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AN hp-ADAPTIVE NEWTON-DISCONTINUOUS-GALERKIN

FINITE ELEMENT APPROACH FOR SEMILINEAR ELLIPTIC

BOUNDARY VALUE PROBLEMS

PAUL HOUSTON AND THOMAS P. WIHLER

Abstract. In this paper we develop an hp-adaptive procedure for the numer-
ical solution of general second-order semilinear elliptic boundary value prob-
lems, with possible singular perturbation. Our approach combines both adap-
tive Newton schemes and an hp-version adaptive discontinuous Galerkin finite
element discretisation, which, in turn, is based on a robust hp-version a pos-
teriori residual analysis. Numerical experiments underline the robustness and
reliability of the proposed approach for various examples.

1. Introduction

The subject of this paper is the adaptive numerical approximation of second-
order semilinear elliptic problems of the form

(1) −εΔu+ u = f(·, u) in Ω, u = 0 on ∂Ω.

Here, Ω ⊂ R
2 is an open and bounded Lipschitz domain, ε ∈ (0, 1] represents a

(possibly small singular perturbation) parameter, f : Ω×R → R is a continuously
differentiable function, and u : Ω → R is an unknown solution; next, we will omit to
explicitly express the dependence of f on the first argument, and simply write f(u)
instead. Problems of this type appear in a wide range of application areas of
practical interest, such as, for example, nonlinear reaction-diffusion in ecology and
chemical models [12,14,25,46,47], economy [8], or classical and quantum physics [9,
10, 32, 52].

Partial differential equations (PDEs) of the form (1) may admit a unique so-
lution, no solution at all, or more typically a multitude of solutions, or indeed
infinitely many such solutions. Moreover, in the singularly perturbed case, i.e.,
when 0 < ε � 1, solutions of (1), when they exist, may contain sharp layers
in the form of interior/boundary layers, or isolated spike-like solutions, and their
numerical approximation represents a challenging computational task. Indeed, to
efficiently and reliably compute discrete approximations to the analytical solution u
of (1), it is essential to exploit a posteriori bounds which not only provide infor-
mation regarding the size of the discretisation error, measured in some appropriate
norm, but also yield local error indicators which may subsequently be employed to
enrich the underlying approximation space in an adaptive manner. Of course, a
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key aspect of this general solution procedure is the design and implementation of a
nonlinear solver which can efficiently compute the approximation uh to u; we shall
return to this issue below.

In general, the traditional approach exploited within the literature for the design
of adaptive finite element methods, for example, is to first discretise the underlying
PDE problem, in our case (1), and to derive an a posteriori error bound for the
resulting (nonlinear) scheme; this is typically a very mathematically challenging
task. However, once such a bound has been established, then given a suitable
initial mesh and polynomial approximation order, the underlying nonlinear system
of discrete equations arising from the underlying finite element discretisation may
be solved based on employing, for example, a (damped) Newton iteration. Denoting
this computed numerical approximation by uh, the size of the error between u and
uh may then be estimated by exploiting this a posteriori error bound. If this bound
is below a given user tolerance, then sufficient accuracy has been attained and the
adaptive algorithm may be terminated. Otherwise, the computational mesh (h-
refinement) or the polynomial degree (p-refinement), or both (hp-refinement) are
locally enriched based on identifying regions in the domain where the elementwise
error indicators, which stem from the a posteriori error bound, are locally large.
On the basis of this new finite element space, a new approximation uh to u may
be computed, and the whole process repeated until either the desired accuracy has
been attained, or a maximum number of refinement steps have been completed.

Stimulated by the work undertaken in the article [5], we consider an alterna-
tive approach based on the so-called adaptive Newton-Galerkin paradigm for the
numerical approximation of nonlinear problems of the type (1). More precisely,
this general technique is based on applying local Newton-type linearisations on the
continuous level that allow for the approximation of the semilinear PDE (1) by
a sequence of linearised problems. These resulting linear PDEs are then discre-
tised by means of an adaptive finite element procedure, which, in turn, is based
on a suitable a posteriori residual analysis. The adaptive Newton-Galerkin proce-
dure provides an interplay between the (adaptive, or damped) Newton method and
the adaptive finite element approach, whereby we either perform a Newton step
(if the Newton linearisation effect dominates) or enrich the current finite element
space based on the above a posteriori residual indicators (in the case that the finite
element discretisation constitutes the main source of error); for related work we
refer to [16, 27], or the articles [11, 21, 31] on (derivative-free) fixed-point iteration
schemes. Finally, we point to the works [15, 33] dealing with modelling errors in
linearised models.

In the current article, we extend the work undertaken in [5] to the framework of
hp-version adaptive interior penalty discontinuous Galerkin (DG) schemes, thereby
giving rise to hp-adaptive Newton-discontinuous Galerkin (NDG) methods. Here,
the proof of the resulting a posteriori residual bound for the interior penalty DG
discretisation of the underlying linearised PDE problem is based on two key steps:
first, we introduce a suitable residual operator on a given enriched space, which,
when measured in an appropriate norm, is equivalent to the error measured in terms
of the underlying DG energy norm. Second, an upper bound on the norm of the
residual operator is derived based on exploiting the general techniques developed in
the articles [34,35,55]; we also refer to [56] for the application to convection-diffusion
problems, and to [19,38] for the treatment of strongly monotone quasilinear PDEs,
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cf., also, [18,20] for hp-version two-grid DG methods. The proof of this upper bound
crucially relies on the approximation of discontinuous finite element functions by
conforming ones; cf., also, [40] for the h-version case. Moreover, in the current
setting, following [53], particular care is devoted to the derivation of ε-robust ap-
proximation estimates. The resulting a posteriori bound consists of two key terms:
one stemming from the Newton linearisation error, and the second which measures
the approximation error in the underlying DG scheme. On the basis of this gen-
eral hp-version bound, we devise a fully automatic hp-adaptive NDG scheme for
the numerical approximation of PDEs of the form (1). Indeed, the performance of
the resulting adaptive strategy is demonstrated on both the Bratu and Ginzburg
Landau problems; moreover, the superiority of exploiting hp-enrichment of the DG
finite element space, in comparison with standard mesh adaptation (h-refinement),
will be highlighted.

The structure of this article is as follows. In Section 2 we briefly outline the
adaptive (damped) Newton linearisation procedure employed within this article.
The hp-version interior penalty DG discretisation of the resulting linearised PDE
problem is then given in Section 3. Section 4 is devoted to the derivation of a
residual-based a posteriori bound. On the basis of this bound in Section 5 we design
a suitable adaptive refinement strategy, which controls both the error arising in the
Newton linearisation, as well as the error in the hp-DG finite element scheme; in
the latter case, we exploit automatic hp-refinement of the underlying finite element
space. The performance of this proposed algorithm is demonstrated for a series of
numerical examples presented in Section 6. Finally, in Section 7 we summarise the
work presented in this article and discuss potential future extensions.

2. Newton linearisation

2.1. An adaptive Newton approach. We will briefly revisit an adaptive “black-
box” prediction-type Newton algorithm from [5], and refer to [23] for more sophis-
ticated approaches in more specific situations. Let us consider two Banach spaces
X,Y , with norms ‖·‖X and ‖·‖Y , respectively. Then, given an open subset Ξ ⊂ X,
and a (possibly nonlinear) operator Fε : Ξ → Y , we are interested in solving the
nonlinear operator equation

(2) Fε(u) = 0,

for some unknown zeros u ∈ Ξ. Supposing that the Fréchet derivative F′
ε of Fε

exists in Ξ (or in a suitable subset), the classical Newton method for solving (2)
starts from an initial guess u0 ∈ Ξ, and generates a sequence {un}n≥1 ⊂ X that is
defined iteratively by the linear equation

(3) F′
ε(un)(un+1 − un) = −Fε(un), n ≥ 0.

Naturally, for this iteration to be well-defined, we need to assume that F′
ε(un) is

invertible for all n ≥ 0, and that {un}n≥0 ⊂ Ξ.
In order to improve the reliability of the Newton method (3) in the case that

the initial guess u0 is relatively far away from a root u∞ ∈ Ξ of Fε, Fε(u∞) = 0,
introducing some damping in the Newton method is a well-known remedy. In that
case (3) is rewritten as

(4) un+1 = un −ΔtnF
′
ε(un)

−1Fε(un), n ≥ 0,
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where Δtn > 0, n ≥ 0, is a damping parameter that may be adjusted adaptively
in each iteration step. The selection of the Newton parameter Δtn is based on
the following idea from [5]: provided that F′

ε(u) is invertible on a suitable subset
of Ξ ⊂ X, we define the Newton-Raphson transform by

u �→ NF(u) := −F′
ε(u)

−1Fε(u);

see, e.g., [48]. Then, rearranging terms in (4), we notice that

un+1 − un

Δtn
= NF(un), n ≥ 0,

i.e., (4) can be seen as the discretisation of the dynamical system

u̇(t) = NF(u(t)), t ≥ 0, u(0) = u0,(5)

by the forward Euler scheme, with step size Δtn > 0. For t ∈ [0,∞), the solu-
tion u(t) of (5), if it exists, defines a trajectory in X that starts at u0, and that will
potentially converge to a zero of Fε as t → ∞. Indeed, this can be seen (formally)
from the integral form of (5), that is,

Fε(u(t)) = Fε(u0)e
−t, t ≥ 0,

which implies that Fε(u(t)) → 0 as t → ∞.
Now taking the view of dynamical systems, our goal is to compute an upper

bound for the value of the step sizes Δtn > 0 from (4), n ≥ 0, so that the discrete
forward Euler solution {un}n≥0 from (4) stays reasonably close to the continuous
solution of (5). Specifically, a Taylor expansion analysis (see [5, Section 2] for
details) reveals that

u(t) = u0 + tNF(u0) +
t2

2h0
ηh0

+O(t3) +O(t2h0‖NF(u0)‖2X),

where, for any sufficiently small h0 > 0, we let ηh0
= NF(u0 + h0NF(u0))−NF(u0).

Hence, after the first time step of length Δt0 > 0 there holds

(6) u(Δt0)− u1 =
Δt20
2h0

ηh0
+O(Δt30) +O(Δt20h0‖NF(u0)‖2X),

where u1 is the forward Euler solution from (4).
Given a prescribed tolerance τ > 0, we proceed along the lines of [5, Section 2.3]

by defining

Δt0 := min

{√
2τh0‖ηh0

‖−1
X , 1

}
,

as well as the update

h1 := γΔt0‖NF(u0)‖−2
X ,

where γ > 0 is a parameter. Then, from (6) we infer that

(7) ‖u(Δt0)− u1‖X ≤ τ +O(Δt20h1‖NF(u0)‖2X).

This leads to the following adaptive Newton algorithm.

Algorithm 2.1. Fix a tolerance τ > 0, a parameter γ > 0, and hmax > 0.
Set n ← 0.

1: Start the Newton iteration with an initial guess u0 ∈ Ξ.
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2: if n = 0 then choose

Δt0 = min

{√
2τ ‖NF(u0)‖−1

X , 1

}
,

based on [5, Algorithm 2.1] (cf. also [4]),
3: else let κn = Δtn−1 and hn = min

{
γκn‖NF(un)‖−2

X , hmax
}
; define the Newton

step size

(8) Δtn = min

{√
2τhn ‖NF(un + hnNF(un))− NF(un)‖−1

X , 1

}
.

4: end if
5: Compute un+1 based on the Newton iteration (4), and go to (3:) with n ← n+1.

We notice that the minimum in (8) ensures that the step size Δtn is chosen to
be 1 whenever possible. Indeed, this is required in order to guarantee quadratic
convergence of the Newton iteration close to a root (provided that the root is
simple).

Furthermore, we remark that the prescribed tolerance τ in the above adaptive
strategy will typically be fixed a priori. Here, for highly nonlinear problems fea-
turing numerous or even infinitely many solutions, it is typically mandatory to
select τ � 1 small in order to remain within the attractor of the given initial guess.
This is particularly important if the starting value is relatively far away from a
solution.

As final comment, we point out that within the definition of hn in Algorithm 2.1,
we impose a maximal value of hmax; this is necessary to avoid roundoff issues
as the Newton iteration approaches a root, whereby we expect ‖NF(un)‖X to be
extremely small. Here, in view of the estimate (7), it would also be possible to select
an individual upper bound, e.g., hmax

n = O(τκ−2
n ‖NF(un)‖−2

X ), in each Newton
iteration step.

2.2. Application to semilinear PDEs. In this article, we suppose that a (not
necessarily unique) solution u ∈ X := H1

0 (Ω) of (1) exists; here, we denote by
H1

0 (Ω) the standard Sobolev space of functions in H1(Ω) = W 1,2(Ω) with zero
trace on ∂Ω. Furthermore, signifying by X ′ = H−1(Ω) the dual space of X, and
upon defining the map Fε : X → X ′ through

(9) 〈Fε(u), v〉 :=
∫
Ω

{ε∇u · ∇v + uv − f(u)v} dx ∀v ∈ X,

where 〈·, ·〉 is the dual product in X ′ ×X, the above problem (1) can be written as
a nonlinear operator equation in X ′:

(10) u ∈ X : Fε(u) = 0.

For any subset D ⊆ Ω, we denote by ‖ · ‖0,D the L2-norm on D; in the case when
D = Ω, we simply write ‖ · ‖0 in lieu of ‖ · ‖0,Ω. With this notation, we note that
the space X is equipped with the norm

‖u‖2X := ε‖∇u‖20 + ‖u‖20, u ∈ X.

The Fréchet-derivative of the operator Fε from (10) at u ∈ X is given by

〈F′
ε(u)w, v〉 =

∫
Ω

{ε∇w · ∇v + wv − f ′(u)wv} dx, v, w ∈ X = H1
0 (Ω),
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where we write f ′ ≡ ∂uf . We note that, if there is a constant ω > 1 for which f ′(u) ∈
Lω(Ω), then F′

ε(u) is a well-defined linear and bounded mapping from X to X ′;
see [5, Lemma A.1].

Now given an initial guess u0 ∈ X, the adaptive Newton method (4) for (10) is
defined iteratively by finding un+1 ∈ X from un ∈ X, n ≥ 0, such that

F′
ε(un)(un+1 − un) = −ΔtnFε(un),

in X ′. When applied to (9) and (10), this turns into∫
Ω

{ε∇(un+1 − un) · ∇v + (un+1 − un)v − f ′(un)(un+1 − un)v} dx

= −Δtn

∫
Ω

{ε∇un · ∇v + unv − f(un)v} dx ∀v ∈ X.

Hence, for n ≥ 0, the updated Newton iterate un+1 is defined through the linear
weak formulation∫

Ω

{ε∇ûn+1 · ∇v + ûn+1v − f ′(un)ûn+1v} dx

= Δtn

∫
Ω

{f(un)− f ′(un)un}v dx ∀v ∈ X,

(11)

where ûn+1 = un+1 − (1 − Δtn)un. Incidentally, if there exists a constant δ
with ε−1(f ′(un)− 1) ≤ δ < C−2

PF on Ω, where CPF = CPF(Ω) > 0 is the constant in
the Poincaré-Friedrichs inequality on Ω,

‖w‖0 ≤ CPF‖∇w‖0 ∀w ∈ X,

then (11) is a linear second-order diffusion-reaction problem that is coercive on X.
In particular, (11) exhibits a unique solution un+1 ∈ X in this case.

3. hp-DG discretisation

3.1. Meshes, spaces, and DG flux operators. We will employ a standard hp-
DG setting; see, e.g., [35, 56].

3.1.1. Meshes and DG spaces. Let T be a subdivision of Ω into disjoint open par-
allelograms κ such that Ω =

⋃
κ∈T κ. We assume that T is shape-regular, and that

each κ ∈ T is an affine image of the unit square κ̂ = (0, 1)2; i.e., for each κ ∈ T
there exists an affine element mapping Ψκ : κ̂ → κ such that κ = Ψκ(κ̂). By hκ we
denote the element diameter of κ ∈ T , h = maxκ∈Th

hκ is the mesh size, and nκ

signifies the unit outward normal vector to κ on ∂κ. Furthermore, we assume that
T is of bounded local variation, i.e., there exists a constant ρ1 ≥ 1, independent of
the element sizes, such that ρ−1

1 ≤ hκ/hκ′ ≤ ρ1, for any pair of elements κ, κ′ ∈ T
which share a common edge e = (∂κ∩∂κ′)◦. In this context, let us consider the set
E of all one-dimensional open edges of all elements κ ∈ T . Further, we denote by
EI the set of all edges e in E that are contained in Ω (interior edges). Additionally,
introduce EB to be the set of boundary edges consisting of all e ∈ E that are con-
tained in ∂Ω. In our analysis, we allow the meshes to be 1-irregular, i.e., each edge
of an element κ ∈ T may contain (at most) one hanging node, which we assume to
be located at the centre of e. Suppose that e is an edge of an element κ ∈ T ; then,
by he, we denote the length of e. Due to our assumptions on the subdivision T we
have that, if e ⊂ ∂κ, then he is commensurate with hκ, the diameter of κ.



hp-ADAPTIVE NDG METHODS FOR SEMILINEAR PDE 2647

For a nonnegative integer k, we denote by Qk(κ̂) the set of all tensor-product
polynomials on κ̂ of degree at most k in each co-ordinate direction. To each κ ∈
T we assign a polynomial degree pκ (local approximation order). We store the
quantities hκ and pκ in the vectors h = {hκ : κ ∈ T } and p = {pκ : κ ∈ T },
respectively, and consider the DG finite element space

(12) VDG = {v ∈ L2(Ω) : v|κ ◦Ψκ ∈ Qpκ
(κ̂) ∀κ ∈ T } .

We shall suppose that the polynomial degree vector p, with pκ ≥ 1 for each κ ∈ T ,
has bounded local variation, i.e., there exists a constant ρ2 ≥ 1 independent of h
and p, such that, for any pair of neighbouring elements κ, κ′ ∈ T , we have ρ−1

2 ≤
pκ/pκ′ ≤ ρ2. Moreover, for an edge e = (∂κ∩∂κ′)◦ shared by two elements κ, κ′ ∈ T ,
we define pe := 1/2(pκ + pκ′), or pe = pκ if e = (∂κ ∩ ∂Ω)◦, for some κ ∈ T , is a
boundary edge.

3.1.2. Jump and average operators. Let κ and κ′ be two adjacent elements of T ,
and x an arbitrary point on the interior edge e ∈ EI given by e = (∂κ ∩ ∂κ′)◦.
Furthermore, let v and q be scalar- and vector-valued functions, respectively, that
are sufficiently smooth inside each element κ, κ′. Then, the averages of v and q at
x ∈ e are given by

〈〈v〉〉 = 1

2
(v|κ + v|κ′), 〈〈q〉〉 = 1

2
(q|κ + q|κ′),

respectively. Similarly, the jumps of v and q at x ∈ e are given by

[[v]] = v|κ nκ + v|κ′ nκ′ , [[q]] = q|κ · nκ + q|κ′ · nκ′ ,

respectively. On a boundary edge e ∈ EB, we set 〈〈v〉〉 = v, 〈〈q〉〉 = q and [[v]] = vn,
with n denoting the unit outward normal vector on the boundary ∂Ω.

Furthermore, we introduce, for an edge e ∈ E , the discontinuity penalisation
parameter σ by

(13) σ|e =
p2e
he

.

We conclude this section by equipping the DG space VDG with the DG norm

(14) ‖v‖2DG := ε ‖∇T v‖20 + ‖v‖20 +
∫
E
(εσ + σ−1)|[[v]]|2 ds,

which is induced by the DG inner product

(15) (v, w)DG =

∫
Ω

{ε∇T v · ∇T w + vw} dx+

∫
E
(εσ + σ−1)[[w]] · [[v]] ds.

Here, ∇T is the elementwise gradient operator. For an element κ ∈ T we shall also
use the norm

‖v‖2ε,κ := ε ‖∇v‖20,κ + ‖v‖20,κ ,
for v ∈ H1(κ).

3.1.3. Conforming subspaces. For a given DG finite element space VDG (cf. (12)),
we define the extended space

WDG := H1
0 (Ω) + VDG.

With this notation, the following result holds.
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Lemma 3.1. There exists a linear operator ADG : WDG → H1
0 (Ω) such that

‖w − ADGw‖20 ≤ C(16)

∑
e∈E

∫
e

σ−1|[[w]]|2 ds,

‖∇T (w − ADGw)‖20 ≤ C(16)

∑
e∈E

∫
e

σ|[[w]]|2 ds,
(16)

for any w ∈ WDG, where C(16) > 0 is a constant independent of T and of p.

Proof. Consider the space V‖
DG := VDG∩H1

0 (Ω), and denote by P
‖
DG : VDG → V‖

DG the
orthogonal projection with respect to the inner product defined in (15), i.e.,

w ∈ VDG : (w − P
‖
DGw, v)DG = 0 ∀v ∈ V‖

DG.

Then, defining the subspace V⊥
DG := (id − P

‖
DG)VDG, we have the direct sum VDG =

V‖
DG ⊕ V⊥

DG, as well as

(17) WDG = H1
0 (Ω)⊕ V⊥

DG.

Based on our assumptions on the mesh T , and referring to [56, Theorem 4.4], there
exists an operator Ihp : VDG → H1

0 (Ω) that satisfies∑
κ∈T

‖v − Ihpv‖2L2(κ) ≤ C
∑
e∈E

∫
e

σ−1|[[v]]|2 ds,

∑
κ∈T

‖∇(v − Ihpv)‖2L2(κ) ≤ C
∑
e∈E

∫
e

σ|[[v]]|2 ds,

for any v ∈ VDG. By virtue of (17), we can now construct the operator ADG as follows:
for any w ∈ WDG, there exist unique representatives w0 ∈ H1

0 (Ω) and w⊥
DG ∈ V⊥

DG

with w = w0+w⊥
DG. Hence, defining ADGw := w0+ Ihpw

⊥
DG ∈ H1

0 (Ω), and employing
the previous estimates, we obtain

‖∇T (w − ADGw)‖20 =
∑
κ∈T

‖∇(w⊥
DG − Ihpw

⊥
DG)‖2L2(κ) ≤ C

∑
e∈E

∫
e

σ|[[w⊥
DG]]|2 ds.

Since w0 ∈ H1
0 (Ω), we notice that [[w0]]|e = 0 for all e ∈ E ; thereby,

‖∇T (w − ADGw)‖20 ≤ C
∑
e∈E

∫
e

σ|[[w]]|2 ds,

which proves the second bound in (16). The first inequality results from an analo-
gous argument. �
Remark 3.2. We note that any v ∈ H1

0 (Ω) satisfies [[v]] = 0 on E ; thereby, in view
of (16), it follows that ADGv = v for all v ∈ H1

0 (Ω). Furthermore, for w ∈ WDG,
upon application of the triangle inequality and Lemma 3.1, we deduce that

‖ADGw‖2X = ε‖∇ADGw‖20 + ‖ADGw‖20
≤ 2ε‖∇w‖20 + 2‖w‖20 + 2ε‖∇(w − ADGw)‖20 + 2‖w − ADGw‖20

≤ 2ε‖∇w‖20 + 2‖w‖20 + 2C(16)

∑
e∈E

∫
e

(εσ + σ−1)|[[w]]|2 ds.

Thus the following stability estimate holds

(18) ‖ADGw‖X ≤ C(18)‖w‖DG ∀w ∈ WDG,

where C(18) =
√
2max(1, C(16)).
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3.2. Linear hp-DG approximation. The hp-version interior penalty DG discreti-
sation of (11) is given by: find uDG

n+1 ∈ VDG from uDG
n such that

(19) aDG(u
DG
n ;uDG

n+1, v) = �DG(u
DG
n ; v) ∀v ∈ VDG.

Here, for a method parameter θ ∈ [−1, 1] and a penalty parameter Cσ ≥ 0, we
define the forms

aDG(u
DG
n ;uDG

n+1, v) :=

∫
Ω

{
ε∇T û

DG
n+1 · ∇T v + û

DG
n+1v − f ′(uDG

n )ûDG
n+1v

}
dx

−
∫
E

{
〈〈ε∇T û

DG
n+1〉〉 · [[v]] + θ[[ûDG

n+1]] · 〈〈ε∇T v〉〉
}
ds

+ Cσ

∫
E
εσ[[ûDG

n+1]] · [[v]] ds

(20)

and

�DG(u
DG
n ; v) =

∫
Ω

f̂(uDG
n )v dx,

for v ∈ VDG, where for n ≥ 0, we set

ûDG
n+1 := uDG

n+1 − (1−Δtn)u
DG
n ,

f̂(uDG
n ) := Δtn(f(u

DG
n )− f ′(uDG

n )uDG
n ).

(21)

The choices θ ∈ {−1, 0, 1} correspond, respectively, to the nonsymmetric (NIPG),
incomplete (IIPG), and symmetric (SIPG) interior penalty DG schemes; cf. [51].
For the IIPG and SIPG methods, the penalty parameter Cσ must be chosen suf-
ficiently large to guarantee stability of the underlying DG scheme; cf. [54], for
example. Furthermore, an additional constraint on the minimal value of Cσ will be
introduced in Proposition 4.1 below.

4. hp-version a posteriori analysis

4.1. A DG residual. We introduce a residual operator

Rε : WDG → W ′
DG,

where W ′
DG is the dual space of WDG, as follows: given the operator ADG constructed

in Lemma 3.1, and w ∈ WDG, let us define

〈Rε(w), v〉 : =
∫
Ω

{ε∇T w · ∇ADGv + wADGv − f(w)ADGv} dx

+ Cσ

∫
E
(εσ + σ−1)[[w]] · [[v]] ds ∀v ∈ WDG,

(22)

with σ from (13), and Cσ appearing in (20). Furthermore, for w ∈ WDG, we
introduce the norm

(23) |||Rε(w)||| := sup
φ∈WDG

〈Rε(w), φ〉
‖φ‖DG

.

For a solution u ∈ H1
0 (Ω) of (1), we again note that [[u]] = 0 on E , and, hence, due

to (9) and (10), we conclude that

(24) 〈Rε(u), v〉 = 0 ∀v ∈ WDG.

Moreover, the following result shows that, under suitable conditions on the nonlin-
earity f , the norm |||Rε(·)||| defined in (23) is directly related to the DG-norm given
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in (14). In this sense, we may employ the norm |||Rε(·)||| as a natural measure for
the approximation in the Newton-DG formulation (19).

Proposition 4.1. Suppose that there exist constants �0 > −1 and L ≥ 0 such
that f satisfies

(25) �0 ≤ −f ′ and |f ′| ≤ L

on Ω× R. Furthermore, assume that the penalty parameter Cσ is sufficiently large
so that

Cσ ≥ c0
2

+
C(16)(1 + L)2

2c0
,

where C(16) is the constant arising in the bounds (16), and c0 = 1+min(0, �0) > 0.

Then, for any weak solution u ∈ H1
0 (Ω) of (1), the following bounds hold:

(26)
c0
2
‖u− w‖DG ≤ |||Rε(w)||| ≤

√
2max

(
C(18)(1 + L), Cσ

)
‖u− w‖DG

for all w ∈ WDG, where C(18) is the constant arising in (18).

Proof. The two bounds are proved separately. Let w ∈ WDG, then employing (24),
and noting that ADGu = u (cf. Remark 3.2), we obtain

〈Rε(w), w − u〉 = 〈Rε(u)− Rε(w), u− w〉

= ε

∫
Ω

∇T (u− w) · ∇(u− ADGw) dx+

∫
Ω

(u− w)(u− ADGw) dx

−
∫
Ω

(f(u)− f(w))(u− ADGw) dx+ Cσ

∫
E
(εσ + σ−1)|[[u− w]]|2 ds

= ‖u− w‖2DG + ε

∫
Ω

∇T (u− w) · ∇T (w − ADGw) dx

+

∫
Ω

(u− w)(w − ADGw) dx−
∫
Ω

(f(u)− f(w))(u− w) dx

−
∫
Ω

(f(u)− f(w))(w − ADGw) dx

+ (Cσ − 1)

∫
E
(εσ + σ−1)|[[u− w]]|2 ds.

Given the assumptions on f stated in (25) hold, we conclude that

−(f(u)− f(w))(u− w) ≥ �0|u− w|2, |f(u)− f(w)| ≤ L|u− w|,

on Ω× R. Thus, applying the Cauchy-Schwarz inequality, we arrive at

〈Rε(w), w − u〉 ≥ (1 + min(0, �0))‖u− w‖2DG − ε‖∇T (u− w)‖0‖∇T (w − ADGw)‖0
− (1 + L)‖u− w‖0‖w − ADGw‖0

+ (Cσ − 1−min(0, �0))

∫
E
(εσ + σ−1)|[[u− w]]|2 ds.
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Setting c0 = 1 +min(0, �0), we deduce that

〈Rε(w), w − u〉 ≥ c0‖u− w‖2DG −
c0ε

2
‖∇T (u− w)‖20 −

ε

2c0
‖∇T (w − ADGw)‖20

− c0
2
‖u− w‖20 −

(1 + L)2

2c0
‖w − ADGw‖20

+ (Cσ − c0)

∫
E
(εσ + σ−1)|[[u− w]]|2 ds.

By virtue of Lemma 3.1, and noting that [[u]] = 0 on E , we get

〈Rε(w), w − u〉 ≥ c0
2
‖u− w‖2DG

+

(
Cσ − c0

2
−

C(16)(1 + L)2

2c0

)∫
E
(εσ + σ−1)|[[u− w]]|2 ds

≥ c0
2
‖u− w‖2DG.

This gives the first bound in (26). In order to show the second estimate, we em-
ploy (25) and the Cauchy-Schwarz inequality, for any v ∈ WDG, to infer that

〈Rε(w), v〉
= 〈Rε(w)− Rε(u), v〉

=

∫
Ω

{ε∇T (w − u) · ∇ADGv + (w − u)ADGv − (f(w)− f(u))ADGv} dx

+ Cσ

∫
E
(εσ + σ−1)[[w − u]] · [[v]] ds

≤ ε‖∇T (w − u)‖0‖∇ADGv‖0 + (1 + L)‖w − u‖0‖ADGv‖0

+

(
C2

σC
−2
(18)

∫
E
(εσ + σ−1)|[[w − u]]|2 ds

)1/2 (
C2

(18)

∫
E
(εσ + σ−1)|[[v]]|2 ds

)1/2

≤ max
(
1 + L,CσC

−1
(18)

)
‖u− w‖DG

(
‖ADGv‖2X + C2

(18)

∫
E
(εσ + σ−1)|[[v]]|2 ds

)1/2

.

Recalling the stability of ADG from (18) yields

〈Rε(w), v〉 ≤
√
2C(18) max

(
1 + L,CσC

−1
(18)

)
‖u− w‖DG‖v‖DG.

This implies the second bound in (26), and, thus, completes the proof. �

4.2. A posteriori residual analysis. In this section we develop a residual-based
a posteriori numerical analysis for the hp-NDG method (19).

4.2.1. hp-approximation estimates. Let v ∈ WDG be arbitrary, and consider ADGv ∈
H1

0 (Ω) as in Lemma 3.1. Then, we may choose φDG ∈ VDG such that, for all κ ∈ T ,
the stability bound

‖ADGv − φDG‖0,κ ≤ ‖ADGv‖0,κ,
as well as the approximation estimate

‖∇(ADGv − φDG)‖20,κ +
p2κ
h2
κ

‖ADGv − φDG‖20,κ ≤ C(27)

(
‖∇ADGv‖20,κ + ‖ADGv‖20,κ

)(27)
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hold simultaneously, where C(27) is a positive constant, independent of h,p, and
of ADGv; see [41, § 3.1]. Since ε ∈ (0, 1], we infer the bounds

ε‖∇(ADGv − φDG)‖20,κ ≤ C(27)‖ADGv‖2ε,κ
and

(28) ε
1/2‖∇φDG‖0,κ ≤ ε

1/2‖∇(ADGv − φDG)‖0,κ + ε
1/2‖∇ADGv‖0,κ ≤ C(28)‖ADGv‖ε,κ.

Moreover, following the approach outlined in [53] (see also [5]), we deduce from the
above estimates that

‖ADGv − φDG‖20,κ ≤ min
(
1, C(27)ε

−1h2
κp

−2
κ

)
‖ADGv‖2ε,κ ≤ max

(
1, C(27)

)
α2
κ‖ADGv‖2ε,κ,

(29)

where, for κ ∈ T ,

(30) ακ := min
(
1, ε−

1/2hκp
−1
κ

)
.

Furthermore, applying a multiplicative trace inequality, that is,

(31) ‖ψ‖20,∂κ ≤ C(31)

(
h−1
κ ‖ψ‖20,κ + ‖ψ‖0,κ‖∇ψ‖0,κ

)
, ψ ∈ H1(κ),

we obtain

‖ADGv − φDG‖20,∂κ ≤ C(31) max
(
1, C(27)

)
β̃2
κ‖ADGv‖2ε,κ,

where, for κ ∈ T , we define

β̃κ :=

√
h−1
κ α2

κ + ε−1/2ακ.

Noting the bound

β̃2
κ = ε−

1/2ακ

(
ε
1/2h−1

κ ακ + 1
)
≤ ε−

1/2ακ(p
−1
κ + 1) ≤ 2ε−

1/2ακ,

we deduce that

(32) ‖ADGv − φDG‖0,∂κ ≤ C(32)βκ‖ADGv‖ε,κ,
where

(33) βκ := ε−
1/4α

1/2
κ .

4.2.2. Upper a posteriori residual bound. In order to derive an a posteriori residual
estimate for the hp-NDG discretisation (19), we recall the residual〈

Rε(u
DG
n+1), v

〉
=

∫
Ω

{
ε∇T u

DG
n+1 · ∇ADGv + uDG

n+1ADGv − f(uDG
n+1)ADGv

}
dx

+ Cσ

∫
E
(εσ + σ−1)[[uDG

n+1]] · [[v]] ds ≡ T1 + T2

(cf. (22)), where we define

T1 :=

∫
Ω

{
ε∇T û

DG
n+1 · ∇ADGv + û

DG
n+1ADGv − (f ′(uDG

n )ûDG
n+1 + f̂(uDG

n ))ADGv
}
dx

+ Cσ

∫
E
(εσ + σ−1)[[ûDG

n+1]] · [[v]] ds,

T2 := (1−Δtn)
〈
Rε(u

DG
n ), v

〉
−

∫
Ω

{
f(uDG

n+1)− f(uDG
n )− f ′(uDG

n )(uDG
n+1 − uDG

n )
}
ADGv.
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Here, ûDG
n+1 and f̂(uDG

n ) are given in (21), and v ∈ WDG is again arbitrary. Recall-
ing (19), we note that

∫
Ω

{
ε∇T û

DG
n+1 · ∇T φ

DG + ûDG
n+1φ

DG − (f ′(uDG
n )ûDG

n+1 + f̂(uDG
n ))φDG

}
dx

=

∫
E

{
〈〈ε∇T û

DG
n+1〉〉 · [[φDG]] + θ[[ûDG

n+1]] · 〈〈ε∇T φ
DG〉〉

}
ds

− Cσ

∫
E
εσ[[ûDG

n+1]] · [[φDG]] ds,

with φDG ∈ VDG as in Section 4.2.1 above. Therefore,

T1 =

∫
Ω

{
ε∇T û

DG
n+1 · ∇T (ADGv − φDG) + ûDG

n+1(ADGv − φDG)
}
dx

−
∫
Ω

(f ′(uDG
n )ûDG

n+1 + f̂(uDG
n ))(ADGv − φDG) dx

+

∫
E

{
〈〈ε∇T û

DG
n+1〉〉 · [[φDG]] + θ[[ûDG

n+1]] · 〈〈ε∇T φ
DG〉〉

}
ds

+ Cσ

∫
E
(εσ + σ−1)[[ûDG

n+1]] · [[v]] ds− Cσ

∫
E
εσ[[ûDG

n+1]] · [[φDG]] ds.

Performing elementwise integration by parts in the first integral, and proceeding as
in the proof of [38, Theorem 3.2], the following estimate can be established:

C|T1| ≤
∑
κ∈T

‖εΔû
DG
n+1 − û

DG
n+1 + f ′(uDG

n )ûDG
n+1 + f̂(uDG

n )‖0,κ‖ADGv − φDG‖0,κ

+
∑
κ∈T

‖ε[[∇T û
DG
n+1]]‖0,∂κ\∂Ω‖ADGv − φDG‖0,∂κ

+

(∑
κ∈T

εp2κ
hκ

‖[[ûDG
n+1]]‖20,∂κ

)1/2

ε
1/2‖∇T φ

DG‖0

+

(
C2

σ

∫
E
(εσ + σ−1)|[[ûDG

n+1]]|2 ds
)1/2 (∫

E
(εσ + σ−1)|[[v]]|2 ds

)1/2

+

(
C2

σ

∑
κ∈T

ε2β2
κp

4
κ

h2
κ

‖[[ûDG
n+1]]‖20,∂κ

)1/2 (∑
κ∈T

β−2
κ ‖[[φDG]]‖20,∂κ

)1/2

.

Here, C is a positive constant independent of h, p, and ε, and βκ is defined in (33).
Observing that [[ADGv]] = 0 on E , and recalling (32), we infer the bound

∑
κ∈T

β−2
κ ‖[[φDG]]‖20,∂κ =

∑
κ∈T

β−2
κ ‖[[φDG − ADGv]]‖20,∂κ ≤ C

∑
κ∈T

β−2
κ ‖φDG − ADGv‖20,∂κ

≤ C‖ADGv‖2X .
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Additionally, exploiting (28), (29), and (32), yields

C|T1| ≤
∑
κ∈T

‖εΔû
DG
n+1 − û

DG
n+1 + f ′(uDG

n )ûDG
n+1 + f̂(uDG

n )‖0,κακ‖ADGv‖ε,κ

+
∑
κ∈T

‖ε[[∇T û
DG
n+1]]‖0,∂κ\∂Ωβκ‖ADGv‖ε,κ

+

(∑
κ∈T

εp2κ
hκ

‖[[ûDG
n+1]]‖20,∂κ

)1/2

‖ADGv‖X

+

(
C2

σ

∑
κ∈T

(
εp2κ
hκ

+
hκ

p2κ

)
‖[[ûDG

n+1]]‖20,∂κ ds
)1/2

‖v‖DG

+

(
C2

σ

∑
κ∈T

ε2β2
κp

4
κ

h2
κ

‖[[ûDG
n+1]]‖20,∂κ

)1/2

‖ADGv‖X ,

with ακ defined in (30). Observing that ακ ≤ ε−1/2hκp
−1
κ yields

max

(
εp2κ
hκ

+
hκ

p2κ
,
ε2β2

κp
4
κ

h2
κ

)
≤ εp3κ

hκ
+

hκ

p2κ
.

Hence, applying the Cauchy-Schwarz inequality, and making use of (18), we arrive
at

|T1| ≤ C

(∑
κ∈T

η2n,κ

)1/2

‖v‖DG,

where, for any κ ∈ T , we define the local residual indicators

η2n,κ : = α2
κ‖εΔûDG

n+1 − ûDG
n+1 + f ′(uDG

n )ûDG
n+1 + f̂(uDG

n )‖20,κ

+ β2
κε

2‖[[∇T û
DG
n+1]]‖20,∂κ\∂Ω +max

(
1, C2

σ

)(εp3κ
hκ

+
hκ

p2κ

)
‖[[ûDG

n+1]]‖20,∂κ.
(34)

In order to deal with the term T2, we apply elementwise integration by parts to
obtain∫

Ω

{ε∇T u
DG
n · ∇ADGv + uDG

n ADGv − f(uDG
n )ADGv} dx

= −
∑
κ∈T

∫
κ

{εΔuDG
n − uDG

n + f(uDG
n )}ADGv dx+

∫
EI

[[ε∇T u
DG
n ]]ADGv ds.

Furthermore, we define the lifting operator L : VDG → VDG by

w �→ L(w) :

∫
Ω

L(w)φDG dx =

∫
EI

[[∇T w]]φ
DG ds ∀φDG ∈ VDG;

cf., e.g., [6, 49]. Thereby, we note that∫
Ω

{ε∇T u
DG
n · ∇ADGv + uDG

n ADGv − f(uDG
n )ADGv} dx

= −
∫
Ω

{εΔT u
DG
n − uDG

n + f(uDG
n )− εL(uDG

n )}ADGv dx

+

∫
EI

[[ε∇T u
DG
n ]](ADGv − φDG) ds−

∫
Ω

εL(uDG
n )(ADGv − φDG) dx,
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where ΔT is the elementwise Laplacian operator. Applying the Cauchy-Schwarz
inequality, and incorporating the bounds from Section 4.2.1, we deduce that∣∣∣∣ ∫

Ω

{ε∇T u
DG
n · ∇ADGv + uDG

n ADGv − f(uDG
n )ADGv} dx

∣∣∣∣
≤ ‖εΔT u

DG
n − uDG

n + f(uDG
n )− εL(uDG

n )‖0‖ADGv‖0
+

∑
κ∈T

ε‖[[∇T u
DG
n ]]‖0,∂κ\∂Ω‖ADGv − φDG‖0,∂κ

+
∑
κ∈T

ε‖L(uDG
n )‖0,κ‖ADGv − φDG‖0,κ

≤ ‖εΔT u
DG
n − uDG

n + f(uDG
n )− εL(uDG

n )‖0‖ADGv‖X
+ C

∑
κ∈T

βκε‖[[∇T u
DG
n ]]‖0,∂κ\∂Ω‖ADGv‖ε,κ

+ C
∑
κ∈T

ακε‖L(uDG
n )‖0,κ‖ADGv‖ε,κ

≤ ‖εΔT u
DG
n − uDG

n + f(uDG
n )− εL(uDG

n )‖0‖ADGv‖X

+ C

(∑
κ∈T

(
β2
κε

2‖[[∇T u
DG
n ]]‖20,∂κ\∂Ω + α2

κε
2‖L(uDG

n )‖20,κ
))1/2

‖ADGv‖X .

Recalling (18), we get∣∣∣∣ ∫
Ω

{ε∇T u
DG
n · ∇ADGv + uDG

n ADGv − f(uDG
n )ADGv} dx

∣∣∣∣
≤ ‖εΔT u

DG
n − uDG

n + f(uDG
n )− εL(uDG

n )‖0‖v‖DG

+ C

(∑
κ∈T

(
β2
κε

2‖[[∇T u
DG
n ]]‖20,∂κ\∂Ω + α2

κε
2‖L(uDG

n )‖20,κ
))1/2

‖v‖DG.

Furthermore, we have

∣∣∣∣Cσ

∫
E
(εσ + σ−1)[[uDG

n ]] · [[v]] ds
∣∣∣∣ ≤ C

(∑
κ∈T

C2
σ

(
εp2κ
hκ

+
hκ

p2κ

)
‖[[uDG

n ]]‖20,∂κ

)1/2

‖v‖DG.

Finally, using (18) once more, we note that∫
Ω

{f(uDG
n+1)− f(uDG

n )− f ′(uDG
n )(uDG

n+1 − uDG
n )}ADGv

≤ C(18)‖f(uDG
n+1)− f(uDG

n )− f ′(uDG
n )(uDG

n+1 − uDG
n )‖0‖v‖DG.

In summary, we obtain the bound |T2| ≤ Cδn,Ω‖v‖DG, where

(35) δn,Ω :=

(∑
κ∈T

(δ(1)n,κ)
2

)1/2

+

(∑
κ∈T

(δ(2)n,κ)
2

)1/2

,
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with

δ(1)n,κ := (1−Δtn)

[
‖εΔT u

DG
n − uDG

n + f(uDG
n )− εL(uDG

n )‖20,κ

+ ε2
(
β2
κ‖[[∇T u

DG
n ]]‖20,∂κ\∂Ω + α2

κ‖L(uDG
n )‖20,κ

)
+ C2

σ

(
εp2κ
hκ

+
hκ

p2κ

)
‖[[uDG

n ]]‖20,∂κ

]1/2

(36)

and

(37) δ(2)n,κ := ‖f(uDG
n+1)− f(uDG

n )− f ′(uDG
n )(uDG

n+1 − uDG
n )‖0,κ.

Thus we have proved the following key result.

Theorem 4.2. For the hp-NDG method (19), the following upper a posteriori
residual bound holds∣∣∣∣∣∣Rε(u

DG
n+1)

∣∣∣∣∣∣ ≤ E(uDG
n , uDG

n+1,h,p) ≡ C
(
δ2n,Ω + η2n,Ω

)1/2
,

where C is a positive constant, independent of h, p, the penalty parameter Cσ,
and ε. Moreover, η2n,Ω =

∑
κ∈T η2n,κ, where ηn,κ, κ ∈ T , and δn,Ω are given in (34)

and (35)–(37), respectively.

4.2.3. Lower a posteriori residual bounds. In this section, we briefly discuss the
derivation of local lower residual bounds in terms of the error indicators ηn,κ, κ ∈ T ,
and some data oscillation terms; for further details, we refer to [5, §4.4.2] and [35,
38,56]. To this end, given an edge e ∈ E , we write ωe = ∪{κ ∈ T : e ⊂ ∂κ}, where,
for simplicity of exposition, we make the assumption that the mesh is regular; cf.
[38, Remark 3.9] for more general situations. Thereby, for any v ∈ H1

0 (ωe), following
[5], we note that∫

e

ε[[∇T û
DG
n+1]]v ds

=

∫
ωe

{
ε∇T u

DG
n+1 · ∇v + uDG

n+1v − f(uDG
n+1)v

}
dx

+

∫
ωe

{
εΔT û

DG
n+1 − û

DG
n+1 + f ′

h(u
DG
n )ûDG

n+1 + f̂h(u
DG
n )

}
v dx

+ (1−Δtn)

∫
ωe

{
εΔT u

DG
n − uDG

n + f(uDG
n )− εL(uDG

n )
}
v dx

+ (1−Δtn)

[∫
ωe

εL(uDG
n )v dx−

∫
e

ε[[∇T u
DG
n ]]v ds

]
+

∫
ωe

{
Δtn(f(u

DG
n )− fh(u

DG
n )) + (f ′(uDG

n )− f ′
h(u

DG
n ))(uDG

n+1 − uDG
n )

}
v dx

+

∫
ωe

{
f(uDG

n+1)− f(uDG
n )− f ′(uDG

n )(uDG
n+1 − uDG

n )
}
v dx,

where we use the subindex notation ·h to denote the L2-projection of a correspond-
ing function onto VDG. For v ∈ H1

0 (κ), κ ∈ T , an analogous identity to (4.2.3) holds,
whereby the integrals over ωe are replaced by integrals over κ, with the left-hand
side identically equal to zero. On the basis of these equalities, proceeding as in
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[35, 38], we deduce the following local lower bounds for the first and third terms
present in the a posteriori error indicator ηn,κ, κ ∈ T ; cf. (34).

Theorem 4.3. Given a solution u ∈ H1
0 (Ω) of (1), then for the hp-NDG method

defined in (19), the following local lower bounds hold:

(a) For each element κ ∈ T :

ακ

∥∥∥εΔû
DG
n+1 − û

DG
n+1 + f ′

h(u
DG
n )ûDG

n+1 + f̂h(u
DG
n )

∥∥∥
0,κ

≤ Cpκ

(∣∣∣∣∣∣Rε(u
DG
n+1)

∣∣∣∣∣∣
κ
+ ακp

λ−1
κ

[
δ(1)n,κ + δ(2)n,κ + δhn,κ

])
.

(38)

(b) For any edge e ∈ E :
(39)(

εp3e
he

+
he

p2e

)1/2 ∥∥[[ûDG
n+1]]

∥∥
0,e

≤ Cp
1/2
e

∑
κ⊂ωe

[
(εσ + σ−1)

1/2
∥∥[[u− uDG

n+1]]
∥∥
0,∂κ

+ δ(1)n,κ

]
.

Here, λ ∈ (1/2, 1], αe and βe denote the restriction of ακ and βκ, respectively, to
an edge e ⊂ ∂κ, κ ∈ T , and C > 0 is a constant, independent of the discretisation
parameters and ε. Moreover, for any Λ ⊂ Ω, which is formed from the union of a
subset of elements belonging to the finite element mesh T , we signify by |||Rε(u

DG
n )|||Λ

the localised variant of |||Rε(u
DG
n )||| defined over Λ. Finally, for κ ∈ T , the data

oscillation term δhn,κ is defined by

δhn,κ = ‖Δtn(f(u
DG
n )− fh(u

DG
n )) + (f ′(uDG

n )− f ′
h(u

DG
n ))(uDG

n+1 − uDG
n )‖0,κ.

Remark 4.4. Deriving suitable local lower bounds on the second term arising within
the a posteriori error estimator ηn,κ, κ ∈ T , involving the gradient jump of the
computed numerical solution, is technically more demanding in the current setting.
In the case when ε = O(1), then an analogous bound to the one derived in [35] may
be established, subject to the addition of the corresponding linearisation terms; in

the hp-setting, we note that this is suboptimal by a factor of p
λ+1/2
e . On the other

hand, assuming that the polynomial degree is kept fixed, then employing cut-off
functions on ωe, of sufficiently small support (cf. [53]), ε-robust h-version lower
bounds may be deduced; cf. [56]. However, in the current hp-setting, we note that
the inverse estimates required to establish hp-version ε-robust lower bounds for the
gradient flux term are currently unavailable within the literature. Notwithstanding
this issue, we shall demonstrate numerically in Section 6 that the upper a posteriori
bound derived within this article is indeed sharp.

Furthermore, in contrast to the h-version approach in [5], we remark that the
local efficiency bounds above are slightly suboptimally scaled with respect to the
local polynomial degrees due to the need of applying p-dependent norm equivalence
results (involving cut-off functions); cf. [42]. We remark that hp-version a posteriori
error indicators, which are based on equilibrated flux reconstruction, may be shown
to be robust with respect to the polynomial degree; see, for example, [24, 29]. In
this latter approach, however, the resulting a posteriori error indicators are implicit
in the sense that local problems posed on patches of elements must be numerically
approximated in order to compute the elementwise error indicators. In the context
of controlling both discretisation and linearisation error within this setting, we refer
to the article [28].
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5. hp-adaptive NDG scheme

In this section, we will discuss how the a posteriori bound from Theorem 4.2
can be exploited in the design of an hp-adaptive NDG algorithm for the numerical
approximation of (1).

5.1. hp-Adaptive refinement procedure. In order to enrich the finite element
space VDG, we shall apply an hp-adaptive refinement algorithm which is based on
the following two ingredients:

(a) Element marking: Each element κ in the computational mesh T may be marked
for refinement on the basis of the size of the local residual indicators ηn,κ (cf. (34)),
n ≥ 0. To this end, several strategies, such as equidistribution, fixed fraction,
Dörfler marking, optimized mesh criterion, and so on (cf. [36], for example), have
been proposed within the literature. For the purposes of this article, we employ
the maximal strategy: here, we refine the set of elements κ ∈ T which satisfy the
condition

ηn,κ > Υmax
κ∈T

ηn,κ,

where 0 < Υ < 1 is a given parameter. On the basis of [22,39,50], throughout this
article, we set Υ = 1/3.

(b) hp-refinement criterion: Once an element κ ∈ T has been marked for refine-
ment, a decision must be made regarding whether to subdivide the element (h-
refinement) or to increase the local degree of the polynomial approximation on
element κ (p-refinement). Several strategies have been proposed within the litera-
ture; for a review of hp-refinement algorithms, we refer to [43]. Here we employ the
hp-refinement strategy developed in [37] where the local regularity of the analytical
solution is estimated on the basis of truncated local Legendre expansions of the
computed numerical solution; cf., also, [26, 30].

5.2. Fully adaptive Newton-Galerkin method. We now propose a procedure
that provides an interplay of the Newton linearisation and automatic hp-finite ele-
ment mesh refinements based on the a posteriori residual estimate from Theorem 4.2
(as outlined in the previous Section 5.1). To this end, we make the assumption that
the NDG sequence

{
uDG
n+1

}
n≥0

given by (19) is well-defined as long as the iterations

are being performed.

Algorithm 5.1. Given a (coarse) starting mesh T in Ω, with an associated (low-
order) polynomial degree distribution p, and an initial guess uDG

0 ∈ VDG. Set n ← 0.

1: Determine the Newton step size parameter Δtn based on uDG
n by the adap-

tive procedure from Algorithm 2.1; the Newton-Raphson transform NF(uDG
n )

required for the computation of the step size parameter Δtn is approximated
using the hp-DG method on the current mesh.

2: Compute the DG solution ûDG
n+1 from (19), and uDG

n+1 = ûDG
n+1 + (1 − Δtn)u

DG
n .

Furthermore, evaluate the corresponding residual indicators {ηn,κ}κ∈T , and
δn,Ω from (34) and (35)–(36), respectively.

3: if

(40) δ2n,Ω ≤ Λ η2n,Ω

holds, for some given parameter Λ > 0, then hp-refine the space VDG adaptively
based on the marking criterion and the hp-strategy outlined in Section 5.1; go
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back to step (1) with the new mesh T (and based on the previously computed
solution uDG

n+1 interpolated on the refined mesh).
4: else, i.e., if (40) is not fulfilled, then set n ← n + 1, and perform another

Newton step by going back to (1).
5: end if

Remark 5.2. We note that our computational experience suggests that the choice of
the element marking strategy can directly affect the robustness of the NDG scheme,
particularly, when the numerical solution is far away from a given solution. Indeed,
it is essential to employ a marking scheme which adaptively adjusts the number
of elements marked for refinement at each step of the adaptive process; algorithms
such as the fixed fraction method which only mark a fixed percentage of elements
at each refinement level can lead to slow convergence of the combined adaptive
Newton-Galerkin approach.

Remark 5.3. The balancing criterion (40) ensures that the linearization error is
bounded uniformly by the (global) discretization error. In view of the (local) lower
residual bounds presented in Section 4.2.3, this allows us to estimate the linearisa-
tion indicator δn,Ω defined in (35) in terms of the residual bounds from Theorem 4.3
and the normal jumps of the discrete solution; cf. Remark 4.4. Furthermore, for Λ
sufficiently small, the linearisation errors arising in (38) and (39) could, at least in
parts, be absorbed into the right-hand sides of these bounds; cf. [27, Theorem 4.8].

6. Numerical experiments

In this section we present a series of numerical experiments to demonstrate the
practical performance of the proposed hp-adaptive refinement strategy outlined in
Algorithm 5.1. To this end, throughout this section we select τ = 0.1, γ = 0.5,
and hmax = 106 in Algorithm 2.1, the penalty parameter Cσ = 10 and θ = 1
(SIPG) in the interior penalty DG scheme (19) (cf. (20)), and Λ = 0.5 in Algo-
rithm 5.1; cf. [5]. Throughout this section we shall compare the performance of the
proposed hp-adaptive refinement strategy with the corresponding algorithm based
on exploiting only local mesh subdivision, i.e., h-refinement. Furthermore, within
each inner linear iteration, we employ the direct MUltifrontal Massively Parallel
Solver (MUMPS) [1–3]; in particular, in Theorem 4.2, we do not take into account
any linear algebra errors resulting from iterative solvers; cf., e.g., [27].

Example 6.1. In this first example, we consider the Bratu problem

εΔu+ eu = 0 in (0, 1)2,

i.e., f(u) = eu + u, subject to homogeneous Dirichlet boundary conditions on ∂Ω.
Writing λ = 1/ε, we recall that there exists a critical parameter value λc (= 1/εc),
such that for λ > λc (ε < εc) the problem has no solution, for λ = λc (ε = εc) there
exists exactly one solution, and for λ < λc (ε > εc) there are two solutions. In the
one-dimensional setting, an analytical expression for λc is available (cf. [7, 13,17]);
for the two-dimensional case, calculations have revealed that λc = 6.808124423
(εc = 0.146883332) to 9 decimal places; see [17, 44, 45], and the references cited
therein.

Following [44], we select the initial guess uDG
0 ∈ VDG to be the L2-projection

of the function u0 onto VDG, where u0(x, y) = a sin(πx) sin(πy), and a is a given
amplitude. Noting that the maximum amplitude of the critical solution computed
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Figure 1. Bratu Problem. Slice at y = 0.5, 0 ≤ x ≤ 1, of the up-
per and lower solutions computed with ε = 1 and ε = 0.5, together
with the critical solution (ε = εc).

(a) (b)

Figure 2. Bratu Problem. Upper solution computed with: (a)
ε = 1; (b) ε = 0.5.

with ε = εc is approximately 1.39, selecting a to be smaller/larger than this value
leads to convergence to the so-called lower/upper solution, respectively. With this
in mind we select a = 2 when ε = εc, a ∈ {1/10, 6} for ε = 1, and a ∈ {1, 4}
for ε = 1/2; in the latter two cases the smaller value of a is employed for the
computation of the lower solution, while the larger value ensures convergence to
the upper solution. In Figure 1 we plot a slice of each of the computed numerical
solutions at y = 0.5, 0 ≤ x ≤ 1. Here, we observe that the lower solutions tend
to be rather flat in profile, while the upper solutions have a stronger peak in the
middle of the computational domain; cf., also, Figure 2.

In Figure 3 we demonstrate the performance of the proposed hp-adaptive NDG
algorithm (cf. Algorithm 5.1), for the computation of the lower and upper so-
lutions when ε = 1 and ε = 1/2, as well as for the numerical approximation of
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Figure 3. Bratu Problem. Comparison between h- and hp-
refinement. (a) ε = 1 (lower solution); (b) ε = 1 (upper solution);
(c) ε = 1/2 (lower solution); (d) ε = 1/2 (upper solution); (e) ε = εc
(critical solution).

the critical solution when ε = εc. In each case we plot the residual estimator
E = E(uDG

n , uDG
n+1,h,p) from Theorem 4.2 (with the constant C set to 1) versus the

square root of the number of degrees of freedom in the finite element space VDG,
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Figure 4. Bratu Problem. Damping parameter Δtn. Left: h-
refinement; right: hp-refinement. (a) and (b) ε = 1 (upper solu-
tion); (c) and (d) ε = 1/2 (upper solution); (e) and (f) ε = 1/2
(lower solution).

based on employing both h- and hp-refinement. For each parameter value we ob-
serve that the hp-refinement algorithm leads to an exponential decay of the residual
estimator E as the finite element space VDG is adaptively enriched: on a linear-log
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Figure 5. Bratu Problem. Individual error indicators ηn,Ω and
δn,Ω. Left: h-refinement; right: hp-refinement. (a) and (b) ε = 1
(upper solution); (c) and (d) ε = 1/2 (upper solution); (e) and (f)
ε = 1/2 (lower solution).

plot, the convergence lines are roughly straight. Moreover, we observe the supe-
riority of hp-refinement in comparison with a standard h-refinement algorithm, in
the sense that the former refinement strategy leads to several orders of magnitude
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Figure 6. Bratu Problem. Computational meshes. Left: h-
refinement; right: hp-refinement. (a) and (b) Upper solution com-
puted with ε = 1; (c) and (d) Upper solution computed with
ε = 0.5. (e) and (f) Critical solution.
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reduction in E, for a given number of degrees of freedom, than the corresponding
quantity computed exploiting mesh subdivision only.

In Figure 4 we plot the size of the Newton damping Δtn versus the global
iteration number. In many of the cases considered here Δtn = 1 at all steps; for
brevity, these results have been omitted. For the cases presented in Figure 4, we
observe that initially the damping parameter slowly increases when we are far away
from the solution; once the damping parameter is close to unity, the condition

δ2n,Ω ≤ Λ η2n,Ω

in Algorithm 5.1 becomes fulfilled in which case the finite element space VDG is
adaptively enriched. In some cases, particularly at the early stages of the algorithm,
refinement of VDG may then lead to a reduction in Δtn, in which case further Newton
steps are required before the next refinement can be undertaken. As the iterates
approach the solution more closely, the size of the damping parameter typically
remains approximately 1. To provide further detail concerning the performance of
the proposed adaptive refinement strategy, for the cases depicted in Figure 4, in
Figure 5 we plot the individual error indicators ηn,Ω and δn,Ω in both the h- and
hp-cases. Here, we clearly observe that, initially, the linearisation estimator δn,Ω
dominates the discretisation error estimator ηn,Ω, in which case further Newton
steps are required; however, as the adaptive algorithm proceeds, the a posteriori
error estimator E is dominated by the size of ηn,Ω.

Finally, in Figure 6 we show the h- and hp-refined meshes generated for the
numerical approximation of the upper solutions when ε = 1 and ε = 1/2, as well
as for the critical solution. Here, we observe that when h-refinement is employed,
the mesh is concentrated in the vicinity of the peak in the solution located at the
centre of the computational domain; cf. Figures 1 and 2. In the hp-setting, we
observe that while some mesh refinement has been undertaken in the centre of
the domain Ω, the corners of Ω have been significantly refined in order to resolve
corner singularities typical for elliptic problems. Moreover, p-enrichement has been
employed both in these corner regions, as well as in the vicinity of the peak in the
computed solution. The corresponding meshes for the lower solutions are largely
uniformly refined, due to the flat nature of the solution; for brevity, these have been
omitted.

Example 6.2. In this example, we consider the Ginzburg-Landau equation given
by

−εΔu+ u = u(2− u2) in (−1, 1)2,

subject to homogeneous Dirichlet boundary conditions on ∂Ω. Following [5], we first
note that u ≡ 0 is a solution; moreover, any solution u appears in a pairwise fashion
as−u. In the absence of boundary conditions, it is clear that u = ±1 are solutions of
the Ginzburg-Landau equation. Thereby, in the presence of homogeneous Dirichlet
boundary conditions, boundary layers will arise in the vicinity of ∂Ω, whose width
will be governed by the size of the diffusion coefficient ε. Here, we select the initial
guess uDG

0 ∈ VDG to be the L2-projection of the function u0(x, y) = −sgn(x) onto
VDG, subject to the enforcement of the boundary conditions. In this case the solution
to the Ginzburg-Landau equation will possess not only boundary layers, but also
an internal layer along x = 0; in Figure 7 we plot the solution computed with both
ε = 10−3 and ε = 10−6.
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(a) (b)

Figure 7. Ginzburg-Landau equation. Solution computed with:
(a) ε = 10−3; (b) ε = 10−6.

sqrt(Degrees of Freedom)
0 500 1000 1500

E
rr

or
 E

st
im

at
or

10-8

10-6

10-4

10-2

100

102

h-Refinement
hp-Refinement

sqrt(Degrees of Freedom)
0 500 1000 1500 2000

E
rr

or
 E

st
im

at
or

10-8

10-6

10-4

10-2

100

102

h-Refinement
hp-Refinement

(a) (b)

sqrt(Degrees of Freedom)
0 500 1000 1500

E
rr

or
 E

st
im

at
or

10-8

10-6

10-4

10-2

100

102

h-Refinement
hp-Refinement

sqrt(Degrees of Freedom)
0 500 1000 1500

E
rr

or
 E

st
im

at
or

10-6

10-4

10-2

100

102

h-Refinement
hp-Refinement

(c) (d)

Figure 8. Ginzburg-Landau equation. Comparison between h-
and hp-refinement. (a) ε = 10−3; (b) ε = 10−4; (c) ε = 10−5;
(d) ε = 10−6.
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Figure 9. Ginzburg-Landau equation. Individual error indicators
ηn,Ω and δn,Ω. Left: h-refinement; right: hp-refinement. (a) and
(b) ε = 10−3; (c) and (d) ε = 10−4; (e) and (f) ε = 10−5; (g) and
(h) ε = 10−6.



2668 P. HOUSTON AND T. P. WIHLER

Global Iteration Number
0 2 4 6 8 10 12

Δ
 t

n

0

0.2

0.4

0.6

0.8

1

(a) (b)

Figure 10. Ginzburg-Landau equation. Damping parameter Δtn
for ε = 10−3. (a) h-refinement; (b) hp-refinement.

In Figure 8 we demonstrate the performance of the proposed hp-adaptive NDG
algorithm (cf. Algorithm 5.1), for the computation of the solution to the Ginzburg-
Landau equation when ε = 10−3, 10−4, 10−5, 10−6. In each case we plot the
residual estimator E versus the square root of the number of degrees of freedom
in the finite element space VDG, based on employing both h- and hp-refinement.
For each value of ε we again observe that the hp-refinement algorithm leads to
an exponential decay of the residual estimator E as the finite element space VDG

is adaptively enriched. Moreover, we again observe the superiority of exploiting
hp-refinement in comparison with a standard h-refinement algorithm, in the sense
that the former refinement strategy leads to several orders of magnitude reduction
in E, for a given number of degrees of freedom, than the corresponding quantity
computed using h-refinement only. Furthermore, we note that as ε is reduced, ad-
ditional h-enrichment of the computational mesh is required before p-refinement is
employed. Indeed, for ε = 10−6 we observe that there is an initial transient, be-
fore the hp-version convergence line becomes straight and exponential convergence
is observed. The magnitude of the individual error indicators ηn,Ω and δn,Ω are
shown in Figure 9; as in the previous example, we observe that the discretisation
error indicator ηn,Ω typically dominates the linearisation error indicator δn,Ω as the
adaptive Newton iteration proceeds. However, we observe that for ε = 10−3, 10−4,
and 10−5, in the case when hp-refinement is employed, δn,Ω is not very monotonic
in the latter stages of the adaptive algorithm.

In Figure 10 we plot Δtn versus the global iteration number for ε = 10−3; for
the other values of ε considered here, the damping parameter was close to one on
all of the meshes considered. As in the previous example, we again see an initial
increase in Δtn as the adaptive Newton algorithm proceeds, before the underlying
mesh is adaptively refined. Again, in the early stages of the algorithm, enrichment
of VDG may lead to some additional damping, before Δtn tends to one.

Finally, in Figure 11 we plot the corresponding h- and hp-meshes generated for
ε = 10−3 and ε = 10−6. Here, we clearly observe that the boundary and internal
layers present in the analytical solution are refined by our adaptive mesh adaptation
strategy; in particular, we emphasise that the NDG iterates converge to a solution
which features the same topology as the initial guess, and, hence, does not switch
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Figure 11. Ginzburg-Landau equation. Computational meshes.
Left: h-refinement; right: hp-refinement. (a) and (b) ε = 10−3;
(c) and (d) ε = 10−6.

between various attractors (corresponding to different solutions; see, e.g, [5]). In
the hp-setting, we see that once the h-mesh has been sufficiently refined, then p-
enrichment is employed.

Example 6.3. In order to test the computational efficiency and ε-robustness of
the proposed a posteriori error bound stated in Theorem 4.2, in this final example
we consider a variant of the Ginzburg-Landau equation which possesses a known
analytical solution. More precisely, we consider the numerical approximation of

(41) −εΔu+ u = u(2− u2) + f̂ in (−1, 1)2,

subject to homogeneous Dirichlet boundary conditions on ∂Ω, where, given the form

of the computed solution depicted in Figure 7, we select f̂ such that the analytical
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Figure 12. Approximate Ginzburg-Landau equation. Effectivity
indices for ε = 1, 10−1, 10−2, 10−3, 10−4. (a) h-refinement; (b) hp-
refinement.

solution to (41) is given by

u = −16

(
e
− 1√

ε(x+1) − e
1√

ε(x−1)

e
− 1√

ε(x+1) + e
1√

ε(x−1)

)
e

2
√

ε

x2−1(
e−

√
ε

x+1 + e
√

ε
x−1

)2

e
2
√

ε

y2−1(
e−

√
ε

y+1 + e
√

ε
y−1

)2 .

Note that, for this choice, the source term f̂ in (41) is negligible in most of the
domain.

In Figure 12 we plot the effectivity indices (ratio of the a posteriori error bound
and the true error, measured in the DG norm), for ε = 1, 10−1, 10−2, 10−3, 10−4,
based on employing both h- and hp-mesh refinement. Here, we observe that, in
the initial stages of the adaptive process, the effectivity indices tend to oscillate
between a value of around 5 and 20 as the damping parameter is continuously
adjusted while the mesh is refined. However, as the adaptive strategy proceeds,
and the damping parameter tends to unity, the effectivity indices tend to a value of
around 7, uniformly with respect to ε. The performance of the underlying h- and
hp-refinement strategies are quantitatively similar to the results presented in the
previous example; thereby, for the sake of brevity these results are omitted.

7. Concluding remarks

In this article we have introduced the hp-version of the NDG scheme for the
numerical approximation of second-order, singularly perturbed, semilinear elliptic
boundary value problems. Here, the general approach is based on first linearising
the underlying PDE problem on a continuous level, followed by subsequent dis-
cretisation of the resulting sequence of linear PDEs. For this latter task, in the
current article we have exploited the hp-version of the interior penalty DG method.
Furthermore, we have derived an ε-robust a posteriori bound which takes into ac-
count both the linearisation and discretisation errors. On the basis of this residual
estimate, we have designed and implemented an hp-adaptive refinement algorithm
which automatically controls both of these sources of error; the practical perfor-
mance of this strategy has been studied for a series of numerical test problems.
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Future work will be devoted to the extension of this technique to more general
nonlinear PDE problems, as well as to problems in three dimensions.
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