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FINITE CONNECTED COMPONENTS

OF THE ALIQUOT GRAPH

ANDREW R. BOOKER

Abstract. Conditional on a strong form of the Goldbach conjecture, we deter-
mine all finite connected components of the aliquot graph containing a number
less than 109, as well as those containing an amicable pair below 1014 or one
of the known perfect or sociable cycles below 1017. Along the way we develop
a fast algorithm for computing the inverse image of an even number under the
sum-of-proper-divisors function.

1. Introduction

For n ∈ N, let s(n) =
∑

d|n
d�=n

d denote the sum of the proper divisors of n. Ancient

Greek mathematicians studied the forward orbits n, s(n), s(s(n)), . . . , now called
aliquot sequences, and noted that they sometimes enter cycles, such as 6, 6, . . . and
220, 284, 220, . . . . In the modern computer era, more than a billion examples of
such aliquot cycles have been found [3,9]; most of these, like {220, 284}, have order
2, and are termed amicable pairs. A long-standing conjecture posits that there are
infinitely many aliquot cycles.

One can also ask about the inverse orbits {n} ∪ s−1({n}) ∪ s−1(s−1({n})) ∪
· · · . Although questions concerning the inverse image s−1({n}) of a given n go
back at least 1000 years [13], the idea of iterating the inverse map appears to
have been considered only recently (see [5, Theorem 5.3] and [4], for instance).
In relation to this, Garambois [7] has conducted many numerical studies, focusing
in particular on isolated cycles, i.e., cycles that are their own inverse orbits. For
instance, s−1({28}) = {28}, so {28} is an isolated cycle of order 1.

In this paper, we seek to generalize this concept. To do so, following Delahaye [4],
we introduce the aliquot graph, which packages all of the aliquot sequences together
into a single directed graph. Precisely, every natural number is a node of the graph,
and for any m,n ∈ N, there is a directed edge from m to n if and only if n = s(m).
As the examples noted above demonstrate, the aliquot graph is not connected;
in fact, any two distinct aliquot cycles lie in distinct connected components, so
presumably the graph has infinitely many components. In these terms, we see that
Garambois’ isolated cycles are examples of finite connected components.

Our objectives are (1) to find examples of finite connected components beyond
simple cycles, and (2) to determine a comprehensive list of all finite connected
components with at least one small node. Toward the first objective, in Section 2
we present an algorithm for computing the inverse image s−1({n}) of a given even
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number n in time O(n1/2+ε); as a corollary, we obtain the estimate #s−1({n}) �
n1/2+ε, which improves on a recent result of Pomerance [12, Corollary 3.6]. In
Section 3.1 we apply the algorithm to all even amicable pairs with smaller element
below 1014, and to all known1 aliquot cycles of order �= 2 with smallest element
below 1017. In this way we identify many interesting examples of finite connected
components.

Concerning the second objective, note first that if p and q are distinct primes
then s(pq) = p + q + 1. As a slight strengthening of the Goldbach conjecture, we
have the following.

Hypothesis G. Every even number at least 8 is the sum of two distinct primes.

There is ample evidence in favor of Hypothesis G: Lu [8] showed that it holds
for all but at most O(x0.879) even numbers ≤ x, and Oliveira e Silva et al. [10] ran
a large distributed computation to verify it for all even n ∈ [8, 4× 1018].2

Assuming Hypothesis G, for any odd number n ≥ 9, we have n = p+q+1 = s(pq)
for distinct odd primes p, q. Since pq > n and is again odd, we can repeat this
construction to see that the inverse orbit {n} ∪ s−1({n}) ∪ s−1(s−1({n})) ∪ · · · is
infinite; in particular, n has infinite connected component. Note also that 1 = s(11),
3 = s(s(9)) and 7 = s(s(49)). Thus, under Hypothesis G, every odd number except
5 has infinite inverse orbit and, since s(5) = 1, every odd number has infinite
connected component.3 Unconditionally, Erdős et al. [5, Theorem 5.3] showed
that infinite inverse orbits exist; in fact, all but a density zero subset of the odd
numbers have infinite inverse orbit, although the method of proof does not enable
one to exhibit a specific such number.

We say that a connected component of the aliquot graph is potentially infinite
if it contains an odd number. Absent a proof of Hypothesis G (including the
Goldbach conjecture), we cannot prove that a given potentially infinite connected
component is actually infinite, unless it is shown to contain 1. However, we will
take Hypothesis G for granted in what follows, so our numerical results will be
conditional upon it. With this caveat, in Section 3.2 we describe a computation
determining the complete list of finite connected components of the aliquot graph
that contain a number below 109.

Finally, in Section 4 we conclude with some related questions and speculations
suggested by the numerics.

1The list of known cycles is likely complete up to at least 1014. However, there are many
open-ended aliquot sequences beginning with a number below that bound, so it is impossible to
say for sure that the list is complete without imposing an upper bound on the cycle length. It
might even be the case that the completeness of the list is undecidable and cannot be certified
with a finite computation!

2Strictly speaking, they only verified the Goldbach conjecture, which is weaker than Hypoth-
esis G for numbers of the form 2p for p prime. However, for every even n ∈ [6, 4 × 1018], they
found a Goldbach partition n = p+ q with p ≤ 9781. Hence, it suffices to verify Hypothesis G for
n = 2p for all primes p ∈ [5, 9781].

3Note that 1 = s(p) for every prime p, so its connected component is trivially infinite under
our definition. Some authors prefer to exclude 1 from the aliquot graph to avoid this triviality.
Fortunately, under Hypothesis G, the only difference that this makes to our question of finite
connected components is that 2 and 5 become singleton components.
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Notation. We shall make frequent use of the following symbols for arithmetic
functions:

ω(n) =
∑
p|n

p prime

1 is the number of distinct prime factors of n,

Ω(n) =
∑
pk‖n

k is the number of prime factors of n, counted with multiplicity,

σk(n) =
∑
d|n

dk is the sum of kth powers of the divisors of n,

σ(n) = σ1(n) = s(n) + n.

2. An algorithm for s−1

Suppose that n ∈ N is given, and we wish to find m ∈ N satisfying s(m) = n. If
n ≥ 9 is odd, then searching through small primes p, we expect to find one quickly
(polynomial time in logn) such that q = n − 1 − p is prime, so that n = s(pq);
although a proof of this seems far off, that does not prevent it from working well
in practice to find an element of s−1({n}), even for very large odd n. On the other
hand, it is conjectured that all large odd n have � n/ log2 n representations as
p+q+1 (and this certainly holds for at least some arbitrarily large n, by the prime
number theorem and pigeonhole principle), and it follows that no algorithm can
compute all of s−1({n}) in fewer than O(n/ logn) bit operations. In light of this,
and since our application requires only even values, we assume henceforth that n
is even.

Let us first consider the possibility of odd m. If n ∈ 2N and m ∈ 1 + 2N, then
it is easy to see that m must be a square. Let p be the largest prime factor of m,
and write m = a2p2k, with p � a. Then we have

(2.1) n = s(m) = s(a2)p2k + σ(a2)(1 + p+ · · ·+ p2k−1),

so that a2 ≤ n/(1 + · · · + p2k−1) and k ≤ 1
2 [1 + logp(n/σ(a

2))]. For a = 1 and

each odd a ∈ [3,
√
n/6], we run through all k ≤ 1

2 [1 + logq(n/σ(a
2))], where q is

the smallest odd number ≥ 3 exceeding every prime factor of a, perform a binary
search for integral p ≥ q satisfying (2.1), and apply a primality test. (For our
implementation, which was limited to n < 264, we used a strong Fermat test to
base 2, together with the classification [6] of small strong pseudoprimes.)

Next we consider m ∈ 2N. In this case, since m/2 is a proper divisor of m, we
have s(m) ≥ m/2, whence m ≤ 2n. We write m in the form ab, where we think of
a ∈ 2N as the “smooth” part of m, with only small prime factors, and b as the rest.
Then we have

(2.2) n = s(m) = σ(a)s(b) + s(a)b.

For a fixed choice of a, we view (2.2) as a linear equation constraining the pair
(s(b), b). First note that if g = gcd(σ(a), s(a)) = gcd(a, s(a)), then (2.2) has no
solutions unless g | n. When g | n, we put u = σ(a)/g and v = s(a)/g, so that
(x, y) = (s(b), b) is a solution to ux + vy = n/g. Using the Euclidean algorithm,
we can determine a particular solution (x0, y0) ∈ Z2, and the general solution in
positive integers is then (x, y) = (x0 + rv, y0 − ru) for r ∈ Z ∩ (−x0

v , y0

u ). Our
algorithm proceeds by working recursively through all possible prime factorizations
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of a. For the base case of the recursion, once the number of possibilities for b is
small enough, we test all of them to see if the equality n = s(ab) is satisfied.

As described, this method is only a little more efficient than directly considering
every possible even m ≤ 2n, but fortunately there are a few ways in which we can
reduce the search space. First, we can detect the cases b = p or b = p2 for a prime
p by solving (2.2), which gives a linear or quadratic equation for p, and applying a
primality test. Second, in the typical case when b has no small prime factors, we
can narrow the range for s(b) using the following estimate.

Lemma 2.1. Let b > 1 be an integer with smallest prime factor p. Then s(b) ∈
[b/p, bΩ(b)/p].

Proof. Since b/p is a proper divisor of b, we have s(b) ≥ b/p, directly from the

definition. For the upper bound, let
∏ω(b)

i=1 peii be the prime factorization of b,
consider the set

S =

ω(b)⋃
i=1

{pi, p2i , . . . , peii },

and write S = {q1, . . . , qΩ(b)}, with q1 < · · · < qΩ(b) in increasing order. Next set
b0 = 1 and bj = lcm(q1, . . . , qj) for j = 1, . . . ,Ω(b). Then

σ−1(b) =

Ω(b)∏
j=1

σ−1(bj)

σ−1(bj−1)
.

Consider j ∈ {1, . . . ,Ω(b)}, and suppose that qj = pki . Then bj = pibj−1 and

σ−1(bj)

σ−1(bj−1)
=

σ−1(p
k
i )

σ−1(p
k−1
i )

= 1 +
1

pi + · · ·+ pki
≤ 1 +

1

qj
.

Since q1 = p and the qj are strictly increasing, we thus have

σ−1(b) ≤
Ω(b)∏
j=1

(
1 +

1

qj

)
≤

Ω(b)∏
j=1

(
1 +

1

p+ j − 1

)
= 1 +

Ω(b)

p
.

Hence
s(b)

b
= σ−1(b)− 1 ≤ Ω(b)

p
. �

Although we do not know p in advance, we will know a lower bound for it in the
course of the recursion. Supposing that p ≥ p1 and that we have already checked
the cases b = 1, b = p and b = p2, we have

(2.3) b ≥ b1 := p1p
′
1 and s(b) ≥ s1 := 1 + p1 + p′1,

where p′1 denotes the smallest prime exceeding p1. Thus, defining

(2.4) b2 =
n− σ(a)s1

s(a)
, k =

⌊
log b2
log p1

⌋
and s2 =

kn

kσ(a) + p1s(a)
,

we have

s(b)(σ(a) + s(a)p1/k) ≤ σ(a)s(b) + s(a)b = n,

so that b ∈ [b1, b2] and s(b) ∈ [s1, s2]. We stop the recursion and test every value of
b once the number of (x, y) ∈ [s1, s2]× [b1, b2] satisfying ux+ vy = n/g falls below
p1.
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Third, the solutions with b = pq for distinct primes p and q can also be deter-
mined without searching, since in this case we have

(vp+ u)(vq + u) = v2pq + uv(p+ q) + u2 = v(n/g − u) + u2 = (au+ nv)/g.

Thus, factoring (au+ nv)/g and testing all of its divisors ≡ u (mod v) will reveal
p and q. Since (au + nv)/g is potentially quite large, this test is more expensive
than that for b = p or p2, so we use it only when p1 is large enough to guarantee
that b is a product of two primes.

Algorithm 2.1 Procedure to compute s−1({n}) for n ∈ 2N

function s inverse(n)
Input: n ∈ 2N
Output: list of m ∈ N such that s(m) = n

initialize the output list
for each a ∈ {1} ∪ [3,

√
n/6] ∩ (1 + 2N) do

compute s(a2) and the smallest odd number q ≥ 3 exceeding every prime
factor of a

for each k ∈ N such that q2k−1 ≤ n/σ(a2) do
solve (2.1) for p
if p is a prime ≥ q then append a2p2k to the output list end if

end for
end for
for each k ∈ N such that 2k < n do

call s inverse even recursion(2k)
end for
return the output list

end function

procedure s inverse even recursion(a)
Input: a ∈ 2N
Ensure: appends to the output list all m = ab such that s(m) = n, b > 1 and the
smallest prime factor of b exceeds the largest prime factor of a

compute g = gcd(s(a), σ(a)), and return if g � n
check for solutions to (2.2) with b = p and b = p2, and append them to the
output list

compute u = σ(a)/g, v = s(a)/g, and (x0, y0) such that ux0 + vy0 = n/g
for primes p1 exceeding the largest prime factor of a, in increasing order, do

compute the intervals [s1, s2] and [b1, b2] defined in (2.3)–(2.4)
if #{r ∈ Z : x0 + rv ∈ [s1, s2] and y0 − ru ∈ [b1, b2]} < p1 then

for each such r do
compute b = y0 − ru and s(b)
if every prime factor of b is at least p1 and s(b) = x0 + rv then

append ab to the output list
end if

end for
return

end if
(continued on next page)
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(continued from previous page)

if s(ap31) > n then

factor N = (au+ nv)/g and find all of its divisors d <
√
N satisfying

d ≡ u (mod v)
for each such d do

compute p = (d− u)/v and q = (N/d− u)/v
if p and q are primes ≥ p1 then

append apq to the output list
end if

end for
return

end if
for each k ∈ N such that s(apk1) ≤ n do

if s(apk1) < n then
call s inverse even recursion(apk1)

else if k ≥ 3 then
append apk1 to the output list

end if
end for

end for
end procedure

Our procedure is described in a more detailed pseudocode in Algorithm 2.1. We
turn now to the running time analysis. First, by either using a sieve to amortize the
factorization of a or working recursively through the possible factorizations, we see
that it takes at most Oε(n

1/2+ε) bit operations to find all odd m with s(m) = n.
For even m, note that each prime p1 considered before the recursion is stopped
satisfies

p1 ≤ #{r ∈ Z : x0 + rv ∈ [s1, s2] and y0 − ru ∈ [b1, b2]} ≤ s2
v

+ 1,

and together with (2.4) this implies the bound p1 ≤
√

gn log3 n

s(a) . To simplify the

analysis, we consider a modified version of the algorithm in which we omit the
checks for b = p, b = p2 and b = pq, and stop the recursion once p1 >

√
n/a.

(These simplifications make the algorithm slightly less efficient, but one can see
that they increase the running time by a factor of Oε(n

ε) at most.)
Suppose that the recursive procedure is called with input a, and let p denote the

largest prime factor of a, with pk ‖ a. Then either p = 2 or the criterion for stopping
the recursion was not satisfied when considering a/pk, so that p ≤

√
n/(a/pk).

We may assume that n ≥ 4, so in either case, writing f(a) = a/pk−1, we have
f(a) ≤ √

n. Note that f(a) is again an even integer with largest prime factor p.
Thus,

#{a ∈ 2N : a ≤ 2n, f(a) ≤
√
n} =

∑
t∈2N
t≤

√
n

#{a ∈ 2N : a ≤ 2n, f(a) = t}

≤
∑
t∈2N
t≤

√
n

(
1 + log2

(
2n
t

))
≤ 1

2

√
n log2(2n),
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and this gives an upper bound for the number of times that the recursive procedure
is called.

Next, let p1 denote the smallest prime exceeding both
√
n/a and every prime

factor of a. Then by (2.4), the values of b that we consider in the base case of the
recursion for a satisfy

s(b) <
kn

p1s(a)
≤

n logp1
n

p1s(a)
≤ n log3 n

(
√
n/a)(a/2)

= 2
√
n log3 n.

Moreover, s(b) is determined modulo v = s(a)/g, so the number of possibilities to
consider is at most

1 +
2
√
n log3 n

s(a)/g
≤ 1 +

4g
√
n log3 n

a
.

Summing over all g | n and a satisfying gcd(s(a), σ(a)) = g, we see that the total
number of candidate values for b is bounded by

∑
g|n

∑
a∈2N∩[2,2n]
f(a)≤

√
n

gcd(a,σ(a))=g

(
1 +

4g
√
n log3 n

a

)
≤

∑
a∈2N∩[2,2n]
f(a)≤

√
n

1 +
∑
g|n

∑
a≤2n
g|a

4
√
n log3 n

a/g

� σ0(n)
√
n log2 n �ε n

1/2+ε.

The largest prime factor of a and the value of s(a) can be carried along as extra
state information during the recursion, so no work is required to factor a. On the
other hand, we can expect the b values that arise to occur sparsely throughout
(0, n), and we need to factor them in order to compute s(b). In practice, one can
use a generic factoring algorithm with good average-case performance. To get a
provable estimate for the running time, it suffices to record all of the candidate
pairs (a, b) in a list and apply Bernstein’s batch factorization algorithm [1] to the b
values. Since there are Oε(n

1/2+ε) pairs and each b is bounded by n, the total time
to factor all of them is still Oε(n

1/2+ε).
Thus, we have shown the following.

Theorem 2.2. The algorithm described in this section computes s−1({n}) for a
given n ∈ 2N in time at most Oε(n

1/2+ε).

Corollary 2.3. For n ∈ 2N, #s−1({n}) �ε n
1/2+ε.

3. Numerical results

3.1. Examples of finite connected components. For any given n ∈ N, the
forward orbit of n under s either terminates with 1, grows without bound, or
enters a cycle. In the first two cases, n must have infinite connected component.
Hence, to find finite connected components, it suffices to consider only those n
contained in a cycle, and compute their inverse orbits. For each even amicable pair
with smaller element below 1014, as well as the known perfect or sociable cycles
with smallest element below 1017, we started with the smallest n in the cycle and
iteratively computed s−1({n}), s−1(s−1({n})), . . . until reaching either the empty
set or a set containing an odd number. In the former case, n has finite connected
component, and our computation determines it entirely; in the latter case, assuming
Hypothesis G, the connected component is infinite.

It is also conceivable that there are n for which neither case occurs, and the
procedure does not terminate. However, for any n, the elements of s−1({n}) ∩ 2N
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Figure 3.1. The largest finite connected component containing
an amicable pair with smaller element below 1014

are bounded by 2n, so chains of even numbers in the inverse orbit of n grow at
most exponentially in the iteration count. Moreover, for any m of the form p + 1
for prime p, we have m = s(p2). We see no reason why numbers of this form should
not occur among the elements of the inverse orbit of n with the same frequency
as for random numbers of the same size. Thus, provided that the kth iterate of
s−1 applied to {n} is non-empty, we expect it to contain an odd number with
probability � 1/k. Since the harmonic series diverges, we therefore expect to reach
an odd number eventually, as long as the inverse orbit is infinite. This was borne
out by our numerics, as every connected component that we considered was found
to be either finite or potentially infinite.4

Of the 24003 even amicable pairs that we considered, 7438 pairs were found to
belong to a finite connected component, and of those, 2394 were isolated cycles.
The average size of the components was 37968/7438 ≈ 5.1, and the largest was of
size 58, corresponding to the amicable pair {29215166389256, 31021462090744}; it
is shown in Figure 3.1.

For even aliquot cycles of size other than 2, only 75 are known with smallest ele-
ment below 1017. We found 12 belonging to a finite connected component, of which

4However, in the case of the amicable pair {48569114359984,49074636040016}, the numbers
exceeded the 64-bit limit of our implementation without reaching an odd number. We wrote a
special-purpose routine to continue the search in this case, looking for m of the form ap with a <
2× 1010 and p prime, and fortunately that sufficed to prove that s25(184719837071713545732) =
49074636040016.
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Figure 3.2. The finite connected components containing a known
cycle of order �= 2 with a node ≤ 1017

three are isolated cycles (including the perfect numbers 28 and 137438691328); they
are shown in Figure 3.2.

3.2. Finite connected components containing a small node. Towards our
second objective, we found, conditional on Hypothesis G, the complete list of finite
connected components of the aliquot graph containing a number ≤ 109. As it turns
out, there are 101 such components, compared to 453 known cycles of even numbers
in that range. They are comprised of 462 nodes, 88 of which exceed 109. The 14
examples containing a number below 107 are shown in Figure 3.3.

Our computation proceeds as follows. First, beginning with each even number
n ≤ 109, we used PARI/GP [14] to compute the forward orbit n, s(n), . . . , until
arriving at a number m = sk(n) satisfying one of the following conditions:

(1) m is odd;
(2) m− 1 is prime;
(3) m = sj(n) for some j < k;
(4) m ≥ 1050.

In the first two cases, n is connected to an odd number (m in case (1), (m − 1)2

in case (2)), so its connected component is potentially infinite. In the third case,
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Figure 3.3. All finite connected components containing a node ≤ 107

the forward orbit enters a cycle. We determined the minimum number in each
cycle and collated the cycles discovered for all n ≤ 109. It turned out that they
were all among the cycles considered in Section 3.1, so we could readily classify
each connected component as either finite or potentially infinite. That left 1053
numbers in the indeterminate case (4), to which we applied the algorithm from
Section 2 to search for odd numbers in the inverse orbit of n, then of s(n), s(s(n)),
. . . , until reaching a value of sk(n) in excess of 248. With this method we succeeded
in finding an odd number for all but nine values of n, whose forward orbits merged
into just four distinct aliquot sequences. Finally, we resolved these by continuing
the forward orbits with a larger cutoff of 1070.

For each n with potentially infinite connected component, we recorded, as a
certificate, an odd number m ∈ N and indices j, k ≥ 0 such that sk(n) = sj(m).
The interested reader may find these at [2], along with the data pertaining to the
finite connected components.

4. Related questions

Recall that a number n ∈ N is called non-aliquot (or untouchable) if s−1({n}) =
∅. Pollack and Pomerance [11] have conjectured that the non-aliquot numbers have
asymptotic density

lim
y→∞

∑
a∈2N
a≤y

a−1e−a/s(a)

∑
a∈N

a≤y
a−1

≈ 17%

in the natural numbers, and this is supported by the available numerical evidence.
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Table 4.1. Frequency of isolated cycles and cycles with finite con-
nected component

number of cycles with number that number with finite
x smallest element ≤ x are isolated connected component

1010 1462 98 (6.70%) 249 (17.03%)
1011 3385 214 (6.32%) 613 (18.11%)
1012 7692 471 (6.12%) 1445 (18.79%)
1013 17583 1052 (5.98%) 3309 (18.82%)
1014 39457 2397 (6.07%) 7448 (18.88%)

Table 4.2. Numbers with finite connected component of record size

n size n size
28 1 7651954416 24

356408 2 10238969536 35
520208 3 97624271600 36
954536 4 757688279778 37
2652728 5 944013126176 38
9478910 8 1164087362100 41
15576848 16 1336635061736 52
932913124 21 3459684525732 58

Their analysis relies heavily on some heuristics for the typical behavior of s over the
natural numbers. The heuristics do not apply to amicable numbers, which are atyp-
ical in this respect (e.g., for any amicable number a, the sequence a, s(a), s(s(a)) is
not monotonic, which is a rare event among all natural numbers). Nevertheless, one
can ask whether the amicable pairs that form isolated cycles have a density within
the set of all amicable pairs (ordered by smaller element, say). Empirically almost
all aliquot cycles have order 2, so this density, if it exists, should agree with that
of the isolated cycles among all cycles. Table 4.1 shows the frequency of isolated
cycles among all known cycles in various ranges up to 1014. Based on this limited
evidence, we speculate that the limiting density does exist and is approximately
6%.

Similarly, one might ask whether there are infinitely many finite connected com-
ponents, and whether the cycles with finite connected component have a density
among all cycles. Table 4.1 also shows data relevant to these questions. Again we
speculate that the answer to both is yes, with the limiting density approximately
19%.

Finally, we found finite connected components of every size ≤ 41. Table 4.2
shows the ones of record size when ordered by smallest element. It seems plausible
that every positive integer is the cardinality of a finite connected component; in
particular, we conjecture that there are arbitrarily large finite components.



2902 ANDREW R. BOOKER

Acknowledgments

This paper was inspired by the work of Jean-Luc Garambois [7], as well as
posts by David Stevens and another user, who wishes to remain anonymous, on
mersenneforum.org. I thank them for raising interesting questions. I also thank
Carl Pomerance for helpful comments and for pointing out the related results in [5]
and [12].

References

[1] D. J. Bernstein, How to find small factors of integers, 2002, http://cr.yp.to/papers.html#
sf.

[2] A. R. Booker, Web page with extended data, http://people.maths.bris.ac.uk/~maarb/

aliquot/.
[3] S. Chernykh, Amicable pairs list, http://sech.me/ap/.
[4] J.-P. Delahaye, Nombres amiables et suites aliquotes, Pour la Science (2002), no. 292, 98–103.
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