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COMPUTING ANNIHILATORS OF CLASS GROUPS

FROM DERIVATIVES OF L-FUNCTIONS

JONATHAN W. SANDS AND BRETT A. TANGEDAL

Abstract. We computationally verify that certain group ring elements ob-
tained from the first derivatives of abelian L-functions at the origin annihilate
ideal class groups. In our test cases, these ideal class groups are connected
with cyclic extensions of degree 6 over real quadratic fields.

1. Introduction

Let K/F be a finite Galois extension of number fields with abelian Galois group
G = Gal(K/F ). Let S contain the set of places of F that ramify in K, together
with the infinite places of F , and let SK denote the set of places of K that lie
above those in S. Then there is an associated (imprimitive) equivariant L-function
Θ(s) = ΘS

K/F (s) of the complex variable s, with values in the complex group ring

C[G]. When F is totally real, and K is totally complex, then typically Θ(0) �= 0,
and the Brumer-Stark conjecture (see [GRT], [Ta]) posits that multiplying Θ(0)
by any annihilator in Z[G] of the group of roots of unity in K yields a non-trivial
element in the integral group ring Z[G] which annihilates the ideal class group ClK
of K. Stickelberger’s Theorem implies that this conjecture is true for K/Q where
Q is the field of rational numbers, and [Sa1] then shows that it holds for the same
field K and set SK , when F is taken to be an intermediate field between Q and
K. The conjecture holds for G of order 2 by [Ta], for G non-cyclic of order 4 by
[Sa2], and for most cases with G of order 6 by [GRT]. See these works and [GrPo]
for additional results and references.

Extending the Brumer-Stark conjecture, relatively recent results (see [Buc1],
[Buc2], and [Bur]) suggest that when Θ(s) has order of vanishing equal to r at the
origin, one should consider the rth derivative Θ(r)(0), and that when multiplied by
appropriate factors, this can still provide non-trivial elements in the integral group
ring Z[G] which annihilate the SK-ideal class group ClSK of K. These appropriate
factors are composed of “rationalizing factors” involving the Z[G]-module structure
of the group of SK-units US

K in the ring of SK-integers OS
K of K, and “integralizing

factors” involving the Z[G]-module structure of the group of roots of unity μK

in K. An additional idea is that idempotents in the rational group ring Q[G],
when multiplied by the order |G| of the group G, should provide another type of
“integralizing element” that also leads to annihilators of the SK-ideal class group.
Results of these types are obtained for K abelian over Q in [Bur], as a consequence
of the proof in [BG] and [Fl] of the Equivariant Tamagawa Number Conjecture
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for that case. Similarly, [MC] obtains results of this form for arbitrary relative
quadratic extensions K/F , and for certain composites of such extensions.

Our object here is to use PARI/GP [GP] to conduct a computational test of these
predictions in a setting that lies outside the realm of current theoretical results
and can provide further insight into this phenomenon. Specifically, we arrange to
investigate the case when the order of vanishing at the origin is r = 1, F is real
quadratic, and the degree of the extension is [K : F ] = |G| = 6, with K unramified
outside of one finite prime and one infinite prime of F .

2. Annihilation of class groups

The question we wish to investigate computationally uses much of the formal-
ism of the principal Stark conjecture of [Ta], but extends that conjecture from a
rationality statement to an integrality statement and an annihilation statement.
In this sense, it is similar to the Brumer-Stark conjecture. As in that conjecture,
one assumes that the finite Galois extension K/F is abelian, but now rather than
just the value Θ(0), which may be zero, one considers the derivative Θ′(0), or a
higher derivative in order to obtain a non-zero value. See [Ta] for a more detailed
introduction to these conjectures.

2.1. The G-module XS
K. First define Y S

K as usual to be the free abelian group on
the set SK of places of K that lie above those in S, and XS

K to be the subgroup
of Y S

K consisting of those elements whose coefficient sum is 0. In other words, XS
K

is the kernel of the augmentation map from Y S
K to the group of integers Z. Here

the abelian Galois group G acts on the set SK on the left as usual: if σ ∈ G
and | |v is the normalized absolute value associated with the place v, then the
normalized absolute value associated with σ · v is characterized by the property
that |σ(a)|σ·v = |a|v for all a ∈ K. Using this natural action of G, XS

K becomes
a Z[G]-submodule of Y S

K . The module XS
K is closely related to the module US

K of
SK-units of K, namely those elements of K whose valuation is trivial at all places
of K not in SK . Perhaps a more natural description of US

K is as the multiplicative
group of units of the ring OS

K of elements of K whose valuation is non-negative at
each prime not corresponding to a place in SK . The torsion subgroup of US

K is the
group of roots of unity μK in K.

2.2. Regulators. If R is a ring containing Z, then a Z[G]-module M gives rise by
extension of scalars to an R[G]-module RM = R⊗ZM = R[G]⊗Z[G] M . Letting Q
denote the field of rational numbers and R denote the field of real numbers, Stark’s
principal conjecture calls for the choice of a Q[G]-module isomorphism between
QUS

K and QXS
K . According to Herbrand’s theorem in representation theory, such

an isomorphism is known to exist since there is a logarithmic map λ = λK that
gives an isomorphism RUS

K → RXS
K . To be specific, λ is the R-linear extension of

the map that sends u ∈ US
K to

∑
v∈SK

log(|u|v) · v. In order to pose an integrality

question, we note that a Q[G]-module isomorphism from QUS
K to QXS

K induces
a Z[G]-module homomorphism from the finitely generated Z[G]-module US

K to a
finitely generated Z[G]-submodule of QXS

K . Hence some non-zero integer multiple
of this homomorphism gives a Z[G]-module homomorphism

f : US
K → XS

K ,
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where the free Z-module XS
K may be viewed as a subset of QXS

K . Since f maps
a Q-basis of QUS

K to a Q-basis of QXS
K , its kernel is finite and its image is of

finite index. Note that the same reasoning can be applied to obtain an injective
homomorphism from XS

K to US
K/μK , since XS

K has no finite subgroups.
The annihilation question that we test calls for the choice of such an f : a Z[G]-

module homomorphism from US
K to XS

K with finite kernel and cokernel. Extending
scalars from Z to R gives an R[G]-module isomorphism fR : RUS

K → RXS
K , and

hence one gets an R[G]-module automorphism fR ◦ λ−1 : RXS
K → RXS

K . Since
R[G] is a semisimple Artinian ring, and hence RXS

K is a projective module, the
R[G]-determinant

R(f) = det
R[G]

(fR ◦ λ−1) ∈ R[G]

is defined. This can be accomplished by extending fR ◦ λ−1 by the identity on a
free complement of RXS

K and taking the determinant of the extended map, which
is an endomorphism of a free R[G]-module. For the purposes of computation, one
can take the determinant character by character, as follows. This approach requires
extending fR and λ C-linearly to obtain maps fC and λC. This extension of scalars
does not change the determinant, of course. For each ψ in the character group

Ĝ of the abelian group G, let eψ := 1
|G|

∑
σ∈G ψ(σ)σ−1 ∈ C[G] be the associated

idempotent. Then

C[G] ∼=
⊕
ψ∈ ̂G

Ceψ,

so

R(f) = R(f)
∑
ψ∈ ̂G

eψ =
∑
ψ∈ ̂G

R(f)eψ =
∑
ψ∈ ̂G

det
C[G]

(fC ◦ λ−1
C

)eψ

=
∑
ψ∈ ̂G

det
Ceψ

(fC ◦ λ−1
C

|eψCXS
K
).

Since C[G]eψ = Ceψ ∼= C is a field, evaluating this last sum involves only linear

algebra. For each ψ, we set R(f, ψ) = detCeψ (fC ◦ λ−1
C

|eψCXS
K
), so that

R(f, ψ) = R(f)eψ

and
R(f) =

∑
ψ∈ ̂G

R(f, ψ) =
∑
ψ∈ ̂G

R(f)eψ .

2.3. Equivariant L-values. Similarly, the values of the imprimitive equivariant
L-function ΘS

K/F (s) lie in C[G] and can thus be decomposed character by character.

For a prime ideal q of the ring of integers OF of F not corresponding to a place in
S, we denote the associated Frobenius automorphism in G by σq, and the absolute
norm by Nq. Then

ΘS
K/F (s) =

∏
q/∈S

(1−Nq
−sσ−1

q )−1.

The product converges for �(s) > 1 to an analytic function with values in C[G]
in the sense that each component function is analytic. For a character ψ (always
assumed irreducible) of G, the S-imprimitive L-function is

LS
K/F (s, ψ) =

∏
q/∈S

(1− ψ(σq)Nq
−s)−1.
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The function LS
K/F (s, ψ) has a meromorphic continuation to the whole complex

plane and indeed can only have a pole when s = 1 and ψ is the trivial character
ψ0, in which case there is a simple pole. At s = 0, LS

K/F (s, ψ) has a zero of order

(2.1) rS(ψ) = dimC(eψCX
S
K)

= |{v ∈ S : v splits completely in the fixed field of the kernel of ψ}| − δψ,

with δψ0
= 1, and δψ = 0 otherwise. So if S contains a finite place and we let r be

the number of (infinite) places of S that split completely in K/F , then rS(ψ) ≥ r
for all characters ψ of G.

Now
ΘS

K/F (s) =
∑
ψ∈ ̂G

LS
K/F (s, ψ

−1)eψ

and one considers

Θ
S,(r)
K/F (0) = lim

s→0

ΘS
K/F (s)

sr
= lim

s→0

∑
ψ∈ ̂G

LS
K/F (s, ψ

−1)

sr
eψ =

∑
ψ∈ ̂G

L
S,(r)
K/F (0, ψ

−1)eψ .

Under our assumption that the Galois group G of K/F is abelian, the principal
Stark conjecture for the set S and all characters ψ of G for which rS(ψ) = r is
equivalent to the statement that

Φ(f) = Φ
S,(r)
K/F (f) = Θ

S,(r)
K/F (0)R(f) ∈ Q[G]

for any choice of f as in subsection 2.2. In other words, R(f) is conjectured to

be a rationalizing factor for Θ
S,(r)
K/F (0), and we define Φ(f) to be the product. The

rationality of Φ(f) in turn is equivalent to the statement that

Φ(f)
∑
ψ

eψ =
∑
ψ

Θ
S,(r)
K/F (0)R(f)eψ =

∑
ψ

L
S,(r)
K/F (0, ψ

−1)R(f, ψ)

lies in Q[G] when summed over all algebraic conjugates ψ of any single character
ψ1 for which rS(ψ1) = r. We refer to this as a sum over a conjugacy class of
characters. The condition that Φ(f)

∑
ψ eψ lies in Q[G] for any such sum is what

we actually verify computationally. We now proceed from the question of rationality
to questions of integrality and annihilation of ideal class groups.

Question 2.1. Assume the principal Stark conjecture for the abelian extension
K/F , the set S, and all characters ψ with rS(ψ) = r. For each ν ∈ AnnZ[G](μK),

does νΦ
S,(r)
K/F (f) lie in Z[G] and annihilate ClK?

Remark 2.2.
1. Question 1.1 of David Burns in [MC] asks this for all choices of f , with ClSK in
place of ClK and allows for larger choices of S as well. Macias Castillo gives evi-
dence for a positive answer to Burns’s question based on the Equivariant Tamagawa
Number Conjecture (ETNC). Indeed, Theorem 1.2 of [MC] shows that the ETNC
for K/F would imply a positive answer to the p-part of Burns’s question for primes
p at which the p-part of μK is G-cohomologically trivial. For our computations, we
choose extensions K/F for which the ETNC is not yet proved, and thus our results
may be seen as additional support for the ETNC. Since |G| = 6 and |μK | = 2 in our
examples, μK is G-cohomologically trivial at all primes p except p = 2. However,
the prime p = 2 does not create any exceptions in our computational results.
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2. One may ask further how closely the Z[G]-Fitting ideal of ClSK or of ClK is

approximated by the ideal in Z[G] generated by the elements νΦ
S,(r)
K/F (f) as ν ranges

over AnnZ[G](μK) and f ranges over HomZ[G](U
S
K , XS

K). We will comment on this
in the course of discussing our computations.

Results of Burns and Buckingham in [Bur], [Buc1], and [Buc2] relate to the
following question. Here, rather than consider all characters ψ for which rS(ψ) = r,
one considers a subset consisting of all algebraic conjugates of a single character.

Question 2.3. Assume the principal Stark conjecture for the abelian extension
K/F , the set S, and all algebraic conjugates of a fixed character ψ1 with rS(ψ1) = r.
Define the idempotent e =

∑
ψ eψ, where the sum is over all algebraic conjugates ψ

of ψ1, so that e ∈ Q[G]. Then does Φ
S,(r)
K/F (f)|G|re lie in Z[G] and annihilate ClK?

All of our computations produce a positive answer to Question 2.1. With our
choices of r = 1, |G| = 6 and |μK | = 2, this positive answer also implies a positive
answer to Question 2.3. Indeed |G|e ∈ AnnZ[G](μK) for each possible e in Question
2.3. So one may use ν = |G|e in Question 2.1 to deduce an affirmative answer to
Question 2.3.

Theorem 2.4. Let p = 7 (respectively, p = 19). Let F be one of the 11 (re-
spectively, 15) real quadratic fields of discriminant dF < 2000 with the following
properties:
i) The prime p splits in F .
ii) There is an abelian extension K of F of relative degree 6 which is ramified only

at one infinite prime p
(2)
∞ of F and one prime p above p in F.

iii) The class number hK of K is strictly larger than 1.

For each such F and K, put S = {p, p(1)∞ , p
(2)
∞ } and G = Gal(K/F ) = 〈σ〉. The

Z[G]-module homomorphism f : US
K → XS

K that we construct via (3.1) has an
associated integer invariant N = N(f) given in Table 1 (respectively, Table 2) such
that NXS

K ⊆ f(US
K).

Then:
1) The principal Stark conjecture holds numerically for K/F and for each of the
three characters ψ of G with rS(ψ) = 1.

2) The element 2Φ
S,(1)
K/F (f) in R[G] is numerically indistinguishable from an element

of Z[G](1−σ3) to an accuracy of at least 10−30. The refined abelian Stark conjecture

for K/F then implies that 2Φ
S,(1)
K/F (f) ∈ Z[G](1− σ3).

3) Assuming 2Φ
S,(1)
K/F (f) ∈ Z[G], Question 2.1 has an affirmative answer for each

ν ∈ AnnZ[G](μK). Thus,

AnnZ[G](μK)Φ
S,(1)
K/F (f) ⊆ AnnZ[G](ClK) ∩ (1− σ3),

and furthermore,

(2N)(AnnZ[G](ClK) ∩ (1− σ3)) ⊆ AnnZ[G](μK)Φ
S,(1)
K/F (f).

Proof. The proof is computational and the example given in subsection 4.1 shows
in detail all of the steps required to give a full confirmation in each case. �

See the tables in subsection 4.2 for more explicit results. For instance, the factor
2N can often be replaced by N . There were 18 total examples computed with
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respect to the prime p = 7 and 22 total examples computed with respect to the
prime p = 19.

3. Investigating the questions

3.1. Choosing the field extensions K/F . As a class of examples that can pro-
vide some new insight while keeping computations feasible, we seek to take K to
be an abelian extension of relative degree 6 over a real quadratic field F and take
r = 1. Since much has already been proved for K abelian over Q, we want K to be
non-abelian over Q. To simplify the S-unit computations, we wish to have a single
finite prime in SK , hence only one finite prime may ramify in K/F , and it must not
split at all. In order to be able to generate such an extension, we would like to use
the rank one abelian Stark conjecture (see [ST], whose notation and conventions we
follow) with one infinite prime of F splitting completely in K. These considerations
lead us to proceed as follows.

To a given real quadratic field F of discriminant dF we associate a canonically
defined polynomial f [dF ] as follows:

f [dF ] =

{
x2 − dF /4 if dF ≡ 0 mod (4),
x2 − x− (dF − 1)/4 if dF ≡ 1 mod (4).

If θ ∈ Q is a root of f [dF ], then F = Q(θ) and [1, θ] is an integral basis for the ring
of integers OF . A given f [dF ] always has one positive real root, denoted by θ(1),
and one negative real root, denoted by θ(2). This convention allows us to fix the
two real embeddings of F into R as follows:

e1 : F ↪→ R is defined by the map a+ bθ �→ a+ bθ(1), (a, b ∈ Q),
e2 : F ↪→ R is defined by the map a+ bθ �→ a+ bθ(2).

The two infinite primes corresponding to the two real embeddings of F are denoted

by p
(1)
∞ and p

(2)
∞ , respectively. Let p be a small rational prime congruent to 1 modulo

6 which splits into a product of two distinct prime ideals p and p′ in OF . We want
K to be an abelian extension of F of relative degree 6 which is ramified at p and

at the infinite prime p
(2)
∞ , and at no other primes. The set S is then chosen to be

S = {p, p(1)∞ , p
(2)
∞ }.

To construct an extension field K of this type, we first compute the ray class

group H(m̃) of F modulo the generalized modulus m̃ = pp
(2)
∞ , which we assume

from now on to be of order divisible by 6 since an appropriate example of K does

not exist otherwise. Let Ĥ(m̃) denote the set of all ray class characters modulo

m̃, i.e., the set of all homomorphisms from H(m̃) to C×. An element χ ∈ Ĥ(m̃) is
defined on classes of ideals in F but it is useful to think of χ as defined on individual
ideals relatively prime to p as well. An appropriate example of K will only exist if

there is a character χ ∈ Ĥ(m̃) having the following properties:

(i) χ is of order 6,
(ii) the conductor f(χ) of χ is precisely equal to m̃.

We note that the infinite prime p
(2)
∞ appears in the conductor f(χ) if and only if

χ((β)) �= 1, where the principal ideal (β) is generated by any algebraic integer
β ∈ OF satisfying the following three conditions: β ≡ 1 (mod p), β(1) > 0, and
β(2) < 0 (it is easy to show that such an integer β always exists). If χ has properties
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(i) and (ii), then the corresponding abelian L-function

Lm̃(s, χ) =
∑ χ(a)

Nas
,

with the sum running over all integral ideals a ⊆ OF relatively prime to p, vanishes
to precisely first order at s = 0 upon analytic continuation (see [ST], pp. 254–
255). The L-functions Lm̃(s, χ

3) and Lm̃(s, χ
−1) also have first order zeros at s = 0

and f(χ3) = f(χ−1) = m̃ as well. On the other hand, the L-functions Lm̃(s, χ
0),

Lm̃(s, χ
2), and Lm̃(s, χ

4) all have at least second order zeros at s = 0 (actually,
Lm̃(s, χ

0) vanishes to precisely second order at s = 0 since |S| = 3). By class field
theory, there exists a Galois extension field K of F such that G = Gal(K/F ) is
cyclic of order 6 and a prime ideal q ⊂ OF with q �= p splits completely in K if
and only if χ(q) = 1. This characterization of the primes splitting completely in a
Galois extension K of F defines K uniquely by a theorem of Bauer (see [Ja], Cor.
5.5 on p. 136) and for this reason we refer to K as “the class field corresponding
to χ”. Note, however, that no explicit construction of K is provided by class field
theory. The remarkable feature of Stark’s rank one abelian conjecture is that a fast
and efficient algorithm is made available for the explicit generation of K over F
using only the values of the non-zero first derivatives L′

m̃
(0, χj), j = 1, 3, 5. By the

conductor-discriminant formula (see [Ha]), the relative discriminant d(K/F ) will
be equal to p5 if p appears in the conductor f(χ2), and will be p3 otherwise. In the
former case, the ramification index ep of p is 6 and so only one prime ideal P ⊂ OK

lies over p, as desired. In the latter case, the ray class character χ2 has trivial
conductor and so its primitive version (χ2)pr takes on a non-zero value on the ideal
p. If (χ2)pr(p) �= 1, then ep = 2, the inertial degree fp is 3, and again only one prime
P lies over p (in none of our examples did we have (χ2)pr(p) = 1 which implies
that in all of our examples both Lm̃(s, χ

2) and Lm̃(s, χ
4) vanish to precisely second

order at s = 0). The infinite prime p
(1)
∞ will split completely in the extension K/F

(this simply means that every embedding of K into C extending the embedding

e1 : F ↪→ R defined above is a real embedding), and p
(2)
∞ ramifies. The algorithm

used for obtaining the minimal polynomial fε(x) ∈ OF [x] of the conjectured Stark
unit ε ∈ UK is described in detail on pages 258–259 of [ST]. According to Stark’s
conjecture (see Theorem 1 on p. 66 of [Sta]), the fieldK described above is obtained
by adjoining a root ρ of fε(x) to F . Even if the polynomial fε(x) is secured via
an unproven conjecture, an independent verification can be made that F (ρ) is in
fact equal to the field K uniquely described as above by class field theory (see
subsection 4.1 for further details on how this independent verification is actually
carried out in practice). Note that K will not be a Galois extension of Q since half
of its embeddings into C will be real and the other half non-real.

The match-up between the abelian L-functions Lm̃(s, χ
j), 0 ≤ j ≤ 5, and the

L-functions LS
K/F (s, ψ) for ψ ∈ Ĝ, introduced in subsection 2.3, is made via the

Artin map. From the generating ray class character χ possessing properties (i) and
(ii) above, we find a first degree prime ideal q ⊂ OF such that χ(q) = e2πi/6. The
corresponding Frobenius automorphism σq ∈ G is a generator for G and we can

identify χ as an element of Ĝ by setting χ(σq) = e2πi/6. With this identification,
Lm̃(s, χ

j) = LS
K/F (s, χ

j) for 0 ≤ j ≤ 5. We will be investigating Question 2.1 when

r = 1 and the characters ψ ∈ Ĝ with rS(ψ) = 1 are ψ ∈ {χ, χ3, χ5}.
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3.2. Choosing the homomorphism f . Assume an abelian extension K/F of
relative degree six has been singled out as in subsection 3.1. Since the extension
K/F is cyclic of degree 6, there is an intermediate field K+ of degree 3 over F ,

and p
(2)
∞ necessarily splits completely in this extension of odd degree so that K+ is

a totally real field. Let H = Gal(K/K+), of order 2. The set SK of primes in K

above those in S consists of six real primes which are conjugates of a prime P
(1)
∞

above p
(1)
∞ , three complex primes which are conjugates of a prime P

(2)
∞ above p

(2)
∞ ,

and one finite prime P above p. Then Y S
K is the free abelian group on these 10

generators, and XS
K is the subgroup of elements whose coefficient sum is zero. Since

P, being the unique prime above p in K, is necessarily stable under G = Gal(K/F ),

while P
(2)
∞ is stable under H, one finds that

XS
K = Z[G] · (P(1)

∞ −P)⊕ Z[G] · (P(2)
∞ −P) ∼= Z[G]⊕ Z[G/H].

We will find it useful to identify XS
K with Z[G]⊕ Z[G/H] via this isomorphism of

Z[G]-modules.
Next we consider the Z[G] module US

K of SK-units of K. Since K has real
embeddings, the group of roots of unity in K is just μK = ±1. Thus US

K/{±1} must
contain a submodule of finite index isomorphic to XS

K , and hence to the module
Z[G] ⊕ Z[G/H] which we are identifying with XS

K . Our goal is to specify a Z[G]-
module homomorphism f : US

K → XS
K with finite kernel, but we will do so by first

choosing a monomorphism between Z[G]⊕Z[G/H] and a submodule of US
K/{±1}.

Since US
K/{±1} contains a module isomorphic to Z[G], we can select an element

u ∈ US
K whose six G-conjugates are independent over Z. We test elements of a set

of generators for US
K (i.e. fundamental S-units) until we find such a u. Likewise,

US
K/{±1} contains a module isomorphic to Z[G/H] which is complementary to the

one generated by u. It is necessarily generated by an element v of US
K/{±1} that

is fixed by H. Equivalently, v is represented by an element v ∈ US
K whose square is

fixed by H and hence lies in K+. We consider elements of a set of generators for US
K

until we find such a v whose three G-conjugates are Z-independent and together
with the conjugates of u generate a free abelian group of rank 9. Then we define

g : Z[G]⊕ Z[G/H] → US
K/{±1}

by

g(γ, ρ) = uγvρ.

By our choices of u and v, g is injective and its image is a free Z-module of rank 9,
hence is of finite index. We set N equal to the exponent of the finite abelian group
(US

K/{±1})/ im(g). In other words, N is the index of the subgroup generated by
−1 and the conjugates of u and v in US

K . Then we can choose f to be the composite
of the Z[G]-module maps

(3.1) US
K

N−→ (US
K)N � (US

K/{±1})N ↪→ im(g)
g−1

−−→ Z[G] ⊕ Z[G/H] ∼= XS
K .

3.3. Computing the regulator R(f). With f defined as above, we set

T = λ ◦ f−1
R

so that

R(f) = det
R[G]

(fR ◦ λ−1) = det
R[G]

(T−1) = det
R[G]

(T )−1.
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It then suffices to compute

det
R[G]

(T ) = det
R[G]

(λ ◦ f−1
R

) = det
R[G]

(
1

N
λ ◦ gR).

Here we are identifying RXS
K with R[G]⊕R[G/H]. Then (1, 0̄) and (0, 1̄) generate

this R[G]-module and it suffices to determine T (1, 0̄) and T (0, 1̄). Now

(3.2) T (1, 0̄) = λ(f−1
R

(1, 0̄)) = λ(g(1, 0̄)1/N ) =
1

N
λ(u) =

1

N

∑
v∈SK

log(|u|v) · v

=
1

N

[ ∑
τ∈G

log(|uτ−1 |
P

(1)
∞
) τ ·P(1)

∞ +
∑

τ∈G/H

log(|uτ−1 |
P

(2)
∞
) τ ·P(2)

∞ + log |u|PP

]
= α · (P(1)

∞ −P) + β̄ · (P(2)
∞ −P)

in RXS
K , with (α, β̄) ∈ R[G] ⊕ R[G/H]. Hence under our identification of RXS

K

with R[G]⊕ R[G/H], we have

T (1, 0̄) = (α, β̄)

and the coefficients of α ∈ R[G] and β̄ ∈ R[G/H] may be read off from the coeffi-

cients 1
N log(|uτ−1 |

P
(1)
∞
) and 1

N log(|uτ−1 |
P

(2)
∞
), respectively. Similarly,

T (0, 1̄) = (α′, β̄′).

In this case, 1̄ ∈ R[G/H] is necessarily H-invariant, hence so are α′ and β̄′.

A generating character χ of Ĝ was nailed down at the end of subsection 3.1 and
with it a generating automorphism σ = σq for G such that χ(σ) = e2πi/6. We also

saw there that the characters ψ ∈ Ĝ with rS(ψ) = 1 are precisely ψ ∈ {χ, χ3, χ5}.
We refer to these three characters as the odd characters and the remaining three as
the even characters. So the odd characters are non-trivial on H = Gal(K/K+), and
the even characters are trivial on H. Let ψ be an odd character. Then rS(ψ) = 1
is equal to the dimension over C of eψCXS

K
∼= eψ(C[G] ⊕ C[G/H]) and indeed we

see that eψC[G] = Ceψ and eψC[G/H] = 0. Extend ψ by C-linearity to a C-valued
function on C[G]. From T (1, 0̄) = (α, β̄), we see that the restriction Tψ of T to the ψ-
component is determined on this 1-dimensional C-space by T (eψ, 0) = (eψ(α), 0) =
(ψ(α)eψ, 0). Hence for each odd character ψ, we have det(Tψ) = ψ(α)eψ and

R(f, ψ) = R(f)eψ = det(Tψ)
−1eψ = (1/ψ(α))eψ.

Finally, with r = 1, we have

(3.3) Φ(f) = Θ
S,(1)
K/F (0)R(f) = Θ

S,(1)
K/F (0)R(f)

∑
ψ∈ ̂G

eψ =
∑
ψ∈ ̂G

Θ
S,(1)
K/F (0)R(f)eψ

=
∑
ψ∈ ̂G

L
S,(1)
K/F (0, ψ

−1)R(f)eψ =
∑
ψ odd

L
S,(1)
K/F (0, ψ

−1)

ψ(α)
eψ .

The idempotents for r = 1 in Question 2.3, are e1 = eχ + eχ−1 and e3 = eχ3 .
The first is the sum of the idempotents for the two conjugates of χ, and the second
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is the idempotent for the only conjugate of χ3. We have

(3.4) Φ(f)e1 =
L
S,(1)
K/F (0, χ

−1)

χ(α)
eχ +

L
S,(1)
K/F (0, χ)

χ−1(α)
eχ−1

=
5∑

j=0

2�
(
L
S,(1)
K/F (0, χ)

χ−1(α)
χ(σ)j

)
1

6
σj =

1

6

5∑
j=0

2�
(
L
S,(1)
K/F (0, χ)

χ−1(α)
e2πij/6

)
σj ,

and since χ3(σ) = −1,

(3.5) Φ(f)e3 =
L
S,(1)
K/F (0, χ

3)

χ3(α)
eχ3 =

1

6

L
S,(1)
K/F (0, χ

3)

χ3(α)

5∑
j=0

(−1)jσj .

Finally, since L
S,(1)
K/F (0, ψ) = 0 for ψ even,

(3.6) Φ(f) = Φ(f)e1 +Φ(f)e3.

These formulas, (3.4) through (3.6), are what we use to compute Φ(f).

4. A detailed example and some tabular data

4.1. Example. In this section we present a detailed example that illustrates the
main points we encountered in our computations. We make full use of the nota-
tion introduced in the earlier sections of this paper without further comment. All
computations were carried out using the PARI/GP [GP] software package.

Let dF = 253 and let θ ∈ Q be a root of f [253] = x2 − x − 63. Our basefield
is the real quadratic field F = Q(θ). The prime 19 splits into a product of two
distinct prime ideals in OF . Let p denote the prime ideal in OF lying over 19 that
has Hermite normal form equal to [19, 16; 0, 1] with respect to the ordered integral

basis [1, θ] of OF . The ray class group H(m̃) of F modulo m̃ = pp
(2)
∞ is a cyclic group

of order 6 and the field K is the corresponding ray class field. For our generating

character χ ∈ Ĝ (a preliminary check is made using PARI that f(χ) = m̃), we have

L
S,(1)
K/F (0, χ) = 7.9515677980422774160151 . . .− i 18.153418744976319567593 . . .

and
L
S,(1)
K/F (0, χ

3) = 13.635741502568012881693 . . . .

The relative discriminant d(K/F ) is equal to p5 since p appears in the conductor of
the character χ2. The unique polynomial singled out by the algorithm based upon
Stark’s conjecture and satisfied by the Stark units in UK is

fε(x)= x6 − (122389 + 16421 θ)x5 + (2739273249 + 367540329 θ)x4

−(11234100459463 + 1507328628111 θ)x3 + (2739273249 + 367540329 θ)x2

−(122389 + 16421 θ)x+ 1.

For a given root ρ of fε(x), we still need to check that F (ρ) = K. The relative

number field extension commands in PARI allow us to verify that p
(1)
∞ splits com-

pletely in the extension F (ρ)/F and that p
(2)
∞ ramifies in this relative extension.

We also verify that the relative discriminant d(F (ρ)/F ) is precisely equal to p5.
Using the PARI command nfgaloisconj, we also find that F (ρ)/F is a relative
Galois extension with abelian Galois group, which confirms that K = F (ρ) (the
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possibility that the conductor of the extension F (ρ)/F is p2p
(2)
∞ is ruled out by the

fact that the ray class group of F modulo p2p
(2)
∞ is also a cyclic group of order 6).

The unique prime ideal P ⊂ OK lying over p is a principal ideal and so ClK and
ClSK are identical; in this case, they are both cyclic groups of order 13.

A defining polynomial for K with relatively small coefficients is found to be

pK(x) = x12 − 23x10 − 43x8 + 2316x6 + 3458x4 − 22401x2 − 13851.

So we may assume K = Q[x]/(pK(x)). We let η represent the root x of pK(x) in
K. Since pK(x) is an even polynomial, the unique automorphism of K of order two
sends η to −η.

The action of Gal(K/F ) on ClK naturally corresponds to a homomorphism from
Gal(K/F ) to Aut(ClK) that we determine precisely. A first degree prime ideal
q ⊂ OF such that χ(q) = e2πi/6 (see the last part of subsection 3.1) lies over the
prime 31 and has Hermite normal form equal to [31, 18; 0, 1] with respect to the
ordered integral basis [1, θ] of OF . The corresponding Frobenius automorphism
σ = σq generating Gal(K/F ) is given by

(4.1) σ(η) = − 1855730

9134914851
η11 +

43229776

9134914851
η9 +

53424980

9134914851
η7

− 449616606

1014990539
η5 − 4975444921

9134914851
η3 +

7433128427

3044971617
η.

We compute that σ3(η) = −η, in accord with the theory. Applying σ to an ideal
representing a generator of ClK reveals that σ acts on ClK as the automorphism
which raises each ideal class to the 4th power. So σ corresponds to 4 in the iden-
tification of Aut(ClK) ∼= Aut(Z/13Z) with (Z/13Z)×, which is cyclic of order 12.
Note that 4 has order 6 in (Z/13Z)×. Since σ is a generator of Gal(K/F ) of order
6, we see that Gal(K/F ) injects into Aut(ClK) in this example.

Next, we obtain a set of fundamental SK-units for K (we will just say S-units
from now on). We test each S-unit in this set until we find one whose 6 conjugates
over F are independent. Such an S-unit u is guaranteed to exist by the theory we
have described, but in general, we may need to use combinations of the fundamental
S-units to get one. In this case, as in several others, we are able to use the last of
eight fundamental units provided by PARI, namely

(4.2) u =
42367153

164428467318
η11 − 4172215

9134914851
η10 − 383767237

82214233659
η9 +

59256560

9134914851
η8

− 2062927913

82214233659
η7 +

494687602

9134914851
η6 +

11908104422

27404744553
η5 − 1540043035

3044971617
η4

+
283941384893

164428467318
η3 − 25919729621

9134914851
η2 − 1668724147

9134914851
η − 3986411931

2029981078
.

Since H = 〈σ3〉, we obtain a suitable v ∈ US
K by considering combinations of

fundamental S-units until we find one whose square is fixed by σ3, and whose 3
independent Galois conjugates, along with the 6 Galois conjugates of u, provide 9
independent S-units of K. In this case, we find that

(4.3) v =
1687522

82214233659
η11 − 49704455

82214233659
η9 +

366962453

82214233659
η7 +

350070643

27404744553
η5

− 24198750739

82214233659
η3 − 1270777661

9134914851
η
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is a generator of P that satisfies these conditions. Indeed, since v is an odd poly-
nomial in η and σ3(η) = −η, one clearly sees that σ3(v) = −v.

The 9 independent S-units, together with −1 now generate a subgroup of finite
index in US

K . We determine the exponent N of the corresponding quotient group by
using the Smith normal form of the matrix whose kth column gives the exponents
needed to express the kth independent S-unit as ±1 times a product of powers of
fixed fundamental S-units. This is a diagonal matrix whose diagonal entries are
the invariant factors of the quotient group in question, and the largest of these
is the value N . In general, we try different choices of u and v to minimize N ,
or to obtain two values of N whose greatest common divisor is minimal. In this
particular example, as is often the case, we find that we can take u to be one of
the fundamental units, and v can be a generator for the unique ramified (principal)
prime ideal P of K over F . With these choices we happily obtain N = 1 in this
example, so that our 9 independent S-units are actually fundamental S-units and

US
K/{±1} ∼= Z[G]⊕ Z[G/H]

in this case.
Having established u and N , we fix an embedding corresponding to the infinite

prime P
(1)
∞ by sending η �→ −4.181547496284723285851807... . Recall that α was

defined in equation (3.2) as α = 1
N

∑
τ∈G log(|uτ−1 |

P
(1)
∞
) τ . We find in the present

example that

(4.4)
α = 4.731085453563581445985493478 . . .− σ · 1.6056628346177633858278031 . . .
+ σ2 · 2.60114402583156061784042498 . . .− σ3 · 1.22271862156683774631477 . . .

+σ4 ·3.25007575583982696813743934 . . .−σ5 ·0.2250548111484427175877855 . . . .

Using χ(σ) = e2πi/6, this gives us

χ(α) = 2.112835361411622347603536985 . . .−i 1.757632984501997366967240261 . . .

and
χ3(α) = 13.63574150256801288169371665 . . . .

Hence,

L
S,(1)
K/F (0, χ

3)

χ3(α)
=

13.6357415025680128816937166 . . .

13.6357415025680128816937166 . . .
= 1.00000000000000000000 . . . ,

and

(4.5)
L
S,(1)
K/F (0, χ)

χ−1(α)

=
7.9515677980422774160151 . . .− i 18.153418744976319567593 . . .

2.112835361411622347603536985 . . .+ i 1.757632984501997366967240261 . . .
= −1.99999999999999999999999999 . . .− i 6.92820323027550917419785366 . . . ,

and

(4.6) χ(σ)
L
S,(1)
K/F (0, χ)

χ−1(α)

= 5.00000000000000000000000000 . . .− i 5.196152422706631880582339023 . . . ,
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and

(4.7) χ2(σ)
L
S,(1)
K/F (0, χ)

χ−1(α)

= 6.999999999999999999999999999 . . .+ i 1.732050807568877293527446342 . . . .

Thus from equations (3.4) and (3.5), we see that, up to the accuracy of our
computations (at least 30 decimal digits),

Φ(f)e1 =
1

6
(1− σ3)(−4 + 10σ + 14σ2)

and

Φ(f)e3 =
1

6
(1− σ3)(1− σ + σ2)

so that, by equation (3.6),

Φ(f) = Φ(f)(e1 + e3) =
1

6
(1− σ3)(−3 + 9σ + 15σ2) =

1

2
(1− σ3)(−1 + 3σ + 5σ2).

The rank one abelian Stark conjecture implies that these equalities must indeed
hold exactly (see [ST]).

Now consider Question 2.1. The choices ν = 2 and ν = 1 + σ generate

AnnZ[G](μK) = AnnZ[G](±1).

First, both 2Φ(f) = (1−σ3)(−1+3σ+5σ2) and (1+σ)Φ(f) = (1−σ3)(−3+σ+4σ2)
lie in Z[G]. Second, since σ acts as 4, they act as (1 − 43)(−1 + 3(4) + 5(4)2) =
(−63)(91) and (1 − 43)(−3 + 4 + 4(42)) = (−63)(65), respectively. As both are
multiples of 13 = |ClK |, they annihilate ClK and the question has an affirmative
answer for all choices of ν. Furthermore, the two annihilators 2Φ(f) and (1+σ)Φ(f)
generate 13(1− σ3) and (σ − 4)(1− σ3) in Z[G], and hence the full annihilator of
ClK in Z[G](1− σ3). Indeed,

13(1− σ3) = (8− 11σ + 7σ2)Φ(f),

with (8− 11σ + 7σ2) ∈ AnnZ[G](±1), and

(σ − 4)(1− σ3) = (−3 + 4σ − 3σ2)Φ(f),

with (−3 + 4σ − 3σ2) ∈ AnnZ[G](±1). So

AnnZ[G](μ(K))Φ(f) = AnnZ[G](ClK) ∩ (1− σ3)

in this case.
In this example we also have ClK = ClSK , asP is principal. More generally, under

our hypotheses, ClSK = ClK/〈[P]〉 and we note that P is fixed by σ3. Otherwise

p is unramified in the unique quadratic extension of F in K, so only p
(2)
∞ can

ramify there. However, class field theory shows that a single infinite prime cannot
be the conductor of an abelian extension. So this relative quadratic extension
is unramified at both infinite primes, which are consequently both unramified in

K/F . But we have specifically required p
(2)
∞ to ramify in K/F . So (P1−σ3

) = (1).

Thus Cl
(1−σ3)
K is a quotient of ClSK , and multiplying any annihilator of ClSK by

(1−σ3) yields an annihilator of ClK . Each Φ(f) in our computations is necessarily
a multiple of 1 − σ3 in Q[G]. In every case, we find that νΦ(f) annihilates ClK
for ν ∈ AnnZ[G](μK), yielding a positive answer to both Questions. If we only

knew that νΦ(f) annihilated ClSK , it would follow that νΦ(f)(1 − σ3) = 2νΦ(f)
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annihilates ClK , and thus indeed νΦ(f) annihilates the odd part of ClK . Our tables
contain a few examples where hK is even, and in all of them, νΦ(f) annihilates all
of ClK .

4.2. Tabular data. For p = 7 and p = 19, we consider each real quadratic field

F with discriminant dF < 2000 in which p splits as pp′. Setting S = {p, p(1)∞ , p
(2)
∞ },

we then determine those examples for which the ray class group H(pp
(2)
∞ ) has a

character χ of order 6 with rS(χ) = 1. When the class field K corresponding to χ
has a non-trivial ideal class group ClK , we proceed to choose a homomorphism f as
in (3.1) and consider the annihilation of this ideal class group by νΦ(f) for ν = 2
and ν = 1+σ, which generate AnnZ[G](μK). In all of these cases, our computations
verify that AnnZ[G](μK)Φ(f) lies in Z[G] and annihilates ClK . We note that ClK is
a cyclic group in most of the examples, and is a cyclic Z[G]-module in all of them,
so that the Fitting ideal FittZ[G](ClK) of ClK over Z[G] equals AnnZ[G](ClK).

The tables give the abelian group structure of ClF , of H(pp
(2)
∞ ), of ClK , and

of ClSK , by listing their invariant factors in square brackets. Then χ is a fixed

element of order 6 in the character group of H(pp
(2)
∞ ). As this character group

has the same invariant factors as H(pp
(2)
∞ ), χ is identified by recording the list of

exponents required to express it as a product of powers of the standard generators
corresponding to the invariant factors.

The chosen generator σ of the cyclic Galois group G of K over F acts as an
automorphism of ClK , and this automorphism is determined by its effect on the
generators of ClK . When ClK is cyclic and generated by c, σ(c) = ck for some
integer k, and we record this k. When ClK has generators c1 and c2 corresponding to
the pair of invariant factors [n1, n2], we have σ(c1) = c

a1,1

1 c
a2,1

2 and σ(c2) = c
a1,2

2 c
a2,2

2 ,
for some integer exponents, which we record as (a1,1, a1,2; a2,1, a2,2). To preserve
readability, the choices of S-units we arrived at to define each homomorphism f are
not recorded here. We do record the value N associated with f , and note that this
N = N(f) is a multiple of the exponent of XS

K/f(US
K). We list two choices of f in

a single box when we could not find a single choice of f that would lead to an ideal
(AnnZ[G](μK)Φ(f)) containing such ideals for all other choices of f (this explains
the missing horizontal lines in certain boxes; here we have one example with two
choices of f being used). The resulting group ring element 2Φ(f) is recorded in the
next column, with the notation d(c1, c2, c3) indicating that 2Φ(f) = d(c1 + c2σ +
c3σ

2)(1−σ3). We note that (to the accuracy of the computation) this lies in Z[G] in
every case. Furthermore, with the given action of σ and the structure of ClK , one
may verify that 2Φ(f) and (1+σ)Φ(f) annihilate ClK in every case. Finally, the last
column records the exponent m of (AnnZ[G](ClK)∩(1−σ3))/(AnnZ[G](μK)Φ(f)) =

(FittZ[G](ClK) ∩ (1 − σ3))/(AnnZ[G](μK)Φ(f)). We note that this is always found
to equal N or 2N . When two choices of f for the same example result in relatively
prime values of m, the ideal generated by AnnZ[G](μK)Φ(f) for the different choices

of f is then equal to AnnZ[G](ClK) ∩ (1− σ3).
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Table 1. Annihilation of ideal class groups. Case of p = 7.

dF ClF H(pp
(2)
∞ ) χ ClK ClSK σ on ClK N 2Φ(f) m

632 [1] [6] [1] [7] [7] 5 1 (3, 3,−1) 1
764 [1] [6] [1] [13] [13] 4 1 (5, 1,−3) 1
856 [1] [6] [1] [3] [3] −1 39 39(−1, 1, 1) 39
856 [1] [6] [1] [3] [3] −1 93 93(−1, 1, 1) 93
1129 [9] [54] [1] [3] [3] 1 7 7(1, 1, 1) 7
1429 [5] [30] [5] [5] [5] 1 7 7(1, 1, 1) 7
1429 [5] [30] [5] [5] [5] 1 4 4(0, 0,−1) 4
1436 [3] [6] [1] [3] [3] −1 21 7(−1, 1, 5) 21
1436 [3] [6] [1] [3] [3] −1 93 31(1, 1, 5) 93
1537 [2] [6,2] [1,0] [8] [8] −1 2 4(0,−1, 1) 2
1537 [2] [6,2] [1,1] [2,2] [2,2] (1,0;1,1) 1 2(0, 0,−1) 2
1597 [1] [6] [1] [3] [3] −1 3 3(1, 1, 1) 3
1597 [1] [6] [1] [3] [3] −1 3 (−1, 1, 5) 3
1772 [3] [6,3] [1,0] [15] [5] 4 1 (1,−1, 3) 1
1772 [3] [6,3] [1,1] [15] [5] 4 2 2(3,−1, 1) 2
1772 [3] [6,3] [1,1] [15] [5] 4 7 7(3,−1, 1) 7
1772 [3] [6,3] [3,1] [15] [5] 4 1 (3,−1, 1) 1
1772 [3] [6,3] [1,0] [3] [1] 1 2 2(1, 1,−1) 2
1772 [3] [6,3] [1,1] [3] [1] 1 2 2(−1, 1, 1) 2
1772 [3] [6,3] [3,1] [3] [1] 1 1 2(−1, 1, 1) 2
1793 [1] [6] [1] [7] [7] −1 1 (3,−1, 3) 1
1864 [2] [6,2] [1,1] [4] [4] −1 2 4(0, 1, 0) 2
1864 [2] [6,2] [2,1] [2,2] [2,2] (1,0;1,1) 1 2(0, 0, 1) 2
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Table 2. Annihilation of ideal class groups. Case of p = 19.

dF ClF H(pp
(2)
∞ ) χ ClK ClSK σ on ClK N 2Φ(f) m

253 [1] [6] [1] [13] [13] 4 1 (−1, 3, 5) 1
365 [2] [18,2] [3,0] [4] [4] −1 1 (0,−2, 2) 1
365 [2] [18,2] [6,1]] [2,2] [2,2] (0,1;1,0) 2 (0, 4, 0) 2
461 [1] [6] [1] [7] [7] 3 2 2(−1, 3, 3) 2
617 [1] [6] [1] [3] [3] −1 21 21(−1, 1, 1) 21
617 [1] [6] [1] [3] [3] −1 93 93(−1, 1, 1) 93
785 [6] [6,2] [2,1] [2] [2] 1 2 2(−1, 1, 1) 2
785 [6] [6,2] [1,1] [2] [2] 1 1 (−1, 1, 1) 1
985 [6] [6,2] [1,1] [6] [6] −1 3 2(2, 1, 2) 6
985 [6] [6,2] [2,1] [2] [2] 1 2 2(1, 1, 1) 2
1165 [2] [6,2] [1,1] [26] [26] 17 1 2(2, 1,−2) 2
1165 [2] [6,2] [2,1] [2] [2] 1 2 2(−1, 1, 1) 2
1297 [11] [66] [11] [66] [66] 23 3 (5, 1,−1) 3
1309 [2] [6,2] [1,0] [4] [4] −1 2 4(1, 0, 0) 2
1309 [2] [6,2] [1,1] [2,2] [2,2] (1,0;1,1) 13 26(0, 1, 0) 13
1309 [2] [6,2] [1,1] [2,2] [2,2] (1,0;1,1) 7 14(1, 0, 0) 7
1601 [7] [42] [7] [14,2] [2,2] (8,7;1,1) 2 2(−1, 1, 1) 2
1657 [1] [6] [1] [7] [7] 5 1 (3, 3,−1) 1
1673 [1] [6] [1] [7] [7] 3 1 (3, 3, 1) 1
1765 [6] [6,2] [1,1] [2] [2] 1 2 2(1, 1,−1) 2
1765 [6] [6,2] [2,1] [2] [2] 1 1 2(0, 0, 1) 2
1949 [1] [6] [1] [3] [3] −1 3 (−1, 1, 5) 3
1985 [2] [6,2] [1,0] [2,2] [2,2] (1,0;0,1) 1 2(0, 1, 0) 1
1985 [2] [6,2] [2,1] [4] [4] −1 2 4(1, 0, 1) 4
1985 [2] [6,2] [2,1] [4] [4] −1 7 14(1, 0, 1) 14
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