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SMALL f-VECTORS OF 3-SPHERES AND OF 4-POLYTOPES

PHILIP BRINKMANN AND GÜNTER M. ZIEGLER

Abstract. We present a new algorithmic approach that can be used to de-
termine whether a given quadruple (f0, f1, f2, f3) is the f -vector of any con-
vex 4-dimensional polytope, or more generally of a strongly regular cellular

3-sphere, that is, a regular cell complex homeomorphic to the 3-dimensional
sphere such that any intersection of two faces (cells) is a face.

By implementing this approach, we classify the f -vectors of 4-polytopes in
the range f0 + f3 ≤ 22.

In particular, we prove that there are f -vectors of strongly regular cellular
3-spheres that are not f -vectors of any convex 4-polytopes. This answers a
question that may be traced back to the works of Steinitz (1906/1922). In
the range f0 + f3 ≤ 22, there are exactly three such f -vectors with f0 ≤ f3,
namely (10, 32, 33, 11), (10, 33, 35, 12), and (11, 35, 35, 11).

1. Introduction

In 1906, Ernst Steinitz [33] proved a remarkably simple and complete result:
The set of all f -vectors (f0, f1, f2) of 3-dimensional convex polytopes—where fi
denotes the number of i-dimensional faces—is given by all the integer points in a
2-dimensional polyhedral cone, whose boundary is given by the extremal cases of
(f -vectors of) simple and of simplicial polytopes:

F(P3) = {(f0, f1, f2) ∈ Z3 : f0 − f1 + f2 = 2, f2 ≤ 2f0 − 4, f0 ≤ 2f2 − 4}.
Steinitz’s later work [34,35] from 1922/1934 implies that the same characterization
is valid also for the f -vectors of more general objects, such as regular cellular 2-
spheres with the intersection property, or of interval-connected Eulerian lattices of
length 4 (as described below).

The f -vectors of 4-dimensional polytopes, however, provide a much greater chal-
lenge. In his 1967 book, Grünbaum wrote:

“It would be rather interesting to find a characterization of those lattice
points in R4 which are the f -vectors of 4-polytopes. This goal seems rather
distant, however, in view of our inability to solve even such a small part
of the problem as the lower bound conjecture for 4-polytopes.” (Grünbaum
[17, p. 191])

The lower bound conjecture was solved by Barnette in 1971/73 [3,5], but the prob-
lem to characterize F(P4) remains wide open. Grünbaum himself initiated and
started in [17, Sect. 10.4] a study of the 2-dimensional coordinate projections of the
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3-dimensional set F(P4) ⊂ R4, which was eventually completed by Barnette and
Reay [7] and Barnette [6]. A typical result in the series says that a pair (fi, fj)
occurs in an f -vector if and only if it satisfies some simple linear or quadratic up-
per/lower bound inequalities and is not one of finitely-many “small” exceptions.
For example, according to [17, Thm. 10.4.1] a pair (f0, f3) occurs for a 4-polytope
if and only if the upper bound inequalities f3 ≤ 1

2f0(f0 − 3) and f0 ≤ 1
2f3(f3 − 3)

are satisfied, with no exceptions in this case.
Any characterization of (a projection of) the set of f -vectors F(P4) ⊂ Z4 con-

tains a characterization of the extremal cases and a solution of the corresponding
extremal problems. Some of these are visible in 2-dimensional coordinate pro-
jections. For example, the (f0, f3)-classification quoted above contains the upper
bound theorem for 4-polytopes.

In view of Steinitz’s results for dimension 3, one would also look at the set
of f -vectors F(S3) of strongly regular cellular 3-spheres, that is, of regular cell
complexes homeomorphic to the 3-dimensional sphere such that any intersection of
two cells is a single cell; see Section 2 for definitions and details.

As a complete determination of F(P4) or of F(S3) seems out of reach, a natural
approximation to these problems asks for a characterization of the closed convex
cones with apex at the f -vector f(Δ4) = (5, 10, 10, 5) of the 4-simplex that are
generated by the f -vectors of 4-polytopes, respectively, of 3-spheres,

cone(F(P4)) ⊆ cone(F(S3)) ⊂ R4.

Equivalently, one asks for the linear inequalities that are valid for all f -vectors
and tight at f(Δ4) = (5, 10, 10, 5). For example, the inequalities f1 ≥ 2f0 and
f2 ≥ 2f3 are of this form, satisfied with equality by simple, respectively, simplicial
4-polytopes. Thus, in particular, the f -vectors of simple and simplicial 4-polytopes
are extremal in the coordinate projections to (f0, f1), respectively, (f2, f3).

It was noted in Ziegler [38] that a key parameter of an f -vector is the fatness

F (f0, f1, f2, f3) :=
f1 + f2 − 20

f0 + f3 − 10
.

Though fatness is not defined for the (f -vector of a) simplex, every lower or upper
bound on fatness corresponds to a linear inequality that is tight at the simplex. In
[38] the second author also identified the two key problems that have prevented us
up to now from determining cone(F(P4)) or cone(F(S3)):

• Does fatness have an upper bound for 4-polytopes?
(It does not for 3-spheres, as proved by Eppstein, Kuperberg, and Ziegler
[14].)

• Is the fatness lower bound F ≥ 2.5 valid for all 3-spheres?
(For 4-polytopes it follows from gtor2 ≥ 0, see Kalai [21].)

These are extremal problems on F(P4), respectively, F(S3) that cannot be solved
by looking at the projections to only two coordinates. However, below we will
suggest a different projection which displays fatness very clearly.

In this paper we are not directly dealing with the asymptotic questions. Rather
we classify the f -vectors of “small” polytopes, and from this we derive new insights
into what happens asymptotically. For this, we redefine “small” by measuring the
size of an f -vector by

size(f0, f1, f2, f3) := f0 + f3 − 10.
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This is a linear quantity, with size(5, 10, 10, 5) = 0 for the f -vector of the 4-simplex.
For the classification we have developed a new algorithmic approach, in order

to determine for any given reasonably small (f0, f1, f2, f3), whether there is a 4-
polytope with this f -vector.

We have implemented the algorithm and achieved a complete classification of the
f -vectors of size up to 12. That is, for every vector (f0, f1, f2, f3) with f0 +f3 ≤ 22
that satisfies the known necessary conditions on f -vectors of 4-polytopes, we have
either constructed a 3-sphere or 4-polytope with this f -vector, or proved that none
exists.

The results of our computations are detailed in Sections 4 and 5. As a main
consequence of the enumeration, we obtain that the difference between strongly
regular cellular 3-spheres and 4-polytopes is so substantial that it appears even at
the level of f -vectors:

Theorem 1.1. The set of f -vectors of 4-polytopes is a strict subset of the set of
f -vectors of strongly regular cellular 3-spheres:

F(P4) � F(S3).

Indeed, the sets differ in exactly five such f -vectors of size(P ) = f0 + f3 − 10 ≤ 12,
namely

• of size 11: (10, 32, 33, 11), (11, 33, 32, 10), and
• of size 12: (10, 33, 35, 12), (12, 35, 33, 10), (11, 35, 35, 11).

For simplicial spheres, the question whether all f -vectors of (d − 1)-spheres
also occur for d-polytopes is—in view of the g-theorem for polytopes (cf. [37,
Sect. 8.6])—equivalent to the g-conjecture for spheres. The answer is known to
be “yes” for d ≤ 5, but the g-conjecture for spheres remains open for larger d.
However, in 1971, at the end of the paper in which he introduced the g-conjecture,
McMullen had already voiced strong doubts:

“in every case in which the [g-]conjecture is known to be true, it also holds
for the corresponding triangulated spheres. (. . . ) However, there are funda-
mental differences between triangulated (d− 1)-spheres and boundary com-
plexes of simplicial d-polytopes. (. . . ) We should therefore, perhaps, be wary
of extending the conjecture to triangulated spheres.” (McMullen [27, p. 569])

Our algorithm works in three steps, proceeding from combinatorial models via
topological models to polytopes. It starts with an enumeration of the graphs that
could be compatible with the given f -vector. It then looks at the possible combina-
torial types of facets and enumerates their combinations into an entirely combina-
torial model of polytopes, namely interval-connected Eulerian lattices of length 5.
This new model will be described in Section 2, where we also prove that every such
object corresponds to a regular cell-decomposition of a closed 3-manifold with the
intersection property (Proposition 2.2). Thus the combinatorial types of regular
cell-decompositions of the 3-sphere with the intersection property (which we refer
to as strongly regular cellular 3-spheres, or simply as 3-spheres) form a subset of
these Eulerian lattices. The class of combinatorial types of convex 4-polytopes is
still more restrictive, as became clear, for example, in the revision and correction of
Brückner’s [12] work by Grünbaum and Sreedharan [18]: Not every diagram, and
thus not every sphere, does correspond to a convex polytope.
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In our search range of size(f) ≤ 12, all f -vectors of Eulerian lattices also appear
as f -vectors of spheres. That is, while

# {f ∈ F(S3) \ F(P4) : size(f) ≤ 12} = 5

we have
# {f ∈ F(E5) \ F(S3) : size(f) ≤ 12} = 0.

So it may be that F(E5) = F(S3), but the computations for size(f) ≤ 12 should
not be counted as strong evidence, as indeed we did not encounter any manifolds
that are not spheres in this range. Also, very natural higher-dimensional versions

of F(E5)
?
= F(S3) turn out to be false. For example, simplicial 5-manifolds with

negative g3 appear in the enumerations of Lutz [25, pp. 56-58].
In Figure 1 we evaluate our classification results by looking at the f -vector set

F(P4) in a particular projection, which is not a coordinate projection, and which
has the virtue to show size (as first coordinate) and fatness (as “slope + 2”) directly.

Let us note two more intriguing aspects of our enumeration results, which can
also be seen in Figure 1:

Observations 1.2.
(i) The sets of “small” f -vectors f = (f0, f1, f2, f3) of 3-spheres and of 4-

polytopes differ in an essential way, which is detected by fatness:
• For size(f) ≤ 10, the f -vectors of 3-spheres and of 4-polytopes agree.
• For size(f) ≤ 11, the maximal fatness for 3-spheres is 4 1

11 , for 4-
polytopes it is 4.

• For size(f) ≤ 12, the maximal fatness for 3-spheres is 4 1
6 , for 4-

polytopes it is still 4.
(ii) In the range of “small” f -vectors of size(f) ≤ 12, the particularly “fat”

4-polytopes include the 2-simple and 2-simplicial polytopes in the sense
of Grünbaum [17, Sect. 4.5]. The exceptionally fat 3-spheres are not 2-
simple and 2-simplicial, but they still have f -vectors that are approximately
symmetric, with |f0 − f3| small.

For this we recall from Grünbaum [17, Sect. 4.5] that a 4-polytope P is 2-simple
and 2-simplicial (“2s2s”) if all 2-faces are triangles both for P and for its dual.
The definition extends to 3-spheres and even to Eulerian lattices of length 5. Any
such 2s2s object has a symmetric f -vector, with f0 = f3 and f1 = f2. The 2s2s
property is detected by the flag vector, but not by the f -vector alone. Observation
1.2(ii) refers to the polytopes of fatness at least 4, which in the range size(f) ≤ 12,
according to the classification of 2s2s 4-polytopes and 3-spheres of size at most 14
in Brinkmann and Ziegler [11, Thm. 2.1], are

• Werner’s example W9 with 9 vertices [36, Thm. 4.2.2],
• W10 as well as the hypersimplex Δ4(2) and its dual with 10 vertices, and
• P11 by Paffenholz and Werner [30, Sect. 4.1].

(There may be additional polytopes with f -vector (11, 34, 34, 11) and fatness 4, just
like P11, which are not 2s2s.) The pattern “2s2s polytopes are among the fattest
examples” continues beyond the range size(f) ≤ 12 of our enumeration, where we
find

• the 2s2s polytope W 39
12 of Werner and Miyata [36, Tbl. 7.1 right]

[28, Sect. 4.2] and
• the 2s2s sphere W 40

12 with f -vector (12, 40, 40, 12) constructed by Werner
[36, Tbl. 7.1 left].
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Figure 1. The size/fatness projection of the f -vector sets
F(P4) ⊂ F(S3).

This figure presents a particular 2-dimensional projection of F(P4) ⊂ F(S3) ⊂ Z4:
The x-axis represents size = f0 + f3 − 10 of a 4-polytope or 3-sphere, while the
y-axis represents f1 + f2 − 20 − 2 · size, so the slope of a line through the origin is
“fatness− 2.”
Black dots mark data points for which Höppner [19] had found polytopes.
Grey crossed dots mark coordinates for which 2-simple 2-simplicial polytopes
were found by Paffenholz and Werner [30] and Werner [36].
Grey dots give additional data points where we now found polytopes.
Red dots represent coordinates of points for which there are f -vectors of 3-
spheres, but where we found no f -vectors of 4-polytopes; left of the dotted line this
means that these do not exist.
The graph shown here is complete up to size 12, that is, to the left of the dotted
vertical line.
White dots appear only to the right of the dotted line: They mark locations
where the existence of spheres or of polytopes has not been decided.

For this last example we had shown in [11] that it is non-polytopal and that
it is the only 2s2s 3-sphere with such a flag vector. As a consequence, we estab-
lished that the sets of flag vectors of 4-polytopes and 3-spheres differ [11, Theorem
1.1], but did not achieve a similar statement for sets of f -vectors. This is provided
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by Theorem 1.1. However, with our new algorithm presented here (plus mas-
sive computation) we also achieved a complete classification result for the f -vector
(12, 40, 40, 12).

Theorem 1.3. There are 4 strongly regular cellular 3-spheres (all of them self-
dual, one of them 2-simple 2-simplicial), but no 4-polytopes at all, with the f -vector
(12, 40, 40, 12).

So altogether this paper provides six examples of f -vectors of 3-spheres that are
not f -vectors of 4-polytopes, namely the five smallest ones listed in Theorem 1.1 and
one more in Theorem 1.3. Of course one would now want to provide infinitely many
examples, to show that the cones cone(F(P4)) ⊆ cone(F(S3)) do not coincide, and
similar results for flag vectors and for their cones in higher dimensions. Our present
methods do not seem to provide this.

2. Objects: Polytopes, spheres, and Eulerian lattices

There have been numerous substantial attempts to classify all 4-dimensional
polytopes with some given parameters (e.g., f -vectors), or to classify the parameters
that actually occur. They all depend on a hierarchy of combinatorial/topological/
geometric models for convex polytopes of decreasing generality, which we use sys-
tematically in our algorithmic approach. For basics on convex polytopes, including
diagrams/Schlegel diagrams, we refer to Grünbaum [17] and Ziegler [37]. For regular
cell complexes, see Cooke and Finney [13] or Munkres [29]. Eulerian posets/lattices
as combinatorial models arose from the work of Klee [22]; see Stanley [32, Chap. 3].
The less common objects we work with can be summarized as follows.
Definition 2.1.

• A finite graded lattice is Eulerian if any non-trivial interval has the same
number of elements of odd and of even rank; it is interval-connected if the
proper part of any interval of length at least 3 is connected.

• A cellular sphere (that is, a CW-complex homeomorphic to some Sd; cf.
Munkres [29, § 38]) is regular if the attaching maps of the cells are homeo-
morphisms also on the boundary. The sphere has the intersection property
if the intersection of any two cells is a single cell (which may be empty). A
regular cellular sphere with the intersection property is also referred to as
a strongly regular cellular sphere.

In this paper we concentrate entirely on the case of 4-dimensional polytopes, and
correspondingly 3-spheres and Eulerian lattices of length 5. The interval connec-
tivity for Eulerian lattices and the regularity and intersection property for cellular
spheres are always assumed. We write:

• P4 for the set of combinatorial types of 4-polytopes;
• S3 for the set of combinatorial types of 3-spheres;
• E5 for the isomorphism types of length 5 Eulerian lattices.

The boundary complex of any 4-polytope is a 3-sphere (regular, cellular, with the
intersection property); the face lattice of any such 3-sphere is an interval-connected
Eulerian lattice of length 5.

Polytope theory has produced lots of examples to show that there are strict
inclusions

P4 ⊂ S3 ⊂ E5
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while there is no difference one dimension lower, by Steinitz’s theorem. His theo-
rem also yields that interval-connected Eulerian lattices form an excellent entirely
combinatorial model for the topological/geometric structures we are studying.

Proposition 2.2. Every interval-connected Eulerian lattice of length d + 1 ≤ 4 is
the face lattice of a d-polytope. In particular, P3 = S2 = E4.

Every interval-connected Eulerian lattice of length d+1 = 5 is the face lattice of
a (connected, closed) regular cellular 3-manifold with the intersection property.

Proof sketch. For d + 1 ≤ 3 there is little to prove.
For d + 1 = 4 an Eulerian lattice is the face lattice of a connected 2-manifold

of Euler characteristic 2, so we have a sphere. The lattice property corresponds to
what Steinitz calls “Bedingung des Nichtübergreifens” [35, S. 179], which is exactly
the intersection property for a cellular 2-sphere. Steinitz’s theorem [34, 35] yields
that every such 2-sphere can be realized as a convex polytope.

For d+1 = 5 an Eulerian lattice is the face poset of a closed connected 3-manifold,
whose cells and vertex links are polytopal by Steinitz’s theorem. However, the fact
that this manifold has Euler characteristic 0 yields no additional information about
its type, by Poincaré duality. �

3. Enumeration Algorithm

Here we propose a new algorithm, which constructs, for a given vector (f0, f1, f2,
f3), first the graphs and then the face lattices of all 3-manifolds with this f -vector,
by using 0/1 integer programming in order to enumerate all families of facets that
fit to this graph and all other constraints. The algorithm has the following outline.

Algorithm 3.1. find_lattices(f)

INPUT: A vector (f0, f1, f2, f3) ∈ Z4

OUTPUT: All Eulerian lattices of length 5 with this f -vector
(i) enumerate all graphs G on f0 vertices and f1 edges that are 4-connected;
(ii) for every graph G find all induced subgraphs that are planar and 3-connected;
(iii) construct for every graph G an integer program (IP) with binary variables

corresponding to the possible facets and ridges (facets of the facets), and
with constraints given by the f -vector, proper intersection, the Euler rela-
tion, and the graph;

(iv) enumerate all feasible solutions of this IP;
(v) check for every feasible solution whether it gives an Eulerian lattice.

Proposition 3.2. Algorithm 3.1 enumerates all interval-connected Eulerian lat-
tices of length 5 with f -vector (f0, f1, f2, f3).

Proof. We rely on the interpretation of interval-connected length 5 Eulerian lat-
tices as face lattices of cellular regular 3-manifolds with intersection property in
Proposition 2.2. Since the graph of any such manifold is 4-connected, step (i) will
not exclude any graph of some 3-manifold with f -vector (f0, f1, f2, f3).

Also, by Proposition 2.2, the graphs of interval-connected Eulerian lattices of
length 4 (and thus of facets of cellular 4-manifolds) are exactly the planar and 3-
connected graphs. Thus, with step (ii) we find a list FG of all potential facets for
a manifold with the given graph G.

From the list FG, we also get the list RG of the potential ridges, simply from
the faces of the facets. We now construct a 0/1-IP whose variables xi represent the
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facets Fi, and the variables yj the ridges Rj , such that all solutions correspond to
pseudomanifolds formed by a subset of the facets in FG and such that all face lattices
of 3-manifolds with graph G and f -vector (f0, f1, f2, f3) are feasible solutions, with
the constraints

∑

i

xi = f3,(1)

∑

j

yj = f2,(2)

2yj −
∑

Fi :Rj is a ridge of Fi

xi = 0 for all ridges Rj ,(3)

xi, yj ∈ {0, 1}.(4)

Condition (4) says that all variables are binary, which means that if a variable in
the solution is 1 the corresponding face will selected. Equations (1) and (2) enforce
that the total number of facets and ridges selected is f3, respectively, f2. Equation
(3) ensures that the ridge Rj is used if and only if precisely two facets containing it
as a ridge are selected. Similarly, we get constraints from the Euler relation for the
intervals above the vertices and edges, such that all feasible solutions correspond to
Eulerian posets. Moreover, for every edge we get an inequality forcing the number
of faces containing it to be larger than zero. Finally, we get inequalities xi +xj ≤ 1
for pairs of facets Fi, Fj if their intersection is not proper (i.e., that not both can
appear in a 3-manifold simultaneously). Since the face lattice of any 3-manifold
with the given f -vector and graph G satisfies the constraints of the IP, it will be
in the set of feasible solutions of this IP. Therefore, with the last step we can
complete the enumeration of all interval-connected Eulerian lattices with the given
f -vector. �

We implemented Algorithm 3.1 in sage [31], using the geng-function of nauty [26]
(which is a built-in function of sage) to enumerate all graphs on f0 vertices, with f1
edges, with minimal vertex degree at least 4, and being 2-connected (nauty cannot
enumerate 4-connected graphs, so we had to relax to 2-connectedness, but this
did not include too many extra graphs), and the MILP-library of sage to check
the IPs for feasibility and to enumerate all their solutions. We enumerated all
feasible solutions iteratively: Given a feasible solution, we store it and set the sum
of the f3 variables corresponding to the facets of this solution to be at most f3 − 1.
Thus, we excluded with an additional constraint precisely the solution we just
found and optimized again. By iterating this until no feasible solution remained,
we enumerated all feasible solutions of the original IP.

Finally, we had to check every solution to represent an interval-connected Euler-
ian lattice of length 5: By construction, we were looking at Eulerian posets. For each
of these, interval-connectivity was easy to check, as was the intersection property:
Both these properties were not completely built into our IP. Then we triangulated
the corresponding manifold and used sage to calculate the Betti numbers, and thus
verified that in all cases considered we were dealing with homology spheres. Then
we used BISTELLAR by Lutz [24] to show that each of them was flip-equivalent
to the boundary of the simplex, and thus a genuine sphere.
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4. Enumeration and classification results

For the proof of Theorem 1.1, we started with the generation of all potential flag
vectors bounded by f0 + f3 ≤ 22, that is, all integer vectors (f0, f1, f2, f3; f03) ∈ Z5

that satisfy all the linear and non-linear conditions on f -vectors and of flag vectors
that were known to be valid for Eulerian lattices with the intersection property of
length 5, as given by Barnette [4], Bayer [8], and Ling [23]. (See Bayer and Lee [9]
and Höppner and Ziegler [20] for surveys.) Moreover, as we added to the f -vector
information specific data about the combinatorial types of facets used, we could
make use of constraints such as

f02 − 4f2 + 3f1 − 2f0 ≤
(
f0
2

)
− 1

2

∑

F facet, f0(F )≥7

(mi(F ) + f02(F ) − 3f2(F ))

− #facets with 6 vertices + 1
2#pyramids over pentagon,

where mi(F ) denotes the number of interior edges of a face F , proved in Brinkmann
[10, Sect. 2.2.1], which sharpens an inequality by Bayer [8].

Moreover, we could (and did) assume that f0, f3 ≥ 9, as the objects with up to 8
vertices and facets have been enumerated and analyzed in detail by Altshuler and
Steinberg [1, 2].

Furthermore, we ticked off on our candidate list all those vectors that are known
to occur as f -vectors of 4-polytopes, for example, from the study of Höppner and
Ziegler [20] or the enumeration of 2s2s-polytopes in Brinkmann and Ziegler [11].

For all remaining candidate vectors we enumerated all compatible Eulerian lat-
tices by Algorithm find_lattices(f), and then used the methods detailed in
Brinkmann and Ziegler [11] in order to

• either use first numerical non-linear optimization techniques and then exact
arithmetic sharpenings in order to find rational coordinates for at least one
polytope with the given f -vector, or

• use biquadratic final polynomials for partial oriented matroids in order to
prove that all spheres for the given f -vector are non-realizable.

The results are shown in Table 1: It lists, for each potential f -vector considered,
the number of graphs to be checked (graphs on f0 vertices, with f1 edges, with
minimal vertex degree at least 4, and being 2-connected), and the numbers

• #E5 of Eulerian lattices of length 5,
• #S3 of cellular 3-spheres,
• #np of non-polytopal 3-spheres among them, and
• #P4 of convex 4-polytopes

with the given f -vector. In some instances for the last two quantitites we just give
lower bounds, if we did not decide all cases. An asterisk ∗ marks objects where
we have exact coordinates for at least one polytope and approximate (floating
point) coordinates for the others. Blank spaces represent missing data (e.g., not
enumerated/calculated). In particular, for f0 = 11 we did not enumerate all f -
vectors, but restricted ourselves to constructing polytopes.

Table 1: All potential f -vectors with f0, f3 ≥ 9 and f0 + f3 ≤ 22.

f -vector # graphs #E5 #S3 #np #P4

(9,m,m, 9) 170 0 0 0 0 m ≤ 19
(9, 20, 20, 9) 713 1 1 0 1
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Table 1, continued from previous page

f -vector # graphs #E5 #S3 #np #P4

(9, 21, 21, 9) 1 754 0 0 0 0
(9, 22, 22, 9) 2 770 129 129 ≥ 54
(9, 23, 23, 9) 3 129 211 211 ≥ 2 ≥ 113∗

(9, 24, 24, 9) 2 723 118 118 ≥ 2 ≥ 81∗

(9, 25, 25, 9) 1 917 7 7 0 7∗

(9, 26, 26, 9) 1 154 1 1 0 1 W9

[36,Thm. 4.2.2]

(9,m,m, 9) 1 132 0 0 0 0 m ≥ 27
(9,m,m + 1, 10) 2 673 0 0 0 0 m ≤ 21

(9, 22, 23, 10) 2 770 12 12 ≥ 9∗

(9, 23, 24, 10) 3 129 398 398 ≥ 1 ≥ 78∗

(9, 24, 25, 10) 2 723 904 904 ≥ 7 ≥ 27∗

(9, 25, 26, 10) 1 917 524 524 ≥ 15 ≥ 80∗

(9, 26, 27, 10) 1 154 67 67 ≥ 2 ≥ 62∗

(9, 27, 28, 10) 610 0 0 0 0
(9, 28, 29, 10) 294 0 0 0 0
(9, 29, 30, 10) 133 0 0 0 0

(9,m,m + 1, 10) 95 0 0 0 0 m ≥ 30
(9,m,m + 2, 11) 5 443 0 0 0 0 m ≤ 22

(9, 23, 25, 11) 3 129 66 66 ≥ 34
(9, 24, 26, 11) 2 723 1 188 1 188 ≥ 105
(9, 25, 27, 11) 1 917 2 650 2 650 ≥ 52
(9, 26, 28, 11) 1 154 1 344 1 344 ≥ 1
(9, 27, 29, 11) 610 125 125 ≥ 60
(9, 28, 30, 11) 294 3 3 1 2
(9, 29, 31, 11) 133 0 0 0 0

(9,m,m + 2, 11) 103 0 0 0 0 m ≥ 30
(9,m,m + 3, 12) 5 443 0 0 0 0 m ≤ 22

(9, 23, 26, 12) 3 129 3 3 0 3
(9, 24, 27, 12) 2 723 335 335 ≥ 129
(9, 25, 28, 12) 1 917 3 275 3 275 ≥ 171
(9, 26, 29, 12) 1 154 5 928 5 928 ≥ 276
(9, 27, 30, 12) 610 2 171 2 171 ≥ 516
(9, 28, 31, 12) 294 113 113 ≥ 33
(9, 29, 32, 12) 133 0 0 0 0
(9, 30, 33, 12) 59 0 0 0 0

(9,m,m + 3, 12) 44 0 0 0 0 m ≥ 31
(9,m,m + 4, 13) 8 536 0 0 0 0 m ≤ 23

(9, 24, 28, 13) 2 723 33 33 ≥ 32∗

(9, 25, 29, 13) 1 917 1 223 1 223 ≥ 1 ≥ 387∗

(9, 26, 30, 13) 1 154 7 677 7 677 ≥ 3 ≥ 309
(9, 27, 31, 13) 610 9 773 9 773 ≥ 32 ≥ 13
(9, 28, 32, 13) 294 2 136 2 136 ≥ 4391

(9, 29, 33, 13) 133 27 27 ≥ 1 ≥ 9∗

1See Note added in proof.
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Table 1, continued from previous page

f -vector # graphs #E5 #S3 #np #P4

(9, 30, 34, 13) 59 0 0 0 0
(9,m,m + 4, 13) 44 0 0 0 0 m ≥ 31
(10,m,m, 10) 10 247 0 0 0 0 m ≤ 22
(10, 23, 23, 10) 35 219 4 4 0 4
(10, 24, 24, 10) 87 014 16 16 ≥ 2∗

(10, 25, 25, 10) 152 369 ≥ 296 pyramids
(10, 26, 26, 10) 203 469 5 550 5 550 ≥ 69 ≥ 2∗

(10, 27, 27, 10) 217 596 5 561 5 561 ≥ 204 ≥ 90∗

(10, 28, 28, 10) 192 964 1 662 1 662 ≥ 143 ≥ 13∗

(10, 29, 29, 10) 145 773 128 128 ≥ 2 ≥ 21∗

(10, 30, 30, 10) 95 827 3 3 0 3 Δ4(2),
Δ4(2)∗,W10

(10, 31, 31, 10) 55 762 0 0 0 0
(10,m,m, 10) 53 718 0 0 0 0 m ≥ 32

(10,m,m + 1, 11) 45 469 0 0 0 0 m ≤ 23
(10, 24, 25, 11) 87 014 6 6 ≥ 2∗

(10, 25, 26, 11) 152 369 136 136 ≥ 10∗

(10, 26, 27, 11) 203 469 6 794 6 794 ≥ 11 ≥ 633
(10, 27, 28, 11) 217 596 24 915 24 915 ≥ 22
(10, 28, 29, 11) 192 964 30 355 30 355 ≥ 1 ≥ 159
(10, 29, 30, 11) 145 773 11 916 11 916 ≥ 28
(10, 30, 31, 11) 95 827 1 441 1 441 ≥ 61 ≥ 1
(10, 31, 32, 11) 55 762 35 35 ≥ 9 ≥ 20∗

(10, 32, 33, 11) 29 199 2 2 2 0
(10, 33, 34, 11) 13 981 0 0 0 0
(10, 34, 35, 11) 6 202 0 0 0 0
(10, 35, 36, 11) 2 600 0 0 0 0

(10,m,m + 1, 11) 1 736 0 0 0 0 m ≥ 36
(10,m,m + 2, 12) 45 469 0 0 0 0 m ≤ 23

(10, 24, 26, 12) 87 014 2 2 ≥ 1
(10, 25, 27, 12) 152 369 2 2 ≥ 1
(10, 26, 28, 12) 203 469 1 051 1 051 ≥ 178
(10, 27, 29, 12) 217 596 23 884 23 884 ≥ 768
(10, 28, 30, 12) 192 964 91 727 91 727 ≥ 455
(10, 29, 31, 12) 145 773 112 266 112 266 ≥ 256
(10, 30, 32, 12) 95 827 47 141 47 141 ≥ 13 ≥ 1
(10, 31, 33, 12) 55 762 5 943 5 943 ≥ 521 ≥ 368
(10, 32, 34, 12) 29 199 225 225 ≥ 7
(10, 33, 35, 12) 13 981 1 1 1 0
(10, 34, 36, 12) 6 202 0 0 0 0
(10, 35, 37, 12) 2 600 0 0 0 0

(10,m,m + 2, 12) 1 736 0 0 0 0 m ≥ 36
(11, 22, 22, 11) 265 0 0 0 0
(11, 23, 23, 11) 10 391 0 0 0 0
(11, 24, 24, 11) 120 985 0 0 0 0
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Table 1, continued from previous page

f -vector # graphs #E5 #S3 #np #P4

(11, 25, 25, 11) 696 184 0 0 0 0
(11, 26, 26, 11) 2 504 998 21 21 ≥ 1
(11, 27, 27, 11) 6 383 318 322 322 ≥ 1
(11, 28, 28, 11) 12 417 723 ≥ 2635 pyramids
(11, 29, 29, 11) 19 379 000 ≥ 1
(11, 30, 30, 11) 25 121 426 ≥ 1
(11, 31, 31, 11) 27 749 332 ≥ 1
(11, 32, 32, 11) 26 626 961 ≥ 104
(11, 33, 33, 11) 22 528 512 ≥ 1
(11, 34, 34, 11) 17 005 570 100 100 ≥ 15 ≥ 1 P11

(11, 35, 35, 11) 11 561 155 2 2 2 0
(11, 36, 36, 11) 7 134 337 0 0 0 0

The spheres with the particular f -vectors (10, 32, 33, 11), (10, 33, 35, 12), and
(11, 35, 35, 11) of Theorem 1.1 will be presented and discussed in Section 5.

The proof of Theorem 1.3 follows the same pattern, with considerably higher
computation times. Table 2 shows the results of the computation for the potential
f -vectors (12,m,m, 12) for large m: The numbers of graphs to check (graphs on f0
vertices, with f1 edges, with minimal vertex degree at least 4, 2-connected) and the
numbers of strongly regular cellular 3-manifolds, strongly regular cellular 3-spheres,
non-polytopal spheres among them, and 4-polytopes. Blank spaces represent miss-
ing data (e.g., not enumerated or calculated). For time reasons, and since there
is a polytope, we did not enumerate the manifolds with f -vector (12, 39, 39, 12).
The results for larger m follow as any manifold with such an f -vector would be
2s2s, as verified in Brinkmann [10, Prop. 2.2.19], and these we have enumerated,
see Brinkmann and Ziegler [11, Thm. 2.1].

Table 2: Results for the potential f -vectors (12, 40, 40, 12) and (12, 41, 41, 12).

f -vector # graphs #E5 #S3 #np #P4

(12, 39, 39, 12) 4 078 410 035 ≥ 1 ≥ 1 ≥ 1 W 39
12

(12, 40, 40, 12) 2 997 683 218 4 4 4 0
(12, 41, 41, 12) 2 037 876 411 0 0 0 0
(12,m,m, 12) 4 880 253 668 0 0 0 0 m ≥ 42

5. Examples

According to Theorem 1.1 there are five f -vectors for which there is at least one
3-sphere but no 4-polytope. In this section we will present these 3-spheres. For
each of these f -vectors,

• the fact that there are no other 3-spheres than those we present in the
following depends on massive computation and does not seem to have a
reasonably short or “compact” proof,

• the fact that the objects that we present are, indeed, spheres, can be verified
in a variety of ways; in the following we present coordinates and images for
a diagram (in the sense of polytope theory; see Ziegler [37, Lect. 5]),
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• the fact that the spheres are not polytopal was verified on the computer
with oriented matroid techniques; in principle, one can extract human-
verifiable short proofs from the computation results; for this we give one
example below.

Examples 5.1. There are two 3-spheres with f -vector (10, 32, 33, 11):
• The sphere (10032,33) is given by the facet list:

F0 = {v0 , v2 , v4 , v5 , v9}
F1 = {v0 , v2 , v4 , v6 , v8}
F2 = {v1 , v3 , v6 , v7 , v9}
F3 = {v1 , v3 , v4 , v6 , v8}
F4 = {v0 , v2 , v5 , v7 , v8}
F5 = {v1 , v3 , v5 , v7 , v8}

F6 = {v0 , v1 , v4 , v6 , v9}
F7 = {v2 , v3 , v5 , v7 , v9}
F8 = {v1 , v2 , v4 , v7 , v8}
F9 = {v1 , v2 , v4 , v7 , v9}
F10 = {v0 , v3 , v5 , v6 , v8 , v9}

It is non-polytopal, but it has diagrams based on each of the facets F0,
F1, F2, F3, F4, F5, F6, and F7, but not based on one of F8, F9, or F10.
A diagram based on facet F2 is given in Figure 2. This sphere cannot
be realized by a fan, and thus it is not star-shaped in the sense of Ewald
[15, Sect. III.5].

• The sphere (10132,33) is given by the facet list:

F0 = {v0 , v3 , v5 , v6 , v8}
F1 = {v0 , v4 , v5 , v7 , v8}
F2 = {v0 , v3 , v4 , v6 , v7}
F3 = {v0 , v1 , v3 , v5 , v7}
F4 = {v1 , v3 , v5 , v8 , v9}
F5 = {v1 , v3 , v6 , v7 , v9}

F6 = {v0 , v2 , v4 , v6 , v8}
F7 = {v2 , v4 , v6 , v7 , v9}
F8 = {v2 , v4 , v5 , v8 , v9}
F9 = {v1 , v4 , v5 , v7 , v9}
F10 = {v2 , v3 , v6 , v8 , v9}

It is non-polytopal, but it has a diagram based on every facet and it can
be represented by a fan. A diagram based on facet F2 is given in Figure 3.

We did not manage to decide whether the second sphere (10132,33) has a star-
shaped embedding. An oriented matroid that would support such an embedding
exists. (Clearly every star-shaped sphere can be represented by a fan. The converse
is true for simplicial spheres, but not in general.)

The following is an example for a human-verifiable non-polytopality proof, for
the first sphere in Examples 5.1. The non-existence proofs for diagrams use the
same technique. For more details and more examples see Brinkmann [10].
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F2

v0 = (906, 197, 915)
v1 =
(228623/5810, 18, 986)
v2 = (90, 942, 119)
v3 = (983, 18, 10)
v4 = (485, 502, 941)
v5 = (448, 647, 296)
v6 = (974, 18, 908)
v7 = (18, 977, 14)
v8 = (665, 333, 592)
v9 = (983, 990, 985)

Figure 2. A diagram based on facet F2 for the sphere (10032,33)
with f -vector (10, 32, 33, 11).

F0

v0 = (11, 10, 26)
v1 = (13, 16, 10)
v2 = (9, 10, 11)
v3 = (16, 8, 10)
v4 = (9, 11, 14)
v5 = (12, 24, 9)
v6 = (11, 9, 11)
v7 = (11, 14, 16)
v8 = (5, 10, 8)
v9 = (11, 13, 10)

Figure 3. A diagram based on facet F0 for the sphere (10132,33)
with f -vector (10, 32, 33, 11).
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Proposition 5.2. The sphere (10032,33) is non-polytopal.

Proof. We will use a similar oriented matroid approach as in [11]. The following
arguments may be verified with reference to the list of labeled facets displayed in
Figure 4.

Figure 4. The facets of the sphere (10032,33) from F0 (top left) to
F10 (bottom right).
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With reference to facet F0, we may choose χ(v0 , v2 , v4 , v9 , vi ) = +1 for all
vi �∈ F0. With this we can derive:

χ(v3, v5, v6, v8, v9)
F10= 0,

(5)

χ(v0, v1, v2, v4, v9) = −1
F9⇒ χ(v1, v2, v4, v5, v9) = 1

F0⇒ χ(v2, v4, v5, v8, v9) = −1,

(6)

χ(v0, v2, v4, v8, v9) = −1
F1⇒ χ(v0, v1, v2, v4, v8) = 1

F8⇒ χ(v1, v2, v4, v6, v8) = −1

F1⇒ χ(v2, v4, v6, v8, v9) = −1,

(7)

χ(v0, v2, v4, v8, v9) = −1
F1⇒ χ(v0, v2, v4, v7, v8) = 1

F8⇒ χ(v2, v4, v7, v8, v9) = 1,

(8)

χ(v0, v2, v4, v8, v9) = −1
F1⇒ χ(v0, v2, v4, v5, v8) = 1

F4⇒ χ(v0, v2, v5, v6, v8) = −1

F1⇒ χ(v0, v2, v3, v6, v8) = −1
F10⇒ χ(v0, v1, v3, v6, v8) = −1

F3⇒ χ(v1, v3, v6, v8, v9) = −1
F10⇒ χ(v2, v3, v6, v8, v9) = −1,

(9)

χ(v0, v2, v4, v6, v9) = −1
F1⇒ χ(v0, v1, v2, v4, v6) = 1

F6⇒ χ(v0, v1, v4, v6, v8) = 1

F3⇒ χ(v1, v4, v6, v8, v9) = 1,

(10)

χ(v0, v2, v4, v5, v8) = 1
F4⇒ χ(v0, v2, v3, v5, v8) = 1

F10⇒ χ(v0, v3, v5, v7, v8) = 1

F4⇒ χ(v0, v1, v5, v7, v8) = 1
F5⇒ χ(v1, v5, v7, v8, v9) = 1,

(11)

χ(v0, v1, v2, v4, v6)
(10)
= 1

F6⇒ χ(v0, v1, v3, v4, v6) = 1
F3⇒ χ(v1, v3, v4, v6, v9) = 1

F2⇒ χ(v0, v1, v3, v6, v9) = 1
F10⇒ χ(v0, v3, v6, v7, v9) = 1

F2⇒ χ(v3, v6, v7, v8, v9) = −1,

(12)

χ(v0, v1, v3, v6, v9)
(12)
= 1

F6⇒ χ(v0, v1, v6, v7, v9) = −1
F2⇒ χ(v1, v6, v7, v8, v9) = 1,

(13)

χ(v0, v2, v3, v6, v8)
(9)
= −1

F10⇒ χ(v0, v3, v4, v6, v8) = 1
F3⇒ χ(v3, v4, v6, v8, v9) = 1,

(14)

χ(v0, v2, v4, v7, v8)
(8)
= 1

F4⇒ χ(v0, v1, v2, v7, v8) = −1
F8⇒ χ(v1, v2, v5, v7, v8) = −1

F4⇒ χ(v2, v5, v7, v8, v9) = −1,

(15)

χ(v0, v1, v2, v7, v8)
(15)
= −1

F8⇒ χ(v1, v2, v3, v7, v8) = −1
F5⇒ χ(v1, v3, v7, v8, v9) = 1,

(16)

χ(v0, v3, v5, v7, v8)
(11)
= 1

F5⇒ χ(v3, v5, v7, v8, v9) = 1,

(17)
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With these values for the partial chirotope, we can find some new values of χ
using the Grassmann–Plücker relations:

{χ(v7, v8, v9, v1, v3)χ(v7, v8, v9, v5, v6), χ(v7, v8, v9, v1, v5)χ(v7, v8, v9, v3, v6),

χ(v7, v8, v9, v1, v6)χ(v7, v8, v9, v3, v5)}
(16),(11),(12),(13),(17)

= {1 · χ(v7, v8, v9, v5, v6),−1 · (−1), 1 · 1},
⇒ χ(v7, v8, v9, v5, v6) = −1,(18)

{χ(v6, v8, v9, v2, v3)χ(v6, v8, v9, v5, v7), χ(v6, v8, v9, v2, v5)χ(v6, v8, v9, v3, v7),

χ(v6, v8, v9, v2, v7)χ(v6, v8, v9, v3, v5)}
(9),(18),(12),(5)

= {(−1) · 1,−χ(v6, v8, v9, v2, v5) · 1, 0},
⇒ χ(v6, v8, v9, v2, v5) = −1,(19)

{χ(v6, v8, v9, v1, v3)χ(v6, v8, v9, v4, v7), χ(v6, v8, v9, v1, v4)χ(v6, v8, v9, v3, v7),

χ(v6, v8, v9, v1, v7)χ(v6, v8, v9, v3, v4)}
(9),(10),(12),(13),(14)

= {(−1) · χ(v6, v8, v9, v4, v7),−1 · (−1), (−1) · 1},
⇒ χ(v6, v8, v9, v4, v7) = −1,(20)

{χ(v6, v8, v9, v3, v4)χ(v6v8, v9, v5, v7), χ(v6, v8, v9, v3, v5)χ(v6, v8, v9, v4, v7),

χ(v6, v8, v9, v3, v7)χ(v6, v8, v9, v4, v5)}
(14),(18),(5),(12)

= {1 · 1, 0, 1 · χ(v6, v8, v9, v4, v5)},
⇒ χ(v6, v8, v9, v4, v5) = −1,(21)

{χ(v5, v8, v9, v2, v4)χ(v5, v8, v9, v6, v7), χ(v5, v8, v9, v2, v6)χ(v5, v8, v9, v4, v7),

χ(v5, v8, v9, v2, v7)χ(v5, v8, v9, v4, v6)}
(6),(18),(19),(15),(21)

= {(−1) · (−1),−1 · χ(v5, v8, v9, v4, v7), (−1) · (−1)},
⇒ χ(v5, v8, v9, v4, v7) = 1.(22)

Finally, we get the Grassmann–Plücker relation

{χ(v4, v8, v9, v2, v5)χ(v4, v8, v9, v6, v7), χ(v4, v8, v9, v2, v6)χ(v4, v8, v9, v5, v7),

χ(v4, v8, v9, v2, v7)χ(v4, v8, v9, v5, v6)}
(6),(20),(7),(22),(8),(21)

= {1 · 1,− 1 · (−1), (−1) · (−1)},(23)

which is neither {0}, nor contains {−1, 1}. Thus, the Grassmann–Plücker relations
cannot be satisfied, so the sphere (10032,33) does not support an oriented matroid.
In particular, it is not polytopal. �

Example 5.3. There is exactly one 3-sphere with f -vector (10, 33, 35, 12). This
sphere (1033,35) is given by the facet list:

F0 = {v1 , v4 , v7 , v9}
F1 = {v2 , v4 , v7 , v9}
F2 = {v0 , v2 , v4 , v5 , v8}
F3 = {v0 , v2 , v4 , v6 , v9}
F4 = {v1 , v3 , v6 , v7 , v8}
F5 = {v1 , v3 , v4 , v6 , v9}

F6 = {v0 , v2 , v5 , v7 , v9}
F7 = {v1 , v3 , v5 , v7 , v9}
F8 = {v0 , v1 , v4 , v6 , v8}
F9 = {v1 , v2 , v4 , v7 , v8}
F10 = {v2 , v3 , v5 , v7 , v8}
F11 = {v0 , v3 , v5 , v6 , v8 , v9}
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It is not polytopal. It has a diagram based on each of the facets F2, F3, F4, F5,
F6, F7, F8, and F10, but not based on one of F0, F1, F9, or F11. A diagram based
on facet F2 is given in Figure 5. The sphere cannot be represented by a fan.

F2

v0 = (1306, 2451, 4264)
v1 = (2471, 990, 1976)
v2 = (2881, 3713, 856)
v3 = (1412, 2367, 1947)
v4 = (2812, 766, 2282)
v5 = (1451, 2517, 2110)
v6 = (1965, 1505, 2347)
v7 = (1772, 2235, 976)
v8 = (636, 941, 864)
v9 = (1612, 2283, 2145)

Figure 5. A diagram based on facet F2 for the sphere (1033,35)
with f -vector (10, 33, 35, 12).

Examples 5.4. There are exactly two 3-spheres with f -vector (11, 35, 35, 11). They
are dual to each other. These spheres (11035) and (11135) are given by facet lists:

(11035)
F0 = {v1 , v2 , v4 , v6 , v9}
F1 = {v3 , v5 , v7 , v8 , v9}
F2 = {v0 , v6 , v7 , v8 , v10}
F3 = {v2 , v3 , v4 , v8 , v9}
F4 = {v0 , v1 , v2 , v5 , v6 , v10}
F5 = {v3 , v4 , v7 , v8 , v10}
F6 = {v1 , v5 , v6 , v7 , v9}
F7 = {v0 , v1 , v2 , v4 , v8 , v10}
F8 = {v3 , v5 , v6 , v7 , v10}
F9 = {v0 , v2 , v6 , v7 , v8 , v9}
F10 = {v1 , v3 , v4 , v5 , v9 , v10}

(11135)
F0 = {v2 , v4 , v7 , v9}
F1 = {v0 , v4 , v6 , v7 , v10}
F2 = {v0 , v3 , v4 , v7 , v9}
F3 = {v1 , v3 , v5 , v8 , v10}
F4 = {v0 , v3 , v5 , v7 , v10}
F5 = {v1 , v4 , v6 , v8 , v10}
F6 = {v0 , v2 , v4 , v6 , v8 , v9}
F7 = {v1 , v2 , v5 , v6 , v8 , v9}
F8 = {v1 , v2 , v3 , v5 , v7 , v9}
F9 = {v0 , v1 , v3 , v6 , v9 , v10}
F10 = {v2 , v4 , v5 , v7 , v8 , v10}

Both spheres are not fan-like, hence they have no star-shaped embedding. Fur-
thermore, the sphere (11035) does not have a diagram with base F6, F9, or F10;
the sphere (11135) has a diagram based on each of F4 and F6, but does not have a
diagram with base F0, F1, F3, F5, F9, or F10. A diagram for (11135) with base F6 is
given in Figure 6.

Similar details can be found in Brinkmann [10, Sect. 3.2.4] for the four self-dual
3-spheres of Theorem 1.3.
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F6

v0 = (0, 0, 0)
v1 = (1797, 1585, 512)
v2 = (2009, 2395, 1622)
v3 = (460, 1113, 648)
v4 = (0, 0, 1000)
v5 = (8565805/4137, 2055, 1316)
v6 = (2850, 426, 139)
v7 = (521, 1238, 853)
v8 = (2946124555/1064794, 1020, 770)
v9 = (423, 2580, 139)
v10 = (1161, 1055, 677)

Figure 6. A diagram based on facet F6 for the sphere (11135) with
f -vector (11, 35, 35, 11).
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Note added in proof

After this work was completed, Moritz Firsching ([16]) achieved a complete clas-
sification of 4-polytopes and 3-spheres with nine vertices (paper in preparation).
His computations yield more examples than documented in Table 1 for two specific
f -vectors, namely 2224 spheres and 1829 polytopes for the f -vector (9, 28, 32, 13)
and 45 spheres and 26 polytopes for the f -vector (9, 29, 33, 13). It would of course
be desirable to have an independent computation and check for all the results of
the present paper.
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2000, pp. 105–110. MR1785294

[21] G. Kalai, Rigidity and the lower bound theorem. I, Invent. Math. 88 (1987), no. 1, 125–151,
DOI 10.1007/BF01405094. MR877009

[22] V. Klee, A combinatorial analogue of Poincaré’s duality theorem, Canad. J. Math. 16 (1964),
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