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SCALING ALGORITHMS FOR UNBALANCED

OPTIMAL TRANSPORT PROBLEMS

LÉNAÏC CHIZAT, GABRIEL PEYRÉ, BERNHARD SCHMITZER,
AND FRANÇOIS-XAVIER VIALARD

Abstract. This article introduces a new class of fast algorithms to approx-
imate variational problems involving unbalanced optimal transport. While
classical optimal transport considers only normalized probability distributions,
it is important for many applications to be able to compute some sort of re-
laxed transportation between arbitrary positive measures. A generic class of
such “unbalanced” optimal transport problems has been recently proposed by
several authors. In this paper, we show how to extend the now classical en-
tropic regularization scheme to these unbalanced problems. This gives rise to
fast, highly parallelizable algorithms that operate by performing only diag-
onal scaling (i.e., pointwise multiplications) of the transportation couplings.
They are generalizations of the celebrated Sinkhorn algorithm. We show how
these methods can be used to solve unbalanced transport, unbalanced gradient
flows, and to compute unbalanced barycenters. We showcase applications to
2-D shape modification, color transfer, and growth models.

1. Introduction

Optimal transport (OT) is a standard way to lift a metric defined on some
“ground” spaceX to a metric on probability distributions (positive Radon measures
with unit mass) M+(X). Initially formulated by Monge [53] as a nonconvex opti-
mization problem over transport maps, its modern formulation as a linear program
is due to Kantorovitch [40], and it has been revitalized thanks to the groundbreak-
ing work of Brenier [15]. We refer to the monographs [67, 76] for a more detailed
background on the theory of OT.

While initially developed by theoreticians, OT is now becoming popular in ap-
plied fields, and we refer, for instance, to applications for color manipulation in
image processing [61], reflectance interpolation in computer graphics [12], image
retrieval in computer vision [66] and statistical inference in machine learning [74].
A key limitation of classical OT is that it requires the input measures to be nor-
malized to unit mass, which is a problematic assumption for many applications
that require either to handle arbitrary positive measures and/or to allow for only
partial displacement of mass. All these applications might indeed benefit from OT
algorithms that can handle mass variation (creation or destruction) as well as mass
transportation.

While many proposals have been made to account for these “unbalanced” opti-
mal transport problems, they used to be tailored for specific applications. There
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have been several recent works (reviewed below) that try to put all these proposals
(and some new ones) into a common generic framework. These emerging theoreti-
cal advances call for algorithms that extend existing fast OT methods to these new
unbalanced problems. It is precisely the goal of this paper to show how a popu-
lar numerical approach to OT—namely entropic regularization—does extend in a
very natural and efficient way to solve a variety of unbalanced problems, including
unbalanced OT, barycenters and gradient flows.

1.1. Previous works.

1.1.1. Algorithms for optimal transport. The Kantorovitch formulation of OT as a
linear program, when restricted to sums of Diracs, can be directly tackled using
simplex or interior point methods. For the special case of optimal linear assign-
ment (i.e., for sums of the same number of uniform-mass Diracs) one can also use
combinatorial algorithms such as the Hungarian method [18] or the auction algo-
rithm [11]. The time complexity of these algorithms is roughly cubic in the number
of Diracs, and hence they do not scale to very large problems.

In the specific case of the squared Euclidean cost, it is possible to make use
of the geodesic structure of the OT distance, and reparametrize this as a convex
optimization problem, as proposed by Benamou and Brenier [7]; see also [56] for
a discussion on the use of first order nonsmooth optimization schemes. In [68]
a multi-scale algorithm is developed that consistently leverages the structure of
geometric transport problems to accelerate linear program solvers.

A last class of approaches deals with semidiscrete problems, when one measure
has a density, and the second one is a weighted sum of Dirac masses. This problem,
introduced by Alexandrov and Pogorelov as a theoretical tool, can be solved with
geometric tools when using the squared Euclidean cost [4] (see also [52] for the
development of efficient algorithms using methods from computational geometry
and [46] for 3-D computations).

1.1.2. Entropic transport. These computational methods thus cannot cope with
large scale problems with arbitrary transportation costs. A recent class of
approaches, initiated and revitalized by the paper of Marco Cuturi [26], proposes
to compute an approximate transport coupling using entropic regularization. This
idea has its origins in many different fields, most notably it is connected with
Schrödinger’s problem in statistical physics [45, 70] and with the iterative scaling
algorithm by Sinkhorn [72] (also known as IPFP [29]) which, given a square matrix
with positive entries, aims at finding two vectors of positive numbers—so-called
scalings—that make it a bistochastic matrix after multiplying rows and columns
by these vectors. This entropic smoothing can be interpreted as a strictly con-
vex barrier for positivity, but its main computational advantage is that it leads
to very simple closed form expressions for all steps of the algorithm, which would
not be possible when using different regularization functionals. Several follow-up
articles [8,27] to [26] have shown that the same strategy can also be used to tackle
the computation of barycenters for the Wasserstein distance (as initially formu-
lated by [2]), and for solving OT problems on geometric domains (such as regular
grids or triangulated meshes) using convolution and the heat diffusion kernel [73].
Some theoretical properties of this regularization are studied in [20], including the
Γ-convergence of the regularized problem toward classical transport when regular-
ization vanishes.



SCALING ALGORITHMS FOR UNBALANCED PROBLEMS 2565

1.1.3. Optimization with Bregman divergences. The success of this entropic regu-
larization scheme is tightly linked with use of the Kullback-Leibler (KL) divergence
as a natural Bregman divergence [14] for the optimization on the space of posi-
tive Radon measures. Not only is this divergence quite natural, but it also leads
to simple formulas for the computation of projectors and so-called proximal op-
erators (see below for a definition) for many functions typically involved in OT.
The most simple algorithm, which is actually at the heart of Sinkhorn’s iterations,
is the iterative projection on affine subspaces for the KL divergence. A refined
version of these iterations, which works for arbitrary convex sets (not just affine
spaces) is the so-called Dykstra’s algorithm [30], which can be interpreted (just
like iterative projections) as an iterative block-coordinates minimization on a dual
problem. Dykstra’s algorithm is known to converge when used in conjunction with
Bregman divergences [5, 22] (see [58] for details on the underlying idea for sums of
two arbitrary functions). Many other first order proximal methods for Bregman
divergences exists. The most simple one is the proximal point algorithm [31], but
most proximal splitting schemes have been extended to this setting, such as, for
instance, ADMM [78], primal-dual schemes [23] and forward-backward [54].

The algorithm we propose in this article can be seen as special instance of Dyk-
stra’s iterations, but with an extremely simple (both conceptually and algorithmi-
cally) structure, which we refer to as a “scaling” algorithm. It extends Sinkhorn’s
iterations to more complex problems. This structure is due to the fact that the
functions involved in OT problems make use of the marginals of the couplings that
are being optimized.

1.1.4. Unbalanced transport: from theory to numerics. There has been a large
number of proposals to extend OT methods to arbitrary “unbalanced” positive
measures. Let us, for instance, quote the Kantorovitch-Rubinstein dual-Lipschitz
norms [38], optimal partial transport [33] and geodesic computations with source
terms [49, 59]. Most of these approaches, and much more, can be seen as special
instances of a generic class of OT-like problems, that have been proposed indepen-
dently in [47] and [24]. These unbalanced problems can be formulated in several
ways, that are equivalent (under some restrictive conditions on the cost): a geo-
desic (dynamic) formulation with a source term [25, 41, 48], a static formulation
with two semicouplings [24] and a static formulation with approximate marginal
constraints [47]. From a numerical perspective, the last formulation (approximate
marginals constraints) is the most simple to handle, since, as we show in the fol-
lowing section, it only involves a minor modification of the initial linear program,
that has to be turned into a convex problem involving ϕ-divergences (see Definition
2.2). This is the one that we consider in this article. Note that the use of such a
relaxed formulation, in conjunction with entropic smoothing has been introduced,
without proof of convergence, in [35] for application in machine learning.

1.1.5. Gradient flows. Beyond OT problems and barycenter problems, a popular
use of Wasserstein distances is to study gradient flows, following the formalism of
“minimizing movements” detailed in [3]. This corresponds to discrete implicit step-
ping (i.e., proximal maps) for the Wasserstein distance (instead of more common
Euclidean or Hilbertian metrics). In some cases, these time-discrete flows can be
shown to converge to continuous flows that solve a suitable PDE, as the temporal
stepsize tends to 0. The most famous example is the gradient flow of the entropy for
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the Wasserstein metric, which solves the diffusion equation [39]. Nonlinear PDEs
are considered for example in [55]. An application to imaging can be found in [17].
Another use of these implicit steps is to construct minimizing flows of nonsmooth
functionals, for instance, to model crowd motions [50].

A large variety of dedicated numerical schemes has been proposed for spatial
discretization and solving of these time-discrete flows such as, for instance, finite
differences [16], finite volumes [21] and Lagrangian schemes [9, 10]. A bottleneck
of these schemes is the high computational complexity due to the resolution of an
OT-like problem at each time step. The use of entropic regularization has been
proposed recently in [58] and studied theoretically in [20]. A chief advantage of
this approach is that each step can be solved efficiently on a regular grid with
fast Sinkhorn iterations involving only Gaussian convolutions, but this comes at
the price of additional diffusivity introduced by the approximation, which makes it
unsuitable to capture sharp features of solutions.

It is possible to extend these gradient flows by replacing the Wasserstein distance
by more general unbalanced distances. This allows to define flows over arbitrary
positive measures, hence involving creation and destruction of mass, which is crucial
to model growth phenomena, such as, for instance, the Hele-Shaw model of tumor
evolution [57]. An analysis of such flows based on a splitting scheme has been
recently provided in [37]. It is one of the goals of this article to propose a versatile
algorithm, based on iterative scalings, to approximate numerically these unbalanced
flows.

1.2. Contributions and outline. The main contribution of this article is to de-
fine a class of iterative scaling algorithms to solve the entropic approximation of a
variety of unbalanced optimal transport problems. First, in Section 2, we exhibit a
common structure to most optimization problems related to OT: a nonnegativity
constraint, a linear transport cost and convex functions acting on the marginals of
the optimized couplings. For solving the entropic regularization of these problems,
we then introduce in Section 3 a generic “scaling” algorithm which is a direct gen-
eralization of Sinkhorn’s algorithm. In a continuous setting, we show under some
assumptions that the iterates are well-defined and correspond to alternating opti-
mization on the dual and we prove linear convergence in a particular key case. In
a discrete setting, we show in Section 4 that this algorithm converges as soon as
the dual problem is well-posed. We also give a simple description of the algorithm,
introduce a stabilization scheme to reach very small values of the regularization
parameter and sketch a generalization of this algorithm. Finally, in Section 5,
we showcase the application of these methods to 1-D and 2-D unbalanced opti-
mal transport, generalizations of Wasserstein barycenters and gradient flows with
growth. The main advantages of our approach are that it is simple (it only involves
matrix multiplication and pointwise elementary operations), quite generic (it ap-
plies to most known OT-like problems), enjoys fast convergence (linear convergence
is observed, and shown in particular cases) and is highly parallelizable. The code
to reproduce the results of this article is available online1. Note also that an effi-
cient numerical implementation of the scaling algorithm developed in this paper is
studied further in [69]; see Section 4.4.4 for a discussion.

1https://github.com/lchizat/optimal-transport

https://github.com/lchizat/optimal-transport
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1.3. Notation. The space of nonnegative finite Radon measures2 on a (Hausdorff)
topological space T is denoted by M+(T ), and the vector space it generates by
M(T ). For a measure on a product space μ ∈ M(X × Y ), PX

# μ (or sometimes

P 1
#μ if X = Y ) denotes its first marginal and P Y

#μ (or P 2
#μ) its second marginal.

We denote by dt, dx, . . . the reference measures on some measurable spaces
T,X, . . . . They are not assumed to be the Lebesgue measure (but most of the
time, they are probability measures). If (T, dt) is a measured space, we denote by
L1(T ) and L∞(T ) the usual spaces of equivalence classes of measurable functions
from T to R which are, respectively, absolutely integrable and essentially bounded.
When there is a subscript + appended to the name of a space of functions, it refers
to the cone of nonnegative functions in that space.

Divergence functionals (or ϕ-divergences) are denoted by a calligraphic letter
D when they act on measures (as defined in Definition 2.2), by straight letters D
when they act on functions (as defined in (5.2)) and with an overline D when they
act on two real numbers (as in (5.2)). More generally, functionals on measures are
denoted by calligraphic letters (F ,G, . . . ) and functionals on functions by straight
capital letters (F,G, . . . ).

The same convention holds for the Kullback-Leibler divergence (which is just a
particular case of divergence functionals) thus denoted by KL, KL or KL depending
on the nature of its arguments. Moreover, we generalize the definition of KL to
families of functions as follows: if (X, dx) and (Y, dy) are two measured spaces and
r, s : X×Y → R

n are families of measurable functions, the KL-divergence is defined
as

(1.1) KL(r|s) def.
=

∑
i

∫
X×Y

[
log

(
ri(x, y)

si(x, y)

)
ri(x, y)− ri(x, y) + si(x, y)

]
dxdy

(with 0 log(0/0) = 0) if r, s � 0 a.e. and (si(x, y) = 0) ⇒ (ri(x, y) = 0) a.e., and ∞
otherwise.

The generalization of some notations to families of functions is often implicit.
For instance, if (ri)

n
i=1 and (si)

n
i=1 are two families of functions, we write

〈r, s〉 def.
=

n∑
i=1

∫
X×Y

ri(x, y) si(x, y)dxdy

and the projection operators are defined componentwise, for i ∈ {1, . . . , n}, as

(1.2) (PX
# r)i(x) =

∫
Y

ri(x, y)dy and (PY
# r)i(y) =

∫
X

ri(x, y)dx .

If X and Y are finite spaces (i.e., contain only a finite number of points), we
represent functions on X by vectors denoted by bold letters a and functions on
X×Y by matrices denoted by capital bold letters A. In this context the notations
a�b and a	b denote, respectively, entrywise multiplication and entrywise division
with convention 0/0 = 0 between vectors.

The conjugate of a convex function f is denoted by f∗ and its subdifferential
is denoted by ∂f . Some reminders on convex analysis are given in Appendix A.1.
The indicator of some convex set C is

ιC(a) =

{
0 if a ∈ C,
+∞ otherwise.

2Borel measures which are inner regular. If T is Polish, all Borel measures are inner regular.
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Finally, the proximal operator plays a central role in this article. In full general-
ity, if E a set, D : E × E → R+ ∪ {∞} is a divergence which measures “closeness”
between points in E, it is defined for F : E → R ∪ {∞} and x ∈ E as

proxDF (x) = argmin
y∈E

F (y) + D(y|x) .

2. Unifying formulation of transport-like problems

We review below a variety of variational problems related to optimal transport
that can all be recast as a generic variational problem, involving transport and
functions on the marginals. The notion of “divergence” functionals, introduced
in optimal transport by [47], makes this unification possible and is defined in the
following.

2.1. Divergence functionals. Divergences are functionals which, by looking at
the pointwise “ratio” between two measures, give a sense of how close they are.
They have nice analytical and computational properties and are built from entropy
functions.

Definition 2.1 (Entropy function). A function ϕ : R → R ∪ {∞} is an entropy
function if it is lower semicontinuous, convex, domϕ ⊂ [0,∞[ and satisfies the
following feasibility condition: domϕ ∩ ]0,∞[ = ∅. The speed of growth of ϕ at ∞
is described by

ϕ′
∞ = lim

x↑+∞
ϕ(x)/x ∈ R ∪ {∞} .

If ϕ′
∞ = ∞, then ϕ grows faster than any linear function and ϕ is said superlinear.

Any entropy function ϕ induces a ϕ-divergence (also known as Csiszár divergence)
as follows.

Definition 2.2 (Divergences). Let ϕ be an entropy function. For μ, ν ∈ M(T ), let
dμ
dν ν + μ⊥ be the Lebesgue decomposition3 of μ with respect to ν. The divergence
Dϕ is defined by

Dϕ(μ|ν) def.
=

∫
T

ϕ

(
dμ

dν

)
dν + ϕ′

∞μ⊥(T )

if μ, ν are nonnegative and ∞ otherwise.

The proof of the following Proposition can be found in [47, Thm 2.7].

Proposition 2.3. If ϕ is an entropy function, then Dϕ is jointly 1-homogeneous,
convex and weakly∗ lower semicontinuous in (μ, ν).

The Kullback-Leibler divergence, also known as the relative entropy, plays a
central role in this article.

Example 2.4. The Kullback-Leibler divergence KL def.
= DϕKL

is the divergence
associated to the entropy function ϕKL, given by

(2.1) ϕKL(s) =

⎧⎪⎨
⎪⎩
s log(s)− s+ 1 for s > 0,

1 for s = 0,

+∞ otherwise.

3The Lebesgue decomposition Theorem asserts that, given ν, μ admits a unique decomposition
as the sum of two measures μs + μ⊥ such that μs is absolutely continuous with respect to ν and
μ⊥ and ν are singular.
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When restricted to densities on a measured space, it is also the Bregman diver-
gence [14] associated to (minus) the entropy.

The following divergences will also be considered as examples.

Example 2.5. The total variation distance TV(μ|ν) def.
= |μ−ν|TV is the divergence

associated to:

(2.2) ϕTV(s) =

{
|s− 1| for s � 0,

+∞ otherwise.

Example 2.6. The equality constraint ι{=}(μ|ν) which is 0 if μ = ν and ∞ other-
wise, is the divergence associated to ϕ = ι{1}.

Example 2.7. One can generalize the latter and define a “range constraint”,
denoted RG[α,β](μ|ν), as the divergence which is zero if αν � μ � β ν with
0 � α � β � ∞, and ∞ else. This is the divergence associated to ϕ = ι[α,β].

2.2. Balanced optimal transport. Using divergences, the classical “balanced”
optimal transport problem can be defined as follows.

Definition 2.8 (Balanced optimal transport). Let X and Y be Hausdorff topo-
logical spaces, let c : X × Y → R ∪ {∞} be a lower semicontinuous function. The
optimal transport problem between μ ∈ M+(X) and ν ∈ M+(Y ) is

(2.3) inf
γ∈M+(X×Y )

∫
X×Y

c dγ + ι{=}(P
X
# γ|μ) + ι{=}(P

Y
# γ|ν).

Proposition 2.9. If c is lower bounded and (2.3) is feasible, then the infimum is
attained.

The proof of this result, as well as a general theory of optimal transport can
be found in [77]. If one interprets c(x, y) as the cost of transporting a unit mass
from x to y, the problem is then to find the cheapest way to move a mass initially
distributed according to μ toward the distribution ν. If γ is additionally constrained
to be of the form (id × T )#μ for some map T : X → Y , then (2.3) is called the
Monge problem.

Example 2.10. An important special case is when X = Y and c is the power
of a distance on X. Then, the optimal cost (i.e., the value of (2.3)) is itself the
power of a distance on the space of probability measures on X. This distance
is often referred to as “Wasserstein” distance and denoted by W, although this
denomination is disputed. We refer to [77, Chap. 6, Bibliographical Notes] for a
discussion of the historical context.

2.3. Unbalanced optimal transport. Standard optimal transport only allows
meaningful comparison of measures with the same total mass: whenever μ(X) =
ν(Y ), there is no feasible γ in (2.3). Several propositions have been made to cir-
cumvent this limitation by defining “unbalanced” transport problems in various
dynamic and static formulations (see Section 1.1). The following formulation with
relaxed marginal constraints is best suited for the numerical schemes presented in
this article.

Definition 2.11 (Unbalanced optimal transport [47, Problem 3.1]). Let X and Y
be Hausdorff topological spaces, let c : X × Y → [0,∞] be a lower semicontinuous
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function and let Dϕ1
, Dϕ2

be two divergences over X and Y , as in Definition 2.2.
For μ ∈ M+(X) and ν ∈ M+(Y ), the unbalanced soft-marginal transport problem
is

inf
γ∈M+(X×Y )

∫
X×Y

c dγ +Dϕ1
(PX

# γ|μ) +Dϕ2
(PY

# γ|ν) .(2.4)

Proposition 2.12. Assume that (2.4) is feasible. If ϕ1 and ϕ2 are superlinear,
then the infimum is attained. This is also the case if c has compact sublevel sets
and ϕ′

1∞ + ϕ′
2∞ + inf c > 0.

The proof of this result as well as a thorough study of duality properties of this
problem can be found in [47]. Note that (2.3) is a particular case of (2.4) when the
domains of the entropy functions ϕi are the singleton {1}. More generally, if the
functions ϕi admit unique minima at 1, (2.4) can be viewed as a relaxation of the
initial problem (2.3) where the “hard” marginal constraints are replaced by “soft”
constraints, penalizing the deviation of the marginals of γ from μ and ν. Now we
discuss a specific case of particular interest.

Definition 2.13 (Wasserstein-Fisher-Rao distance). Take X = Y , let d be a dis-
tance on X and λ � 0. For the cost

(2.5) c(x, y) = − log
(
cos2+ (d(x, y))

)
with cos+ : z �→ cos(z ∧ π

2 ) and Dϕ1
= Dϕ2

= λKL, we define WFRλ(μ, ν) as
the square root of the minimum in (2.4) (as a function of the measures (μ, ν) ∈
M+(X)2). We simply write WFR

def.
= WFR1 for λ = 1.

As shown in [47], WFR defines a distance on M+(X), which is equal to the
Wasserstein-Fisher-Rao geodesic distance introduced simultaneously and indepen-
dently in [25, 41, 47] (it is named Hellinger-Kantorovich in [47]). An alternative
static formulation is given in [24]. Other important cases include:

• The Gaussian Hellinger-Kantorovich distance GHK is obtained by taking
the cost c = d2 (d still a metric) and Dϕi

= λKL with λ > 0. It has been
introduced in [47] where it is also shown that when X is a geodesic space,
WFR is the geodesic distance generated by GHK.

• The optimal partial transport problem, which is obtained by taking a cost
function bounded from below by −2λ and Dϕi

= λTV, with λ > 0. Orig-
inally, optimal partial transport refers to a problem where the marginal
constraints are replaced by a constraint on the total mass of the marginals
(and domination constraints); here λ is the Lagrange multiplier associated
to the mass constraint (see [19]).

• With the divergence RG as in Example 2.7, one imposes a range constraint
on the marginal:

RG(PX
# γ|μ) < +∞ ⇔ αμ � PX

# γ � βμ

(and similarly for PY
# γ).

The following result is a minor extension of results from [24, 47] and is useful if
one wishes to vary the parameter λ in numerical applications.

Proposition 2.14. WFRλ defines a distance if 0 � λ � 1 (degenerate if λ = 0).
The upper bound on λ is necessary when X is a geodesic space of diameter greater
than π/2.
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Proof. The case λ = 0 is trivial. If λ > 0, when dividing (2.4) by λ, one obtains the

new cost −2 log(cos
1/λ
+ (d(x, y))). But the function f : d �→ arccos(cos

1
λ (d)) defined

on [0, π/2] is increasing, positive, satisfies {0} = f−1(0) and for x ∈]0, π/2[ it holds
that

f ′′ =
1

λ

cos
1
λ−2

(1− cos
2
λ )2

(
1− 1

λ
sin2 − cos

2
λ

)
.

From the convexity inequality sign[(1 − X)
1
λ − 1 + 1

λX] = sign( 1λ − 1) it follows
that f is strictly concave on [0, π/2] if λ < 1 and strictly convex if λ > 1. Thus, if
λ � 1, f ◦ d still defines a distance on X and consequently WFRλ, too.

If X is a geodesic space of diameter greater than π/2, take (x1, x2) ∈ X2 such
that d(x1, x2) = π/2. From [47, Corollary 8.3], (M(X),WFR1) is itself a geodesic
space. Consequently, there exists a midpoint μ ∈ M+(X), i.e., such that

WFR1(δx1
, μ) = WFR1(δx2

, μ) =
1

2
WFR1(δx1

, δx2
) .

From [47, Theorem 8.6] and the characterization of geodesics in Cone(X) it holds
0 < d(x, xi) < π/2 for μ a.e. x ∈ X. This implies that for λ > 1, and μ

a.e. x, − log(cos
1/λ
+ (d(xi, x))) < − log(cos+(d(xi, x))). Thus (WFR2

λ /λ)(δxi
, μ) <

WFR2
1(δxi

, μ). But, for λ � 1, (WFR2
λ /λ)(δx1

, δx2
) = 2KL(0|1) = 2 this leads to

WFRλ(δx1
, μ) +WFRλ(δx2

, μ) < WFRλ(δx1
, δx2

)

and the triangle inequality property is lost. �

2.4. Barycenter problem and extensions. The problem of finding an “average”
measure σ ∈ M+(Y ) which minimizes the sum of the (possibly unbalanced) trans-
port cost toward every measure of a family (μk)

n
k=1 ∈ M+(X)n is of theoretical and

practical interest (see Section 1.1). To formalize this problem, consider a family
of costs functions (ck)

n
k=1 on X × Y and a family of divergences (Dϕk,1

,Dϕk,2
)nk=1.

The problem is to solve

inf
σ∈M+(Y )

inf
(γk)

n
k=1∈

M+(X×Y )n

n∑
k=1

(∫
X×Y

ck dγi +Dϕk,1
(PX

# γi|μi) +Dϕk,2
(PY

# γi|σ)
)

.

By exchanging the infima, this is equivalent to
(2.6)

inf
(γk)

n
k=1∈

M+(X×Y )n

n∑
k=1

∫
X×Y

ck dγk +

n∑
k=1

Dϕi,1
(PX

# γk|μk) + inf
σ∈M+(Y )

n∑
k=1

Dϕk,2
(PY

# γk|σ) .

Note that while the object of interest is the minimizer σ and not the family of
couplings, we will see in Section 5.2 that the computation of σ is a byproduct of
the “scaling” algorithm defined below.

The two following examples are specific instances of so-called Fréchet means,
defined in any complete metric space (E, d) as solutions to

argmin
σ∈E

∑
k

αk d(μk, σ)
2,

where (αk)
n
k=1 is a family of nonnegative weights and (μk)

n
k=1 ∈ En.
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Example 2.15 (Wasserstein barycenters). Let X = Y and let c be the quadratic
cost (x, y) �→ d(x, y)2 for a metric d and define ck = αk c. Let all the divergences
be the equality constraints. Then (2.6) is a formulation of the Fréchet means in the
Wasserstein space, also known as Wasserstein barycenters (see [1]).

Example 2.16 (WFR barycenters). Let c be as in (2.5), define ck = αk c and let
Dϕk,1

= Dϕk,1
= αi KL for all k ∈ {1, . . . , n}. Then (2.6) is a formulation of Fréchet

means for the WFR distance.

2.5. Gradient flows.

2.5.1. General outline. Given a metric space (T, d) and some lower semicontinuous
function G : T → R ∪ {∞} with compact sublevel sets, a time-discrete gradient
flow with step size τ > 0 starting from an initial point μ0 ∈ T corresponds to the
computation of a sequence (μτ

k)k∈N via

μτ
0

def.
= μ0, μτ

k+1 ∈ argmin
μ∈T

G(μ) + d2(μτ
k, μ)

2τ
.

This scheme, which is a particular case of De Giorgi’s minimizing movements, gen-
eralizes the notion of implicit Euler steps to approximate gradient flows in Euclidean
spaces, which are recovered when (T, d) = (Rn, | · |). From a theoretical point of
view, the object of interest is the limit trajectory when τ → 0 of the piecewise
constant interpolation

μτ (t)
def.
= μτ

k for all t ∈ [kτ, (k + 1)τ [ .

Initiated by [39], the study of such flows when T is the space of probability measures
endowed with the Wasserstein metric d = W (see Section 2.2) has led to consider-
able advances in the theoretical study of PDEs and their numerical resolution (see
Section 1.1). The recent introduction of “unbalanced transport” metrics paves the
way for further applications, since it is now possible to consider the whole space of
nonnegative measures endowed, for instance, with the metric WFR, as considered
in [37].

2.5.2. Minimization problem. For gradient flows based on an optimal transport
metric, such as W, WFR, or GHK, each step requires to solve, after swapping the
two infima, a problem of the form

(2.7) inf
γ∈M+(X×X)

∫
X×Y

c dγ +Dϕ1
(P 1

#γ|μτ
k) + inf

μ∈M+(X)

(
Dϕ2

(P 2
#γ|μ) + 2τG(μ)

)
,

where ϕ1, ϕ2 are entropy functions and G is a lower semicontinuous functional
which we also assume convex. This problem, as well as variants, involving so-
called “splitting” techniques (see [37]) fit into the framework developed below. In
particular, we show in Section 5.3 that the computation of μk+1 is a byproduct of
the minimization of (2.7) with the algorithm defined below.

2.5.3. Flows associated to WFR. The distance WFR was only introduced recently,
so a sound theoretical analysis of the corresponding gradient flows and their limit
PDEs is not yet available (and is not the subject of the present article). Meanwhile,
we present here heuristic arguments in a smooth setting (see also [41, Section 3.2])
which lead to the evolution equation

(2.8) ∂tμ = div(μ∇G′(μ))− 4μG′(μ)
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for the limit trajectory of μτ (t) as τ → 0, where G′(μ) is, if it exists, the unique
function such that d

dεG(μ + εχ)|ε=0 =
∫
X
G′(μ)dχ for all perturbations admissible

perturbation χ.

Heuristic argument. When restricted to measures μ with positive density of Sobolev
regularity, WFR is the weak Riemannian metric associated to the tensor

g(μ)(δμ, δμ)
def.
= inf

v,α

∫
X

|v(x)|2μ(x)dx+
1

4

∫
X

|α(x)|2μ(x)dx,

where, for a small variation δμ, one searches over decompositions δμ = − div(vμ)+
αμ into displacement (given by the velocity field v ∈ L2(X,μ)d) and growth (given
by the rate of growth α ∈ L2(X,μ)) (see [24]). A new step μτ

k+1 is given from μτ
k

through the resolution of

μτ
k+1 ∈ argmin

μ∈M+(X)

G(μ) + 1

2τ
WFR2(μ, μτ

k) .

Searching the minimizer in the form μ = μτ
k + τ (− div(vμτ

k) + αμτ
k) with unknown

(v, α), this can be rewritten, in first order of (τv, τα), as

inf
v, α

G(μτ
k) +

∫
X

(
τG′(μτ

k)(αμ
τ
k − div(vμτ

k)) +
τ2

2τ

(
|v(x)|2 + 1

4
α(x)2

)
μτ
k(x)

)
dx .

The first order optimality conditions yield v = −∇G′(μ) and α = −4G′(μ). One
thus obtains

1

τ
(μ− μτ

k) = div(μ∇G′(μ))− 4μG′(μ)

which yields (2.8) as τ → 0. �

2.6. Generic formulation. Consider two convex and lower semicontinuous func-
tions F1 and F2 defined on M+(X)n and M+(Y )n, respectively. The variety of
problems reviewed above can be seen as special cases of

(2.9) min
γ∈Mn

+(X×Y )
J (γ), where J (γ)

def.
= 〈c, γ〉+ F1(P

X
# γ) + F2(P

Y
# γ),

where 〈c, γ〉 =
∑n

k=1

∫
ckdγi is a short notation for the total transport cost of

a family of couplings (γk)
n
k=1 w.r.t. a family of cost functions (ck)

n
k=1 and the

projection operators act elementwise. More precisely, they are recovered with the
following choices of functions:

• Balanced OT (2.3): F(σ) = ι{=}(σ|μ);
• Unbalanced OT (2.4): F(σ) = Dϕ(σ|μ);
• Barycenters (2.6): F(σ) = infω∈Mn(X) {

∑n
k=1Dϕk

(σk|ωk) + ιD(ω)}, where
D is the set of families of measures for which all components are equal,

D
def.
= {(ω1, . . . , ωn) ∈ Mn(X) : ωi = ωj for i, j = 1, . . . , n} ;

• Gradient flows (2.7): F(σ) = infω∈M(X) {Dϕ(σ|ω) + 2τG(ω)}.
It is remarkable that, even if F is sometimes defined through an auxiliary mini-
mization problem, it can still be handled efficiently in some cases by the scaling
algorithm detailed below. For instance, functions of the form

(2.10) F(σ) = inf
ω∈Mn(X)

n∑
k=1

Dϕk
(σk|ωk) + G(ω) ,
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Figure 1. Representation of some problems of the form (2.9).
Each circle represents a measure (filled with black if is fixed by
an equality constraint); the terms in the functional J (see (2.9))
are represented by arrows (for transport terms), dotted lines (for
divergence terms) and rectangles (for the G terms). (A) With F1

and F2 of the form (2.10); (B) Balanced barycenter; (C) Unbal-
anced optimal transport; (D) WFR gradient flow of 2 species with
interaction.

where G is convex and (ϕk)n is a family of entropy functions, are still convex and
can model a great variety of problems. A graphical interpretation of these problems
is suggested in Figure 1 along with some examples.

3. Entropic regularization and iterative scaling algorithm

In this section, we introduce and describe an iterative scaling algorithm which
solves a regularized version of the generic variational problem (2.9). This analysis
is carried out in a continuous setting.

3.1. Entropic regularization. Following several recent articles, discussed in Sec-
tion 1.1, we consider an approximation of problem (2.9) where an entropy term
is used in place of the nonnegativity constraint on γ. Let dx and dy be reference
probability measures on X and Y and assume that the product measure dxdy is the
reference measure on X×Y (one could consider more general reference measures on
X × Y but this would require to invoke the concept of disintegration of measures).
We define (minus) the entropy of a family of couplings (γk)

n
k=1 as

H(γ)
def.
=

n∑
k=1

∫
X×Y

rk(log(rk)− 1)dxdy

if each γk admits a nonnegative density rk w.r.t. dxdy (with the convention 0 log 0 =
0) and ∞ otherwise. Note that each term is, up to a constant, the Kullback-Leibler
divergence KL of γi with respect to dxdy, as defined in Example 2.4. Given a small
regularization parameter ε > 0, we consider

(3.1) min
γ∈Mn(X×Y )

J (γ) + εH(γ).
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Recalling that J (γ) = 〈c, γ〉 + F1(P
X
# γ) + F2(P

Y
# γ) , this can be rewritten, up to

a constant, as

(3.2) min
γ∈Mn(X×Y )

F1(P
X
# γ) + F2(P

Y
# γ) + ε

n∑
k=1

KL(γk|e−ck/εdxdy).

Adding the entropy term can be interpreted in the following ways, detailed for
n = 1 for simplicity.

3.1.1. Interpretation 1. The resolution of (3.1) can be understood as a regulariza-
tion scheme, since the term εH(γ) makes the problem strictly convex. In the limit
ε → 0, the unique solution to (3.1) should converge to a solution of the original
problem. This is shown in the case of balanced transport (2.3) in [20, 44]. In our
setting, a general result is beyond the scope of this article. Nevertheless, the fi-
nite dimensional case is insightful: if dxdy has full support, then one recovers the
minimizer of J of minimal entropy.

Proposition 3.1. Consider the case where n = 1 (one coupling) and X and Y

are finite spaces. Assume that J is convex, lower semicontinuous and that A
def.
=

argminγ�dxdy J (γ) is nonempty. Let (εk)k∈N be a sequence of strictly positive real
numbers converging to 0. Then the sequence (γk)k∈N of minimizers of (3.1) is
well-defined and converges to argminγ∈A H(γ).

Proof. Since the objective function in (3.1) is coercive, strictly convex, lower semi-
continuous and its domain is nonempty, there exists a unique minimizer γk of (3.1)
associated to εk for all k ∈ N. Now, let γ̄ ∈ A. For all k ∈ N, the optimality of γk
implies

γk ∈ {γ ∈ M+(X × Y ) ; H(γ) � H(γ̄)} ,

where H(γ̄) is finite since it is a finite sum of real numbers. As H is coercive and
lower semicontinuous, this set is compact. This implies the existence of cluster
points for (γk): let γ∗ be one of them. One has that γ∗ belongs to A since for all
k, |J (γk) − J (γ̄)| � 2εkH(γ̄) → 0 and J (γ∗) � lim infk→∞ J (γk). Moreover, as
H(γ∗) � H(γ̄) and γ̄ is arbitrarily chosen in A, it holds that γ∗ ∈ argminγ∈A H(γ).
By strict convexity, this cluster point is unique and γk → γ∗. �

3.1.2. Interpretation 2. A second way to interpret (3.1) is as a proximal step for

the Kullback-Leibler divergence. Indeed, by denoting γ(0) def.
= dxdy and γ(1) the

solution to (3.1), one has γ(1) = proxKL
J /ε(γ

(0)). It is possible to iterate this relation

and define

γ(+1) def.
= proxKL

J /ε(γ
())

which is the so-called proximal-point algorithm for the KL divergence, known to
converge to the solution of (2.9) under the same conditions as in Proposition 3.1 (see
[31]). It is a simple exercise to show, that for balanced optimal transport performing
� proximal steps with stepsize ε corresponds to a single step with stepsize ε/�. While
this precise relation is not true for the more general transport problems discussed
here, we still find in practice that with small enough ε a single iteration yields
sufficient accuracy (see Section 4.3 for numerical handling of small ε values).
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3.1.3. Interpretation 3. Beyond computational aspects, for the specific case of stan-
dard OT with quadratic cost, the entropic regularization admits several interpre-
tations as a stochastic version of OT. For instance, it is obtained by considering
an optimal matching problem where there is (a specific model of) unknown hetero-
geneity in the preferences within each class to be matched [36]. What is more, it
amounts to computing the law of motion of the (indistinguishable) particules of a
gaz which follow a Brownian motion, conditionally to the observation of its density
at times t = 0 and t = 1, the so-called Schrödinger bridge problem [45].

3.1.4. Choice of the reference measure. The choice of dx and dy is critical for ob-
taining the weak convergence to a solution of (2.9) when ε → 0. An obvious
necessary condition is that the support of dxdy should contain the support of an
optimizer of the unregularized problem (2.9). For instance, when solving an un-
balanced optimal transport problem between μ and ν, the choice dx = μ/μ(X)
and dy = ν/ν(Y ) is not suitable if one of the divergences is not superlinear because
Dϕ(σ|μ) < ∞ does not imply σ � μ. In this case, the support of the reference mea-
sure dxdy should contain the sets (well-defined under the hypotheses of Proposition
2.12)

{(x, argmin
y

c(x, y));x ∈ X) and {(argmin
x

c(x, y), y); y ∈ Y } .

Also, for the barycenter (2.6) or the gradient flow problems (2.7), one does not
have access in general to a reference measure according to which an optimizer is
absolutely continuous. For numerics, the choice of the reference measures then
corresponds to the choice of a discretization grid on which we find approximate
solutions to the original problem.

3.2. Reformulation using densities and duality. From the definition of the
entropy H, any feasible γ of the generic problem (3.1) admits an L1 density with
respect to the reference measure dxdy. Accordingly, for the convenience of the
analysis, we reformulate (3.2) as a variational problem on measurable functions:

(Pε) min
r∈L1(X×Y )n

F1(P
X
# r) + F2(P

Y
# r) + εKL(r|K),

where F1(s)
def.
= F1(sdx), F2(s)

def.
= F2(sdy), K ∈ L∞

+ (X × Y )n is defined compo-
nentwise by

(3.3) Kk(x, y)
def.
= e−

ck(x,y)

ε

for k ∈ {1, . . . , n}, and with the convention exp(−∞) = 0, the projection operator
acts on each component of r and KL is the sum of the Kullback-Leibler divergences
on each component (see the notations in Section 1.3). In this section, we only make
the following general assumptions on the objects involved in (Pε).

Assumptions 1.

(i) (X, dx) and (Y, dy) are probability spaces (i.e., measured spaces with unit
total mass). The product spaceX×Y is equipped with the product measure

dxdy
def.
= dx⊗ dy;

(ii) F1 : L1(X)n → R ∪ {∞} and F2 : L1(Y )n → R ∪ {∞} are weakly lower
semicontinuous, convex and proper functionals;

(iii) K ∈ L∞
+ (X × Y )n and ε > 0.
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We begin with a general duality result, which is an application of Fenchel-
Rockafellar Theorem (see Appendix A.1). It is similar to duality results that can be
found in the literature on entropy minimization [13] but the functional we consider
is more general.

Theorem 3.2 (Duality). The dual problem of (Pε) is

(Dε) sup
(u,v)∈L∞(X)n×L∞(Y )n

− F ∗
1 (−u)− F ∗

2 (−v)− ε〈e(u⊕v)/ε − 1, K〉,

where u ⊕ v : (x, y) �→ u(x) + v(y). Strong duality holds, i.e., min (Pε) = sup (Dε)
and the minimum of (Pε) is attained for a unique r = (rk)k=1,...,n ∈ L1(X × Y )n.
Moreover, u and v maximize (Dε) if and only if
(3.4){

−u ∈ ∂F1(P
X
# r)

−v ∈ ∂F2(P
Y
# r)

and rk(x, y) = e
uk(x)

ε Kk(x, y)e
vk(x)

ε for k = 1, . . . , n.

Proof. In this proof, the spaces L∞ and (L∞)∗ are endowed with the strong and
the weak* topology, respectively. As L1(X × Y )n can be identified with a subset
of the topological dual of L∞(X × Y )n, the function KL(·|K) can be extended on
(L∞(X × Y )n)∗ as G(r) = KL(r|K) if r ∈ L1(X × Y )n and +∞ otherwise. Its
convex conjugate G∗ : L∞(X × Y )n → R is

G∗(w) =
n∑

k=1

∫
X×Y

(ewk(x,y) − 1)Kk(x, y)dxdy = 〈ew − 1,K〉

and is everywhere continuous for the strong topology [63, Theorem 4] (this property
relies on the finiteness of dxdy and the boundedness of K). The linear operator
A : L∞(X)n × L∞(Y )n → L∞(X × Y )n defined by A(u, v) : (x, y) �→ u(x) +
v(y) is continuous and its adjoint is defined on (L∞(X × Y )n)∗ (identified with
a subset of M(X × Y )n) by A∗(r) = (PX

# r, PY
# r). Since F1 and F2 are convex,

lower semicontinuous, proper and since G∗ is everywhere continuous on L∞(X ×
Y )n, strong duality and the existence of a minimizer for (Pε) is given by Fenchel-
Rockafellar theorem (see Appendix A.1). More explicitely, this theorem states that

sup
(u,v)∈L∞(X)n×L∞(Y )n

−F ∗
1 (−u)− F ∗

2 (−v)− εG∗(A(u, v)/ε)

and

min
r∈(L∞(X×Y )n)∗

F1(P
X
# r) + F2(P

Y
# r) + εG(r)

are equal, the latter being exactly (Pε) since G is infinite outside of L1(X × Y )n.
It states also that if (u, v) maximizes (Dε), then any minimizer of (3.1) satisfies
r ∈ ∂G∗(A(u, v)/ε) and the expression for the subdifferential of G∗ is an application
of the result in Appendix A.2. Finally, uniqueness of the minimizer for (Pε) comes
from the strict convexity of G. �

3.3. Scaling algorithm. The specific splitting of the problem (Pε) makes it suit-
able for the well-known Dykstra algorithm (see Section 1.1 for more background on
this algorithm). Since the functions F1 and F2 operate on the marginals only, Dyk-
stra’s iterations take a very simple form which is related to the celebrated Sinkhorn
algorithm. They are obtained as an alternating maximization on (Dε).
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Let K and KT be the linear operators defined, for a : X → [0,∞[n and b : Y →
[0,∞[n measurable, for k = 1, . . . , n as

(Kb)(x)k
def.
=

∫
Y

Kk(x, y)bk(y)dy and (KTa)(y)k
def.
=

∫
X

Kk(x, y)ak(x)dx .(3.5)

Given v(0) ∈ L∞(Y )n, alternating maximizations on the dual problem (Dε) define,
for � = 0, 1, 2, . . ., the iterates

(3.6)

⎧⎪⎪⎨
⎪⎪⎩

u(+1) = argmax
u∈L∞(X)n

−F ∗
1 (−u)− ε〈eu

ε ,Ke
v(�)

ε 〉X ,

v(+1) = argmax
v∈L∞(Y )n

−F ∗
2 (−v)− ε〈e v

ε ,KTe
u(�+1)

ε 〉Y ,

where we used the fact that, by Fubini-Tonelli, one has

(3.7) 〈e(u⊕v)/ε,K〉X×Y = 〈eu
ε ,Ke

v
ε 〉X = 〈e v

ε ,KTe
u
ε 〉Y .

Conditions which ensure the existence of these iterates are given later in Theorem
3.8; for now, remark that by strict convexity, they are uniquely defined when they
exist. Given an initialization b(0) ∈ L∞

+ (Y ), the main iterations of this paper are
defined as follows for � = 0, 1, 2, . . .:

Scaling iterations:

a(+1) def.
=

proxKL
F1/ε

(Kb())

Kb()
, b(+1) def.

=
proxKL

F2/ε
(KTa(+1))

KTa(+1)
(S)

,

where the proximal operator for the KL divergence is defined for F1 (and similarly
for F2) as

proxKL
F1/ε

(z)
def.
= argmin

s:X→R
n

measurable

F1(s) + εKL(s|z) .

The following proposition shows that, as long as they are well-defined, these iterates
are related to the alternate dual maximization iterates.

Proposition 3.3. Define a(0) = exp(v(0)), let (a(), b()) be the scaling iterates (S)
and (u(), v()) the alternate dual maximization iterates defined in (3.6). If for all
� ∈ N, either log a() ∈ L∞(X)n and log b() ∈ L∞(Y )n, or u() ∈ L∞(X)n and
v() ∈ L∞(Y )n, then

(a(), b()) = (eu
(�)/ε, ev

(�)/ε).

The proof of this proposition makes use of the following lemma.

Lemma 3.4. Let (T, dt) be a measure space and v ∈ L1
+(T ). For any u : T → R

measurable, if KL(u|v) < ∞, then u ∈ L1
+(T ).

Proof. Without loss of generality, one can assume v positive since for dt-a.e. t,
if v(t) = 0, then u(t) = 0. The subgradient inequality at 1 gives, for all s ∈ R,
s � ϕKL(s) + e1 − 1. Consequently,∫

T

udt =

∫
T

(u(t)/v(t))v(t)dt �
∫
T

(
ϕKL(u(t)/v(t)) + e1 − 1

)
v(t)dt < ∞. �
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Proof of Proposition 3.3. Suppose that v() ∈ L∞(Y )n and that b() = ev
(�)/ε. One

has Kb() ∈ L1(X)n and from Lemma 3.4, one can compute proxKL
F1/ε

(Kb()) in

L1(X)n. The Fenchel-Rockafellar theorem gives (see the proof of Theorem 3.2 for
more details):

sup
u∈L∞(X)n

−F ∗
1 (−u)− ε〈eu

ε ,Ke
v(�)

ε 〉 = min
s∈L1(X)n

F1(s) + εKL(s|Ke
v(�)

ε )

and the optimality conditions state that u� maximizes the problem on the right if

and only if the minimizer s�
def.
= proxKL

F1/ε
(Ke

v(�)

ε ) of the problem on the left belongs

to the subdifferential of u �→ 〈eu
ε ,Ke

v(�)

ε 〉 at the point u�. That is (see Appendix
A.2) if and only if for dx almost every x ∈ X,

s�(x) = eu
�(x)/ε · (Kev

(�)/ε)(x).

Thus, if ε log a(+1) belongs to L∞(X)n or if u� ∈ L∞(X)n exists, then u� =
ε log a(+1). The rest of the proof is done by induction. �

3.4. Existence of the iterates for integral functionals. Our next step is to
give conditions on F1 and F2 that guarantee the existence of the scaling iterates (S)
and an equivalence with alternate maximization on the dual (3.6). This is provided
by Theorem 3.8, where it is required that F1 and F2 are integral functionals, as we
define now.

Definition 3.5 (Normal integrands and integral functionals [65]). A function f :
X × R

n → R ∪ {∞} is called a normal integrand if its epigraphical mapping X �
x �→ epi f(x, ·) is closed-valued and measurable. A convex integral functional is a
function F : L1(X)n → R ∪ {∞} of the form

F (s) = If (s)
def.
=

∫
X

f(x, s(x))dx,

where f is a normal integrand and f(x, ·) is convex for all x ∈ X. In this paper,
F is an admissible integral functional if, moreover, for all x ∈ X, f(x, ·) takes
nonnegative values, has a domain which is a subset of [0,∞[n and if there exists
s ∈ L1(X)n such that If (s) < ∞.

The concept of normal integrands allows to deal conveniently with measurability
issues. For finite dimensional problems (when X and Y have a finite number of
points), integral functionals are simply sums of pointwise lower semicontinuous
functions. The following proposition shows that for such functionals, conjugation
and subdifferentiation can be performed pointwise.

Proposition 3.6. If F is an admissible integral functional associated to the convex
normal integrand f , then F is convex and weakly lower semicontinuous, f∗ is also
a normal convex integrand, F ∗ = If∗ and

∂F (s) = {u ; u(x) ∈ ∂f(x, s(x)), dx a.e.},
∂F ∗(u) = {s ; s(x) ∈ ∂f∗(x, u(x)), dx a.e.},

where conjugation and subdifferentiation on f are w.r.t. the second variable.
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Proof. This property can be found in [64] under the assumption of existence of a
feasible point s� ∈ L1(X)n for If and a feasible point u� ∈ L∞(X)n for If∗ . Our
admissibility criterion requires the existence of s� and one has

If∗(0) =

∫
X

f∗(x, 0)dx = −
∫
X

inf
s∈Rn

f(x, s)dx < ∞

since infs f(x, s) ∈ [0, f(x, s�(x))]. �

We now prove a general result on the “separability” of the KL proximal operator.
The Kullback-Leibler divergence between two vectors s and z in R

n is defined as

(3.8) KL(s|z) def.
=

n∑
k=1

sk log

(
sk
zk

)
− sk + zk

if (zk = 0) ⇒ (sk = 0), and +∞ otherwise, with the convention 0 log(0/0) = 0.
While we use a separate notation for the sake of clarity, this definition is actually
consistent with the definition of KL if one interprets s and z as vector densities on
a space (X, dx) which is a singleton with unit mass.

Proposition 3.7. Let s : X → R
n be measurable. If F = If is an admissible

integral functional, then for almost all x ∈ X,(
proxKL

1
εF

(s)
)
(x) = proxKL

1
ε f(x,·)

(s(x)) .

Proof. The problem which defines the proximal operator is that of minimizing

If (z) + KL(z|s) def.
= Ig(z) over measurable functions z : X → R

n with

g : (x, z) ∈ X × R
n �→ f(x, z) + KL(z|s(x)) .

The function (x, z) �→ KL(z|s(x)) is a convex normal integrand by [65, Prop. 14.30
and 14.45c]. Thus g is itself a normal convex integrand, as the sum of normal convex
integrands [65, Prop. 14.44]. Then a minimization interchange result [65, Thm.
14.60]] states that minimizing Ig is the same as minimizing g pointwise. �

By Proposition 3.6, if F1 and F2 are admissible integral functionals then F ∗
1 and

F ∗
2 are also integral functionals. So the alternating optimization on (Dε) can be

relaxed to the space of measurable functions and still have a meaning:

(3.9)

⎧⎪⎪⎨
⎪⎪⎩

u(+1) = argmax
u:X→Rn

−If∗
1
(−u)− ε〈eu

ε ,Ke
v(�)

ε 〉X ,

v(+1) = argmax
v:Y→Rn

−If∗
2
(−v)− ε〈e v

ε ,KTe
u(�+1)

ε 〉Y .

The following theorem gives existence, uniqueness of this iterates and a precise
relation with the scaling iterates (S).

Theorem 3.8. Let F1 and F2 be admissible integral functionals as in Defini-
tion (3.5) associated to the normal integrands f1 and f2. Assume that for all x ∈ X
and y ∈ Y , there exists points s1 and s2 with strictly positive coordinates such that
f1(x, s1) < ∞ and f2(y, s2) < ∞ and that K takes positive values. Define a(0) = 1
and let (a(), b()) be the scaling iterates (S). Then, with initialization v(0) = 0,
the iterates (u(), v()) in (3.9) are uniquely well-defined and for all � ∈ N one has

(a(), b()) = (e
u(�)

ε , e
v(�)

ε ).
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Proof. Suppose that v() : Y → R
n is a well-defined measurable function and that

b() = ev
(�)/ε. As K is positive, Kb() is positive dx a.e. Let a(+1) be computed

with (S). Thanks to Proposition 3.7, the proximal operator can be decomposed
as pointwise optimization problems and our assumptions allows to apply Fenchel-
Rockafellar (see Appendix A.1) in the case where both problems reach their optima

max
u∈Rn

−f∗
1 (x,−u)− ε〈eu/ε,Kb()〉 = min

s∈Rn
f1(x, s) + εKL(s|Kb()(x))

with the relation between optimizers: eu/ε = s/Kb()(x). This formula guarantees
that the function of pointwise maximizers x �→ u(x) is measurable since the function
of pointwise minimizers x �→ s(x) is uniquely well-defined and measurable by [65,
Thm. 14.37]. Indeed, the minimized function is a strictly convex normal integrand
because it is shown in Appendix A.2 that KL(·|Kb()(x)) is a normal integrand
and sum of normal integrands are normal [65, Prop. 14.44]. This shows that

a(+1) = e
u(�+1)

ε and one concludes by induction. �

3.5. Convergence analysis. This Section gives a fixed point result and a conver-
gence result for a particular case. The finite dimensional case is postponed to the
next section.

The following proposition sheds some light on the name “scaling” given to iter-
ations (S). It comes from the fact that these iterations allow to recover a solution
to (Pε) by multiplying the kernel K with positive functions, interpreted as scalings.

Proposition 3.9. Under the assumptions of Theorem 3.8, if the scaling iterations
(S) admit a fixed point (a, b) such that log a ∈ L∞(X)n and log b ∈ L∞(Y )n, then
(ε log a, ε log b) is the unique solution of (Dε) and the function r defined for each
k = 1, . . . , n by rk(x, y) = ak(x)Kk(x, y)bk(y) is the unique solution of (Pε).

Proof. As a consequence of Proposition 3.7, on can write the optimality condition
of a fixed point of (3.9) for almost every x ∈ X as

uk(x) = ε log

(
ak(x) · Kbk(x)

Kbk(x)

)

for some u(x) ∈ −∂f1(x, a(x)·Kb(x)). Thus −ε log(a) ∈ ∂If1(P
X
# r) because PX

# r =

a·Kb (the dot denotes componentwise multiplication). Similar derivations for b show
that the couple (ε log a, ε log b) and r satisfies the primal dual optimality conditions
(3.4). �

Sinkhorn’s algorithm (the special case of the scaling iterations (S) obtained when
F1 = ι{p}(s) and F2 = ι{q}(s) are the convex indicators of equality constraints) is
known to converge at a linear rate. This property is usually shown (see, for in-
stance, [34]) by using the contraction property of the operator K for the Hilbert
metric (a projective metric on the cone of nonnegative functions). Using a sim-
ilar approach, based on the related Thompson metric, we now show the linear
convergence of the scaling iterates (S) in another special case, which is central in
unbalanced optimal transport: when F1 and F2 are KL divergences with respect to
fixed densities.

An approach involving the Hilbert metric would still be possible, but the use of
the Thompson metric allows for a very short proof and a convergence rate which
does not depend on a bound on the cost. This metric is defined as follows.
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Definition 3.10 (Thompson metric on L∞
+ [75]). For r, s ∈ L∞

+ (X), let M(r/s)
def.
=

inf {α � 0 ; r � αs} (or ∞ if that set is empty). The Thompson metric is defined
by

d(r, s) = max{logM(r/s), logM(s/r)} .

Key properties of this metric are:

• if T : L∞(X) → L∞(Y ) is a z-homogeneous order-preserving (or order-
reversing) operator, then d(Tx, Ty) � |z| · d(x, y);

• the equivalence relation r ∼ s ⇔ d(r, s) < +∞ generates a partition of
(L∞(X), d) and each part is a complete metric space. In particular, the set{
s ∈ L∞

+ (X) ; log s ∈ L∞(X)
}
endowed with the Thompson metric form a

complete metric space.

Theorem 3.11. Let p and q be such that log p ∈ L∞(X) and log q ∈ L∞(Y ) and
define

F1 = λ1 KL(·|p) and F2 = λ2 KL(·|q)
for some λ1, λ2 > 0. Assume that the kernel K is lower bounded by a positive real
number. If (a(), b()) are the scaling iterates (S) initialized with b(0) = 1, then
(x, y) �→ a()(x)K(x, y)b()(y) converges at a linear rate (for the Thompson metric)
to a solution of (Pε).

Proof. Let zi
def.
= λi/(λi + ε) ∈ ]0, 1[ for i ∈ {1, 2} and let b(0) = 1. Following a

simple application of Proposition 3.7 (or see Table 1) the iterates in this specific
case read

a(+1) =
( p

Kb()

)z1
and b(+1) =

( q

Ka(+1)

)z2
.

Our assumptions are such that d(b(1), b(0)) and d(a(1), a(0)) are finite (this is direct
since the logarithms of b(0), K, p and q are bounded). Using the properties of the
Thompson metric, it holds that

d(a(+1), a()) = z1.d(Kb(),Kb(−1)) � z1.d(b
(), b(−1)) ,

since K is an order preserving linear operator. In a similar fashion, we obtain
d(b(+1), b()) � z2.d(a

(), a()). Thus the application a() �→ a(+1) is contractant
of factor z1.z2 < 1 and (a(), b()) converges linearly to some (a�, b�) ∈ L∞

+ (X) ×
L∞
+ (Y ) which is a fixed point of the iterations. Moreover, | log a�| is bounded

because d(a(0), a�) < ∞, and so is | log b�|. The result follows then by Proposition
3.9. �

4. Algorithm for discrete measures

In this section, we take a closer look at the scaling iterations (S) in the specific
case of discrete finite spaces. We give a convergence result, we adapt the nota-
tion to obtain an algorithm that can be implemented in a straightforward manner
and also discuss how to numerically stabilize the algorithm for small values of the
regularization parameter ε, to reach a higher precision.

4.1. Convergence. In finite dimension4, the scaling iterations (S) converge in gen-
eral. Note that the given convergence rate is pessimistic compared to that observed
in practice (which is linear, see Figure 5).

4when X and Y are finite sets, or when the reference measures are finite sums of atoms
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Theorem 4.1. Assume that X and Y are finite sets and that K takes positive val-

ues. Let (a(), b()) denote the scaling iterates (S), (u(), v())
def.
= (ε log a(), ε log b())

the associated dual iterates and −I the dual functional (Dε). Then one has

εKL(r∗|r()) � I(u(), v())− inf I � O(1/�),

where r()(x, y) = a()(x)K(x, y)b()(y).

Proof. By Proposition 3.3, (u(), v()) are the iterates of an alternate maximization
on the dual problem (Dε). Moreover, (minus) the dual functional has the structure

I(u, v) = F ∗(−(u, v)/ε) + εG∗(A(u, v)/ε),

where G : r �→ KL(r|K) so that G∗(z) = 〈ez−1,K〉 is continuously differentiable, A
is defined as A(u, v)(x, y) = u(x)+v(y), and F ∗(u, v) = F ∗

1 (u)+F ∗
2 (v) is separable.

Let us check that (i) G∗ is Lipschitz on the sublevel sets of I and (ii) I admits
minimizers, so that [6, Thm. 3.9] applies and proves I(u(), v())− inf I � O(1/�).

In order to check (i), take any feasible point s for F . The Hölder inequality
F (s) + F ∗(−(u, v)/ε) � 〈s,−(u, v)/ε〉 gives

εG∗(A(u, v)/ε) � I(u, v) + 〈(u, v)/ε, s〉+ F (s).

As a consequence, the components of A(u, v) are upper bounded on the set of dual
variables (u, v) satisfying I(u, v) � I(u(1), v(0)) and so I is uniformly Lipschitz on
this set. In order to check (ii), remark that a primal minimizer r∗ exists and since K
takes positive values, one can build a minimizer by simply inverting the primal-dual
relationship (u∗, v∗) ∈ A−1(ε log r∗/K).

It remains to prove the first part of the inequality of the Theorem. We follow
the strategy developed in [32, Thm. 1]. By direct computations (standard for
Bregman divergences), one has for any pair (z, z∗) in the domain of G∗, by defining
r(z)(x, y) = K(x, y) exp(z(x, y)),

ε(G∗(z)−G∗(z∗)− 〈∇G∗(z∗), z − z∗〉) = εKL(r(z∗)|r(z))
which is similar to a strict convexity estimate. Also, for any m ∈ ∂F ∗(−(u∗, v∗)/ε),
one has by definition of the subdifferential

F ∗(−(u(), v())/ε)− F ∗(−(u∗, v∗)/ε) � −〈m, (u() − u∗, v() − v∗)〉/ε .
By optimality, it holds 0 ∈ ∂I(u∗, v∗) so one can chose m = εA∗∇G∗(A(u∗, v∗)/ε).
Then one poses z = A(u(), v())/ε and z∗ = A(u∗, v∗)/ε in the first inequality, and
add it to the second to obtain the result. �
4.2. Numerical algorithm for discrete measures. We now adopt a more “im-
plementation oriented” point of view, which leads to algorithms which are straight-
forward to implement. For the sake of clarity, we focus on the case of a single
unknown coupling (i.e., n = 1, the extension to n > 1 merely requires to add an
index).

Assume that X = {x1, . . . , xI} and Y = {y1, . . . , yJ} are discrete finite spaces
of cardinal I and J , respectively, endowed with the reference probability measures
dx and dy described by nonnegative vectors summing to one

dx
def.
= (dx({xi})Ii=1 ∈ R

I
+ and dy

def.
= (dy({yj})Jj=1 ∈ R

J
+ .

In this context, one identifies functions a : X → R ∪ {∞} or b : Y → R ∪ {∞}
to vectors a = (a(xi))

I
i=1 and b = (b(yj))

J
j=1 and functions on the product space

r : X × Y → R ∪ {∞} to matrices R = (r(xi, yj))i,j (denoted with capital letters
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for a clearer distinction between vectors and matrices). This notation allows for a
simple expression for the projections (1.2) through

PX
# R = R dy and PY

#R = RTdx,

where (·)T denotes matrix transposition and R dy denotes the standard matrix-
vector product. Finally, the notation � denotes the entrywise product and 	 the
entrywise division with convention 0/0 = 0.

Suppose we are given a cost function c described by the I ×J matrix C and two
convex, lower semicontinuous and lower bounded functions F1 and F2 whose domain
is nonempty and included in R

I
+ and R

J
+, respectively. The Gibbs kernel (3.3) is

then given by K = (e−Ci,j/ε)i,j and, by simply replacing continuous variables by
their discrete counterparts, the main variational problem (Pε) reads

(4.1) min
R∈RI×J

F1(R dy) + F2(R
Tdx) + ε

∑
ij

KL(Ri,j |Ki,j),

where KL is the pointwise Kullback-Leibler divergence (defined in (3.8)). Applying
the operators K and KT defined in (3.5) amounts to

Kb = K(b� dy) and KT a = KT(a� dx) .

For computing the scaling iterates (S), all the information we need about F1 and
F2 can be condensed by the specification of functions proxdivF1

: RI
+ × R+ → R

I
+

and proxdivF2
: RJ

+ × R+ → R
J
+ defined as

(4.2) proxdivFi
: (s, ε) �→ proxKL

Fi/ε
(s)	 s .

Given this function, which is easy to compute in many cases (see, e.g., Table 1),
the scaling algorithm is straightforward to implement.

Algorithm 1. Scaling algorithm

1: function ScalingAlgo(proxdivF1
, proxdivF2

,K, dx, dy, ε)
2: b ← 1J

3: repeat
4: a ← proxdivF1

(K(b� dy), ε)

5: b ← proxdivF2
(KT(a� dx), ε)

6: until stopping criterion
7: return (aiKijbj)ij � The primal optimizer
8: end function

By virtue of Theorem 4.1, Algorithm 1 is guaranteed to stop and to return an
approximate minimizer of (4.1) if one uses a consistant stopping criterion.

4.3. Log-domain stabilization. For small values of ε the entries of K = e−C/ε,

a() = eu
(�)/ε and b() = ev

(�)/ε may become both very small and very large,
leading to numerically imprecise values of their mutual products and overflow of the
numerical range. On the other hand, executing the algorithm in the log domain (i.e.,
storing the logarithms of the entries of K, a() and b()) is not completely satisfying
because then the computation of Kb() and Ka() is not a simple matrix/vector
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product and the algorithm is considerably slowed down. We suggest a middle way,
using a redundant parametrization of the iterates as follows:

a() = ã() � exp(ũ()/ε), b() = b̃() � exp(ṽ()/ε).(4.3)

The idea is to keep ã() and b̃() close to 1 and to absorb the extreme values of a()

and b() into the log-domain via ũ() and ṽ() from time to time.
Consider the stabilized kernels K̃() whose entries are given by

K̃
()
ij = exp((ũ

()
i + ṽ

()
j −Ci,j)/ε)

and remark that it holds, after direct computations,

Kb() = e−
ũ(�)

ε � K̃()(b̃() � dy) and KTa() = e−
ṽ(�)

ε � (K̃())
T
(ã() � dx) .

The scaling iterates (S) then read

ã(+1) = proxKL
1
εF1

(e−
ũ(�)

ε � s1)	 s1 , b̃(+1) = proxKL
1
εF2

(e−
ṽ(�)

ε � s2)	 s2,

where s1 = K̃()(b̃() � dy) and s2 = (K̃())
T
(ã() � dx).

For computing these iterates, all the information we need about F1 and F2 can
be condensed by the specification of “stabilized proxdiv” functions proxdivF1

:

R
I × R

I × R+ → R
I and proxdivF2

: RJ × R
J × R+ → R

J defined as

(4.4) proxdivFi
: (s,u, ε) �→ proxKL

Fi/ε
(e−

u
ε � s)	 s .

We adopt the same notation as in (4.2) because it is just the special case when
u = 0. The main numerical algorithm thus obtained is displayed in Algorithm 2.

4.3.1. Computing proxdiv. The issue of extreme numerical values is not completely
remedied by the absorption steps in Algorithm 2 since the proxdiv operation still
involves the potentially extreme factor e−u/ε. In practice, however, we find that
for many problems proxdiv can be computed without evaluating the exponential
e−u/ε and the formula remains numerically stable in the limit of small ε. Several
examples for this are given in Section 5.

4.3.2. Frequency of absorptions. In practice, we recommend to run stabilized iter-
ations and check for the extreme values of (ã(), b̃()) every couple of iterations.
When they exceed a given threshold, an absorption step is performed.

4.4. Comments on implementation. We wish to emphasize the simplicity of
Algorithm 1 and Algorithm 2. When an optimization problem of the form (2.9)
is given, one just has to: (i) choose the reference measures (which also determines
a discretization grid in practice), (ii) determine the functions Fi by going to the
space of densities, and (iii) find a way to efficiently compute proxdivFi

or proxdivFi

(in many cases, this operator has a closed form, or can be computed with a few
parallelizable iterations). Let us briefly discuss some details on the practical imple-
mentation of Algorithm 2.
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Algorithm 2. Scaling algorithm with stabilization

1: function ScalingAlgo2(proxdivF1
, proxdivF2

,C, dx, dy, ε)

2: (b̃,u,v) ← (1J , 0I , 0J )

3: K̃ij ← exp(−Cij/ε) � for all i, j.
4: repeat
5: ã ← proxdivF1

(K̃(b̃� dy),u, ε)

6: b̃ ← proxdivF2
(K̃T(ã� dx),v, ε)

7: if a component of | log ã| or | log b̃| is “too big” then

8: (u,v) ← (u+ ε log ã,v + ε log b̃)

9: K̃ij ← exp((ui + vj −Ci,j)/ε) � for all i, j.

10: b̃ ← 1J

11: end if
12: until stopping criterion
13: return (ãiK̃i,jb̃j)i,j � The primal optimizer
14: end function

4.4.1. Computing the matrix multiplications. The size of the matrix K is I × J
so the matrix-vector multiplication step or even merely storing K in memory can
quickly become intractable as the sizes of X and Y increase. For special problems it
is possible to avoid dense matrix multiplication (and storage). For instance, when
X, Y are Cartesian grids in R

d and c(x, y) = |x − y|2 is the squared Euclidean
distance, then K is the separable Gaussian kernel: multiplying by K can be done
by successive “1-D convolutions”. We use this trick in Section 5, when mentioned.
For more general geometric surfaces, K can also be approximated by the heat
kernel [73]. These methods however cannot be combined with Algorithm 2, as the

“stabilized kernels” K̃ lose the particular structure.

4.4.2. Gradually decreasing ε. When solving for a very small ε, most of the entries
of K are below machine precision, so one need to first “estimate” the dual variables
(u,v) by performing several iterations with higher values of ε. Reduction of ε
should be performed between lines 8 and 9 in Algorithm 2: after line 8, (u,v)
are “approximations” of the dual variable of the unregularized problem so one can
change ε and start solving for a different ε with (u,v) as a starting point. We use
this heuristic in Section 5 (when mentioned) as follows: starting from ε = 1, after
every 100 iteration we perform an absorption step and divide ε by factor chosen
so that the final value ε is reached after 10 divisions. Then we run the standard
Algorithm 2 until the desired convergence criterion is met.

Note that gradually decreasing ε has also been proposed to asymptotically solve
the unregularized OT problem [71] (but ε should be of the order 1/ log(�) which is
too slow to be of practical interest) and, heuristically, to accelerate the convergence
of Sinkhorn’s iterations [42], in the same fashion as for interior point methods, but
theoretical justification is an open problem.

4.4.3. Multiple couplings. The general optimization problem in Section 3 involved
n couplings, potentially n > 1. For simplicity, throughout Section 4 we focussed
on the case n = 1. However, the extension to n > 1 is rather simple. In particular,
the variables a,b,u,v of the algorithm lie in R

n×I or R
n×J , the kernel K is a n-

family of I×J matrices, the entrywise operations (multiplication, division) are still
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performed entrywise and the matrix vector multiplications are performed “coupling
by coupling”, e.g., for k ∈ {1, . . . , n} and j ∈ {1, . . . , J}:

(Kb)k,i =
∑
j

Kk,i,j bk,j .

4.4.4. More tricks in [69]. An efficient numerical implementation of Algorithm 2 is
studied further in [69]. In addition to the log-domain stabilization and gradually
decreasing ε, it is proposed to approximate K by a sparse matrix, obtained by
adaptive truncation. Thus, one can avoid storing of and multiplication by the
dense kernel matrix, while keeping the inflicted truncation error negligible. This is
more flexible than, for instance, the Gaussian convolution trick and can easily be
extended to more general cost functions. In addition, this can be directly combined
with the log-domain stabilization and therefore allows to solve larger problems with
small regularization parameter (and hence, with little entropic blur). We choose,
however, not to use these additional tricks Section 5 in order to display results
which are easily reproducible.

4.5. Generalization: more spaces and pushforward operators. Scaling al-
gorithms similar to Algorithm (S) can be formulated for solving problems of more
general form than (Pε). There can be more than 2 functionals, more than 2 spaces
involved and the projection operators PX

# and P Y
# can be replaced by more gen-

eral linear operators, such as pushforwards of functions t which are not necessarily
projections (i.e., not of the form t(x, y) = x). Several examples of such extensions
can be found in [8] for the special case of classical optimal transport. Let us sketch
this extension in the discrete setting and for the case of n = 1 (one “coupling”) so
as to remain simple and to stick close to implementation concerns. For brevity, we
limit ourselves to giving the “scaling” form of the alternate maximization on the
dual and an example, without proof.

Let (Xk, dxk)Nk=1 and (Z, dz) be finite measured spaces of respective cardinalities
(Ik)

N
k=1 and L and let (tk : Z → Xk)

N
k=1 be surjective maps. The space Z plays the

role of X × Y in the previous discussions, but in this generalization the structure
of a product space is lost. For conciseness, in the notations, the maps (tk)k act on
indices of points instead of points, with an obvious meaning. Given k ∈ {1, . . . , N},
R ∈ R

L and u ∈ R
Ik the pushforward operator tk# and its adjoint (tk#)

∗ read

tk#R =
( ∑
l∈(tk)−1(i)

Rl · dzl / dxk
i

)Ik
i=1

and (tk#)
∗u =

(
utk(l)

)L
l=1

.

Given a nonnegative vector K ∈ R
L and N convex, proper, lower semicontinuous

functions Fk : RIk → R ∪ {∞}, the generalization of (4.1) is (up to a constant)

min
R∈RL

N∑
k=1

Fk(t
k
#R) + ε

L∑
l=1

Rl ·
(
log(Rl /Kl)− 1

)
· dzl

with the convention 0 log(0/0) = 0, and the dual reads

(4.5) sup
(uk)Nk=1∈R

∑
k Ik

−
N∑

k=1

F ∗
k (−uk)− ε

L∑
l=1

exp( 1ε

N∑
k=1

uk
tk(l)) ·Kl · dzl.

In order to perform alternate maximization on the dual as before, one needs a
“disintegration” relation, in the spirit of (3.7). To this end, we define, for (an)Nn=1 ∈
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R

∑
n In

+ and k ∈ {1, . . . , N} the operator Kk as

Kk((an)n�=k)
def.
=

( ∑
l∈(tk)−1(i)

(
∏
n�=k

antn(l)) ·Kl · dzl/dxk
i

)Ik
i=1

.

With those operators, the rightmost term of (4.5) can be computed in a “marginal-
ized” way, using the relation

〈ak , Kk((an)n�=k)〉dxk =
L∑

l=1

(
N∏

n=1

antn(l)) ·Kl · dzl

valid for k ∈ {1, . . . , N}. The key feature for obtaining this relation is the fact that

((tk)−1(i))Iki=1 forms a partition of Z, and this explains why the scaling algorithm
generalizes naturally to linear operators which are “pushforward”. It is now simple,
at least formally, to define the generalization of the scaling algorithm dispayed in
Algorithm 3, by writing the alternate optimization on the dual problem, and taking
again the dual, in the spirit of Proposition 3.3.

Algorithm 3. Generalized scaling algorithm

1: function GeneralScalingAlgo((proxdivFk
,Kk, tk)nk=1,K, ε)

2: ak ← 1Ik � for all k = 1, . . . , N .
3: repeat
4: for k = 1, . . . , N do
5: ak ← proxdiv(Kk((an)n�=k), ε)
6: end for
7: until stopping criteron

8: return
(
Kl ·

∏N
k=1 a

k
tk(l)

)L
l=1

� The primal optimizer

9: end function

As a simple illustration, consider, in the setting of equation (4.1), an extension
where is added a function of the total mass

min
R∈RI×J

F1(P
X
# R) + F2(P

Y
#R) + F3(m#R) + εKL(R|K),

where m : (x, y) → {0} (m# returns the total mass) and F3 : R → R ∪ {∞}
is a proper, lower semicontinuous and convex function. Applying the reasoning
above, and after some rearrangement (here Z is still a product space and thus
it is convenient to store R as a matrix), one obtains Algorithm 4. If F3 is the
indicator of equality with a positive real number, this algorithm solves the partial
optimal transport problem [19, 33] but more general F3 can be considered such as,
for instance, a range constraint on the total mass.

5. Applications

Throughout this section, we detail how to use the scaling iterations (S) for solv-
ing the problems discussed in Section 2. We first analyze the properties of the
functionals on marginals Fi, then we derive the iterations in a continuous setting,
and finally show numerical experiments. We extend the definition of the operator
proxdiv (defined in (4.4) in the discrete setting) to the continuous setting as follows:
for s ∈ L1(X), u ∈ L∞(X) and ε > 0,

(5.1) proxdivF (s, u, ε) = proxKL
F/ε(s e

−u
ε )/s
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Algorithm 4. Scaling algorithm with a function on the total mass

1: function MassScalingAlgo((proxdivFk
)3k=1,K, dx, dy, ε) � K is a matrix.

2: b ← 1J

3: z ← 1
4: repeat
5: a ← proxdivF1

(z ·K(b� dy))

6: b ← proxdivF2
(z ·KT(a� dx))

7: z ← proxdivF3
((a� dx)

T
K(b� dy))

8: until convergence
9: return z · (aiKi,jbj)i,j � The primal optimizer

10: end function

with the convention 0/0 = 0. Moreover, in order to avoid the heavy notation
Dϕ(adx|bdx), we denote by straight letters the divergences between functions, i.e.,
for a, b measurable nonnegative functions on X and ϕ a nonnegative entropy func-
tion (see Definition 2.1):

(5.2) Dϕ(a|b) def.
=

∫
X

Dϕ(a(x)|b(x))dx with Dϕ(a|b) =
{
b · ϕ(a/b) if b > 0,

a · ϕ′
∞ otherwise

with the convention 0 × ∞ = 0. Some properties of these divergences between
functions are studied in Appendix A.2.

All reported runtimes were obtained with an implementation in Julia, on a stan-
dard laptop with CPU clock rate 2.5 GHz.

5.1. Balanced and unbalanced optimal transport.

5.1.1. Derivation of the algorithm. The basic framework of classical and unbalanced
optimal transport has been recalled in Sections 2.2 and 2.3. Assume that we are
given marginals μ ∈ M+(X), ν ∈ M+(ν) and a cost function c : X×Y → R∪{∞}.
By defining p = dμ/dx and q = dν/dy, the marginal functionals involved in the
regularized problem are

(5.3) F1(s1) = Dϕ1
(s1|p) and F2(s2) = Dϕ2

(s2|q) .

as in (5.2) above. As shown in Appendix A.2, if ϕ1 and ϕ2 are a nonnegative
entropy function (Definition 2.1), then F1 and F2 are admissible integral functionals
(Definition 3.5). In order to compute the associated proxdiv operator, let us apply
Proposition 3.7 in this precise case.

Proposition 5.1. Let ϕ be a nonnegative entropy function and (s, p) ∈ L1
+(X)2

such that 0 ∈ domϕ or s(x) = 0 ⇒ p(x) = 0 a.e. Let F (s) = Dϕ(s|p). Then
proxKL

F/ε(s) is not empty and is the singleton s� satisfying for a.e. x ∈ X,⎧⎪⎨
⎪⎩
0 = s�(x) if s(x) = 0,

0 = ε log(s�(x)/s(x)) + ϕ′
∞ if p(x) = 0 and s(x) > 0,

0 ∈ ε log(s�(x)/s(x)) + ∂ϕ(s�(x)/p(x)) otherwise.

Proof. It is the pointwise optimality conditions associated to Proposition 3.7. �
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(a) Graph of the entropy functions ϕ
used to define the divergences in the leg-
end.

(b) Operator proxdivF associated to
these divergence functions, for p = 1,
u = 0 and varying s ∈ R (in log scale)

Figure 2. Divergences and proxdiv operators for the examples of
Table 1

This formula allows to compute explicitly the proxdiv operators of the examples
introduced in Section 2.1, as listed in Table 1. These entropy functions as well as
the associated proxdiv operators are displayed in Figure 2. Note that, in Table 1
the first line corresponds to standard Sinkhorn iterations and these iterations are
recovered in the second and third line by letting λ → +∞ and by setting α = β = 1
in the fourth line. In the context of the log-domain stabilization (Section 4.3), all
four proxdiv operators remain stable in the limit of small ε: either proxdiv is
independent of u, only a regularized exponential e−u/(λ+ε) must be evaluated, or
extreme values are cut off by thresholding.

Table 1. Some divergence functionals and the associated prox
and proxdiv operators for functions s and u defined on X. All
operators are acting pointwise and λ > 0, 0 � α � β are real
parameters (see Section 2.1 for the definitions).

F proxKL
F/ε(s) proxdivF (s, u, ε)

ι{=}(·|p) p p/s

λKL(·|p) s
ε

ε+λ · p λ
ε+λ (p/s)

λ
λ+ε · e−u/(λ+ε)

λTV(·|p) min
{
s · eλ

ε ,max
{
s · e−λ

ε , p
}}

min
{
e

λ−u
ε ,max

{
e−

λ+u
ε , p/s

}}
RG[α,β] min {β p,max {α p, s}} min

{
β p/s,max

{
α p/s, e−u/ε

}}

5.1.2. Numerical examples for X = [0, 1]. Let X = Y be the discretization of
the interval [0, 1] into I = J = 1000 uniform samples and dx = dy = 1

I 1I (the
discretized Lebesgue measure). Let p, q be the (discrete) marginals displayed on
Figures 3a–3b. We solve the discrete entropic regularized problem (4.1) using the
stabilized scaling Algorithm 2 for marginal functions Fi of the form (5.3) with
several choices of divergences listed in Figure 3. The algorithm was stopped after
103 iterations with a runtime of approximately 30 seconds.

For the optimal solutionR ∈ R
I×J , obtained after convergence, Figure 3 displays

its projectionsR dy andRT dx on the domain X and Figure 4 illustrates the entries
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of R which are greater than 10−10, which can be interpreted as the approximate
support of the optimizers. Thanks to the stabilization of Algorithm 2, the parameter
ε could be made extremely small, until the plan is quasi-deterministic. Here we set
it to ε = 10−7 for the support to be clearly visible in Figure 4. Remark that for the
TV case (orange support), the straight segments correspond to a density of 1 on
the diagonal: this is the plan with minimal entropy among the (nonunique) optimal
plans, in accordance with Proposition 3.1.

Figure 5 displays the primal-dual gap (Pε) − (Dε) as a function of the itera-
tion number � when running Algorithm 1 for solving unbalanced optimal transport
problems with ε = 0.01. More precisely, we display

Pε(r
())−Dε(u

(), v()),

where Pε and Dε are the primal and dual functionals (where set constraints are
replaced by an exponential function of the distance to the set) as in Theorem 3.2 and
r(), u(), v() are the primal and dual iterates as in Theorem 4.1. The marginals are
the same as shown in Figures 3a–3b and the cost is quadratic. The discretization is
I = J = 500 except for the thin black line where I = J = 1000. This plot leads to
3 observations which generalize the conclusion of Theorem 3.11: (i) convergence in
function values is empirically linear, (ii) convergence is faster when the divergences
are multiplied by a small weight, (iii) convergence speed is insensitive to dimension
of the problem.

5.1.3. Numerical examples for X = Y = [0, 1]2. Let X = Y be the discretization
of the 2-dimensional domain [0, 1]2 into I = J = 200 × 200 uniform samples and
dx = dy be the discrete Lebesgue measures. Let p, q be the densities displayed
together in Figure 6a and c be the quadratic cost c(x, y) = |y − x|2. We solve the
discrete entropic regularized problem (4.1) using Algorithm 1 for several unbalanced
optimal transport problems. We apply the “separable kernel” method (see Section
4.4) to accelerate the algorithm. Since this cannot be combined with the log-
stabilization, the regularization parameter ε has been fixed to the rather high value
ε = 10−4 in order to avoid numerical issues. Figure 6 shows the marginals of the
optimal coupling R and Figure 7 illustrates the resulting transport plan: points
with the same color correspond roughly to the same mass particle before and after
transport. The algorithm was stopped after 103 iterations and the running time
was of 35 seconds approximately.

5.1.4. Color transfer. In general it is difficult to display optimal transport maps
for three-dimensional problems. An interesting application which allows intuitive
visualization is color transfer: a classical task in image processing where the goal is
to impose the color histogram of one image onto another image. Optimal transport
between histograms has proven useful for problems of this sort such as contrast
adjustment [28] and color transfer via 1-D transportation [60]. Indeed, optimal
transport produces a correspondence between histograms which minimizes the total
amount of color “distortion” (where the notion of distortion is specified by the cost
function) and thus maintains maximal visual consistency.

In our experiments we represent colors in the three-dimensional “CIE-Lab” space
(one coordinate for luminance and two for chrominance), resized to fit into a cuboid
X = Y = [0, 1]3, discretized into I = J = 64× 32× 32 uniform bins and we choose
the quadratic cost c(x, y) = |x− y|2. The anisotropic discretization of X accounts
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(a) Marginal p (b) Marginal q

(c) ι{=} (classical OT) (d) 0.05× TV

(e) 0.5×KL (f) (F) 0.1×KL

(g) RG[0.7, 1.2] (h) WFR (with cut locus at 0.2)

Figure 3. (A)–(B) Input marginals. (C)–(H) Marginals of the
optimal planR displayed together for several divergences (specified
in the caption). The color shows the location of the same subset
of mass before and after transportation. The cost is the quadratic
cost c(x, y) = |y − x|2 except for (H) which is a computation of
the optimal plan for WFR that is F1 = F2 = KL and c as in (2.5)
(with a spatial rescaling so that c(x, y) = ∞ ⇔ |y − x| � 0.2).

Figure 4. Support of the optimal plans
{
(xi, yj) ; Ri,j > 10−10

}
for all the examples displayed in Figure 3, except (E). Orange and
black are superimposed at the top.
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Figure 5. Primal dual gap as a function of the iterations for
Algorithm 1 applied to unbalanced optimal transport problems.

(a) p and q (b) 0.1×KL (c) RG[0.7, 1.2] (d) 0.05× TV

Figure 6. Marginals of the optimal plan R for several unbalanced
optimal transport problems (quadratic cost, divergence specified in
the captions).

(a) ι{=} (b) 0.1×KL (c) RG[0.7, 1.2] (d) 0.05× TV

Figure 7. Representation of the transport map for the experi-
ments of Figure 6.

for the fact that the eye is more sensitive to variations in luminance than variations
in chrominance.

Let Ω ⊂ R
2 be the image domain. An image is described by a function g : Ω → X

and its color histogram is the pushforward of the Lebesgue measure on Ω by g. Let
gX : Ω → X and gY : Ω → Y (= X) be two images and let p, q be the densities of the
associated color histograms with respect to the reference measures dx = dy = 1I

which gives unit mass to each point of X. We run Algorithm 1 with the “separable
kernel” method (see Section 4.4) to obtain an (unbalanced) optimal transport plan
R. An approximate transport map T is then computed according to the barycentric
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(a) Image gX (b) Image gY

(c) ι{=} (d) 0.03×KL (e) RG[0, 5] (f) 0.2× TV

Figure 8. A challenging color transfer experiment where the col-
ors of the image gY are transferred to the image gX . In all cases
F1 = ι{=}(· | p) and F2 is the divergence with respect to q specified
in the caption. Note that in (F) some colors are not “displaced”.
The parameters for F2 are chosen arbitrarily.

projection (as already used, for instance, in [73])

T (xi) = Ti where T
def.
= (R.y1,R.y2,R.y3)/R.1J ,

where y = (y1,y2,y3) ∈ R
J×3 is the vector of coordinates of the points in Y (= X).

The modified image is finally obtained as T ◦ gX .
On Figure 8, we display the color transfer between very dissimilar images, com-

puted with parameter ε = 0.002. The algorithm was stopped after 2000 iterations
and the running time was approximately 160 seconds. This intentionally challeng-
ing example is insightful as it exhibits a strong effect of the choice of the divergence.
There are no quantitative measures for the quality of a transformed image, but the
application of unbalanced optimal transport allows to select the “right amount of
colors” in the target histogram so as to match the modes of the initial histogram
and yields meaningful results.

5.2. Unbalanced barycenters.

5.2.1. Well-posedness. Barycenters and related problems have been defined in Sec-
tion 2.4. Assume we are given a family of n measures (pkdx)

n
k=1, families of en-

tropies (ϕ1,k)
n
k=1 and (ϕ2,k)

n
k=1 and families of cost functions (ck)

n
k=1. For a clearer

picture, let us focus on the case where

ϕ2,k = αk · λ · ϕ for k = 1, . . . , n,
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where ϕ is a nonnegative entropy function, (αk)
n
k=1 ∈]0,∞[n are weights and λ > 0

is a (redundant) parameter. It is also convenient to slightly modify (for this section
only) the definition of the KL divergence given in (1.1) by introducing weights as

KL(r|s) def.
=

∑
k

αk ·KL(rk|sk) .

No theoretical aspect is affected by this small change, but the definition of the
kernel has to be adapted, for each component, as

Kk = exp(−ck/(αk ε))

so that one still has 〈c, r〉+ εKL(r|1) = εKL(r|K) + const. By equation (2.6), the
barycenter problem with entropic regularization corresponds to defining

F1(r) =
n∑

k=1

Dϕk,1
(rkdx|pkdx) and F2(s) = inf

σ∈M+(Y )
λ

n∑
k=1

αk Dϕ(skdy|σ)

(for all r ∈ L1(X)n and s ∈ L1(Y )n) in (Pε). It is direct to see that the proximal
operator of F1 for the KL divergence (according to our specific definition of KL)
can be computed componentwise as

(5.4) proxKL
F1

(r) = (proxKL
Dϕ1,1

(·|p1)
(r1), . . . , prox

KL
Dϕn,1

(·|pn)
(rn)),

so we can use the results from the previous section (recall that D denotes divergences
between functions as in (5.2)). Let us turn our attention to the function F2. As it
is assumed ϕ(0) � 0, F2 is not changed by taking the infimum over σ of the form
h · dy for h ∈ L1(Y ). So one can express F2 for s ∈ L1(Y )n, with notation of (5.2)
as

(5.5) F2(s) = min
h∈L1(Y )

λ

n∑
k=1

αk Dϕ(sk|h) = min
h∈L1(Y )

λ

n∑
k=1

αk

∫
X

Dϕ(sk(x)|h(x))dx .

Proposition 5.2. If ϕ′
∞ > 0, then F2 is an admissible integral functional in the

sense of Definition 3.5 and for all s ∈ L1(Y )n, there exists a minimizer h ∈ L1(Y ).
Moreover, if r� ∈ L1(X × Y )n minimizes (Pε), then the associated minimizer h� is
a pointwise minimizer of (5.5) at the point s = PY

# r�.

Proof. Let G(s, h) be the function on the right side, which is an admissible integral
functional (see Proposition A.2 in Appendix A.2). Let us verify the assumptions of
the “reduced minimization Theorem” [64, Corollary 3B]. Assumption (i) is satisfied
because ϕ′

∞ > 0 guarantees the growth condition [64, 2R] and assumption (ii) is
guaranteed by the fact that if u ∈ L1(Y ) and Dϕ(u|v) < ∞, then v ∈ L1(Y )
(this is proven by adapting slightly the proof of Lemma 3.4, using the—at least
linear—growth of ϕ). Thus the cited corollary applies. �

5.2.2. Derivation of the algorithm. According to Proposition 3.7, computing the
prox and proxdiv operators requires to solve, for each point y ∈ Y , a problem of
the form

(5.6) min
(s̃,h)∈Rn×R

n∑
k=1

αk

(
ε ·KL(s̃k|sk) + λ ·Dϕ(s̃k|h)

)
.

If ϕ is smooth, first order optimality conditions for (5.6) are simple to obtain. The
next proposition deals with the general case where more care is needed.
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Proposition 5.3. Let (si)
n
i=1 ∈ R

n
+. Assume that there exists a feasible candidate

(s̃0, h0) for (5.6) such that (si > 0) ⇒ (s̃0i > 0). A candidate (s̃, h) is a solution of
(5.6) if and only if

• (si = 0) ⇔ (s̃i = 0) and
• there exists b ∈ R

n such that
∑n

k=1 αkbk = 0 and, for all k ∈ {1, . . . , n},
(ak, bk) ∈ ∂Dϕ(s̃k|h) with ak

def.
= ε

λ log sk
s̃k

if sk > 0 and bk ∈ ∂2 Dϕ(0, h)
otherwise.

Proof. First assume that si > 0 for all i ∈ {1, . . . , n}. The positivity assumption on
the feasible point implies that the sum of the subdifferential is the subdifferential
of the sum by continuity of KL for positive arguments. Moreover, a minimizer
necessarily satisfies s̃i > 0 for all i. Consequently, the subderivative of the function
in (5.6) at ((s̃i)n, h) is the set of vectors in R

n+1 of the form⎛
⎜⎜⎜⎜⎝

...
εαi log(s̃i/si) + λαiai

...
λ
∑

k αkbk

⎞
⎟⎟⎟⎟⎠

with (ai, bi) ∈ ∂Dϕ(s̃i|h). Writing the first order optimality condition yields the
second condition of the proposition. Now for all i such that si is null, set s̃i = 0
(this is required for feasibility) and do the reasoning above by withdrawing the
variables s̃i which have been fixed. �

Note that once the optimal h is found (possibly with the help of the optimality
conditions of Proposition 5.3), determining the optimal values for s̃ can be done
componentwise as in (5.4) with the help of Proposition 5.1. In Table 2 we provide
formulas for h for some examples (proofs can be found in Appendix A.3), for the
subsequent computation of s̃k (and the proxdiv step) we refer the reader to Table 1
(where of course one must replace p by h).

5.2.3. Numerical experiments. Geodesics in Wasserstein and Wasserstein–Fisher–
Rao space can be computed as weighted barycenters between their endpoints. In
Figure 9 geodesics for the Wasserstein–Fisher–Rao distance on X = Y = [0, 1] for
different cut-loci dmax and the Wasserstein distance (corresponding to dmax = ∞)
are compared and the influence of entropy regularization is illustrated. The interval
[0, 1] was discretized into I = J = 512 uniform samples. dx and dy were chosen to
be the discretized Lebesgue measure.

In Figure 10, we display Fréchet means-like experiments for a family of 4 given
marginals where X = Y is the segment [0, 1] (discretized as above). The (discrete)
densities of the marginals (pk)

4
k=1 consist each of the sum of three bumps (centered

near the points x = 0.1, x = 0.5 and x = 0.9). These computations where performed
with Algorithm 2 which was stopped after 1500 iterations (running time of 30
seconds approximately) and with ε = 10−5. We observe that relaxing the marginal
constraints (Figures 10c–10f) allows us to conserve this structure in three bumps
in contrast to classical optimal transport (Figure 10b).

Figure 11 and 12 display barycenters for the Wasserstein and the GHK metric
(defined in Section 2.3) between three densities on [0, 3]2 discretized into 200× 200
samples. Computations where performed using Algorithm 1 and the “separable
kernel” method (see Section 4.4) which was stopped after 1500 iterations (running
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Table 2. Expression for the minimizer h of (5.6) as a function of
s ∈ R

n, where I+ = {k ; sk > 0} (proofs in Appendix A.3). For
the implicit equations of cases (iii) and (iv), an exact solution can
be given quickly because computing log h consists in finding the
root of a piecewise linear nondecreasing function (with at most 2n
pieces), which is guaranteed to change its sign.

Dϕ Formula for h as a function of s ∈ R
n

(i) ι{=} h = (
∏

k s
αk

k )
1∑

k αk

(ii) λKL h =

(∑
k αks

ε
ε+λ
k∑

k αk

) ε+λ
ε

(iii) λTV if
∑

k/∈I+
αk �

∑
k∈I+

αk then h = 0 otherwise solve:∑
k/∈I+

αk +
∑

k∈I+
αk max

(
−1,min

(
1, ε

λ log h
si

))
= 0

(iv) RG[β1,β2] if sk = 0 for some k then h = 0 otherwise solve:∑
k αk

[
β2 min

(
log β2 h

sk
, 0

)
+ β1 max

(
log β1 h

sk
, 0

)]
= 0

time of 70 seconds approximately) with ε = 9.10−4. The barycenter coefficients are
the following:

(0, 1, 0)

(1, 3, 0)/4 (0, 3, 1)/4

(2, 2, 0)/4 (1, 2, 1)/4 (0, 2, 2)/4

(3, 1, 0)/4 (2, 1, 1)/4 (1, 1, 2)/4 (0, 1, 3)/4

(1, 0, 0) (3, 0, 1)/4 (2, 0, 2)/4 (1, 0, 3)/4 (0, 0, 1)

The input densities have a similar global structure: each is made of three distant
“shapes” of varying mass. The comparison between Figures 11 and 12 lead to a
similar remark than for Figure 10: relaxing the strict marginal constraints allows
us to maintain the global “structure” of the input densities.

5.3. Gradient flows and evolution of densities. The basic framework of gradi-
ent flows has been briefly laid out in Section 2.5. This section details the application
of Algorithm 2 for solving them. As the transition from the measures formulation
to the density formulation and further to the algorithm with pointwise optimality
conditions was carefully detailed in Sections 5.1 and 5.2, we skip some of these
intermediate steps here.

5.3.1. In the Wasserstein space. Scaling algorithms for solving Wasserstein gradi-
ent flows are not new [58], but our framework allows to simplify the derivation
of the algorithm and the stabilized Algorithm 2 allows to use much smaller regu-
larization parameter ε yielding sharper and more precise flows. Given a convex,
lower semicontinuous function on measures G with compact sublevel sets, each step
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Figure 9. Top: Geodesics in Wasserstein distance (dmax = ∞)
and Wasserstein–Fisher–Rao distance (dmax gives the cut-locus dis-
tance) as weighted (unbalanced) barycenters between endpoints.
For dmax = ∞ the mass difference between left and right blocks
must be compensated by transport. As dmax is reduced, the mass
difference is increasingly compensated by growth and shrinkage. In
all experiments ε = 10−6. Bottom: Midpoint of the Wasserstein
geodesic for various ε.

requires to find the minimizer of

min
γ∈M+(X×X)

〈c, γ〉+ ι{=}(P
1
#γ|μτ

k) + 2 τ G(P 2
#γ),

where c : (x, y) �→ |y−x|2 is the quadratic cost. This directly fits in our framework
by choosing F1(s) = ι{=}(s dx|μτ

k) and F2(s) = 2 τ G(s dx).

Example 5.4. If the energy is given by the relative entropy G = KL(·|p dx) for
some reference measure p dx, then the proximal step for F2 is given by

proxKL
1
εF2

(q) = argmin
s:X→R

(εKL(s|q) + 2τ KL(s|p)) = q
ε

ε+2τ · p 2τ
ε+2τ .

This problem is identical to an unbalanced transport problem where one of the
marginal is fixed and the other is controlled by a KL divergence. The difference
is, that we want to solve a whole sequence of such problems, each time taking the
second marginal of the optimal coupling and plugging it into the next problem
as constraint for the first marginal. The gradient flow associated to this example
allows us to recover the heat flow when p dx is the Lebesgue measure on X = R

d.

Example 5.5. Some models of crowd motion with congestion [51] can be ap-
proximatively simulated by computing a sequence of measures (μτ

k) from an initial
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(a) Marginals (pk)
4
k=1

(b) ι{=}

(c) 0.07×KL (d) 0.02× TV

(e) RG[0.65, 1.35]
(f) WFR (cut locus at 0.2)

Figure 10. Illustration of barycenter-like problems on X = Y =
[0, 1]. Except for (F), the function F1 is the equality constraint
with respect to the densities (pk)

4
k=1, the cost is c(x, y) = |y−x|2,

the weights are ( 14 ,
1
4 ,

1
4 ,

1
4 ) and the function F2 is of the type (5.5)

with the divergence specified in the legend. (F) represents the
Fréchet mean for the WFR metric. The dotted lines display the
second marginal of the optimal plans.

Figure 11. Wasserstein barycenters with entropic smoothing
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Figure 12. GHK barycenters with entropic smoothing (the defi-
nition of the GHK metric is similar to Wasserstein but the marginal
constraints are replaced by KL divergences, see Section 2.3).

measure μ0, where for all k ∈ N, μτ
2k+1 is obtained from μτ

2k by performing a free
evolution during a time τ (this requires another algorithm) and then defining μτ

2k+2

as the Wasserstein projection of μτ
2k+1 (which we write as p2k+1 dx) onto the set

of measures with densities smaller than 1. The second step can be performed by
setting F1(s) = ι{=}(s|p2k+1) and F2(s) = ι�1(s). The proximal operator of F2 at
a point s is given by min{1, s} and thus p2k+2 can be obtained from p2k+1 with the
stabilized Algorithm 2 with

proxdivF1
(s, u, ε) = p2k+1

s and proxdivF2
(s, u, ε) = min{ 1

s , e
−u/ε} .

5.3.2. WFR gradient flows. For WFR gradient flows, each step requires to solve

inf
μ∈M+(X)

γ∈M+(X×X)

〈c, γ〉+KL(P 1
#γ|μτ

k) +KL(P 2
#γ|μ) + 2τG(μ),

where c is the cost given in (2.5). By denoting pk the density of μτ
k with respect to

dx, one defines the functions

F1(s) = KL(s|pk) and F2(s) = inf
p∈L1(X)

KL(s|p) + 2τ G(p),

where G(p)
def.
= G(pdx). If G is an integral functional G(s) =

∫
X
gx(s(x))dx, the

proximal operator is given pointwise by

inf
(s̃,p)∈R2

εKL(s̃|s) + KL(s̃|p) + 2τ gx(p)
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for which the first order optimality conditions read{
0 = ε log(s̃/s) + log(s̃/p),

(s̃/p− 1)/(2τ ) ∈ ∂gx(p),

and s̃ = 0 if s = 0 or p = 0. In many cases, this system can be easily solved, as in
the following example.

Example 5.6. One of the simplest functional which generates nontrivial gradient
flows is

G(μ) = −α · μ(X) + ι�1(dμ/dx),

where α ∈]0,∞[. Since the distance WFR measures both the displacement and the
rate of growth, one can interpret the gradient flow of G as describing the evolution
of a density of cells (a tumor, say) which have a tendency to multiply—hence
increase the total mass—but which density cannot exceed 1. One can solve the
time discretized gradient flow with Algorithm 2 by choosing F2(s) = infp KL(s|p)−
2ατ p+ ι�1(p). With the optimality conditions above, one obtains

proxdivF2
(s, u, ε) =

{
(eu(1− 2τ α))−

1
ε if s � e

u
ε (1− 2τα)

1+ε
ε ,

(s eu)−
1

1+ε otherwise.

Moreover, given an optimal coupling r, one has μτ
k+1 = min

(
P 2

#r

1−2τα , 1
)
dx.

A numerical illustration is given in Figure 13 where we used Algorithm 2 (stopped
after 500 iterations) for solving each step , with the following parameters: X is the
segment [0, 1] discretized into 3000 uniformly spaced samples, the initial density p0
is the black line in Figure 13b, τ = 0.006, α = 1 and ε = 10−8. The running time
was 315 seconds. Notice how, by using a very small value for ε, the “smoothing”
effect of the entropy disappears: the contours of the free-boundary which evolve
with time remain sharp.

5.3.3. WFR Gradient flows with multiple species. The generic form (2.9) also in-
cludes gradient flows with multiple species with a mutual interaction (with n > 1,
similar to the barycenter problem). Such systems have been theoretically studied
in [43, 79]. Here we consider this class of problems in order to illustrate the versa-
tility of the algorithm and it is not our purpose to make a link with the theory of
PDEs. Let us consider a simple example which is a direct extension of Example
5.6. Consider the following functional:

G(μa, μb) = −α · μa − α · μb + ι�1(d(μ
a + μb)/dx)) .

In this model, one has two species which have a tendency to grow in mass (with
the same incentive α > 0, for simplicity of the algorithm), and their sum cannot
exceed the reference measure. The corresponding F2 is given by

F2(s
a, sb) = inf

(ra,rb)∈L1(X)2
KL(sa|ra) + KL(sb|rb)− 2ατ

∫
X

(ra + rb)dx+ ι�1(r
a + rb) .

The optimality conditions yield

proxdivF2
(s, u, ε) = (e−

ua

ε , e−
ub

ε )/β(sa e−
ua

ε , sb e−
ub

ε ),



2602 L. CHIZAT, G. PEYRÉ, B. SCHMITZER, AND F.-X. VIALARD

(a) Evolution in color scale: time evolves from bottom to top.

(b) Evolution viewed “laterally”: the initial density p0 is the black line, then
the density is displayed at every time step with a color ranging from blue (small
times) to pink (bigger times).

Figure 13. Evolution of the density with respect to time for the
growth model of Example 5.6.

where β(x, y)
def.
= max

{
(x+ y)

1
1+ε , (1− 2τα)

1
ε

}
. Morevoer, given an optimal pair

of couplings ra, rb, the next densities are given by

(pak+1, p
b
k+1) = (P 2

#r
a, P 2

#r
b)/β(P 2

#r
a, P 2

#r
b).

Notice that in this model, as in Example 5.6, if the domain X is compact and the
initial densities are not null, a steady state is reached in finite time, where the sum
of the two densities is constant and equal to 1.

Some initial densities and the associated final steady state are shown in Figure
14. For this illustration, we started with input densities pa and pb on the segment
[0, 1] discretized into 3000 uniform samples, as displayed in Figure 14a (where the
red density pb is layered over pa). We computed the evolution with Algorithm 2 for
solving each step of the discretized gradient flow, with the parameters τ = 0.004,
α = 1 and ε = 10−7.

Note that although the incentive of growing mass α is the same for the two
species, the resulting interaction is nontrivial; for instance, the small amount of
blue mass is pushed to the right by the action of the expanding red mass. This
behavior is explained by the fact that for the WFR metric, it requires less effort
(i.e., the distance is smaller) to add a given amount of mass to a high density than
to a small one.

Appendix A

A.1. Reminders on convex analysis. Let E and E∗ be topologically paired vec-
tor spaces, i.e., vector spaces assigned with locally convex Hausdorff topology
such that all continuous linear functionals on each space can be identified with
the elements of the other. The pairing between those spaces is the bilinear form
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(a) Initial state (blue) pa0 (red)pb0 (b) Steady state densities (for t big)

(c) Evolution of pa (d) Evolution of pb

Figure 14. Top row: Initial state and steady state (density pb is
layered over pa); Bottom row: Time evolution (time evolves from
bottom to top) with density in color scale.

〈·, ·〉 : E × E∗ → R. The convex conjugate of a function f : E → R ∪ {+∞} is
defined for each y ∈ E∗ by

f∗(y)
def.
= sup

x∈E
〈x, y〉 − f(x) .

The subdifferential operator is defined at a point x ∈ E as

∂f(x)
def.
= {y ∈ E∗; f(x′)− f(x) � 〈y, x′ − x〉 for all x′ ∈ E}

and is empty if f(x) = ∞. Those definitions admit their natural counterparts for
functions defined on E∗.

Theorem A.1 (Fenchel-Rockafellar [62]). Let (E,E∗) and (F, F ∗) be two couples
of topologically paired spaces. Let A : E → F be a continuous linear operator and
A∗ : F ∗ → E∗ its adjoint. Let f and g be lower semicontinuous and proper convex
functions defined on E and F , respectively. If there exists x ∈ dom f such that g is
continuous at Ax, then

sup
x∈E

−f(−x)− g(Ax) = min
y∗∈F∗

f∗(A∗y∗) + g∗(y∗)

and the min is attained. Moreover, if there exists a maximizer x ∈ E, then there
exists y∗ ∈ F ∗ satisfying Ax ∈ ∂g∗(y∗) and A∗y∗ ∈ ∂f(−x).

A.2. Properties of divergence functionals. Here we collect a few results on
divergences functionals when they are defined on functions as in (5.2) (as opposed
to Section 2.1 where they are defined between measures).

Proposition A.2. Let ϕ be a nonnegative entropy function as in Definition 2.1 and
(X, dx) a measured space. Then (u, v) ∈ L1(X)2 �→ Dϕ(u|v) is an admissible inte-
gral functional (in the sense of Definition 3.5) which is positively 1-homogeneous,
convex and weakly lower semicontinuous. Moreover, D∗

ϕ = ιBϕ
with Bϕ = {(a, b) ∈

R
2; b � −ϕ∗(a)}.

Proof. As a preliminary, note that for (u, v) ∈ R
2,

D
∗
(u|v) = sup

a,b∈R+

{
b(u · a/b+ v − ϕ(a/b)) if b > 0,

a(u− ϕ′
∞) otherwise

=

{
0 if v � ϕ∗(u),

∞ otherwise.
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Now, the function (x, u, v) ∈ X × R
2 �→ Dϕ(u, v) defined in (5.2) is a normal

integrand since it does not depend on x. Moreover, there exists feasible points
for Dϕ (take v ∈ L1(X) and u = αv where α ∈ domϕ) and for the integral

functional associated to D
∗
ϕ (given its expression above). The conclusion follows by

[64, Theorem 3C]. �

Proposition A.3. Let (X, dx) be a measured space, v ∈ L1
+(X) and ϕ a nonnega-

tive entropy function as in Definition 2.1. Then Dϕ(·|v) is a proper, weakly lower

semicontinuous convex function on L1(X) and its convex conjugate is given, for
a ∈ L∞(X), by

D∗
ϕ(a|v)

def.
=

∫
X

ϕ∗(a(x))v(x)dx+

∫
X

ι�ϕ′
∞(a(x))dx,

where ϕ∗ is the convex conjugate of ϕ.
Moreover, the subdifferential ∂Dϕ(·|v) at a point u ∈ L1(X) is the set of func-

tions a ∈ L∞(X) such that ϕ′
∞ − a is nonnegative and such that, for a.e. x, where

v(x) > 0, a(x) ∈ ∂ϕ(u(x)/v(x)) .
Similarly, the subdifferential ∂D∗

ϕ(·|v) at a point a ∈ L∞(X) bounded above by

ϕ′
∞ is the set of nonnegative functions u ∈ L1(X) such that, for a.e. x, u(x) ∈

∂ϕ∗(a(x))v(x) if v(x) > 0 and u(x) = 0 if v(x) = 0 and a(x) < ϕ′
∞.

Proof. By [65, Proposition 14.45c], (x, u) ∈ X × R �→ Dϕ(u|v(x)) is a normal
integrand. Then [64, Theorem 3C] and Corollaries apply and conjugation and
subdifferentiation can be performed pointwise. �

A.3. Proof of the iterates for the barycenter problems. We explain below
how to derive the expression for h which are given in Table 2, by applying Propo-
sition 5.3. Assume that (si)

n
i=1 ∈ R

n � 0 is given.

A.3.1. Case Dϕ = ι{=}. This case is simple because solving (5.6) boils down to

solving the one-dimensional problem minh
∑

αkKL(h|sk), which is direct with first
order optimality conditions.

A.3.2. Case Dϕ = λKL. First note that the assumption of Proposition 5.3 is sat-
isfied and that h = 0 if and only if for all k, sk = 0 (otherwise, the joint sub-
differential is empty). Since ϕ is smooth, its joint subdifferential is a singleton
∂KL(s̃|h) = {(log(s̃/h), 1 − s̃/h)} if s̃, h > 0. Also, since KL(0|h) = h + ι[0,∞[(h),

one has ∂2KL(0, h) = {1} if h > 0. Thus, optimality conditions in Proposition 5.3
yields the system ⎧⎪⎨

⎪⎩
log s̃k

h = ε
λ log sk

s̃k
if sk > 0,

s̃k = 0 if sk = 0,∑
αk(1− s̃k

h ) = 0 .

A.3.3. Case Dϕ = λTV. By Proposition A.2, one has DϕTV
(s̃|h) = sup(a,b)∈B a ·

x + b · y with B = {(a, b) ∈ R
2 ; a � 1, b � 1, a + b � 0}. The set of points in

B at which this supremum is attained is easy to see graphically and gives the set
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∂DϕTV
(s̃|h). With the notations of Proposition 5.3, one has with ak = ε

λ log sk
s̃k
,

(1) s̃k > h > 0 ⇔ −bk = ak = 1, (2) h > s̃k > 0 ⇔ −bk = ak = −1,

(3) s̃k = h > 0 ⇔ −bk = ak ∈ [−1, 1], (4) h > s̃k = 0 ⇔ bk = 1,

(5) s̃k > h = 0 ⇔ ak = 1 and bk � −1, (6) s̃k = h = 0 ⇔ bk � 1 .

Let us first deal with the case h = 0 (cases (5) and (6)). Condition
∑

αkbk = 0
from Proposition 5.3 says that it is the case if and only if

∑
k/∈I+

αk �
∑

k∈I+
αk.

Now assume that h > 0. If s̃k > 0 (cases (1), (2) and (3)) then bk can be expressed
as max(−1,min(1, ε

λ log h
sk
)) otherwise bk = 1. The implicit expression given for h

is thus the condition
∑

αkbk = 0.

A.3.4. Case Dϕ = RG[β1,β2]. In this case, Dϕ is the support function of B =

{(a, b) ∈ R
2 ; for i ∈ {1, 2}, b � −βi ·a}. With the notations of Proposition 5.3, one

has with ak = ε
λ log sk

s̃k
,

(1) 0 < β1h < s̃k < β2h ⇔ ak = bk = 0, (2) 0 < β1h = s̃k ⇔ bk = −β1ak,

(3) 0 < β2h = s̃k ⇔ bk = −β2ak, (4) 0 = h = s̃k ⇔ (bk, ak) ∈ B .

If sk = 0 for some k ∈ {1, . . . , n} then h = 0 (this is the only feasible point).
Otherwise, h > 0 and the condition

∑
αkbk = 0 gives the implicit equation.
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[60] F. Pitié, A.C. Kokaram, and R. Dahyot, Automated colour grading using colour distribution

transfer, Computer Vision and Image Understanding 107 (2007), no. 1, 123–137.
[61] J. Rabin and N. Papadakis, Convex color image segmentation with optimal transport dis-

tances, Scale space and variational methods in computer vision, Lecture Notes in Com-
put. Sci., vol. 9087, Springer, Cham, 2015, pp. 256–269, DOI 10.1007/978-3-319-18461-6 21.
MR3394935

[62] R. T. Rockafellar, Duality and stability in extremum problems involving convex functions,
Pacific J. Math. 21 (1967), 167–187. MR0211759

[63] R. T. Rockafellar, Integrals which are convex functionals, Pacific J. Math. 24 (1968), 525–539.
MR0236689

[64] R. T. Rockafellar, Integral functionals, normal integrands and measurable selections, Nonlin-
ear operators and the calculus of variations, Springer, 1976, pp. 157–207.

[65] R.T. Rockafellar and R. J-B. Wets, Variational analysis, vol. 317, Springer Science & Business
Media, 2009.

[66] Y. Rubner, C. Tomasi, and L.J. Guibas, The earth mover’s distance as a metric for image
retrieval, International Journal of Computer Vision 40 (2000), no. 2.

[67] F. Santambrogio,Optimal transport for applied mathematicians, Progress in Nonlinear Differ-
ential Equations and their Applications, vol. 87, Birkhäuser/Springer, Cham, 2015. Calculus
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