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SPHERICAL tε-DESIGNS FOR

APPROXIMATIONS ON THE SPHERE

YANG ZHOU AND XIAOJUN CHEN

Abstract. A spherical t-design is a set of points on the unit sphere that are
nodes of a quadrature rule with positive equal weights that is exact for all
spherical polynomials of degree ≤ t. The existence of a spherical t-design with
(t+1)2 points in a set of interval enclosures on the unit sphere S2 ⊂ R3 for any
0 ≤ t ≤ 100 is proved by Chen, Frommer, and Lang (2011). However, how to
choose a set of points from the set of interval enclosures to obtain a spherical
t-design with (t+ 1)2 points is not given in loc. cit. It is known that (t+ 1)2

is the dimension of the space of spherical polynomials of degree at most t in 3

variables on S2. In this paper we investigate a new concept of point sets on the
sphere named spherical tε-design (0 ≤ ε < 1), which are nodes of a positive, but
not necessarily equal, weight quadrature rule exact for polynomials of degree
≤ t. The parameter ε is used to control the variation of the weights, while the
sum of the weights is equal to the area of the sphere. A spherical tε-design
is a spherical t-design when ε = 0, and a spherical t-design is a spherical tε-
design for any 0 < ε < 1. We show that any point set chosen from the set of
interval enclosures (loc. cit.) is a spherical tε-design. We then study the worst-
case error in a Sobolev space for quadrature rules using spherical tε-designs,
and investigate a model of polynomial approximation with l1-regularization
using spherical tε-designs. Numerical results illustrate the good performance
of spherical tε-designs for numerical integration and function approximation
on the sphere.

1. Introduction

Let Sd := {x = (x1, . . . , xd+1)
T ∈ Rd+1 | ‖x‖2 = 1} be the unit sphere in Rd+1,

d ≥ 2, where ‖ · ‖ denotes the Euclidean norm, provided with the surface area
measure ωd. The surface area of Sd is denoted as |Sd|. A spherical t-design [20] for
a given positive integer t is a set of N points XN = {x1, . . . ,xN} ⊂ Sd such that

(1.1)
1

N

N∑
j=1

p(xj) =
1

|Sd|

∫
Sd

p(x)dωd(x)

holds for all spherical polynomials p with degree ≤ t. For a numerical integration
rule on the sphere, we say that the rule is “polynomially exact of degree ≤ t ”, if
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the rule integrates all spherical polynomials with degree ≤ t exactly. A spherical
t-design can be seen as the node set of a positive equal weight quadrature rule
with polynomial exactness of degree ≤ t, which is also proved to perform well for
numerical integration of spherical functions belonging to Sobolev spaces. In [15] it
is shown that a sequence of spherical t-designs with order td points has so-called
“infinite strength”; i.e., the convergence rate of the worst-case error for integrating
functions from a Sobolev space over Sd with smoothness parameter s is optimal for
every s > d/2.

Delsarte, Goethals, and Seidel [20] provided a lower bound for the number of
points of a spherical t-design on Sd of order td. For arbitrary degree t, Seymour
and Zaslavsky [32] proved that there is always a spherical t-design with N points.
Consequently, a natural problem is to find the minimal number N(d, t) of points,
such that (1.1) holds for fixed t and d. In 1993, Korevaar and Meyers [26] proved

that N(d, t) ≤ Cdt
(d2+d)/2 and conjectured that N(d, t) ≤ Cdt

d for a sufficiently
large positive constant Cd depending only on d. This conjecture was then proved
by Bondarenko, Radchenko and Viazaovska [10] in 2011. For d = 2, there is an
even stronger conjecture by Hardin and Sloane [23] saying that N(2, t) ≤ 1

2 t
2 +

o(t2) as t → ∞. Numerical evidence supporting the conjecture was given in [23,
33]. Spherical t-designs have been extensively studied from various viewpoints,
among which the application to polynomial approximation and the number of points
needed to construct a spherical t-design have received great attention; see [2,3,5–8,
17, 18, 23, 26, 33]. Moreover, numerical methods have been developed for finding
spherical t-designs. In some methods, the problem of finding a spherical t-design
is reformulated as nonlinear equations or optimization problems; see [2, 21, 22, 33].
Numerical results in these papers suggest that these methods can find approximate
spherical t-designs with high precision.

There are examples of explicit constructions of spherical t-designs for some spe-
cific t; see, e.g., Bannai and Bannai [6]. The numerical methods of [17] yield a set
of “interval” enclosures in the form of a collection of small spherical caps that is
guaranteed to include a spherical t-design. However, the methods in [17] do not
provide the exact locations of spherical t-designs in those interval enclosures. In
general, for any given t the exact location of a spherical t-design is unknown. In
most cases, the best we know is that there is a set of points {x̂1, . . . , x̂N} on the
sphere S2 such that a set of narrow intervals defined by

XN := {[x]i = C(x̂i, γi), i = 1, . . . , N, x̂i ∈ S
2, γi > 0} ⊂ S

2

can be computed to contain a spherical t-design for N = (t + 1)2 and t ≤ 100 in
[17], where

C(x̂i, γi) := {x ∈ S
2 | cos−1(x · x̂i) ≤ γi}.

Among all the spherical polynomials with degree ≤ t, if the zero polynomial is
the only one that vanishes at each point in the set XN ⊂ S2, then the point set
XN ⊂ S

2 is said to be fundamental with order t. In 2011, Chen, Frommer and
Lang [17] provided a computational-assisted proof for the existence of fundamental
spherical t-designs on S2 with N = (t + 1)2 for all values of t ≤ 100. An interval
arithmetic based algorithm is proposed in [17] to compute a sequence of sets of polar
coordinates type interval enclosures containing fundamental spherical t-designs. By
choosing the center point of each interval enclosure, an approximate spherical t-
design can be obtained and numerical results show that the Weyl sums of these
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point sets are very close to 0. In this paper we relax the equal-weight requirements
of spherical t-designs to that the weights are chosen in an interval with respect to

a number 0 ≤ ε < 1, with whose average is |Sd|
N .

Definition 1.1 (Spherical tε-design). A spherical tε-design with 0 ≤ ε < 1 on S
d

is a set of points Xε
N := {xε

1, . . . ,x
ε
N} ⊂ Sd, such that the quadrature rule

(1.2)

N∑
i=1

wip(x
ε
i) =

∫
Sd

p(x)dωd(x)

is exact for all spherical polynomials p of degree at most t, with the weight vector
w = (w1, . . . , wN )T satisfying

(1.3)
|Sd|
N

(1− ε) ≤ wi ≤
|Sd|
N

(1− ε)−1, i = 1, . . . , N.

Spherical tε-designs serve as a bridge between true spherical t-designs and posi-
tive weight quadrature rules.

Remark 1.2. A spherical t-design is a spherical t0-design with ε = 0. By letting

p(x) ≡ 1 in (1.2) we obtain
∑N

i=1 wi = |Sd| and thus 0 < wi < |Sd| for i = 1, . . . , N .

Since the existence of spherical t-designs has been proved for arbitrary t, and
a spherical t-design is also a spherical tε-design for arbitrary 0 ≤ ε < 1, then we
have the existence of spherical tε-designs. Due to the relaxation of the equal-weight
requirement, an important advantage is that we can have a positive weight quad-
rature rule exact for polynomials of degree ≤ t. Therefore, a criteria for positive
quadrature rules provided by Reimer in [29] called “quadrature regularity” should
also be satisfied by spherical tε-designs. Moreover, our numerical experiments show
that with the increase of the value of ε we can get polynomially exact rules by
using fewer points than spherical t-designs.

The rest of this paper is organized as follows. In Section 2, we discuss the rela-
tionship between spherical tε-designs and spherical t-designs when they are funda-
mental systems with the same number of points. Based on these results we study
sets of interval enclosures containing fundamental spherical t-designs in Section 3.
We prove that all point sets arbitrarily chosen in those sets of interval enclosures
computed in [17] are spherical tε-designs. In Section 4, we analyze the worst-case
errors of spherical tε-designs for numerical integration on the unit sphere S

2. Nu-
merical results show that the worst-case errors can be improved by the relaxation
of the equal-weight requirement. In Section 5, we investigate an l2 − l1 regularized
weighted least squares model for polynomial approximation on the two-sphere using
spherical tε-designs and present numerical results to demonstrate the efficiency of
the l2 − l1 model.

In this paper we concentrate on the case d = 2. Throughout the paper we assume
that all the points in a point set on the unit sphere are distinct. The computation
is implemented in Matlab 2012b and done on a Lenovo Thinkcenter PC equipped
with Intel Core i7-3770 3.4G Hz CPU, 8 GB RAM running Windows 7.

2. Spherical tε-designs: Neighborhood of spherical t-designs

In this section we will study the relationship between spherical tε-designs and
spherical t-designs when they are both fundamental systems and have the same
number of points. A spherical t-design defines an equal-weight quadrature rule
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which is polynomially exact of degree ≤ t while a spherical tε-design defines a
positive-weight quadrature rule which is polynomially exact of degree ≤ t. Based
on these two properties, in this section we study a neighborhood of spherical t-
designs. Let

Pt := Pt(S
2) = {spherical polynomials of degree ≤ t on S

2}
= span{Y�,k : � = 0, . . . , t, k = 1, . . . , 2�+ 1}

denote the space of all spherical polynomials on S2 of degree ≤ t. Here, Y�,k is a
fixed L2-orthonormal real spherical harmonic of degree � and order k, which means

(2.1)

∫
S2

Y�,k(x)Y�′,k′(x)dω(x) = δ�,�′δk,k′ , �, �′ = 0, . . . , t; k, k′ = 1, . . . , 2�+ 1,

where dω(x) = dω2(x), and δ�,�′ is the Kronecker delta. It is well known that

(2.2) dt := dim(Pt) =

t∑
�=0

(2�+ 1) = (t+ 1)2.

By the addition theorem [27]

(2.3)

2�+1∑
k=1

Y�,k(x)Y�,k(y) =
2�+ 1

4π
P�(x · y),

which implies
∑2�+1

k=1 Y 2
�,k(x) =

2�+1
4π , where P�, � ≥ 0, denotes the Legendre Poly-

nomial normalized to P�(0) = 1 and x · y denotes the Euclidean inner product, we
obtain

(2.4) ‖Y�,k‖C(S2) ≤ max
x∈S2

(
2�+1∑
k=1

Y 2
�,k(x)

) 1
2

=

√
2�+ 1

4π
for k = 1, . . . , 2�+1, � ≥ 0.

Real spherical harmonics can be expressed in spherical coordinates as follows (see
[1, 4]):

(2.5) Y�,k(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

√
2N�,kP

�+1−k
� (cos θ) cos kϕ, k = 1, . . . , �,

N�,kP
0
� (cos θ), k = �+ 1,

√
2N�,kP

k−�−1
� (cos θ) sin kϕ, k = �+ 2, . . . , 2�+ 1,

with

x =

⎛
⎝ sin θ cosϕ

sin θ sinϕ
cos θ

⎞
⎠ ,

where 0 ≤ θ ≤ π, 0 ≤ ϕ < 2π, P k
� is the associated Legendre polynomial of degree

� and order k, and N�,k are the normalization coefficients

N�,k =

√
2�+ 1

4π

(�− |k − �− 1|)!
(�+ |k − �− 1|)! , k = 1, . . . , 2�+ 1.

When taking k = �+1 and θ = 0 we obtain Y�,�+1(x) ≡
√

2�+1
4π with x = (0, 0, 1)T .

Therefore, (2.4) is a sharp upper bound of ‖Y�,k‖C(S2). With the fact that all
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spherical harmonics of degree ≤ t form a basis of Pt we have that a finite point set
XN = {x1, . . . ,xN} is a spherical t-design if and only if the Weyl sums satisfy

(2.6)
N∑
i=1

Y�,k(xi) = 0, k = 1, . . . , 2�+ 1, � = 1, . . . , t;

see [20, 33] for details. Let XN = {x1, . . . ,xN} ⊂ S2 and X ′
N = {x′

1, . . . ,x
′
N} ⊂ S2

be two point sets on the sphere. To describe the relationship among points and
point sets, we introduce the following definitions of distances.

1. The geodesic distance between two points x,y ∈ S
2 is given by

dist(x,y) := cos−1(x · y).
2. The separation distance of a point set XN is given by

ρ(XN ) := min
i �=j

cos−1(xi · xj),

which represents the minimal geodesic distance between two different points
in XN .

3. The least distance from a point x ∈ S2 to a point set XN is given by

dist(x, XN ) := min
xi∈XN

dist(x,xi) = min
xi∈XN

cos−1(x · xi),

which can be seen as the geodesic distance between x and the nearest point
in XN .

4. The Hausdorff distance between two point sets XN and X ′
N is given by

σ(XN , X ′
N ) := max{ max

x′
i∈X′

N

dist(x′
i, XN ), max

xi∈XN

dist(xi, X
′
N )}

= max{ max
x′
i∈X′

N

min
xj∈XN

cos−1(x′
i · xj), max

xj∈XN

min
x′
i∈XN

cos−1(x′
i · xj)}.(2.7)

Note that σ(XN , X ′
N ) = σ(X ′

N , XN ) and σ(XN , X ′
N ) = 0 if and only if XN = X ′

N .
A spherical cap C(x, r) with center x ∈ S2 and radius r ∈ R+ is defined as

(2.8) C(x, r) := {y ∈ S
2 | cos−1(x · y) ≤ r}.

Remark 2.1. Let XN and X ′
N be two N -point sets on S2 with σ(XN , X ′

N ) <
1
2ρ(XN ), then there exists for each x ∈ XN a unique x′ ∈ X ′

N ∩ C(x, 12ρ(XN )).

In this situation, x′
i shall always denote the unique point in XN ∩ C(xi,

1
2ρ(XN ))

associated with xi ∈ XN .

For a point set XN = {x1, . . . ,xN} ⊂ S2, we define the matrix Y(XN ) ∈ RN×dt

with elements

(2.9) Yi,�2+k(XN ) = Y�,k(xi), i = 1, . . . , N, k = 1, . . . , 2�+ 1, � = 0, . . . , t.

Note that |S2| = 4π. In [16], the following characterization of a spherical tε-design,
equivalent with Definition 1.1, is given: a point set Xε

N := {xε
1, . . . ,x

ε
N} ⊂ S

2 is a
spherical tε-design if and only if

(2.10) Y(Xε
N )Tw −

√
4πe1 = 0 and

4π(1− ε)

N
e ≤ w ≤ 4π(1− ε)−1

N
e,

where e1 = (1, 0, . . . , 0)T ∈ R
(L+1)2 and e = (1, . . . , 1)T ∈ R

N .
For two matrices constructed by two near enough point sets on S2, we have the

following property.
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Proposition 2.2. For any two point sets XN , X ′
N ⊂ S2 satisfying σ(XN , X ′

N ) <
1
2ρ(XN ), there always holds

‖(Y(XN )−Y(X ′
N ))T‖∞ = ‖Y(XN )−Y(X ′

N )‖1

≤ N(t+ 1)

√
2t+ 1

4π
σ(XN , X ′

N ),(2.11)

where Y(XN ),Y(X ′
N) ∈ RN×dt are matrices defined by (2.9) which depend on t.

Proof. For a point xi ∈ XN , by Remark 2.1 we let x′
i be the unique point located in

C(xi,
1
2ρ(XN ))∩X ′

N . Let Q�,k be the restriction of Y�,k on the great circle through
these two points. Then Q�,k is a trigonometric polynomial on the sphere and by
Bernstein’s inequality [11] we obtain

|Y�,k(xi)− Y�,k(x
′
i)| = |Q�,k(xi)−Q�,k(x

′
i)|

≤ cos−1(xi · x′
i) sup |Q′

�,k|
≤ cos−1(xi · x′

i)(t+ 1) sup |Q�,k|
≤ cos−1(xi · x′

i)(t+ 1)‖Y�,k‖C(S2)

≤ σ(XN , X ′
N )(t+ 1)

√
2�+ 1

4π
,(2.12)

where the last inequality is obtained by (2.4). Together with (2.11) and (2.12) we
have

‖Y(XN )−Y(X ′
N )‖1 = max

0≤�≤t,1≤k≤2�+1

N∑
j=1

|Y�,k(xj)− Y�,k(x
′
j)|

≤ N(t+ 1)

√
2t+ 1

4π
σ(XN , X ′

N ). �

Let X0
N = {x0

1, . . . ,x
0
N} ⊂ S2 be a fundamental spherical t-design. Given a

number σ∗ ≥ 0, denote the neighborhood of X0
N with radius σ∗ by

(2.13) C(X0
N , σ∗) :=

{
XN ⊂ S

2 : σ(XN , X0
N ) ≤ σ∗}.

The following lemma indicates that any point set contained in a small enough
neighborhood of a fundamental spherical t-design is a fundamental spherical tε-
design.

Lemma 2.3. Let X0
N be a fundamental spherical t-design with N = (t + 1)2. Set

τ =
√

2t+1
4π (t+ 1)3. Suppose

(2.14) σ∗ <
1

2
min

(
1

τ‖Y(X0
N )−1‖1

, ρ(X0
N )

)
.

Then any point set XN ∈ C(X0
N , σ∗) is a fundamental spherical tε-design with

(2.15)
τσ∗‖Y(X0

N )−1‖1
1− τσ∗‖Y(X0

N )−1‖1
≤ ε < 1.

Proof. It suffices to show that for any point set XN ∈ C(X0
N , σ∗), we have

(2.16) Y(XN )Tw =
√
4πe1 and ‖w − 4π

N
e‖∞ <

4π

N
,

where Y(XN ) is nonsingular.
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From Proposition 2.2 for any point set XN with σ(XN , X0
N ) < σ∗ we have

‖Y(X0
N )−1‖1‖Y(X0

N )−Y(XN )‖1 < ‖Y(X0
N )−1‖1τσ∗ < 1.

Hence, Y(XN ) is nonsingular; i.e., XN is a fundamental system with order t.
By the fact that X0

N is a fundamental spherical t-design and (2.6) we have

(2.17)
4π

N
Y(X0

N )Te =
√
4πe1.

The well-known perturbation theorem for linear systems in [36, Theorem 2.3.9,
pp. 135] and

‖I−Y(X0
N )−1Y(XN )T ‖∞ ≤ ‖Y(X0

N )−1‖1‖Y(X0
N )−Y(XN )‖1 < 1,

yields

(2.18)
‖w − 4π

N e‖∞
‖ 4π

N e‖∞
≤ ‖(Y(X0

N )T )−1‖∞ ‖(Y(XN )−Y(X0
N ))T ‖∞

1− ‖(Y(X0
N )T )−1‖∞‖(Y(XN)−Y(X0

N ))T ‖∞
.

Therefore, we obtain

‖w − 4π

N
e‖∞ =

4π

N

‖w − 4π
N e‖∞

‖ 4π
N e‖∞

≤ 4π

N

‖Y(X0
N )−1‖1‖Y(X0

N )−Y(XN )‖1
1− ‖Y(X0

N )−Y(XN )‖1‖Y(X0
N )−1‖1

(2.19)

≤ 4π

N

τσ∗‖Y(X0
N )−1‖1

1− τσ∗‖Y(X0
N )−1‖1

<
4π

N
.(2.20)

Hence, the vector w is positive which implies that XN is spherical tε-design with ε
satisfying (2.15). �

Lemma 2.3 enables us to prove an upper bound on the radius of a neighborhood
of a fundamental spherical t-design (see (2.13) for the definition of a neighborhood)
so that every point set in this neighborhood is a spherical tε-design.

Corollary 2.4. Let X0
N be a fundamental spherical t-design with order t and N =

(t+ 1)2. For any 0 ≤ ε < 1, if

(2.21) σ(XN , X0
N ) < min

(
1

2
ρ(X0

N ),
ε

τ (1 + ε)‖Y(X0
N )−1‖1

)
,

then XN is a fundamental spherical tε-design.

Proof. By (2.21) it can be derived that there holds

σ(XN , X0
N ) <

1

2
min

(
1

τ‖Y(X0
N )−1‖1

, ρ(X0
N )

)
.

Therefore, by Lemma 2.3 we have Y(XN ) is nonsingular and

‖w − 4π

N
e‖∞ ≤ 4π

N

τσ(XN , X0
N )‖Y(X0

N )−1‖1
1− τσ(XN , X0

N )‖Y(X0
N )−1‖1

<
4π

N
ε.

Hence, from (2.21), we derive

(1− ε)
4π

N
e < w < (1 + ε)

4π

N
e ≤ 4π(1− ε)−1

N
e.

This completes the proof. �



2838 Y. ZHOU AND X. CHEN

3. Interval analysis of spherical tε-designs

In this section we will study sets of interval enclosures containing fundamental
spherical tε-designs. In the last section we describe a neighborhood of a fundamental
spherical t-design in which any point set is a fundamental spherical tε-design. The
paper [17] obtains interval enclosures that are guaranteed to contain a spherical
t-design for up to 100, but the exact location of spherical t-designs cannot be
obtained. In the following we will show that any point set in sets of the interval
enclosures given in [17] is a fundamental spherical tε-design. Let

(3.1) XN := {[x]i = C(x̂i, γi) ⊂ S
2, i = 1, . . . , N}

be a set of spherical caps, with x̂i as the center point and γi as the geodesic radius.
Additionally, let X̂N = {x̂1, . . . , x̂N} ⊂ S2 be the set of center points. Define the
radius of XN by

rad(XN ) := max
1≤i≤N

γi,

and the separation distance of XN by

ρ(XN ) := min
i �= j

xi ∈ [x]i,xj ∈ [x]j ,

dist(xi,xj).

We say that XN is an interval enclosure of a point set XN = {x1, . . . ,xN}, denoted
as XN ∈ XN , if for any x ∈ XN there exists a unique [x] ∈ XN such that x ∈ [x].
In this situation, [x]i shall always denote the interval containing the point xi.

Assumption 3.1. Let XN defined by (3.1) be a set of spherical caps. Assume
that:

(1) there exists a spherical t-design X0
N ∈ XN ;

(2) Y(X̂N ) is nonsingular.

The assumption that Y(X̂N ) is nonsingular implies that Y(X̂N ) is a square
matrix with N = (t+1)2. In the following theorem we show that under Assumption
3.1 if rad(XN ) is smaller than a certain number, then Y(XN ) is nonsingular and
(2.21) holds for any XN ∈ XN .

Theorem 3.2. Set τ :=
√

2t+1
4π (t + 1)3. Under Assumption 3.1, any point set

XN ∈ XN is a fundamental spherical tε-design with

(3.2)
2τ rad(XN )‖Y(X̂N)−1‖1

1− 4τ rad(XN )‖Y(X̂N)−1‖1
≤ ε < 1,

if

(3.3) rad(XN ) < min

(
1

4
ρ(XN ),

ε

2(1 + 2ε)τ‖Y(X̂N )−1‖1

)
.

Proof. Any XN ∈ XN satisfies

(3.4) ρ(XN ) ≥ ρ(XN ).

Hence, for any two point sets XN , X ′
N ∈ XN we have

(3.5) σ(XN , X ′
N ) ≤ max

1≤i≤N
max

xi,yi∈[x]i
dist(xi,yi) = 2 rad(XN ).
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First we show that Y(XN ) is nonsingular for any XN ∈ XN . By Proposition 2.2
we have

‖I−Y(X̂N )−1Y(XN )‖1 ≤ ‖Y(X̂N )−1‖1‖Y(X̂N )−Y(XN )‖1
≤ ‖Y(X̂N )−1‖1τσ(X̂N , XN )

≤ 2τ‖Y(X̂N)−1‖1 rad(XN) < 1.

Hence, all the point sets XN ∈ XN including X0
N are fundamental systems with

order t. Moreover, from (3.3), (3.4), and (3.5), we have

σ(XN , X0
N ) <

1

2
ρ(X0

N).

By (3.3) we can also have

2(1 + ε)τ rad(XN )‖Y(X̂N )−1‖1 < ε− 2ετ rad(XN )‖Y(X̂N )−1‖1.

By Corollary 2.7 in [35, pp. 119] it can be concluded that for arbitrary XN ∈ XN

we have

(3.6) ‖Y(XN )−1‖1 ≤ ‖Y(X̂N )−1‖1
1− ‖Y(X̂N )−1‖1‖Y(X̂N )−Y(XN )‖1

.

From (3.6) and Proposition 2.2 we have

σ(XN , X0
N ) ≤ 2 rad(XN )

<
ε(1− 2τ rad(XN )‖Y(X̂N )−1‖1)

(1 + ε)τ‖Y(X̂N)−1‖1

≤ ε(1− ‖Y(X̂N )−1‖1‖Y(X̂N )−Y(X0
N )‖1)

(1 + ε)τ‖Y(X̂N)−1‖1
≤ ε

(1 + ε)τ‖Y(X0
N)−1‖1

.(3.7)

By Corollary 2.4 we have that any point set XN ∈ XN is a fundamental spherical
tε-design. Additionally, from (2.19) and (3.5) there holds

‖w − 4π

N
e‖∞ ≤ 4π

N

‖Y(X0
N )−1‖1‖Y(X0

N )−Y(XN )‖1
1− ‖Y(X0

N )−Y(XN )‖1‖Y(X0
N )−1‖1

≤ 4π

N

2τ rad(XN )‖Y(X0
N )−1‖1

1− 2τ rad(XN )‖Y(X0
N )−1‖1

.

Together with (3.6) we have

2τ rad(XN )‖Y(X0
N )−1‖1

1− 2τ rad(XN )‖Y(X0
N )−1‖1

≤
2τ rad(XN )

‖Y(X̂N )−1‖1
1− ‖Y(X̂N )−1‖1‖Y(X̂N )−Y(XN )‖1

1− 2τ rad(XN )
‖Y(X̂N )−1‖1

1− ‖Y(X̂N )−1‖1‖Y(X̂N )−Y(XN )‖1

≤ 2τ rad(XN )‖Y(X̂N )−1‖1
1− 4τ rad(XN )‖Y(X̂N )−1‖1

.
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Then we have that any point set XN ∈ XN is a spherical tε-design with

2τ rad(XN )‖Y(X̂N)−1‖1
1− 4τ rad(XN )‖Y(X̂N)−1‖1

≤ ε < 1,

subject to the assumptions on rad(XN ). �

Theorem 3.2 proves that an arbitrarily chosen point set in a set of interval
enclosures of a fundamental spherical t-design is a spherical tε-design if rad(XN ) is
smaller than a certain number. The interval enclosures discussed in the theorem are
spherical-caps defined as [x]i = C(x̂i, γi) = {x ∈ S2| cos−1(x·x̂i) ≤ γi}. However, in
practice, to reduce the spherical constraint of points and the dimension of variables,
the spherical coordinate form of the points are preferable to compute the interval
enclosures; see [17]. For a point xi ∈ XN ⊂ S

2, denote θi, ϕi as its spherical
coordinate. Then in [17] a sequence of intervals [θ]i = [θ i, θ̄i], [ϕ]i = [ϕi, ϕ̄i] are
computed such that ZN = {[z]1, . . . , [z]N} is a set of interval enclosures of a well-
conditioned spherical t-design [2], in which each element in ZN is defined by

(3.8) [z]i :=

⎛
⎜⎜⎜⎜⎝

sin([θ]i) cos([ϕ]i)

sin([θ]i) sin([ϕ]i)

cos([θ]i)

⎞
⎟⎟⎟⎟⎠ , i = 1, . . . , N.

In this sense, different from the interval enclosures defined by the spherical caps,
each interval enclosure computed in [17] is a rectangle [θ]i × [ϕ]i. Therefore, there
remains a gap between real computation of interval enclosures of spherical t-designs
and our analysis above. Naturally, a strategy to overcome this gap is that for each
spherical rectangle in [17] we construct a spherical cap which is as small as possible
to cover it. For the spherical rectangle [θ]i× [ϕ]i = [θ i, θ̄i]× [ϕi, ϕ̄i], its four vertices
can be written as

xi,1 :=

⎛
⎜⎜⎜⎜⎝

sin(θ i) cos(ϕi)

sin(θ i) sin(ϕi)

cos(θ i)

⎞
⎟⎟⎟⎟⎠ , xi,2 :=

⎛
⎜⎜⎜⎜⎝

sin(θ i) cos(ϕ̄i)

sin(θ i) sin(ϕ̄i)

cos(θ i)

⎞
⎟⎟⎟⎟⎠ ,

xi,3 :=

⎛
⎜⎜⎜⎜⎝

sin(θ̄i) cos(ϕ̄i)

sin(θ̄i) sin(ϕ̄i)

cos(θ̄i)

⎞
⎟⎟⎟⎟⎠ , xi,4 :=

⎛
⎜⎜⎜⎜⎝

sin(θ̄i) cos(ϕi)

sin(θ̄i) sin(ϕi)

cos(θ̄i)

⎞
⎟⎟⎟⎟⎠ .

It can be shown that there exists a point x̂i defined by [θ, ϕ] ∈ [θ]i × [ϕ]i satisfying

(3.9) dist(x̂i,xi,j) = dist(x̂i,xi,k) for j, k = 1, 2, 3, 4,

and [z]i ⊆ C(x̂i, γi) with γi = dist(x̂i,xi,1). However, computing such a point x̂i

is time-consuming and imports large round-off errors when the radii of interval
enclosures are small. Instead of computing x̂i, we investigate another strategy to
compute the spherical caps to cover spherical rectangles which is coarser but more
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practical. For a spherical coordinate interval [z]i, we use the center point of the
interval [θ i, θ̄i]× [ϕi, ϕ̄i] to define a point as

(3.10) x̃i :=

⎛
⎜⎜⎜⎜⎝

sin( 12 (θ̄i + θ i)) cos(
1
2 (ϕ̄i + ϕ i))

sin( 12 (θ̄i + θ i)) sin(
1
2 (ϕ̄i + ϕ i))

cos( 12 (θ̄i + θ i))

⎞
⎟⎟⎟⎟⎠ .

Note that the spherical coordinates of x̃i give the center point of the interval [θ]i ×
[ϕ]i but itself is not necessary to be the center point of [z]i in the form of the
spherical coordinate. Still, we have that

(3.11) dist(x̃i,xi,1) = dist(x̃i,xi,2), dist(x̃i,xi,3) = dist(x̃i,xi,4).

It is obvious to obtain that the distance between x̃i and any point in [z]i does not
exceed the maximum of the four distances in (3.11). Therefore, if we let

(3.12) γi = max{dist(x̃i,xi,1), dist(x̃i,xi,3)},
then we have

(3.13) [z]i ⊆ C(x̃i, γi).

Consequently, we call the set of spherical caps,

X̃N := {C(x̃i, γi), i = 1, . . . , N},
a cap-cover of ZN with x̃i, γi defined in (3.10) and (3.12). Similarly to the set of
spherical caps XN , we define the radius and separation distance of ZN by

(3.14) rad(ZN ) := max
1≤i≤N

{
max{dist(x̃i,xi,1) , dist(x̃i,xi,3)}

}
= rad(X̃N ),

and

(3.15) ρ(ZN ) := min
i �= j

1 ≤ i, j ≤ N

{dist(x̃i, x̃j)− γi − γj} = ρ(X̃N ).

Then we have the following corollary for the lower bound of ε for ZN .

Corollary 3.3. Set τ :=
√

2t+1
4π (t + 1)3. Let ZN be a set of spherical rectangle

and its cap-cover X̃N satisfy Assumption 3.1. Then any point set XN ∈ ZN is a
fundamental spherical tε-design with

(3.16)
2τ rad(ZN )‖Y(X̃N )−1‖1

1− 4τ rad(ZN )‖Y(X̃N )−1‖1
≤ ε < 1

if

(3.17) rad(ZN ) < min

(
1

4
ρ(ZN ),

ε

2(1 + 2ε)τ‖Y(X̃N)−1‖1

)
.

The proof of this corollary is similar to the proof of Theorem 3.2.
Based on Corollary 3.3, the lower bounds of ε, e.g., the left-hand side of in-

equality (3.16), denoted by ε, for sets of interval enclosures provided in [17] can be
computed. The data containing the sets of interval enclosures for the parameteri-
zation of the spherical t-designs and relative programs can be downloaded from the
website http://www-ai.math.uni-wuppertal.de/SciComp/SphericalTDesigns. The
computational results are shown in Figure 3.1 and Table 3.1.
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Figure 3.1. ε computed by (3.19) for t = 2, . . . , 100

Table 3.1. Information for sets of interval enclosures ZN for some
selected t

t rad(ZN ) ρ(ZN ) ε ε̃ for X̃N

10 1.843454e-12 3.396362e-01 6.748890e-08 6.694645e-14

20 1.515848e-11 1.805783e-01 5.480524e-06 1.783018e-13

30 5.588085e-11 1.249714e-01 7.888659e-05 2.480238e-13

40 1.044163e-10 9.203055e-02 4.043164e-04 5.339063e-13

50 2.199182e-10 7.638945e-02 1.862348e-03 5.057066e-13

60 4.006638e-10 6.302748e-02 6.502352e-03 6.747935e-13

70 6.143914e-10 5.421869e-02 1.820130e-02 8.820722e-13

80 1.220430e-09 4.771142e-02 6.050880e-02 1.151368e-12

90 2.089473e-09 4.264961e-02 2.066649e-01 1.228462e-12

100 2.273791e-09 3.846343e-02 4.420562e-01 1.880540e-12

In Figure 3.1, we report the values of ε defined by the left-hand side of inequality
(3.16), for sets of interval enclosures computed in [17] for t = 2, . . . , 100 (for t = 1
we have known that the regular tetrahedron is a spherical t-design so that ε = 0
and we would not consider this case here). In this figure we also plot the function

(3.18) y = 10−14.4(t+ 1)6.9

to approximately estimate the curve traced out by results for ε as a function of
discrete t’s. From the figure we can conclude that the lower bound of ε grows
with the increase of t in an order about 6.9. Additionally, by (3.16) it is known

that the norm of Y(X̃N )−1 is also very important in the process of estimating ε.
Fortunately, since the sets of interval enclosures computed in [17] seek to include
well-conditioned spherical t-designs [2], the growth of lower bounds of ε keeps stable
for all the t considered here.
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We also report some information about the sets of interval enclosures and their
theoretical lower bounds of ε for some selected t in Table 3.1. Not only ε but also
the radii and separation distances of XN are shown in the table. We can see that
the radius of each interval enclosure is far smaller than their separation distance,
which means that the assumptions in the above lemmas and theorems are satisfied.

The lower bound ε is computed using the left-hand side of inequality (3.16),
namely,

(3.19) ε =
2τ rad(ZN )‖Y(X̃N )−1‖1

1− 4τ rad(ZN )‖Y(X̃N )−1‖1
.

This is a theoretical lower bound for any arbitrarily chosen point set XN ∈ ZN .
The value of ε̃ for X̃N in the last column of Table 3.1 is the minimum value of

ε satisfying (2.10) with Xε
N = X̃N . In particular, we first choose the center point

X̃N of ZN . Next, we solve

YT (X̃N )w =
√
4πe1

and let the unique solution be w̃. If N
4π w̃i < 1, we set ε̃i = 1 − N

4π w̃i, otherwise,

ε̃i = 1 − 1/( N
4π w̃i). Let ε̃ = maxi{εi}. Since this value is only for a special point

set X̃N ∈ ZN , generally it is smaller than ε.
As is shown in Table 3.1, the values of ε̃ are all very small positive numbers, and

grow with increasing t. This means that X̃N which is selected properly from the
interval enclosures can be a spherical tε-design with w̃ ≈ 4π

N e.

Remark 3.4. To obtain an approximate spherical t-design as accurate as possible,
in [17] the radius of the set of interval enclosures rad(ZN ) is computed to a small
scale around 10−10. With the introduction of the concept spherical tε-designs, it has
been shown that any point set selected in ZN is a fundamental spherical tε-design
if rad(ZN ) < 1/(6τ rad(ZN )‖Y(X̃N )−1‖1), which implies ε < 1 in (3.19).

4. Worst-case errors of quadrature rules using spherical tε-designs

In this section we will investigate the worst-case errors for quadrature rules
using spherical tε-designs in Sobolev spaces which are finite-dimensional rotationally
invariant subspaces of C(S2). The bizonal reproducing kernel will be used in the
analysis, which has been widely applied to analyze approximations on the sphere
[14, 15, 24, 25, 37].

In [12, 13, 15], a method to compute the worst-case errors for positive equal-
weight quadrature rules in Sobolev spaces has been developed. In this section, we
intend to extend their method to nonequal but still positive weight quadrature rules
and show the performance of spherical tε-designs in numerical integration.

We follow the notations given in [15] with the following exception: the surface
measure, denoted here by ω, is not normalized. Denote the space of square inte-
grable functions on S2 by L2(S

2). Then it is a Hilbert space with the inner product

(4.1) 〈f, g〉L2(Sd) =

∫
S2

f(x)g(x)dω(x), f, g ∈ L2(S
2),

and the induced norm as

(4.2) ‖f‖L2(S2) =

(∫
S2

|f(x)|2dω(x)
) 1

2

, f ∈ L2(S
2).
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The Sobolev space Hs(S2) can be defined for s ≥ 0 as the set of all functions
f ∈ L2(S

2) whose Laplace-Fourier coefficients,

(4.3) f̂�,k = 〈f, Y�,k〉L2(S2)
=

∫
S2

f(x)Y�,k(x)dω(x),

satisfy

(4.4)
∞∑
�=0

2�+1∑
k=1

(1 + λ�)
s
∣∣∣f̂�,k∣∣∣2 < ∞,

where λ� = �(� + 1). Obviously, by letting s = 0 we can obtain H0(S2) = L2(S
2).

Then the norm of Hs(S2) can be defined as

(4.5) ‖f‖Hs =

[ ∞∑
�=0

2�+1∑
k=1

1

α
(s)
�

f̂2
�,k

] 1
2

,

where the positive parameters α
(s)
� satisfy

(4.6) α
(s)
� � (1 + λ�)

−s � (�+ 1)−2s.

Here we say that an � bn if there exist positive constants c1 and c2 independent
of n such that c1an ≤ bn ≤ c2an for all n. Correspondingly, the inner product of
H

s(S2) can be defined as

(4.7) 〈f, g〉Hs =

∞∑
�=0

2�+1∑
k=1

1

α
(s)
�

f̂�,kĝ�,k.

For a point set XN and a weight vector w, we define the numerical quadrature rule
and the integral of a function f on S2 as

(4.8) Q[XN ,w](f) :=

N∑
j=1

wj

4π
f(xj), I(f) :=

1

4π

∫
S2

f(x)dω(x),

The worst-case error of the quadrature rule Q[XN ,w] on Hs(S2) can be defined as
[15, 24]

(4.9) Es(Q[XN ,w]) := sup
{
|Q[XN ,w](f)− I(f)| : f ∈ H

s(S2), ‖f‖Hs ≤ 1
}
.

The Riesz representation theorem and the additional theorem assure the existence
of a reproducing kernel of the form

Ks(x,y) =

∞∑
�=0

(2�+ 1)α
(s)
� P�(x · y)

=
∞∑
�=0

2�+1∑
k=1

α
(s)
� Y�,k(x)Y�,k(y).(4.10)
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Together with the property of reproducing kernel Ks(·, ·) defined in (4.10) and the
addition theorem, it is shown in [15, 24] that

(
Es(Q[XN ,w])

)2
=

⎡
⎢⎣ sup

f ∈ H
s(S2)

‖f‖Hs ≤ 1

|Q[XN ,w](f)− I(f)|

⎤
⎥⎦
2

=

∥∥∥∥∥
N∑
i=1

wi

4π
Ks(·,x)−

∫
S2

Ks(·,x)dω(x)
∥∥∥∥∥
2

Hs

.

Then with the following equality [15],∫
S2

Ks(x, ·)dω(x) = α
(s)
0 ,

the worst-case error could be reformulated as

(Es(Q[XN ,w]))2 =

⎡
⎣ ∞∑

�=1

2�+1∑
k=1

α
(s)
�

(
N∑
i=1

wi

4π
Y�,k(xi)

)2
⎤
⎦

=

N∑
i=1

N∑
j=1

wiwj

16π2

∞∑
�=1

2�+1∑
k=1

α
(s)
� Y�,k(xi)Y�,k(xj).(4.11)

Reproducing kernels for Hs(S2) for s > 1 can be constructed utilizing powers of
distances, provided the power 2s − 2 is not an even integer. Indeed, it is known
(cf., e.g., [9, 14]) that the signed power of the distance, with sign (−1)J+1 with
J := J(s) := �s− 1�, has the following Laplace-Fourier expansion:

(4.12) (−1)J+1|x− y|2s−2 = (−1)J+1V2−2s(S
2) +

∞∑
�=1

a
(s)
� (2�+ 1)P�(x · y),

where

(4.13) V2−2s(S
2) :=

∫
S2

∫
S2

|x− y|2s−2dω(x)dω(y) = 22s−1 Γ(3/2)Γ(s)√
πΓ(1 + s)

,

(4.14) a
(s)
� := V2−2s(S

2)
(−1)J+1(1− s)�

(1 + s)�
, � ≥ 1,

and

(1− s)�
(1 + s)�

:=
Γ(1 + s)

Γ(1− s)

Γ(�+ 1− s)

Γ(�+ 1 + s)
∼ Γ(1− s)

Γ(1 + s)
�−2s ∼ �−2s, as � → ∞.

Thus, we have

(−1)J+2(V2−2s(S
2)− |x− y|2s−2) =

∞∑
�=1

a
(s)
� (2�+ 1)P�(x · y)(4.15)

=
∞∑
�=1

a
(s)
�

2�+1∑
k=1

Y�,k(x)Y�,k(y).(4.16)

Note that for a
(s)
� we have

(4.17) a
(s)
� ∼ 22s−1 Γ( 32 )Γ(s)√

π(−1)J+1Γ(1 + s)
�−2s as � → ∞,
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and when 1 < s < 2, which means J = J(s) = 0, we have a
(s)
� > 0 for all � = 1, . . ..

Therefore, we regard the left-hand side of (4.15) as the reproducing kernel of Hs(S2),
which is

Ks(x,y) = V2−2s(S
2)− |x− y|2s−2,

and then we obtain

(4.18) (Es(Q[XN ,w]))2 =
N∑
i=1

N∑
j=1

wiwj

16π2
(V2−2s(S

2)− |xi − xj |2s−2).

For the case s > 2 and s is not an integer, we know that a
(s)
� > 0 does not hold for

all � = 1, . . .. In this situation, we let

Ks(x,y) = (1− (−1)J+1)V2−2s(S
2) +QJ(x · y) + (−1)J+1|x− y|2s−2,

with

QJ(x · y) :=
J∑

�=1

((−1)J+1−� − 1)a
(s)
� (2�+ 1)P�(x · y), x,y ∈ S

2,

which changes the signs of the negative coefficients a
(s)
� in (4.12). Hence the worst-

case error on Hs(S2) with s > 2 can be represented as

(4.19)
(Es(Q[XN ,w]))2 =

N∑
i=1

N∑
j=1

wiwj

16π2

(
QJ(xi · xj) + (−1)J+1|xi − xj |2s−2

−(−1)J+1V2−2s(S
2)
)
.

For quadrature rules using spherical tε-designs as node sets, we have the following
theorem.

Theorem 4.1. Given s > 1 and s is not an integer, assume that Q[Xε
N ,w] is

polynomially exact of degree ≤ t, where Xε
N is a spherical tε-design with a weight

vector w. Then

(4.20) Es(Q[XN ,w]) =

⎡
⎣(−1)J+1

N∑
i=1

N∑
j=1

wiwj

16π2

(
|xi − xj |2s−2 − V2−2s(S

2)
)⎤⎦

1
2

.

Proof. By (2.3) it can be concluded that
∑N

i=1

∑N
j=1

wiwj

16π2 QJ (xi ·xj) will vanish in

(4.19). Then (4.20) can be directly deduced by (4.18) and (4.19). �

In what follows we will compute the worst-case errors of quadrature rules using
spherical tε-designs by using (4.20). In this experiment we choose ε = 0.1 for
spherical tε-designs and use (2.10) to find a spherical tε-design, which is a system
of nonlinear equations. The system can be solved by minimizing its least squares
form using a smoothing trust-region filter method proposed in [16]. Note that the
number of points needed for constructing spherical tε-designs may decrease as ε gets
larger. Thus in the computation of spherical tε-designs we always attempt to find
the one with a possible minimal number of points, denoted as N(t, ε). The detailed
process for finding spherical tε-designs can be found in [16]. In the numerical test
of computation of spherical tε-designs it is found that a possible minimal number of
points satisfies �(t+1)2/3�+1 ≤ N(t, ε) ≤ �(t+2)2/2�+1. In the numerical test in
the current and next sections, the spherical tε-designs are chosen with N = N(t, ε).
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Figure 4.1. Worst-case errors for spherical t0.1-designs and
spherical t-designs

The worst-case errors of quadrature rules using spherical t0.1-designs in Hs(S2)
for s = 1.5 are illustrated in Figure 4.1(a). For comparison, the worst-case errors for
quadrature rules using approximate spherical t-designs computed in [33] will also be
implemented. For all spherical t0.1-designs, the worst-case error is calculated using
(4.20) and the distance kernel, and for spherical t-designs the worst-case errors are
calculated by formulas (42) and (46) in [15]. From the figure we can see that in
this case, the computed worst-case errors of approximate spherical t-designs and
spherical t0.1-designs essentially lie on the same curve, which remains as a conjecture
that the worst-case errors of both spherical t-designs and spherical tε-designs decay
in the same speed with respect to the number of points in the case 1 < s < 2 on S2.
Figure 4.1(b) plots the worst-case errors for both spherical t-designs and spherical
t0.1-designs with s = 5.5. The optimal rate of convergence for the worst-case error
for integrating functions from a Sobolev space of smoothness index s is known. The
worst-case error of quasi-Monte Carlo methods defined by a sequence of spherical t-
designs with order t2 points on S2 achieves this optimal rate [15]. Assuming that the
approximated spherical t-designs used in Figure 4.1(b) have optimal order number
of points, the lower curve for the t0.1-designs may indicate a better constant but
not a better rate of convergence. There is perhaps insufficient data as one might
need to go to a higher number of points to see the optimal rate of convergence.
However, one should also take into account that for higher smoothness index s (as
it is the case here) the numerics is much more delicate than for lower values of s.

5. Polynomial approximation on the sphere using spherical tε-designs

5.1. Regularized weighted least squares approximation using spherical
tε-designs. In this section we consider the restoration of a continuous function
f ∈ C(S2) from its noisy values fδ given at N points XN = {x1, . . . ,xN} ⊂ S

2 by
the l2 − l1 regularized weighted discrete least squares form

(5.1) min
α�,k∈R

1

2

N∑
j=1

μj(
L∑

�=0

2k+1∑
k=1

α�,kY�,k(xj)− fδ(xj))
2 + λ

L∑
�=0

2�+1∑
k=1

|β�,kα�,k|,
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where μj > 0, j = 1, . . . , N are the weights for each term of the least squares
model, λ > 0 is the regularization parameter, and β�,k ≥ 0, � = 0, . . . , L, k =
1, . . . , 2� + 1 are usually chosen with the meaning of certain polynomial operators
such as Laplace-Beltrami operator and filtered operator [3, 34]. In [28] both a
priori choice based physical reason in satellite gravity gradiometry problem and a
posteriori choice based on reproducing kernel theory are considered to choose β�,k.

Note that {Y�,k, � = 0, . . . , L, k = 1, . . . , 2�+ 1} is a basis of PL. Problem (5.1)
is to find a good approximation of f in PL in the form

pL,N (x) :=

L∑
�=0

2�+1∑
k=1

α�,kY�,k(x).

Let the entries of matrix YL ∈ R
N×(L+1)2 be

(YL)i,�2+k = Y�,k(xi), i = 1, . . . , N, � = 0, . . . , L, k = 1, . . . , 2�+ 1,

and fδ = (fδ(x1), . . . , f
δ(xN ))T . Problem (5.1) can be reformulated as

(5.2) min
α∈R(L+1)2

1

2
‖Λ 1

2 (YLα− fδ)‖22 + λ‖Dα‖1,

where

Λ =

⎡
⎢⎣

μ1

. . .

μN

⎤
⎥⎦ ∈ R

N×N ,

and D is a diagonal matrix satisfying D�2+k,�2+k = β�,k with β�,k ≥ 0. For polyno-
mial approximation on the sphere, an l2-regularized weighted least squares model
has also been considered [3, 28]:

(5.3) min
α∈R(L+1)2

1

2
‖Λ 1

2 (YLα− fδ)‖22 + λ‖Dα‖22.

The regularization of this model is of l2 norm, which can be seen as a measure of
energy. It is known that the l1 regularization has desirable properties in approxi-
mation of nonsmooth continuous functions. An l1 regularization term is preferable
to be considered here. By choosing a suitable penalization term, the l2 − l1 regu-
larized model is usually supposed to achieve a more sparse solution than the l2− l2
regularized one, which means that the target function is approximated by fewer ba-
sis spherical polynomials. Additionally, for functions which are globally continuous
but locally nondifferentiable on the sphere, the l2 − l1 regularization is better than
the l2 − l2 regularization.

Theorem 5.1. Let Xε
N be a spherical tε-design with t ≥ 2L and let w be the

vector of weights satisfying (1.3) and (1.2) with respect to Xε
N . For model (5.2) set

μj = wj for j = 1, . . . , N . Then

(5.4) HL := YT
LΛYL = I(L+1)2 ,

and (5.2) has the unique solution

(5.5) α�,k = max{0, s�,k − λβ�,k}+min{0, s�,k + λβ�,k},

for � = 0, . . . , L, k = 1, . . . , 2k + 1, where s�,k =
∑N

i=1 wiY�,k(xi)f
δ(xi).
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Proof. Note that when Xε
N is a spherical tε-design,

(HL)�2+k,(�′)2+k′ =

N∑
i=1

wiY�,k(xi)Y�′,k′(xi)

=

∫
S2

Y�,k(x)Y�′,k′(x)dω(x) = δ��′δkk′ ,(5.6)

where the third equality is established by the orthonormality of spherical harmonics.
Problem (5.2) is strictly convex by the fact that HL is nonsingular and so it has a

unique optimal solution. Since A(α) = 1
2‖Λ

1
2 (YLα− fδ)‖22 is strictly differentiable,

by deriving the first optimality condition of (5.2) and Corollary 1 in [19, Section
2.3], we obtain that its unique optimal solution satisfies

(5.7) 0 ∈ HLα−YT
LWfδ + λ∂(‖Dα‖1),

where ∂(·) denotes the subdifferential. By (5.6) which implies HL = I(L+1)2 and
the fact that D is diagonal, problem (5.7) is separable and thus α is a solution of
(5.7) if and only if it is a solution of

(5.8) 0 ∈ α�,k − s�,k + λβ�,k∂|α�,k|, � = 0, . . . , L, k = 1, . . . , 2�+ 1.

Denote τ�,k = ∂|α�,k| and hence −1 ≤ τ�,k ≤ 1. Let α∗
�,k be the optimal solution of

(5.8) with corresponding � and k and hence

(5.9) α∗
�,k = s�,k − λβ�,kτ�,k with τ�,k ∈ [−1, 1].

When s�,k > λβ�,k we can set τ�,k = 1 and obtain

α∗
�,k = s�,k − λβ�,k > 0,

which together with β�,k ≥ 0 satisfies (5.5) and (5.9). When s�,k < −λβ�,k similarly
we set τ�,k = −1 and get

α∗
�,k = s�,k + λβ�,k < 0,

which also satisfies (5.5) and (5.9). Then when s�,k ∈ [−λβ�,k, λβ�,k] we set τ�,k =
s�,k
λβ�,k

∈ [−1, 1] and get that

α∗
�,k = 0,

which also satisfies (5.5) and (5.9). Hence, the theorem is proved. �

Denote the approximation residual as A(α) =
∑N

j=1(pL,N (xj) − fδ(xj))
2. Let

α∗(λ) be the optimal solution of (5.2) with different regularized parameters λ.
The following proposition indicates that A(α∗(λ)) is monotonically increasing with
respect to λ.

Proposition 5.2. Let Xε
N be a spherical tε-design with t ≥ 2L and μj = wj for

j = 1, . . . , N . Then A(α∗(λ)) is increasing in λ.

Proof. Let λ, λ̃ be given with 0 < λ ≤ λ̃ and denote the optimal solution of
problem (5.2) with λ, λ̃ as α∗, α̃∗, respectively. Denote E(λ, α) = λ‖Dα‖1 and the
minimization property of (5.2) for λ gives

(5.10) A(α∗) + E(λ, α∗) ≤ A(α̃∗) + E(λ, α̃∗),

which implies that

(5.11) A(α∗)−A(α̃∗) ≤ E(λ, α̃∗)− E(λ, α∗).
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From (5.5) we have

(5.12) α∗
�,k =

⎧⎨
⎩

s�,k − λβ�,k, s�,k > λβ�,k,
s�,k + λβ�,k, s�,k < −λβ�,k,

0, −λβ�,k ≤ s�,k ≤ λβ�,k.

Since λβ�,k ≥ 0, we have |α∗
�,k| = max(0, |s�,k|−λβ�,k). Together with the fact that

E(λ, α∗) = λ

L∑
�=0

2�+1∑
k=1

β�,k|α∗
�,k|,

we have

|α̃∗
�,k| = max(0, |s�,k| − λ̃β�,k) ≤ max(0, |s�,k| − λβ�,k) = |α∗

�,k|.
Hence, it is obtained that E(λ, α̃∗) ≤ E(λ, α∗). Together with (5.10) we complete
the proof. �

5.2. Numerical experiments. In this subsection we report the numerical results
to test the efficiency of the l2− l1 regularized model (5.2) using spherical tε-designs.

Example 5.1. In the first numerical test, the target function is selected as spherical
polynomials with degree no higher than L. Obviously using both models (5.2) and
(5.3) the target function can be exactly restored when λ = 0 and the data fδ is noise
free and the optimal values of the two models equal to 0 in such case. However, due
to the noise in the data vector fδ, it is necessary to use the regularization models.

In this experiment we will use the spherical t0.1-designs which is calculated by
solving a system of nonlinear equation (2.10) and the approximate spherical t-
designs proposed in [33] as the point set for polynomial approximation. Both the
uniform errors and L2 errors are recorded to measure the approximation quality.
We choose a large-scaled and well-distributed point set Xt ⊂ S2 to be the test
set and use it to estimate the errors. Then the uniform error and L2 error of the
approximation are estimated by

(5.13) ‖f − pL,N‖C(S2) ≈ max
xi∈Xt

|f(xi)− pL,N (xi)|

and

(5.14) ‖f − pL,N‖L2
≈
(
4π

Nt

Nt∑
i=1

(f(xi)− pL,N (xi))
2

) 1
2

,

where Nt denotes the number of points xi in Xt. In this experiment, we choose
Xt to be an equal area partitioning point set [31] with 105 points. The entries
of the matrix D in the experiment is always selected as β�,k = �(� + 1) for � =
0, . . . , L, k = 2�+ 1, inspired by the Laplace-Beltrami operator; see [3].

Figure 5.1 shows the approximation errors using both l2 − l1 model (5.2) and
l2 − l2 model (5.3) with different λ and different noise scales δ. The noise of the
data fδ obeys a uniform distribution in [−δ, δ]. In this numerical experiment a

spherical 370.1-design with only 514 points, which is much fewer than � (t+1)2

2 �,
is applied to approximate a randomly generated spherical polynomial with degree
� 37

2 � = 18 (the polynomial is generated with all of its Fourier coefficients obeying
the standard normal distribution). The regularization parameter λ is chosen from
10−20 to 100.5. Figure 5.1(a)(b) give the errors of the approximation with different
λ for δ = 0.1 using the two models. From the two subfigures it can be seen that
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(a) Uniform errors with different λ for δ =
0.1
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(b) L2 errors with different λ for δ = 0.1
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(c) Minimal uniform errors with different
noise scales δ
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(d) Minimal L2 errors with different noise
scales δ

Figure 5.1. Errors for restoring 18-degree polynomials

model (5.2) can restore the 18-degree polynomial more accurately than model (5.3).
The minimal error with respect to different λ can be achieved at about λ = 10−6.
Figure 5.1(c)(d) show the errors of the restoration results with different noise scales.
It can be seen that the model (5.2) performs better in each noise scale than (5.3).

Example 5.2. In the second numerical experiment we test the numerical perfor-
mance of model (5.2) using spherical tε-designs and spherical t-designs. We select
the Franke function [30],

f1(x) :=f(x, y, z) = 0.75 exp(−(9x− 2)2/4− (9y − 2)2/4− (9z − 2)2/4)

+ 0.75 exp(−(9x+ 1)2/49− (9y + 1)/10− (9z + 1)/10)

+ 0.5 exp(−(9x− 7)2/4− (9y − 3)2/4− (9z − 5)2/4)

− 0.2 exp(−(9x− 4)2 − (9y − 7)2 − (9z − 5)2), (x, y, z)T ∈ S
2,

(5.15)

to be the target function which is not a spherical polynomial but continuously differ-
entiable on the whole sphere. We set ε = 0.1 and also δ = 0.1 in this experiment and
the scheme of choosing λ is the same as in Example 5.1. For spherical t0.1-designs,
we select those point sets constructed with possible least points. As is mentioned

above, a spherical t0.1-design may be constructed using less than � (t+1)2

2 � points.
Approximate spherical t-designs proposed in [33] are also applied for comparison.
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Note that the minimizer of model (5.2) has an explicit form (5.5) only when t ≥ 2L,
so for different t we choose L = � t

2�.
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Figure 5.2. Errors for approximating Franke function with dif-
ferent scales of point sets

For Example 5.2, the approximation errors using both spherical t0.1-designs and
approximate spherical t-designs are shown in Figure 5.2. The X-axis represents the
number of points in the data sets and the Y-axis represents the minimal uniform
errors. From the figure we can see that approximation using spherical t0.1-designs
achieves smaller errors than using approximate spherical t-designs in most cases.
Based on the numerical results in Figure 5.2, the approximation quality can be
improved with the relaxation of weight vector using model (5.2).

Example 5.3. In the third experiment, a continuous but nondifferentiable function

(5.16) f2 = f1(x) + fcap(x),

is selected as the target function to approximate, with

(5.17) fcap(x) =

⎧⎨
⎩ ρ cos

(
π cos−1(xc · x)

2r

)
, x ∈ C(xc, r),

0, otherwise,

where ρ > 0, 0 < r < π. The function is nondifferentiable at the edge of the
spherical cap C(xc, r). Since the basis functions applied for approximation are
spherical harmonic polynomials which is globally differentiable on S2, restoration
of the edge of C(xc, r) turns to be a challenging problem when the data has noise.

A spherical 370.1-design with 514 points is used as the data point set in this exper-
iment. Other settings in this experiment are δ = 0.5, λ = 10−20, 10−19.5, . . . , 105,
xc = (−0.5,−0.5,

√
0.5)T , r = 0.5 and ρ = 1. The restorations of f2 using both

models (5.2) and (5.3) are depicted in Figure 5.3. Similar with previous exper-
iments, we choose the values of λ resulting in minimal uniform errors for each
model and plot the shape of the restoration function on the sphere. From Figure
5.3(c)(d)(e)(f), restoration by model (5.2) is not as smooth as restoration by model
(5.3) but has smaller errors. And more notably, as highlighted by the rectangle
in Figure 5.3(c)(d), model (5.2) restores the nonsmooth edges of the spherical cap
more accurately than model (5.3).
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(a) f2 with ‖f2‖C(S2) ≈ 3.41 (b) fδ
2 with δ = 0.5

(c) l2− l1 restoration with ‖pL,N‖C(S2) ≈
3.30

(d) l2− l2 restoration with ‖pL,N‖C(S2) ≈
3.62

(e) l2 − l1 restoration errors (f) l2 − l2 restoration errors

Figure 5.3. Restoration of f2 using spherical 370.1-design with
models (5.2) and (5.3)

Acknowledgments

We would like to thank Professor Ian Sloan and the two referees for their valuable
and helpful comments on spherical tε-designs.



2854 Y. ZHOU AND X. CHEN

References

[1] M. Abramowitz and I. A. Stegun (eds.), Handbook of Mathematical Functions with Formulas,
graphs, and mathematical tables, Dover Publications, Inc., New York, 1992. Reprint of the
1972 edition. MR1225604

[2] C. An, X. Chen, I. H. Sloan, and R. S. Womersley, Well conditioned spherical designs for
integration and interpolation on the two-sphere, SIAM J. Numer. Anal. 48 (2010), no. 6,
2135–2157, DOI 10.1137/100795140. MR2763659

[3] C. An, X. Chen, I. H. Sloan, and R. S. Womersley, Regularized least squares approximations
on the sphere using spherical designs, SIAM J. Numer. Anal. 50 (2012), no. 3, 1513–1534,
DOI 10.1137/110838601. MR2970753

[4] K. Atkinson and W. Han, Spherical harmonics and approximations on the unit sphere: an in-
troduction, Lecture Notes in Mathematics, vol. 2044, Springer, Heidelberg, 2012. MR2934227

[5] B. Bajnok, Construction of spherical t-designs, Geom. Dedicata 43 (1992), no. 2, 167–179,
DOI 10.1007/BF00147866. MR1180648

[6] E. Bannai, On tight spherical designs, J. Combin. Theory Ser. A 26 (1979), no. 1, 38–47,

DOI 10.1016/0097-3165(79)90052-9. MR525085
[7] E. Bannai and E. Bannai, A survey on spherical designs and algebraic combinatorics on

spheres, European J. Combin. 30 (2009), no. 6, 1392–1425, DOI 10.1016/j.ejc.2008.11.007.
MR2535394

[8] E. Bannai and E. Bannai, Remarks on the concepts of t-designs, J. Appl. Math. Comput. 40
(2012), no. 1-2, 195–207, DOI 10.1007/s12190-012-0544-1. MR2965326

[9] B. J. C. Baxter and S. Hubbert, Radial basis functions for the sphere, Recent progress in mul-
tivariate approximation (Witten-Bommerholz, 2000), Internat. Ser. Numer. Math., vol. 137,
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