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SEMI-INFINITE QUASI-TOEPLITZ MATRICES WITH

APPLICATIONS TO QBD STOCHASTIC PROCESSES

DARIO A. BINI, STEFANO MASSEI, AND BEATRICE MEINI

Abstract. Denote by W1 the set of complex valued functions of the form
a(z) =

∑+∞
i=−∞ aizi such that

∑+∞
i=−∞ |iai| < ∞. We call QT-matrix a

quasi-Toeplitz matrix A, associated with a symbol a(z) ∈ W1, of the form
A = T (a) + E, where T (a) = (ti,j)i,j∈Z+ is the semi-infinite Toeplitz matrix

such that ti,j = aj−i, for i, j ∈ Z+, and E = (ei,j)i,j∈Z+ is a semi-infinite

matrix such that
∑+∞

i,j=1 |ei,j | is finite. We prove that the class of QT-matrices

is a Banach algebra with a suitable sub-multiplicative matrix norm. We in-
troduce a finite representation of QT-matrices together with algorithms which
implement elementary matrix operations. An application to solving quadratic
matrix equations of the kind AX2 +BX +C = 0, encountered in the solution
of Quasi-Birth and Death (QBD) stochastic processes with a denumerable set
of phases, is presented where A,B,C are QT-matrices.

1. Introduction

Toeplitz matrices, i.e., matrices of the kind T = (ti,j) such that ti,j = aj−i for
some sequence {ak}k∈Z, are encountered in many applications. In certain stochastic
processes, like in the analysis of random walks in the quarter plane [16], [24] or in
the analysis of the tandem Jackson queue models [19], [32], one typically encounters
semi-infinite Toeplitz matrices, where the indices of the entries range in the set Z+

of positive integers [32], [27], [20], [35]. In fact, these applications are modeled by
a block tridiagonal generator Q of the form

Q =

⎡⎢⎢⎢⎣
Â0 Â1

A−1 A0 A1

A−1 A0 A1

. . .
. . .

. . .

⎤⎥⎥⎥⎦ ,

where the blocks A−1, A0, A1, Â0, Â1 are semi-infinite tridiagonal and quasi-
Toeplitz matrices. More specifically, they can be written as the sum of a tridiagonal
Toeplitz matrix and a correction, that is, Ai = trid(μi, σi, νi) + Fi, i = −1, 0, 1,

Âi = trid(μ̂i, σ̂i, ν̂i)+ F̂i, i = 0, 1. Here, trid(μ, σ, ν) denotes a semi-infinite tridiag-
onal Toeplitz matrix with sub-diagonal, diagonal and super-diagonal entries μ, σ, ν,

respectively, and Fi, F̂i denote matrices which are possibly nonzero only in the
entries of indices (1, 1) and (1, 2). Generators Q in block tridiagonal form charac-
terize the very wide class of Quasi-Birth-and-Death (QBD) processes [25]. Observe
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that the Toeplitz part trid(μ, σ, ν) is uniquely determined by the Laurent polyno-
mial a(z) = z−1μ+ σ + zν which is called the symbol associated with the Toeplitz
matrix.

An important problem in the analysis of a QBD process is to compute the mini-
mal nonnegative solutions G and R of the associated matrix equations A−1+A0X+
A1X

2 = 0 and X2A−1 +XA0 + A1 = 0, respectively; see for instance [25], [7]. If
the matrix size is finite, the algorithms of Cyclic Reduction and of Logarithmic
Reduction can be effectively used to solve these equations. Other techniques based
on fixed point iterations can be used as well. Theoretically, these algorithms can
also be used in the case where matrices are semi-infinite. However, in this case,
difficult computational issues are encountered because performing arithmetic oper-
ations between Toeplitz matrices, generally causes the loss of sparsity and of the
Toeplitz structure. This creates the nontrivial problem of storing infinite matrices,
with apparently no structure, by means of a finite number of parameters. Another
interesting issue is to figure out if the solutions R and G of the associated matrix
equations share, in some form, part of the Toeplitz structure.

Let W be the Wiener class formed by the complex valued functions a(z) =∑
i∈Z

aiz
i, defined on the unit circle, such that ‖a‖W :=

∑
i∈Z

|ai| is finite. More-

over, defineW1 ⊂ W the subclass of functions a(z) such that a′(z) =
∑

i∈Z
iaiz

i−1 ∈
W .

In this work we introduce the class QT of semi-infinite Quasi-Toeplitz (QT)
matrices, that is, matrices of the form A = T (a) + E, where T (a) is the Toeplitz
matrix associated with the symbol a(z) ∈ W1, and the correction E = (ei,j) is
such that ‖E‖F :=

∑
i,j∈Z+ |ei,j | is finite. This class provides a generalization of

the structure encountered in QBD problems where the symbol a(z) is a Laurent
polynomial and the correction matrix has only a finite number of nonzero entries.

We prove that QT is a Banach algebra with the norm ‖ · ‖QT such that ‖T (a)+
E‖QT := ‖a‖W + ‖a′‖W + ‖E‖F and ‖AB‖QT ≤ ‖A‖QT ‖B‖QT for any A,B ∈ QT .

A nice property of the class QT is that for any A ∈ QT and for any ε > 0
there exists B ∈ QT , determined by a finite number of parameters, such that
‖A − B‖QT ≤ ε. This fact allows us to represent any matrix in QT with a finite
number of parameters up to an arbitrarily small error in the QT-norm. We also
introduce algorithms that execute the arithmetic operations between QT-matrices,
and provide their Matlab implementation. This way, we may extend standard
algorithms, valid for finite matrices, to the case of QT-matrices. In particular, we
show how the algorithm of Cyclic Reduction [9] can be adapted to solve quadratic
matrix equations of the kind AX2 + BX + C = 0, where A,B,C ∈ QT , which
are encountered in QBD processes modeling random walks in the quarter plane
[16], [24] and the Jackson Tandem Queue [19], [22]. Some numerical experiments
performed with a set of problems presented in [22] and in [24] show the effectiveness
of our approach.

The decomposition of a matrix as the sum of a Toeplitz part plus a correction has
been used in the literature in different contexts. For instance, in [12, Example 2.28]
matrices of the form T (a) +E are considered where E is a compact operator with
finite �2 operator norm and it is shown this set is a Banach algebra in L2. It is worth
pointing out that the boundedness of ‖E‖2 does not imply that ‖E‖F < ∞ which is
required for our computational goals. In the framework of Toeplitz preconditioning
and in the analysis of asymptotic spectral properties of finite Toeplitz sequences the
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decomposition of a Toeplitz matrix in the form T (a) + E + R is considered where
T (a) is banded, E and R are corrections of small norm and small rank, respectively;
among the many papers on this subject we cite [4], [33], [36] with the many related
references.

The analysis and the tools presented in this paper can be used for the effec-
tive numerical computation of matrix functions expressed by means of a Taylor
expansion, like the exponential function, or expressed by means of an integral rep-
resentation. These applications are shown in detail in [8], [10]. In particular, in
[8] it is shown how this machinery can be extended to the case where matrices are
finitely large. The problem of computing the exponential of finite Toeplitz matrices
has been recently investigated in [21] relying on the concept of displacement rank.

It is worth pointing out that the definition of matrix function of a QT-matrix
A, as well as the algorithms implementing the QT-matrix arithmetic, are somehow
related to the decay properties of the coefficients of the matrices T (f(a)) and Ef(a)

such that f(A) = T (f(a)) + Ef(a), and also to the numerical rank of the product
of two Hankel matrices associated with analytic functions. The analysis of decay
properties of matrix functions and of the singular values of some structured ma-
trices, having a displacement rank structure, have recently received much interest
and have been investigated in [1], [2], [3], [31].

The paper is organized as follows. In Section 2 we recall some preliminary prop-
erties which are needed in our analysis. In Section 3 we prove that QT is a Banach
algebra. In Section 4 we describe the way in which matrix operations can be defined
and implemented in QT and report a few notes on our Matlab implementation of
QT-arithmetic. In Section 5 we present an application to solving a matrix equation
encountered in QBD stochastic processes together with the results of some numer-
ical experiments which confirm the effectiveness of the class QT . Section 6 draws
the conclusions.

2. Notation and preliminaries

Denote by T = {z ∈ C : |z| = 1} the unit circle in the complex plane, and by

W the Wiener class formed by the functions a(z) =
∑+∞

i=−∞ aiz
i : T → C such that∑+∞

i=−∞ |ai| < +∞. Recall thatW is a Banach algebra, that is, a vector space closed
under multiplication, endowed with the norm ‖a‖W :=

∑
i∈Z

|ai| which makes the
space complete and such that ‖ab‖W ≤ ‖a‖W‖b‖W for any a(z), b(z) ∈ W . We refer
the reader to the first chapter of the book [12] for more details.

In the following, we denote by a+(z) and by a−(z) the power series defined by
the coefficients of a(z) with positive and with negative powers, respectively, that
is, a+(z) =

∑
i∈Z+ aiz

i and a−(z) =
∑

i∈Z+ a−iz
i, so that a(z) = a0 + a+(z) +

a−(z−1). We associate with the Laurent series a(z), and with the power series
b(z) =

∑∞
i=0 biz

i the following semi-infinite matrices,

T (a) = (ti,j)i,j , ti,j = aj−i,

H(b) = (hi,j)i,j , hi,j = bi+j−1, i, j ∈ Z+,

respectively. Observe that T (a) is a Toeplitz matrix while H(b) is Hankel.
Finally, denote by F the class of semi-infinite matrices F = (fi,j)i,j∈Z+ such

that ‖F‖F :=
∑

i,j∈Z+ |fi,j | is finite. The norm that we use in this case is just the
1-norm if we look at the matrix F as an infinite vector.



2814 DARIO A. BINI, STEFANO MASSEI, AND BEATRICE MEINI

Observe that F is a vector space, closed under rows-by-columns multiplication,
and ‖F‖F is a norm over F which is endowed of the sub-multiplicative property.
In the following, we write (F , ‖ · ‖F ) to denote the linear space F endowed with the
norm ‖ · ‖F . We have the following.

Lemma 2.1. (F , ‖ · ‖F ) equipped with matrix sum and multiplication is a Banach
algebra over C.

Proof. We need to show that given E,F ∈ F and α ∈ C it holds that

(i) αE ∈ F ,
(ii) E + F ∈ F ,
(iii) EF ∈ F and ‖EF‖F ≤ ‖E‖F‖F‖F ,
(iv) (F , ‖ · ‖F ) is a complete metric space.

Clearly,
∑

i,j∈Z+ |αei,j | = |α|
∑

i,j∈Z+ |ei,j | < +∞ which proves (i). By the triangu-

lar inequality one obtains that
∑

i,j∈Z+ |ei,j+fi,j | ≤
∑

i,j∈Z+ |ei,j |+
∑

i,j∈Z+ |fi,j | <
+∞ which implies (ii). If H = EF = (hi,j), then hi,j =

∑
r∈Z+ ei,rfr,j so that,

defining αr =
∑

i∈Z+ |ei,r|, and βr =
∑

j∈Z+ |fr,j |, for the quantity ‖EF‖F =∑
i,j∈Z+ |hi,j | we have

‖EF‖F ≤
∑

i,j,r∈Z+

|ei,r| · |fr,j | =
∑
r∈Z+

αrβr ≤
( ∑

r∈Z+

αr

)( ∑
r∈Z+

βr

)
= ‖E‖F · ‖F‖F ,

which shows (iii). Finally, we observe that any matrix E ∈ F can be viewed as a
vector v = (vk)k∈Z+ obtained by suitably ordering the entries ei,j . Moreover, the
norm ‖ · ‖F corresponds to the �1-norm in the space of infinite vectors having finite
sum of their moduli. This way, the space F actually coincides with �1, which is a
Banach space. Thus, we get (iv). �

Observe that the condition ‖F‖F < +∞ implies that for any ε > 0 there exists
an integer k > 0 such that

∑
max(i,j)≥k |fi,j | < ε, that is, the entries of the matrix

F decay to zero as either i → ∞ or j → ∞ so that F can be approximated with
an arbitrarily small error by a matrix with finite support. This property is of
fundamental importance in order to represent the matrix F with a finite number
of parameters up to an error which is smaller than a given bound, say smaller than
the machine precision.

Any semi-infinite matrix S = (si,j)i,j∈Z+ can be viewed as a linear operator,
acting on semi-infinite vectors v = (vi)i∈Z+ , which maps the vector v onto the
vector u such that ui =

∑
j∈Z+ si,jvj , provided that the results of the summations

are finite.
Indeed, the matrices F ∈ F define linear operators on the space �1 of semi-infinite

vectors v = (vi) such that ‖v‖1 =
∑

i∈Z+ |vi| is finite, since∑
i∈Z+

|
∑
j∈Z+

fi,jvj | ≤
∑

i,j∈Z+

|fi,jvj | ≤
∑

i,j∈Z+

|fi,j | · sup
k

|vk|,

which is finite as the product of two finite terms.
For any integer p ≥ 1, we may wonder if also the matrices T (a), H(a+), and

H(a−) define linear operators acting on the Banach space �p formed by vectors v
such that the �p-norm ‖v‖p = (

∑
i∈Z+ |vi|p)1/p is finite. In this case we may evaluate

the p-norm of the operator S (operator norm) as ‖S‖p := sup‖v‖p=1 ‖Sv‖p. The
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answer to this question is given by the following result of [12] which relates the
matrix T (a)T (b) with T (ab), H(a−) and H(a+).

Theorem 2.2. For a(z), b(z) ∈ W let c(z) = a(z)b(z). Then we have

T (a)T (b) = T (c)−H(a−)H(b+).

Moreover, for any a(z) ∈ W and for any p ≥ 1, including p = ∞, we have

‖T (a)‖p ≤ ‖a‖W , ‖H(a−)‖p ≤ ‖a−‖W , ‖H(a+)‖p ≤ ‖a+‖W .

A direct consequence of the above result is that the product of two Toeplitz
matrices can be written as a Toeplitz matrix plus a correction whose �p-norm is
bounded by ‖a‖W‖b‖W .

A similar property holds for matrix inversion in the case where the function a(z)
is nonzero for |z| = 1 and its winding number is zero. In fact, in this case we may
apply another classical result (we refer to the book [11] for more details) which
relates the invertibility of the operator T (a) to the winding number κ of a(z), that
is, the (integer) number of times that the complex number a(cos θ + i sin θ), where
i2 = −1, winds around the origin as θ moves from 0 to 2π.

Theorem 2.3 ([17], [13]). Let a(z) be a continuous function from T in C. Then
the linear operator T (a) is invertible if and only if the winding number of a(z) is
zero and a(z) does not vanish on T.

Thus, under the assumptions of the above theorem, it follows that T (a) is in-
vertible and we have T (a)−1 = T (a−1) +E, where ‖E‖p is bounded from above by
a constant [12, Proposition 1.18].

In the analysis that we are going to perform in the next section, the above
properties concerning the �p-norms are very useful, but are not enough to arrive
at an algorithmic implementation concerning Toeplitz and quasi-Toeplitz matrices.
In fact, our request is to write the product and the inverse of Toeplitz matrices as
a Toeplitz matrix plus a correction whose entries have a decay along the diagonals.
In fact, in this case, the correction can be approximated with any precision by using
a finite number of parameters. Observe that, for the matrix product, this property
is satisfied if E = H(a−)H(b+) ∈ F in view of Theorem 2.2.

Finally, we recall a result concerning the Wiener-Hopf factorization of a(z) which
will be useful next [13, Theorem 1.14].

Theorem 2.4. Let a(z) ∈ W be a function which does not vanish for z ∈ T and
such that its winding number is κ. Then a(z) admits the Wiener-Hopf factorization

a(z) = u(z)zκ�(z),

where u(z) =
∑∞

i=0 uiz
i, �(z) =

∑∞
i=0 �iz

−i are in W and u(z), �(z−1) do not
vanish in the closed unit disk. If κ = 0, the factorization is said canonical.

3. Quasi-Toeplitz matrices

In this section we introduce the classes of quasi-Toeplitz matrices and analyze
their properties.

Definition 3.1. We denote W1 = {a(z) ∈ W : a(z) continuous, and a′(z) ∈ W},
and define the norm

‖a‖W1
= ‖a‖W + ‖a′‖W .
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We recall that W1 is a Banach algebra with the norm ‖a‖W1
; see [13].

Definition 3.2. We say that the semi-infinite matrix A is a quasi-Toeplitz matrix
(QT-matrix) if it can be written in the form

A = T (a) + E,

where a(z) =
∑+∞

i=−∞ aiz
i ∈ W1 and E = (ei,j) ∈ F . We refer to T (a) as the

Toeplitz part of A, and to E as the correction. We denote by QT the class of
QT-matrices. Moreover, we define the following norm on QT

‖T (a) + E‖QT := ‖a‖W + ‖a′‖W + ‖E‖F .

Observe that given A ∈ QT there is a unique way to decompose it in the sense of
Definition 3.2. In fact, suppose by contradiction that there exist a1(z), a2(z) ∈ W1

and E1, E2 ∈ F with a1 	= a2 and E1 	= E2 such that

A = T (a1) + E1 = T (a2) + E2.

Then we should have E1 −E2 = T (a2)− T (a1) = T (a2 − a1), hence ‖E1 −E2‖F =
‖T (a2−a1)‖F . On the other hand, since T (a2−a1) 	= 0 we have ‖T (a2−a1)‖F = ∞,
which contradicts the fact that E1 − E2 ∈ F .

Lemma 3.3. The set QT endowed with the norm ‖ · ‖QT is a Banach space.

Proof. The set of quasi-Toeplitz matrices is clearly isomorphic to the direct sum
QT 
 W1 ⊕ F . Since both W1 and F are Banach spaces the composition of the
1-norm of R2 with the vector valued function T (a) + E → (‖a‖W + ‖a′‖W , ‖E‖F )
makes W1 ⊕F a complete metric space. �

The class QT includes all the matrices encountered in QBD processes, formed
by a banded Toeplitz part, and by a correction E such that ei,j = 0 for i, j > k for
some integer k.

The goal of this section is to prove that the class of QT-matrices is a normed
matrix algebra, i.e., a vector space closed under matrix multiplication. We provide
a few results which are useful to prove this property. The following lemma shows
that the product of two semi-infinite Toeplitz matrices associated with symbols in
W1 belongs to QT .

Lemma 3.4. Let a(z), b(z) ∈ W1, and set c(z) = a(z)b(z). Then T (a)T (b) =
T (c) + Ec, where Ec ∈ F ; moreover,

‖Ec‖F ≤ ‖H(a−)‖F · ‖H(b+)‖F =
∑
i∈Z+

i|a−i|
∑
i∈Z+

i|bi|.

Proof. From Theorem 2.2 we deduce that T (a)T (b) = T (c) + Ec where we set
Ec = −H(a−)H(b+). Let us prove that H(a−), H(b+) ∈ F . We have ‖H(b+)‖F =∑

i,j∈Z+ |bi+j−1|. Setting k = i+j−1 we may write ‖H(b+)‖F =
∑

k∈Z+ k|bk| which
is finite since b(z) ∈ W1. The same argument applies to H(a−). In view of Lemma
2.1, F is a normed matrix algebra therefore ‖Ec‖F ≤ ‖H(a−)‖F · ‖H(b+)‖F <
+∞. �
Remark 3.5. Observe that the quantities

∑
i∈Z+ i|a−i| and

∑
i∈Z+ i|bi| coincide with

the W-norms of the first derivatives of the functions a−(z) and b+(z), respectively.
This way we may rewrite the bound given in Lemma 3.4 as

(3.1) ‖Ec‖F ≤ ‖(a−)′‖W‖(b+)′‖W ≤ ‖a′‖W‖b′‖W .
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The condition a(z), b(z) ∈ W1 is needed to prove Lemma 3.4, as it is demon-

strated by the following example. Consider the case where a(z) =
∑+∞

i=0 a−iz
−i,

b(z) =
∑+∞

i=0 biz
i, a−i = bi = i−3/2. Clearly a(z), b(z) ∈ W but a(z)′ and b(z)′ are

not in W since
∑

i∈Z+ ia−i and
∑

i∈Z+ ibi are not convergent. Moreover,

‖H(a−)H(b+)‖F =
∑

i,j∈Z+

+∞∑
r=0

1

(i+ r)3/2
1

(r + j)3/2
=

+∞∑
r=0

(
+∞∑

k=r+1

1

k3/2

)2

.

This is the sum of the squares of the remainders of the series
∑+∞

i=1
1

i3/2
. This sum

diverges since these remainders behave like
∫ +∞
r

1
x3/2 dx = 2√

r
.

Now we can prove the main result of this section which states that QT is closed
under multiplication.

Theorem 3.6. Let A,B ∈ QT , where A = T (a) + Ea, B = T (b) + Eb. Then we
have C = AB = T (c) + Ec ∈ QT with c(z) = a(z)b(z). Moreover,

‖Ec‖F ≤ ‖H(a−)‖F · ‖H(b+)‖F + ‖a‖W‖Eb‖F + ‖b‖W‖Ea‖F + ‖Ea‖F · ‖Eb‖F .

Proof. We have C = AB = (T (a) + Ea)(T (b) + Eb). Applying Theorem 2.2 yields

C = T (c)−H(a−)H(b+) + T (a)Eb + EaT (b) + EaEb =: T (c) + Ec,

where

(3.2) Ec = −H(a−)H(b+) + T (a)Eb + EaT (b) + EaEb.

Therefore, it is sufficient to prove that ‖Ec‖F is finite. From Lemmas 3.4 and 2.1 it
follows that both ‖H(a−)H(b+)‖F and ‖EaEb‖F are finite. It remains to show that
‖EaT (b)‖F and ‖T (a)Eb‖F are finite. We prove this property only for ‖T (a)Eb‖F

since the boundedness of the other matrix norm follows by transposition. In fact,
for any F ∈ F one has ‖F‖F = ‖FT ‖F and T (a)T = T (â), where â(z) = a(z−1)
and ‖a‖W = ‖â‖W . Denote H = T (a)Eb = (hi,j) and Eb = (ei,j). We have

hi,j =
∑+∞

r=1 ar−ier,j so that

‖H‖F =
∑

i,j∈Z+

|hi,j | ≤
∑

i,j∈Z+

+∞∑
r=1

|ar−ier,j |.

Substituting k = r − i yields

‖H‖F ≤
∑
k∈Z

|ak|
+∞∑
j=1

+∞∑
i=−k+1

|ek+i,j |.

Since
∑+∞

j=1

∑+∞
i=−k+1 |ek+i,j | =

∑+∞
j=1

∑+∞
i=1 |ei,j | = ‖Eb‖F for any k, we have

‖H‖F ≤
∑
k∈Z

|ak|‖Eb‖F = ‖a‖W‖Eb‖F < +∞.

Thus, taking norms in (3.2) yields

‖Ec‖F ≤ ‖H(a−)‖F · ‖H(b+)‖F + ‖a‖W‖Eb‖F + ‖Ea‖F · ‖b‖W + ‖Ea‖F · ‖Eb‖F ,

which completes the proof. �
Observe that in view of Remark 3.5 we may write

(3.3) ‖Ec‖F ≤ ‖a′‖W‖b′‖W + ‖a‖W‖Eb‖F + ‖Ea‖F · ‖b‖W + ‖Ea‖F · ‖Eb‖F .

Now, our next goal is to prove that the class QT is a Banach algebra.
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Theorem 3.7. The class QT equipped with the norm ‖·‖QT is a Banach algebra
over C. Moreover, ‖AB‖QT ≤ ‖A‖QT ‖B‖QT for any matrices A,B ∈ QT .

Proof. Theorem 3.6 ensures the closure of QT under matrix multiplication. To
prove the sub-multiplicative property of the norm, i.e.,

‖AB‖QT ≤ ‖A‖QT · ‖B‖QT

for any A,B ∈ QT , A = T (a) + Ea, B = T (b) + Eb, observe that

‖ab‖W1
=‖ab‖W + ‖(ab)′‖W = ‖ab‖W + ‖a′b+ ab′‖W

≤‖a‖W‖b‖W + ‖a′‖W‖b‖W + ‖a‖W‖b′‖W .
(3.4)

Since ‖AB‖QT = ‖ab‖W1
+ ‖Ec‖F , for c(z) = a(z)b(z) and Ec defined as in Theo-

rem 3.6, by applying (3.3) and (3.4) we obtain

‖AB‖QT ≤ ‖ab‖W1
+ ‖a′‖W‖b′‖W + ‖a‖W‖Eb‖F + ‖b‖W‖Ea‖F + ‖Ea‖F ‖Eb‖F

≤ ‖a‖W‖b‖W + ‖a′‖W‖b‖W + ‖a‖W‖b′‖W

+ ‖a′‖W‖b′‖W + ‖a‖W‖Eb‖F + ‖b‖W‖Ea‖F + ‖Ea‖F ‖Eb‖F

= (‖a‖W + ‖a′‖W )(‖b‖W + ‖b′‖W )

+ ‖a‖W‖Eb‖F + ‖b‖W‖Ea‖F + ‖Ea‖F ‖Eb‖F

≤ (‖a‖W1
+ ‖Ea‖F )(‖b‖W1

+ ‖Eb‖F )

= ‖A‖QT ‖B‖QT .

Concerning the completeness, we have observed that the set of QT-matrices is
isomorphic to the direct sum QT 
 W1 ⊕ F . Since both W1 and F are Banach
spaces, the composition of the 1-norm of R2 with the vector valued function T (a)+
E → (‖a‖W1

, ‖E‖F ) makes W1 ⊕F a complete metric space. �

In the next section we represent the inverse matrix of an infinite Toeplitz matrix
T (a) in terms of the Wiener-Hopf factorization of a(z).

3.1. Matrix inversion. Assume that a(z) ∈ W1 does not vanish on the unit
circle and its winding number is zero, so that in view of Theorem 2.4 there exists
the canonical Wiener-Hopf factorization a(z) = u(z)�(z). It can be shown [26]
that u(z), �(z) ∈ W1. From this factorization we deduce the following matrix
factorization

T (a) = T (u)T (�),

where T (�) is lower triangular and T (u) is upper triangular. Since u(z) and �(z−1)
do not vanish in the unit disk, the functions u(z) and �(z) have inverses in W1

[26]. By Theorem 2.2 one has T (u)T (u−1) = T (u−1)T (u) = I and T (�)T (�−1) =
T (�−1)T (�) = I, so that

T (a)−1 = T (�)−1T (u)−1 = T (�−1)T (u−1).

In view of Lemma 3.4, we have

(3.5) T (a)−1 = T (a−1)−H((�−1)−)H((u−1)+) = T (a−1)−H(�−1)H(u−1) ∈ QT .

That is, a semi-infinite Toeplitz matrix associated with a symbol a(z) ∈ W1, with
null winding number, which does not annihilate in T, is invertible and its inverse is
a QT-matrix.
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This fact, together with the available algorithms to compute the Wiener-Hopf
factorization of a(z), enables us to implement the inversion of QT-matrices in a
very efficient manner. We will see this in the next section.

4. QT-matrix arithmetic

The properties that we have described in the previous sections imply that any
finite computation which takes as input a set of QT-matrices and that performs
matrix additions, multiplications, inversions, and multiplications by a scalar, gen-
erates results that belong to QT . If the computation can be carried out with no
breakdown, say, caused by singularity, then the output still belongs to QT .

This observation makes it possible to compute functions of semi-infinite QT-
matrices in an efficient way or to solve quadratic matrix equations where the co-
efficients are QT-matrices. In order to do that, we have to provide a simple and
effective way of representing, up to an arbitrarily small error, QT-matrices by means
of a finite number of parameters. This is done in this section.

Given a QT-matrix A = T (a)+Ea, since the symbol a(z) belongs to the Wiener
class, and since the correction matrix Ea has entries with finite sum of their moduli,

we may write A through its truncated form Ã = trunc(A). That is, for any ε > 0
there exist integers n−, n+, k−, k+ such that

A = Ã+ Ea, ‖Ea‖QT ≤ ε,

Ã = T (ã) + Ẽa,

ã(z) =

n+∑
i=−n−

aiz
i,

(4.1)

where Ẽa = (ẽi,j), is such that ẽi,j = ei,j for i = 1, . . . , k−, j = 1, . . . , k+, while
ẽi,j = 0 elsewhere.

In this way, we can approximate any given QT-matrix A, to any desired precision,

with a QT-matrix Ã where the Toeplitz part is banded and the correction Ẽa has

a finite dimensional nonzero part. The QT-matrix Ã can be easily stored with a

finite number of memory locations. The “finite approximation” Ã of a QT-matrix
A is the computational counterpart with which we are going to work in practice.

Observe that, if A ∈ QT and the symbol a(z) is analytic, for the exponential
decay of the coefficients |ai|, the values of n± are O(log ε−1). Concerning the values
of k±, unless we make additional assumptions on the decay of the entries |ei,j | as
i, j tend to infinity, the values that k± can assume are as large as 1/ε. Think for
instance the case where ei,j = 1/(i+ j)p for p > 2 and k± are of the order of ε−1/p.
The same qualitative bounds hold for the coefficients ai if we simply assume that
a(z) ∈ W1.

Here and in the sequel, we do not care much to give a priori bounds to the values
of n± and k± since these values can be determined automatically at run time during
the computation.

Another observation concerns the truncated correction Ẽa. In fact, from the

computational point of view, it is convenient to express the matrix Ẽa by means of

a factorization of the kind Ẽa = FaG
T
a , where matrices Fa and Ga have a number of

columns given by the rank of Ẽa and infinitely many rows. In this way, in presence
of low-rank corrections, the storage is reduced together with the computational



2820 DARIO A. BINI, STEFANO MASSEI, AND BEATRICE MEINI

cost for performing matrix arithmetic. This representation in product form can be
obtained by means of SVD up to some error which can be controlled at run time
and which can be included in Ea. Observe also that the truncation operates both
on the function a(z) and in the correction Ea by means of compression.

In the following, we represent a QT-matrix A = T (a)+Ea in the form (4.1) with

Ẽa = FaG
T
a where Fa has fa nonzero rows and ka columns, Ga has ga nonzero rows

and ka columns, and the error Ea has a sufficiently small norm. This way, Ẽa has
fa nonzero rows, ga nonzero columns and rank at most ka.

With this notation we may easily implement the operations of addition, subtrac-

tion, multiplication and inversion of two QT-matrices Ã, B̃ which are the truncated
representations of two QT-matrices A and B, i.e.,

A = Ã+ Ea, Ã = trunc(A) = T (ã) + Ẽa,

B = B̃ + Eb, B̃ = trunc(B) = T (b̃) + Ẽb,

denote by � any arithmetic operation, define C = A � B, Ĉ = Ã � B̃ and C̃ =

trunc(Ĉ).

We define total error in the operation � as E tot
c = C− C̃, the local error as E loc

c =

Ĉ − C̃ and the inherent error as E in
c = C − Ĉ, so that E tot

c = E in
c + E loc

c . Observe
that the inherent error is the result of Ea and Eb through the performed matrix
operation, the local error is generated by the truncation of the matrix arithmetic

operation Ã � B̃, while the total error is the sum of the two errors. Formally, these
errors behave like the inherent error and the round-off error in the standard floating
point arithmetic.

In our study we do not analyze the growth of the inherent error in each arithmetic
operation, but rather we limit ourselves to operate the truncation and compression
in such a way that the norm of the local error is bounded by a given value ε, say
the machine precision. Moreover, we do not consider the errors generated by the
floating point arithmetic.

4.1. Addition. Let A = Ã + Ea and B = B̃ + Eb be QT-matrices where Ã =

T (ã) + Ẽa, B̃ = T (b̃) + Ẽb with ã(z), b̃(z) Laurent polynomials of degrees n±
a and

n±
b respectively, and Ẽa = FaG

T
a , Ẽb = FbG

T
b .

If A and B have the above representation, then, for the matrix C = A + B we
have the representation

C = Ã+ B̃ + Ea + Eb,
from which we deduce that the inherent error is E in

c = Ea + Eb. On the other hand,

concerning Ĉ = Ã+ B̃ we have

Ĉ = T (ã+ b̃) + Ẽa + Ẽb,

where ã(z) + b̃(z) is a Laurent polynomial of degrees n−
c = max(n−

a , n
−
b ), n

+
c =

max(n+
a , n

+
b ), while

Ec := Ẽa + Ẽb = FcG
T
c ,

Fc = [Fa, Fb], Gc = [Ga, Gb],

where fc = max(fa, fb) and gc = max(ga, gb) are the number of nonzero rows of Fc

and Gc, respectively, and kc = ka + kb is the number of columns of Fc and Gc.
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The Laurent polynomial ã(z)+ b̃(z) can be truncated and replaced by a Laurent
polynomial c̃(z) of possibly less degree. Also the value of kc, can be reduced and
the matrices Fc, Gc can be compressed, by using a compression technique which
guarantees a local error with norm bounded by a given ε. This technique, based on
computing SVD and QR factorization is explained in the next section. Denoting

by F̃c, G̃c the matrices obtained after compressing Fc and Gc, respectively, we have

C̃ = trunc(Ĉ) = T (c̃) + Ẽc + E loc
c , Ẽc = F̃cG̃

T
c ,

where E loc
c denotes the local error due to truncation and compression, i.e., E loc

c =

Ã+ B̃ − trunc(Ã+ B̃). This way we have

A+B = T (c̃) + Ẽc + E loc
c + E in

c .

4.2. Multiplication. A similar expression holds for multiplication. For the prod-
uct C = AB we have the equation

AB = ÃB̃ + ÃEb + EaB̃ + EaEb
from which we deduce that the inherent error is E in

c = ÃEb+EaB̃+EaEb. Moreover,
we have

Ĉ = ÃB̃ =T (ã)T (b̃) + T (ã)Ẽb + ẼaT (b̃) + ẼaẼb

=T (ãb̃)−H(ã−)H(b̃+) + T (ã)Ẽb + ẼaT (b̃) + ẼaẼb

=:T (ãb̃) + Ec.

Observe that, since ã−(z) and b̃+(z) are polynomials, the matrices H(ã−) and

H(b̃+) have a finite number of nonzero entries. Therefore, we may factorize the

product H(ã−)H(b̃+) in the form FGT . Thus, we find that the matrix Ec can be
written as Ec = FcG

T
c , where

Fc = [F, T (ã)Fb, Fa], Gc = [G,Gb, T (b̃)
TGa +Gb(F

T
b Ga)].

This provides the finite representation of the product Ĉ = ÃB̃ where n−
c = n−

a +
n−
b , n

+
c = n+

a + n+
b , while the number of nonzero rows of Fc and Gc is given by

fc = max(fb + n−
a , fa) and gc = max(n+

b , gb, ga + n−
b ), respectively; moreover,

kc = ka + kb + n+
b .

Also in this case we may apply a compression technique, based on SVD for
reducing the memory storage of the correction and for reducing the degree of the

Laurent polynomial ã(z)b̃(z). Operating in this way, we introduce a local error

E loc
c = ÃB̃−trunc(ÃB̃). Denoting by c̃(z) the truncation of the Laurent polynomial

ã(z)b̃(z) and with F̃cG̃
T
c the compression of FcG

T
c , we have

Ĉ = ÃB̃ = T (c̃) + F̃cG̃
T
c + E loc

c .

This way we have

C = AB = T (c̃) + F̃cG̃
T
c + E loc

c + E in
c ,

which expresses the result C of the multiplication in terms of the approximated

value C̃ = T (c̃) + Ẽc, the local error E loc
c and the inherent error E in

c . The overall
error is given by Ec = E loc

c + E in
c .
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4.3. Matrix inversion. It is worth paying particular attention to the operation
of matrix inversion since it is less immediate than multiplication and addition.

First, we consider the problem of inverting the matrix A = T (a), i.e., we assume
that Ea = 0. The general case will be treated afterwords.

Recall that, if a(z) ∈ W1 does not vanish in the unit circle and if it has a
zero winding number, then Theorem 2.3 implies that the matrix T (a) is invertible
and, in view of Theorem 2.4, there exists the canonical Wiener-Hopf factorization
a(z) = u(z)�(z) so that (3.5) holds. Thus, a finite representation of A−1 is ob-
tained by truncating the Laurent series of 1/a(z) to a Laurent polynomial and by
approximating the Hankel matrices H((�−1)−) and H((u−1)+) by means of matri-
ces having a finite number of nonzero entries, an infinite number of rows and the
same finite number of columns. The latter operation can be achieved by truncating
the power series �−1(z) and u−1(z) to polynomials and by numerically compressing
the product of the Hankel matrices obtained this way. This operation can be ef-
fectively performed by reducing the Hankel matrices to tridiagonal form by means
of Lanczos method with orthogonalization. This procedure takes advantage of the
Hankel structure since the matrix-vector product can be computed by means of
FFT in O(n logn) operations where n is the size of the Hankel matrix. The ad-
vantage of this compression is that the cost grows as O(r2n log n) where r is the
numerical rank of the matrix.

If a(z) is analytic in the annulus A(ra, Ra) = {z ∈ C : ra < |z| < Ra} ⊃ T,
then its coefficients have an exponential decay so that |a+i | ≤ γλi

+, |a−i | ≤ γλi
−,

|ui| ≤ γλi
+, |�−i | ≤ γλi

−, for some positive γ and for 1/Ra < λ+ < 1, ra < λ− < 1.
Thus, we find that for the truncated approximation of the matrix A the values of
n+, n−, f , g are bounded by log(γ−1ε−1)/ log(λ−1

± ).
Performing numerical experiments it turns out that the singular values of the

principal submatrices of the Hankel matrices H(�−) and H(u+) associated with
power series having coefficients with an exponential decay, have an exponential
decay themselves. So that also the truncation on the value of the numerical rank k
of H(�−)H(u+) can be performed efficiently.

The analysis of the inherent error due to inversion is related to the analysis of
the condition number of semi-infinite Toeplitz matrices. We do not carry out this
analysis, we refer the reader to the books [12], [13] on this regard.

Now consider the more general case of the matrix A = T (a) + FaG
T
a which

we assume already in its truncated form. Assume T (a) invertible and write A =
T (a)(I + T (a)−1FaG

T
a ). Denoting for simplicity U = T (u), L = T (�) we have

(T (a) + FaG
T
a )

−1 = T (a)−1 − L−1(U−1Fa)Y
−1(GT

aL
−1)U−1,

Y = I +GT
aL

−1U−1Fa,

where Y is a finite matrix which is invertible if and only if A is invertible. This way,
the algorithm for computing A−1 in its finite QT-matrix representation is given by
the following steps:

(1) compute the spectral factorization a(z) = u(z)�(z);

(2) compute the coefficients of the power series ũ(z) = 1/u(z) and �̃(z) =

1/�(z), so that L−1 = T (�̃), U−1 = T (ũ);

(3) represent the matrix H = L−1U−1 as T (c) + FhG
T
h , where c(z) = �̃(z)ũ(z)

by means of Theorem 2.2;

(4) compute the products: G1 = T (�̃)Ga, F1 = T (ũ)Fa;
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(5) compute Y = I +GT
1 F1, F2 = F1Y

−1, F3 = T (�̃)F2, G2 = T (ũ)G1;
(6) output the coefficients of c(z) and the matrices Fc = [Fh, F3], Gc = [Gh, G2].

For computing the spectral factorization of a(z) we rely on the algorithm of [5]
which employs evaluation/interpolation techniques at the Fourier points.

4.4. Compression. Given the matrix E in the form E = FGT where F and G
are matrices of size m× k and n× k, respectively, we aim to reduce the size k and

to approximate E in the form F̃ G̃T , where F̃ and G̃ are matrices of size m× k̃ and

n× k̃, respectively, with k̃ < k.
We use the following procedure. Compute the pivoted (rank-revealing) QR fac-

torizations F = QfRfPf , G = QgRgPg, where Pf and Pg are permutation matrices,
Qf and Qg are orthogonal and Rf , Rg are upper triangular; remove the last negli-
gible rows from the matrices Rf and Rg, remove the corresponding columns of Qf

and Qg. In this way we obtain matrices R̂f , R̂g, Q̂f , Q̂g such that, up to within a

small error, satisfy the equations F = Q̂f R̂fPf , G = Q̂gR̂gPg. Then, in the factor-

ization FGT = Q̂f (R̂fPfP
T
g R̂T

g )Q̂
T
g , compute the SVD of the matrix in the middle

R̂fPfP
T
g R̂T

g = UΣV T and replace U,Σ, and V with matrices Û , Σ̂, V̂ , obtained by
removing the singular values σi and the corresponding singular vectors if σi < εσ1,

where ε is a given tolerance. In output, the matrices F̃ = Q̂f Û Σ̂1/2, G̃ = Q̂gV̂ Σ̂1/2

are delivered.

4.5. The Matlab code. The arithmetic operations on QT-matrices have been im-
plemented in Matlab. The package can be obtained upon request from the authors.
It includes the functions qt add, qt mul, qt inv, qt compress for performing ma-
trix arithmetic and compression. A QT-matrix A is stored by means of the vari-
ables am, ap, aF, aG, where am and ap are the vectors containing the coefficients

of the Laurent polynomial a(z) =
∑k

i=−h aiz
i so that am = (a0, a−1, . . . , a−h), ap

= (a0, a1, . . . , ak), the variables aF and aG contain the values of the nonnegligible
entries in the correction matrices F and G, respectively.

In each function, after performing an arithmetic operation, the compression of
the matrices F and G is applied.

5. Solving certain semi-infinite quadratic matrix equations

by means of Cyclic Reduction

In the analysis of certain QBD queueing processes like the tandem Jackson queue
[19] or bi-dimensional random walks in the quarter plane [27], [20], [24] one has to
find the invariant probability vector of a stochastic process with a discrete two-
dimensional state space. The two coordinates of the latter—usually called level
and phase—are both countably infinite. Typically, the allowed transitions from
a state are limited to a subset of the adjacent states. Moreover, the probability
of a certain transition is homogeneous in time and—except for some boundary
conditions—depends only on the distance between the departure and the arrival.
This makes the model representable with a generator of the kind

Q =

⎡⎢⎢⎢⎣
Â0 Â1

A−1 A0 A1

A−1 A0 A1

. . .
. . .

. . .

⎤⎥⎥⎥⎦ , Ai, Âi ∈ QT .
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The matrix analytic methods, designed in this framework for finding the invariant
distribution, require to find the minimal non negative solutions G and R of the
semi-infinite matrix equations

(5.1) A1X
2 +A0X +A−1 = 0, X2A−1 +XA0 +A1 = 0,

respectively. It can be proved that, under very mild assumptions, the minimal
nonnegative solutions of the above equations exist and are unique. We refer to the
books [7], [25], [29], for more details.

When the blocks Ais are finite, one of the most reliable and fast algorithms for
performing this computation is the Cyclic Reduction (CR) [9, 15, 18]. This is an
iterative method based on generating the following matrix sequences:

A
(h+1)
0 = A

(h)
0 −A

(h)
1 S(h)A

(h)
−1 −A

(h)
−1S

(h)A
(h)
1 , S(h) = (A

(h)
0 )−1,

A
(h+1)
1 = −A

(h)
1 S(h)A

(h)
1 , A

(h+1)
−1 = −A

(h)
−1S

(h)A
(h)
−1 ,

Ã(h+1) = Ã(h) −A
(h)
−1S

(h)A
(h)
1 , Â(h+1) = Â(h) −A

(h)
1 S(h)A

(h)
−1

(5.2)

for h = 0, 1, 2 . . ., with A
(0)
0 = Ã(0) = Â(0) = A0, A

(0)
1 = A1, A

(0)
−1 = A−1. The

sequences

(5.3) G(h) := −(Ã(h))−1A−1, R(h) := −A1(Â
(h))−1

converge to the minimal nonnegative solutions G and R of the matrix equations
(5.1).

These convergence properties are valid also in the case where the blocks A−1, A0,
A1 are semi-infinite where convergence holds componentwise. We refer the reader
to [23] for more details.

The arithmetic developed in Section 4 paves the way to the use of CR when
Ai ∈ QT , i = −1, 0, 1. Observe that, since QT is an algebra, all the matrices
generated by CR belong to QT . Moreover, the Toeplitz part of these matrices have

associated symbols a
(h)
−1(z), a

(h)
0 (z), a

(h)
1 (z), ã(h)(z), â(h)(z), which satisfy the same

recurrence equations as (5.2). More precisely we have the scalar functional relations

a
(h+1)
0 (z) = a

(h)
0 (z)− 2a

(h)
1 (z)a

(h)
−1(z)/a

(h)
0 (z),

a
(h+1)
1 (z) = −a

(h)
1 (z)2/a

(h)
0 (z), a

(h+1)
−1 (z) = −a

(h)
−1 (z)

2/a
(h)
0 (z),

ã(h+1)(z) = ã(h)(z)− a
(h)
1 (z)a

(h)
−1(z)/a

(h)
0 (z),

with h = 0, 1, . . ., where a
(0)
i (z) = ai(z), i = −1, 0, 1 and ã(0)(z) = a0(z). Ob-

serve that since all the quantities in the above recurrence are scalar functions, they
commute so that â(h)(z) coincides with ã(h)(z).

As pointed out in [6], [9], in the scalar case CR reduces to the celebrated Graeffe
iteration whose properties have been investigated in [30]. Thus, in order to analyze
the convergence of the sequences defined above, we rely on the convergence prop-
erties of the Graeffe iteration applied to quadratic polynomials. In particular, we
know that if, for a given z ∈ T the polynomial pz(x) := a1(z)x

2 + a0(z)x+ a−1(z)
associated with the triple (a−1(z), a0(z), a1(z)), has one root inside the unit disk
and one root outside, then the sequence −(a−1(z)/ã

(h)(z)) has a limit g(z) which
coincides with the root of the polynomial pz(x) inside the unit disk.
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The following theorem provides mild conditions which ensure the above proper-
ties, and are generally satisfied in the applications.

Theorem 5.1. Let ai(z) = ai,−1z
−1 + ai,0 + ai,1z, for i = −1, 0, 1, be such that∑1

i,j=−1 ai,j = 0, a0,0 < 0, ai,j ≥ 0, otherwise. If

(i) a−1,0 > 0 or a1,0 > 0,
(ii) aij 	= 0 for at least a pair (i, j), with j 	= 0,

then for any z ∈ T, z 	= 1, the quadratic polynomial pz(x) = a1(z)x
2 + a0(z)x +

a−1(z), has a root of modulus less than 1 and a root of modulus greater than 1.

Proof. Without loss of generality we may assume that the entries ai,j belong to
the interval [−1, 1]. If not, we may scale equation (5.1) by a suitable constant and
reduce it to this case. As a first step we show that there are no roots of modulus 1.
Assume by contradiction that x is a root of modulus 1. Obviously, we have pz(x) = 0
if and only pz(x)+x = x. Observe that, if z ∈ T, the left-hand side of the previous
equation is a convex combination of the points in the discrete set Cx,z := {xizj , i =
0, 1, 2, j = −1, 0, 1} ⊂ T. If z 	= 1, condition (i) and the fact that −1 ≤ a0,0 < 0
ensure that the convex combination involves at least two different points of the unit
circle, either x and 1 or x and x2. Therefore, this convex combination pz(x) + x is
equal to a point which belongs to the interior of the unit disc. This contradicts the
fact that |pz(x) + x| = |x| = 1. This argument excludes roots on T for z ∈ T \ {1}.
We conclude by showing that there is exactly one root of modulus less than 1.
In order to prove this, we first show that |a0(z)| > |a−1(z) + a1(z)| holds for any
z ∈ T\{1}. Therefore, by applying the Rouché Theorem one finds that the functions
f(x) = a0(z)x and pz(x) have the same number of zeros in the open unit disc. To
prove the inequality |a0(z)| > |a−1(z) + a1(z)| we observe that

|a0,−1z
−1 + a0,0 + a0,1z| ≥ |a0,0| − |a0,−1z

−1| − |a0,1z| = −a0,0 − a0,−1 − a0,1

= a−1,−1 + a−1,0 + a−1,1 + a1,−1 + a1,0 + a1,1

≥ |a−1,−1z
−1 + a−1,0 + a−1,1z + a1,−1z

−1 + a1,0 + a1,1z|,

where at least one of the two above inequalities is strict because of condition (ii). �

Corollary 5.2. Under the conditions of Theorem 5.1, if a1(z) 	= 0 for any z ∈ T

and a−1(1) 	= a1(1), then g(z) = limh −a1(z)/ã
(h)(z) is an analytic function.

Proof. We recall that the roots of a monic polynomial are analytic functions of
the coefficients, on the set where the polynomial does not have multiple roots [14].
Thus, in order to prove the analyticity of g(z), it is sufficient to show that pz(x)
has no multiple root ∀z ∈ T. This follows from Theorem 5.1 if z ∈ T \ {1}.
Moreover, observe that for z = 1, p1(x) has roots 1 and a−1(1)

a1(1)
where the latter is

real, nonnegative and different from 1 by assumption. �

With the information that we have collected so far, we cannot yet say if the
matrix G belongs to QT . In fact, in principle, writing G = T (g) + Eg, it is
not ensured that ‖Eg‖F < ∞. The boundedness of ‖Eg‖F can be proved if Eg

has all entries with the same sign. This analysis is part of the subject of our
future research. On this regard, it is worth citing the paper [34] where, relying
on probabilistic arguments, it is proved that the matrices G and R asymptotically
share the Toeplitz structure.
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Table 1. Parameters values of the test examples for the two node
Jackson tandem network.

Case λ1 λ2 μ1 μ2 p q

1 1 0 1.5 2 1 0
2 1 0 2 1.5 1 0
3 0 1 1.5 2 0 1
4 0 1 2 1.5 0 1
5 1 1 2 2 0.1 0.8
6 1 1 2 2 0.8 0.1
7 1 1 2 2 0.4 0.4
8 1 1 10 10 0.5 0.5
9 1 5 10 15 0.4 0.9
10 5 1 15 10 0.9 0.4

5.1. Numerical validation. In order to validate our analysis, we consider ten
instances of the two-node Jackson network, analyzed in [28]. In detail, we assume

A−1 =

⎡⎢⎣(1− q)μ2 qμ2

(1− q)μ2 qμ2

. . .
. . .

⎤⎥⎦ ,

A0 =

⎡⎢⎣−(λ1 + λ2 + μ2) λ1

(1− p)μ1 −(λ1 + λ2 + μ1 + μ2) λ1

. . .
. . .

. . .

⎤⎥⎦ ,

A1 =

⎡⎢⎣ λ2

pμ1 λ2

. . .
. . .

⎤⎥⎦ ,

where the parameters p, q, λ1, λ2, μ1, μ2 are chosen according to Table 1. These
examples are also studied in [32] where the bad effect of truncation in approximating
the stationary distribution is shown. Different decay properties of the invariant
probability distribution correspond to the different values of the parameters.

We have applied CR in all the 10 cases and computed the minimal nonnegative
solution G represented in the QT form as T (g) + UgV

T
g . In the results of the tests

that we have performed, we report, besides the CPU time in seconds, also the norm
of the residual error E = A1G

2+A0G+A−1 where we used both the infinity norm
‖E‖∞ and the QT norm ‖E‖QT .

In order to analyze the intrinsic complexity of the problem, we also report the
bandwidth of the matrix T (g), that is the number of nonnegligible coefficients of
the Laurent series

∑
i∈Z

giz
i, the number of the nonzero rows of the matrices Ug

and Vg and the number of their columns that is their rank.
All this information is reported in Table 2. We may observe that a high CPU

time, like for instance in the case of problem 7, corresponds to large values of the
bandwidth in the matrix T (g) or to large sizes of the correction. The large values
of these two components of the QT representation of G imply that the entries gi,j
have a low decay speed as i, j → ∞.
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Table 2. Features of the computed solutions by means of CR.

Case CPU time Res∞ ResQT Band Rows Columns Rank

1 2.61 8.6 · 10−16 6.1 · 10−13 561 541 138 8
2 2.91 1.5 · 10−15 7.9 · 10−13 561 555 145 8
3 0.29 1.1 · 10−16 2.7 · 10−14 143 89 66 8
4 2.32 6.8 · 10−16 6.1 · 10−13 463 481 99 9
5 0.48 1.2 · 10−15 1.1 · 10−13 233 108 148 9
6 7.96 1.9 · 10−14 6.7 · 10−13 455 462 153 10
7 29 4.3 · 10−15 6.9 · 10−12 1,423 1,543 247 13
8 1.01 1.1 · 10−15 4.3 · 10−13 366 348 40 6
9 0.3 5.4 · 10−16 2.5 · 10−14 157 81 86 8
10 1.25 1.1 · 10−15 3.4 · 10−14 268 241 107 8

It must be said that in the Tandem Jackson queue that we tested, the invariant
measure π can be expressed in product form [24], [28]. This representation is
useful since it allows to compute directly π without approximating the semi-infinite
matrix G. It is interesting to test our approach in the case where π does not admit
a product-form representation. This happens, for instance for random walks in the
quarter plane where the transition probabilities in the boundary of the domain do
not satisfy specific restrictions like in the Tandem Jackson queue. This is the case
treated in the next experiment where we have considered Example 4.1 of [24] which
models a 2-d reflecting random walk with a solution nonrepresentable in product
form, together with 5 other cases obtained by randomly generating nonzero values
for the transition probabilities. More precisely, denoting (i, j) the coordinates of
the generic particle in the quarter plane, i, j = 0, 1, . . ., we have chosen random
nonzero values for the rates of the transitions (i, j) → (i′, j′) with

• i, j > 0, i′ ∈ {i− 1, i, i+ 1}, j′ ∈ {j − 1, 1, j + 1},
• i = 0, j > 0, i′ ∈ {0, 1}, j′ ∈ {j − 1, j, j + 1},
• i > 0, j = 0, i′ ∈ {i− 1, i, i+ 1}, j′ ∈ {0, 1},
• i = j = 0, i′, j′ ∈ {0, 1}.

This way, the matrices A−1, A0, and A1 are tridiagonal. The distribution in the
random numbers generation has been chosen uniform, with the only exception that
we have multiplied by 2 the values of the rates of transition to lower levels in order
to increase the chance to have a positive recurrent process.

Table 3 reports timings, residual errors, bandwidth, size and rank of the correc-
tion for the tested Example 4.1 of [24], followed by 5 random instances generated
as described above.

All the experiments have been performed over a laptop with an i5 processor
under the Linux system.
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Table 3. Random walk in the quarter plane where the solution
cannot be expressed in product form. For cases 1–5, the transition
probabilities have been chosen randomly.

Case CPU time Res∞ ResQT Band Rows Columns Rank

[24, Ex. 4.1] 1.23 5.1 · 10−15 5.6 · 10−13 324 321 58 12
1 0.38 7.8 · 10−15 8.2 · 10−14 112 55 73 13
2 0.22 1.5 · 10−15 2.8 · 10−14 85 54 44 12
3 0.13 3.7 · 10−15 2.7 · 10−14 65 40 33 8
4 0.41 3.4 · 10−15 1.6 · 10−13 181 45 153 10
5 0.44 3.2 · 10−15 9.3 · 10−14 172 144 73 18

6. Conclusion

We have introduced the class of semi-infinite quasi-Toeplitz matrices and proved
that it is a Banach algebra with a suitable norm. These properties have been used
to define a matrix arithmetic on the algebra of semi-infinite QT-matrices. These
tools have been used to design methods for solving quadratic matrix equations
with semi-infinite matrix coefficients encountered in the analysis of a class of QBD
stochastic processes.
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Dipartimento di Matematica, Università di Pisa, Largo B Pontecorvo 5, 56127 Pisa,

Italy

Email address: dario.bini@unipi.it

Scuola Normale Superiore, Cavalieri 7, 56126 Pisa, Italy

Current address: EPFL SB MATH ANCHP, CH-1015 Lausanne, Switzerland
Email address: stefano.massei@epfl.ch
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