinear form

associated with the stationary differential equation is given by

a(t;u, v) := ε(∇u,∇v) + (c(t)u− b(t) · ∇u, v),

the suitable solution space is V = H1
0 (Ω) and |||v|||2 = ε‖∇v‖2+c0‖v‖2 for standard

Galerkin analysis. Depending on the components of b = (b1, b2) the solution has
different layer structures. Assuming b ≥ (β1, β2) > (0, 0), we expect exponential
outflow boundary layers along x = 0 and y = 0. If b = (b1, 0) with b1 > β1 > 0,
then there is still an exponential outflow layer at x = 0, but in addition there are
characteristic layers along y = 0 and y = 1. Furthermore, we have in both cases
corner layers as interaction of the two meeting layers.

In [13,28], the convergence of the standard Galerkin method on Shishkin meshes
for higher order FEM in the stationary case was considered for each case. The error
bound

G(N) = (h+N−1 max |ψ′|)p

for ū ∈ Hp+1(Ω) can be found therein or be obtained with standard techniques.
For convection-diffusion problems many stabilisation methods are known. The

norm |||·||| includes in each case additional terms controlling the error further. The
local projection stabilisation LPS was analysed in [12,13,22,23]. Under restrictions
on the stabilisation parameters, the above bound G(N) is given. Note that LPS is
not consistent, but it fulfills Assumption 4. Other stabilisation methods can also be
included by slight changes. The continuous interior penalty method CIP [2–4,7,32]
can be treated by setting V = H1

0 (Ω) ∩ H2(Ω) because then it is consistent. For
including discontinuous Galerkin methods in space (see, e.g., [25, 32, 33]), we have
to modify the norm to

|||v|||2 = ε
∑

K∈TN

‖∇v‖2K + ‖v‖2 + dG-terms.

Concerning supercloseness for both layer cases, there are results for bilinear
(p = 1) elements [10, 17, 34] with a bound

gd = (h+N−1 max |ψ′|)2

for the standard Galerkin method and ū ∈ H3(Ω). For higher order elements and
exponential layers, we have for the Galerkin method on Shishkin meshes

gd = N−(p+1/4)

for odd polynomial degrees p ≥ 3 and ū ∈ Hp+2(Ω); see [14]. Nevertheless, numer-
ical studies [8] indicate a full order improvement for Galerkin and p ≥ 3.
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4.3. Fourth-order problems. Let us consider the singularly perturbed clamped-
plate problem

∂tu+ ε2Δ2u−Δu+ cu = f in Ω× (0, T ),

∂u

∂n
= u = 0 on ∂Ω× (0, T ),

u(0) = u0 in Ω,

where c ≥ c2 > 0 holds uniformly in Ω× [0, T ]. With V = H2
0 (Ω) and

(D2u,D2v) = (uxx, vxx) + 2(uxy, vxy) + (uyy, vyy),

the bilinear form associated with the stationary problem is given by

a(t;u, v) := ε2(D2u,D2v) + (∇u,∇v) + (c(t)u, v);

see [15]. A conforming finite element method needs C1-elements which are costly.
Thus in [15], a nonconforming method using standard Qp-elements on a Shishkin
mesh and a continuous interior penalty method (CIP) is applied. In the corre-
sponding norm

|||v|||2 = ε2
∑

K∈TN

‖D2v‖2K + ‖∇v‖2 + ‖cv‖2 +CIP-terms,

an error estimate with the bound

(4.1) G(N) = ε1/2(N−1 lnN)p−1 +N−p

for p ≥ 2 and ū ∈ Hp+1(Ω) is given where again G is ε-uniformly bounded.

5. Numerical examples

Let us apply in 2d a standard Galerkin FEM with Qp-elements on a Bakhvalov–
Shishkin mesh with N cells in each dimension for the spatial approximation; see
[24] for a precise definition. The expected convergence rates on such meshes are

‖u− U‖∞ + γ |||u− U |||Q ≤ C(τ q+1 +N−r),

where r depends on the polynomial order p and the considered problem. Further-
more, ε is assumed to be small enough to hold h ≤ CN−1. We use an equidistant
mesh with M intervals in time, thus τ = T/M . Assuming a constant ratio between
N and M , we obtain a balancing of the two error components for

r = q + 1,

which gives a condition on the polynomial degree p. For nonsingularly-perturbed
problems, a superconvergence result at the endpoints of the intervals is known [29,
Ch. 12]. Thus we also check the error in the discrete maximum norm in time

‖u− U‖∞,d ≤ C(τ2q+1 +N−r).

Here a balancing occurs for

r = 2q + 1.

All computations were performed in SOFE, a Matlab-FEM suite initiated by Lars
Ludwig [19]. We look for a solution in t ∈ [0, 2] and set the perturbation parameter
ε to 10−6.
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Table 1. Convergence results for several pairs (p, q) for
Example 1.

p / q N M ‖u− U‖∞ |||u− U |||Q
2 / 1 16 8 3.739e-02 1.88 3.413e-02 1.98

32 16 1.016e-02 1.97 8.682e-03 1.99
64 32 2.600e-03 1.99 2.184e-03 2.00
128 64 6.543e-04 5.473e-04

3 / 2 16 8 3.111e-03 2.97 2.219e-03 2.99
32 16 3.959e-04 3.03 2.793e-04 2.99
64 32 4.854e-05 2.99 3.504e-05 3.00
128 64 6.117e-06 4.389e-06

4 / 3 16 8 1.666e-04 3.89 1.125e-04 3.97
32 16 1.126e-05 3.97 7.189e-06 3.98
64 32 7.176e-07 3.99 4.548e-07 3.99
128 64 4.507e-08 2.861e-08

Table 2. Superconvergence for several pairs (p, q) for Example 1.

p / q N M ‖u− U‖∞ ‖u− U‖∞,d

3 / 1 16 8 3.737e-02 1.88 2.614e-03 2.79
32 16 1.016e-02 1.97 3.774e-04 2.86
64 32 2.600e-03 1.99 5.181e-05 2.94
128 64 6.543e-04 6.741e-06

5 / 2 16 8 3.113e-03 2.98 8.446e-05 4.71
32 16 3.959e-04 3.03 3.231e-06 4.92
64 32 4.854e-05 2.99 1.070e-07 4.97
128 64 6.117e-06 3.425e-09

Example 1: We consider the two-dimensional convection-reaction-diffusion prob-
lem

∂tu− εΔu−
(
(1 + x)(2 + cos(πt))

2 + y + t

)
· ∇u+ u = f

in Ω = (0, 1)2 with u = 0 on ∂Ω and f chosen such that

u =

(
cos(πx/2)− e−x/ε − e−1/ε

1− e−1/ε

)(
(1− y)− e−2y/ε − e−2/ε

1− e−2/ε

)
cos(πt)

is the solution. Here we have

|||v|||2 = ε‖∇v‖2 + ‖v‖2 and r = p.

Tables 1 and 2 give the computed errors together with the computed rates of
convergence for several pairs of polynomial degrees. Clearly we see in Table 1 the
predicted rates p = q + 1 of Theorems 3.7 and 3.9. Furthermore, we observe in
Table 2 for the discrete error in the nodes t−i an improved order of p = 2q + 1,
supporting the assumption on superconvergence in the end-points.
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Figure 1. ‖u − U‖∞ over N and M for q = 2 and p = 3 (upper
surface) and p = 5 (lower surface).

Comparing the L∞-L2 errors of Tables 1 and 2 belonging to the same polynomial
order in time, it is noticeable that they are almost identical. Figure 1 shows these
errors as surfaces over N and M for the temporal polynomial degree q = 2 and
spatial polynomial degrees p = 3 and p = 5. As one can see, the temporal error
dominates the total error behaviour and an improvement of spatial accuracy does
not pay off.

Example 2: We look at the fourth-order problem following [15],

∂tu+ ε2Δ2u−Δu = f

in Ω = (0, 1)2, u = ∂nu = 0 on ∂Ω, where f and u0 are chosen such that

u(x, y, t) =
1

2

(
sin(πx) +

πε

1− e−1/ε

(
e−x/ε + e(x−1)/ε − 1− e−1/ε

))
·
(
2y(1− y2) + ε

(
�d(1− 2y)− 3

s

�
+

(
3

�
− d

)
e−y/ε

+

(
3

�
+ d

)
e(y−1)/ε

))
· (1 + 2t cos(2πt))

with � = 1− e−1/ε, s = 2− � and d = 1/(s− 2ε�) is the solution. Here we have

|||v|||2 = ε2

( ∑
K∈TN

‖D2v‖2K +
∑
e∈E

σe‖[[∂nv]]‖2L2(e)

)
+ ‖∇v‖2,

with the mesh-dependent constants σe as given in [15]. For ε ≤ CN−2 we expect
r = p while for large ε the rate decreases to r = p− 1.

The two error components behave slightly different. We observe for ‖u− U‖∞ a
behaviour comparable to Figure 1 with errors in the range 10−5 to 10−1. Therefore,
we do not present the results here.

Figure 2 shows the error |||u− U |||2Q as surface over N and M . There are three
regions visible. For large N and small M the time error dominates and converges
with an order of approximately 3 = q + 1. For large M and small N the spatial
error dominates and converges with order approximately 3 = p. For large N and
M there is almost a stagnation of the error. This corresponds very well with the
behaviour of the stationary problem and the given error bound G(N) in (4.1). For
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Figure 2. ‖u− U‖Q over N and M for q = 2 and p = 3.

a further refinement in space we expect a convergence of order 2 = p − 1 as here
N−1 is getting small compared with ε1/2 = 10−3.

Example 3: As a final example we come back to the second-order convection-
reaction-diffusion problem

∂tu− εΔu−
(
(1 + x)(2 + cos(πt))

2 + y + t

)
· ∇u+ u = f

in Ω = (0, 1)2 with u = 0 on ∂Ω considered already in Example 1, but this time we
do not force a given solution. Instead we prescribe the initial data u(x, y, 0) = 0
for (x, y) ∈ Ω and the right-hand side

f(x, y, t) = −4(2xy − x− y)(2xy − x− y + 1) sin(t)

which is zero in the corners of the domain and at t = 0. Thus, f fulfills for each fixed
t the first compatibility conditions given in [18] and we can expect the solution u
not to have strong corner singularities. Nevertheless, it is an open question whether
Assumption 5 will be fulfilled for this example.

We chose this example as here it makes sense for the numerical procedure to
change the mesh over time in order to capture the varying width of the boundary
layers. The analysis of the dG-method presented in this article holds also in this
setting. In order to handle different discrete spaces in time, the space V τ

N is replaced
by

{W ∈ L2(0, T ;V ) : W |Im ∈ Pq(Im, V m
N },

where V m
N , m = 1, . . . ,M , may differ in the meshes of the spatial discretisation.

However, if all of these spaces V m
N have similar approximation properties and the

jump contribution from the previous time step is properly implemented, the theo-
retical results still hold.

In our numerical experiment we do not know the exact solution. Therefore, we
use the concept of a numerical reference solution uref to replace the exact solution
u in the computation of errors. In our case, the reference solution has polynomial
degrees p = 3, q = 2 and is computed on a mesh with N = 128 and M = 64.
For the numerical solution we use the polynomial pair p = 2, q = 1 and compute
the solutions on a fixed mesh and a time-adapted mesh, where the numerical layer
width is determined using

βm
1 = inf

t∈Im
inf

(x,y)∈Ω
b1(x, y, t), βm

2 = inf
t∈Im

inf
(x,y)∈Ω

b2(x, y, t)
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Table 3. Comparison of convergence results for Example 3.

N M ‖uref − U‖∞ |||uref − U |||Q
fixed mesh, ε = 10−3

16 8 3.383e-03 1.37 6.149e-03 1.88
32 16 1.307e-03 1.54 1.668e-03 1.95
64 32 4.494e-04 1.81 4.322e-04 1.98
128 64 1.280e-04 1.095e-04

fixed mesh, ε = 10−6

16 8 3.393e-03 1.37 6.156e-03 1.88
32 16 1.309e-03 1.54 1.670e-03 1.95
64 32 4.500e-04 1.81 4.330e-04 1.98
128 64 1.281e-04 1.099e-04

fixed mesh, ε = 10−8

16 8 3.393e-03 1.37 6.156e-03 1.88
32 16 1.309e-03 1.54 1.670e-03 1.95
64 32 4.500e-04 1.81 4.330e-04 1.98
128 64 1.281e-04 1.099e-04

time-adapted mesh, ε = 10−6

16 8 3.396e-03 1.37 4.250e-03 1.90
32 16 1.309e-03 1.54 1.137e-03 1.96
64 32 4.500e-04 1.81 2.932e-04 1.98
128 64 1.281e-04 7.434e-05

instead of

β1 = inf
t∈[0,T ],(x,y)∈Ω

b1(x, y, t), β2 = inf
t∈[0,T ],(x,y)∈Ω

b2(x, y, t).

Table 3 shows the various results obtained. We can observe uniformity in ε
of the numerical results, although Assumption 5 might be violated, by comparing
the first, second and third block of results on the fixed meshes. All show an al-
most identical behaviour and the |||·|||Q-component of the error shows second-order
convergence like in Example 1. But here the other norm-component is slightly
worse, only converging toward second-order. This might be due to f not fulfilling
all compatibility conditions, such that a solution decomposition exists supporting
second-order convergence. Another possibility might lay in the usage of a reference
solution instead of the (not available) exact solution.

Comparing the second and the fourth block of results we see for the same value of
ε = 10−6 the results for the two choices of mesh adaptation. Indeed, the adaptation
of the meshes in time yields a slightly better result, visible in the |||·|||Q-component
of the error that is better by a factor of about 0.75. The second error component
is unchanged by the treatment of meshes. Again this might be due to problems
discussed above.
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