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CONVERGENCE OF FINITE DIFFERENCE METHODS

FOR THE WAVE EQUATION IN TWO SPACE DIMENSIONS

SIYANG WANG, ANNA NISSEN, AND GUNILLA KREISS

Abstract. When using a finite difference method to solve an initial-boundary-
value problem, the truncation error is often of lower order at a few grid points
near boundaries than in the interior. Normal mode analysis is a powerful tool
to analyze the effect of the large truncation error near boundaries on the overall
convergence rate, and has been used in many research works for different equa-
tions. However, existing work only concerns problems in one space dimension.
In this paper, we extend the analysis to problems in two space dimensions.
The two dimensional analysis is based on a diagonalization procedure that
decomposes a two dimensional problem to many one dimensional problems of
the same type. We present a general framework of analyzing convergence for
such one dimensional problems, and explain how to obtain the result for the
corresponding two dimensional problem. In particular, we consider two kinds

of truncation errors in two space dimensions: the truncation error along an
entire boundary, and the truncation error localized at a few grid points close
to a corner of the computational domain. The accuracy analysis is in a gen-
eral framework, here applied to the second order wave equation. Numerical
experiments corroborate our accuracy analysis.

1. Introduction

Wave propagation problems can often be efficiently discretized with high order
finite difference methods. Due to stability consideration, the formal accuracy order
of the discretization scheme is typically considerably lower close to computational
boundaries than that of the interior scheme. However, the numerical solution of-
ten converges at a rate higher than indicated by the boundary truncation error, a
phenomenon termed as gain in convergence. This phenomenon can partly be un-
derstood from the fact that the number of grid points with the lower order stencil
is independent of grid spacing. Analysis is needed to determine the precise order
of gain in convergence.

There are two different methods for analyzing how much is gained in the con-
vergence rate, the energy method and the normal mode analysis [10,11]. Applying
the energy method in a straightforward way indicates a half order gain in conver-
gence. An exception is found in [1], where a careful energy analysis performed to
the heat equation gives a gain of one and a half orders in convergence. However,
the computations show a gain of two orders.
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Sharp error estimates can be obtained by the normal mode analysis. In [27],
it is noted by a normal mode approach that the gain in convergence can be equal
to the highest order of spatial derivatives in the equation. We refer to this gain
as optimal. When a so-called determinant condition is satisfied, normal mode
analysis can straightforwardly be used to prove that the gain in convergence is
at least optimal. For first order hyperbolic equations, technical assumptions of
finite difference schemes are given in [9] under which the determinant condition is
satisfied, thus one order is gained in convergence. A detailed analysis in [24,25] for
a class of discretizations for the Schrödinger equation proves the gain is two orders,
which is equal to the optimal gain. Results for the wave equation are presented in
[29], where it is shown that the gain in convergence is not unified, but depends on
boundary conditions and numerical boundary treatments. For both the Schrödinger
equation and the wave equation, the determinant condition is not satisfied in many
of the cases considered, even though the schemes are stable. We remark that
the theoretical convergence rate obtained from the normal mode analysis is in a
generalized sense, analogue to the concept of stability in the generalized sense [11,
Chapter 12].

The accuracy analyses in the above mentioned references are limited to prob-
lems in one space dimension. However, the one dimensional analysis cannot always
explain two dimensional numerical results. One example is two dimensional prob-
lems discretized in a multi-block setting, where numerical solutions in regions with
different grid spacings are coupled using interpolation [13, 20, 26]. For cases like
this, truncation errors located at grid points along the interface between two mesh
blocks are of lower accuracy order compared to interior truncation errors. This is
because of one-sided difference stencils on each side of the interface. At a few grid
points on the edge of the interface, the accuracy of the truncation error is often
one or two additional orders lower, caused by one-sided interpolations. We refer to
such points as corner points, shown in Figure 1(A). The number of corner points
depends on the particular discretization but is independent of grid spacing. Because
the dominating truncation errors are localized in both spatial dimensions, it is a
situation that does not occur in one dimensional problems. Numerical results in the
literature indicate that such two dimensional cases may lead to higher convergence
rates than what is predicted by the corresponding one dimensional analysis; see
[14] for the advection equation, [24] for the Schrödinger equation, and [30] for the
wave equation. The numerical results also indicate that depending on the partial
differential equation and the numerical interface treatment, the gain in convergence
rates may be different. Accuracy analysis for two dimensional problems is needed
in order to fully understand these results.

In this paper, we present a general accuracy analysis framework for semi-discrete
partial differential equations in two space dimensions, to better understand the
effect localized truncation errors have on the overall spatial discretization error.
As a model problem, we consider the semi-discretization of the wave equation by
finite difference methods. High order methods solve wave propagation problems
more efficiently than low order methods on smooth domains [12, 15]. However,
it is a challenging task to construct stable and high order accurate methods for
wave equations in the presence of boundaries and interfaces. One way to do this
is to combine the summation-by-parts (SBP) finite difference method with the
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(a) (b) (c)

Figure 1. (A) A multi-block grid with the dominating truncation
error on the corner points marked by filled circles. (B) A simplified
model of the multi-block grid. (C) A single-block grid with the
dominating truncation error along an entire boundary.

simultaneous approximation term (SAT) to impose boundary conditions. The SBP-
SAT finite difference method has been successfully used to solve many types of
differential equations numerically, and is our choice for the spatial discretization of
the wave equation. However, the technique we develop to analyze accuracy is not
limited to this class of methods.

Since the equation is linear, we analyze the interior truncation error and bound-
ary truncation error separately. The interior truncation error can be analyzed
straightforwardly by the energy method. For the lower order boundary truncation
error, we use again the superposition principle and analyze separately the effect
of truncation errors along different parts of boundaries. Therefore, in the analysis
we will focus on the truncation error along one boundary x = 0 and consider two
cases shown in Figure 1(B) and 1(C). In Figure 1(B), the dominating truncation
error is located at only a few grid points on a boundary, i.e., localized in two space
dimensions. This is a simplified model of the case shown in Figure 1(A). In addi-
tion, we also consider the case shown in Figure 1(C), which corresponds to when
the dominating truncation error is located along an entire boundary. To further
simplify the analysis, we will consider semi-infinite domains, where the boundaries
at x = 1 in Figure 1(B) and Figure 1(C) are moved to infinity. This separation
of boundaries is justified by the same arguments which justify the separation in
stability analysis [11].

The accuracy analysis relies on a transformation of the two dimensional problem
to many one dimensional problems of the same type. Each one dimensional prob-
lem is then analyzed by the normal mode analysis, a technique involving Laplace
transformation in time. We show how for a one dimensional problem the error is
dictated by the behaviour of a boundary system in the origin of the s-plane, where
s is the Laplace dual variable of time. This was discussed previously in [24,25,29],
and in this paper we make the arguments more precise. We also show how to use
the one dimensional results to obtain results for both two dimensional cases.

The outline of the paper is as follows. In Section 2 we present the two dimensional
accuracy analysis, as well as the accuracy analysis for the relevant one dimensional
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problems. Properties for the semi-discrete system discretized with SBP operators
and weak treatment of boundary conditions using the SAT method are described
in Section 3. Sections 4 and 5 contain numerical experiments and conclusions,
respectively.

2. Accuracy analysis for the two dimensional wave equation

We consider the two dimensional wave equation

(2.1) Utt = Uxx + Uyy + F,

on a domain
0 ≤ x < ∞, 0 ≤ y ≤ 1, 0 ≤ t ≤ tf ,

with suitable initial and boundary conditions so that (2.1) is well-posed. We in
particular consider the Dirichlet and Neumann boundary conditions. A compre-
hensive discussion on the well-posedness of second order hyperbolic equations is
found in [16]. Because the focus in this paper is the accuracy analysis of numerical
methods solving equation (2.1), we assume that the solution is sufficiently smooth
and in L2 at any time. This gives rise to compatibility conditions between the
initial and boundary data at the space-time corner. One way to guarantee that the
compatibility conditions are satisfied is to assume that both spatial derivatives of
the initial data on the boundary, and temporal derivatives of the boundary data at
t = 0, vanish up to sufficiently high order. We take this approach in the present
work.

The domain is discretized by an equidistant grid with a grid spacing h in both
spatial directions

xi = (i− 1)h, i = 1, . . . ,

yj = (j − 1)h, j = 1, . . . , Ny,
(2.2)

with h = 1/(Ny − 1). As we will measure errors in both one dimensional and two
dimensional spaces, we distinguish between three different discrete norms. Let w
be a two dimensional grid function on the grid (2.2). We define the discrete norm
as

‖w‖22D = h2

Ny∑
i=1

∞∑
j=1

|wi,j |2.

We will also need norms of restrictions of grid functions to lines with constant x or
y coordinates. They are denoted by

‖wi,:‖21D,x = h
∞∑
j=1

|wi,j |2, ‖w:,j‖21D,y = h

Ny∑
i=1

|wi,j |2.

The spatial derivatives are approximated by finite difference operators yielding
the semi-discretization

(2.3) utt =
1

h2
(Qx ⊗ Iy)u+

1

h2
(Ix ⊗Qy)u+ Fh.

In equation (2.3), u is a grid function approximating the true solution U on the grid
and is arranged columnwise, i.e., the first Ny components of u are the numerical
solutions at the grid points on the boundary x = 0. The finite difference operators
Qx/h

2 and Qy/h
2 approximate second derivatives in space, including an implemen-

tation of the boundary conditions, and Ix, Iy are identity operators. The Kronecker
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product ⊗ is used to extend the operators from one space dimension to two space
dimensions. The grid function Fh is the projection of the forcing function F (x, y, t)
on the grid. Inhomogeneous boundary data would also appear in the right-hand
side of (2.3), but is excluded here for a sake of simplified notation as it has no effect
on the accuracy analysis.

To consider accuracy, we need the semi-discretization (2.3) to be stable. One
way to prove stability is to show by the energy method that the numerical solution
in some appropriate norm is bounded by the data, and such a scheme is called
energy stable. Another way is to prove stability in a generalized sense by the
Laplace transform technique in the normal mode analysis framework; see details in
[11, Chapter 12]. In particular, we consider operators Qy that satisfies the following
property.

Assumption 1. There exists a symmetric positive definite operator P such that with
Qy in (2.3) the product PQy is symmetric negative semi-definite, and the spectral

norms of P 1/2 and P−1/2 are uniformly bounded.

The spectral norm, denoted by ‖ · ‖, is induced from the standard Euclidean
vector norm. For any value Ny, operators in the y-direction can be represented by
matrices. Assumption 1 on the operator Qy ensures that an energy estimate can be
obtained when Qy is used as the spatial discretization operator in the correspond-
ing one dimensional problem. This assumption can be satisfied by many kinds of
discretizations for which a standard energy estimate can be obtained. One example
is a finite difference operator satisfying a summation-by-parts (SBP) property with
a weak imposition of boundary conditions and properly chosen penalty parameters
[2,22]. In this case, H = hP is the operator associated with the SBP norm with the
grid spacing h, and the condition number of P 1/2 is independent of h. The SBP
finite difference method is discussed in more detail in Section 3.

The following lemma describes an important property of the discretization op-
erator Qy that will be needed for the two dimensional accuracy analysis.

Lemma 2.1. Consider the eigenvalue problem

(2.4)
1

h2
Qyϕ = −λϕ,

with Qy in (2.3). Under Assumption 1, Qy is diagonalizable Qy/h
2 = −ΦΛΦ−1

by Φ = [ϕ1, ϕ2, . . . , ϕNy
], where Λ is a diagonal matrix with real and non-negative

diagonal entries. In addition, ‖Φ‖ = ‖P−1/2‖ and ‖Φ−1‖ = ‖P 1/2‖ are uniformly
bounded with respect to Ny.

The proof of Lemma 2.1 can be found in Appendix A. As will be seen later,
with such an operator Qy the error equation for the two dimensional problem can
be transformed by a diagonalization technique to a number of one dimensional
problems of the same type.

Let Uh be the true solution U projected on the grid, and the pointwise error
be ζ(t) = Uh(t)− u(t). As discussed in the introduction, we will only analyze the
effect of the truncation error, denoted O(hp), caused by the one-sided stencil at the
boundary x = 0. The error equation is

(2.5) ζtt =
1

h2
(Qx ⊗ Iy)ζ +

1

h2
(Ix ⊗Qy)ζ + hpT,
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where hpT is the boundary truncation error and T is independent of h. Only the
components of T corresponding to the grid points located at x = ih, i = 0, . . . , k
are non-zeros, where k is a small constant independent of h. We therefore write

(2.6) T = [T0;T1; . . . , Tk;0;0;0; . . .],

where hpTi, i = 0, . . . , k, is the truncation error at the grid points located at x = ih.
Here, T is a two dimensional grid function, Ti is a one dimensional grid function in
the y-direction, and 0 is a zero vector of length Ny.

2.1. Diagonalization of the error equation. To begin with, we consider the
case with the dominating truncation error along the entire boundary shown in
Figure 1(C), for which ‖Ti‖21D,y = O(1). In Section 2.3, we consider the localized

case in Figure 1(B) with ‖Ti‖21D,y = O(h).
The next step of the normal mode analysis is to perform a Laplace transform in

time of (2.5)

(2.7) s2ζ̂ =
1

h2
(Qx ⊗ Iy)ζ̂ +

1

h2
(Ix ⊗Qy)ζ̂ + hpT̂ ,

where s is the time dual in the Laplace space. We diagonalizeQy as in Assumption 1
and Lemma 2.1, and rewrite (2.7) as

s2ζ̂ =
1

h2
(Qx ⊗ Iy)ζ̂ − (Ix ⊗ ΦΛΦ−1)ζ̂ + hpT̂ ,

where Λ is diagonal with diagonal entries λ(r) ≥ 0 in ascending order for r =
1, 2, . . . , Ny. Multiplying the above equation by (Ix⊗Φ−1) from the left, we obtain

(2.8) s2(Ix ⊗ Φ−1)ζ̂ =
1

h2
(Qx ⊗ Φ−1)ζ̂ − (Ix ⊗ ΛΦ−1)ζ̂ + hp(Ix ⊗ Φ−1)T̂ .

With the notation ε̂ = (Ix ⊗ Φ−1)ζ̂, (2.8) becomes

(2.9) s2ε̂ =
1

h2
(Qx ⊗ Iy)ε̂− (Ix ⊗ Λ)ε̂+ hp(Ix ⊗ Φ−1)T̂ ,

with the operator in the y-direction diagonalized. This is the spectrally decomposed
form, which consists of Ny scalar difference equations

(2.10) (s̃2 + h2λ(r))︸ ︷︷ ︸
(s̃

(r)
+ )2

ε̂(r) = Qxε̂
(r) + hp+2τ̂ (r),

where r = 1, 2, . . . , Ny and s̃ = sh. For every r, we have

τ̂ (r) = [τ̂
(r)
0 , τ̂

(r)
1 , . . . , τ̂

(r)
k , 0, 0, 0, . . .]T .

Note the close relation between τ̂ (r) and τ̂i = Φ−1T̂i: the ith entry τ̂
(r)
i is the

same as the rth entry of τ̂i. In addition, ε̂ in (2.9) is related to ε̂(r) in (2.10) by

(2.11) ‖ε̂‖22D = h

Ny∑
r=1

‖ε̂(r)‖21D,x.

With the notation (s̃
(r)
+ )2 = s̃2+h2λ(r), we have transformed the two dimensional

error equation to Ny one dimensional error equations in the Laplace space. This
transformation can be understood as a variant of Fourier transform. A general
result on the estimate of the error ζ for the two dimensional problem is stated in
the following theorem.
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Theorem 2.2. If for all s with Re(s) = η > 0, ε̂(r) in (2.10) is bounded as

(2.12) ‖ε̂(r)‖21D,x ≤ Kh2g

ηm

k∑
i=0

⎛⎜⎝|τ̂ (r)i |2 +

∣∣∣∣∣∣
̂

∂bτ
(r)
i

∂tb

∣∣∣∣∣∣
2
⎞⎟⎠ ,

with η, g,m and b independent of h, then

(2.13)

∫ tf

0

‖ζ‖22Ddt ≤ Ke2ηtfh2g

ηm

∫ tf

0

χ2(Φ)

k∑
i=0

(
‖Ti‖21D,y +

∥∥∥∥∂bTi

∂tb

∥∥∥∥2

1D,y

)
dt.

Here, χ(Φ) is the condition number of Φ.

We note that in practice, to validate (2.12) we do not need to check for every r. It
suffices to check the corresponding one dimensional problem, that is (2.12) without
any shift when h2λ(r) = 0. To see this, we need the following lemma describing an

important property of s̃
(r)
+ .

Lemma 2.3. Let s̃+ =
√
s̃2 + λ+ for some real λ+ ≥ 0. If Re(s̃) ≥ δ ≥ 0, then

Re(s̃+) ≥ δ.

The proof of Lemma 2.3 is given in Appendix B. This lemma implies that
each error equation (2.10) can be seen as the corresponding one dimensional error
equation perturbed in the direction to the right of the complex plane. Therefore,
the estimate of (2.10) for r = 1, 2, . . . , Ny is no worse than the estimate for the
corresponding one dimensional problem.

We will show in Section 2.2 how an estimate of the type (2.12) can be derived
by normal mode analysis for a one dimensional problem of the type (2.10). In
Theorem 2.2 and the rest of the paper, we use the capital letter K in the estimates
to denote some constant independent of the grid spacing h, where the precise value
of K could be different from one estimate to another. Below we give the proof of
Theorem 2.2.

Proof of Theorem 2.2. A sum of (2.12) in r leads to

‖ε̂‖22D ≤ Kh2g

ηm

k∑
i=0

⎛⎝‖τi‖21D,y +

∥∥∥∥∥ ∂̂bτi
∂tb

∥∥∥∥∥
2

1D,y

⎞⎠ ,

and Parseval’s relation gives

(2.14)

∫ tf

0

e−2ηt‖ε‖22Ddt ≤ Kh2g

ηm

∫ tf

0

e−2ηt
k∑

i=0

(
‖τi‖21D,y +

∥∥∥∥∂bτi
∂tb

∥∥∥∥2

1D,y

)
dt,

where η is a constant independent of h, ε = (Ix ⊗ Φ−1)ζ and τi = Φ−1Ti. It is
obvious by the property of the induced norm that∫ tf

0

e−2ηt

(
‖τi‖21D,y +

∥∥∥∥∂bτi
∂tb

∥∥∥∥2

1D,y

)
dt(2.15)

≤
∫ tf

0

e−2ηt‖Φ−1‖2
(
‖Ti‖21D,y +

∥∥∥∥∂bTi

∂tb

∥∥∥∥2

1D,y

)
dt.
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In addition, we also have

‖Φ‖2
∫ tf

0

e−2ηt‖ε‖22Ddt =

∫ tf

0

e−2ηt‖Φ‖2‖(Ix ⊗ Φ−1)ζ‖22Ddt

≥
∫ tf

0

e−2ηt‖ζ‖22Ddt.

(2.16)

Finally, we obtain the following estimate by (2.14), (2.15) and (2.16),
(2.17)∫ tf

0

e−2ηt‖ζ‖22Ddt ≤ Kh2g

ηm

∫ tf

0

e−2ηtχ2(Φ)

k∑
i=0

(
‖Ti‖21D,y +

∥∥∥∥∂bTi

∂tb

∥∥∥∥2

1D,y

)
dt,

where χ(Φ) = ‖Φ‖‖Φ−1‖ is the condition number of Φ, and by Lemma 2.1 it is
uniformly bounded. The estimate (2.13) is obtained by multiplying (2.17) with
e2ηtf on both sides, by using e−2ηt < 1 and e2η(tf−t) > 1 for 0 < t < tf . �

Note that by Lemma 2.1, χ(Φ) is uniformly bounded. Theorem 2.2 indicates
that the convergence rate of a two dimensional problem is at least equal to that of
the corresponding one dimensional problem. A special case for a two dimensional
problem is when the dominating truncation error is localized also in the y-direction,
i.e., the number of grid points with the dominating truncation error is independent
of h, yielding ‖Ti‖21D,y = O(h), i = 0, . . . , k, in (2.13). Straightforwardly, this leads
to an additional half order gain. A more detailed analysis in Section 2.3 shows that
the gain for a two dimensional problem with a localized truncation error could be
a full order higher compared with the gain for a corresponding one dimensional
problem.

2.2. Background: Accuracy analysis for one dimensional problems. We
would like to explore the relation between the one dimensional error equation (2.10)
and the corresponding estimate (2.12). Therefore, accuracy analysis for the corre-
sponding one dimensional problem is needed, and is presented in this section. Part
of the analysis can also be found in [29], where it is argued that the error estimate
in Laplace space is determined by its behavior at the origin. In the paper, we give
a proof of that.

We consider the one dimensional wave equation

(2.18) Utt = Uxx, 0 ≤ x < ∞, t ≥ 0,

with appropriate initial and boundary conditions so that the problem is well-posed
and the true solution is in L2 and smooth. Similar to the two dimensional case,
(2.18) is discretized by a finite difference operator and the boundary conditions are
imposed so that the semi-discretization is energy stable. The semi-discretization is

(2.19) utt =
Q

h2
u,

and the error equation in the Laplace space is

(2.20) s̃2ζ̂ = Qζ̂ + hp+2T̂ ,

where s is the time dual in Laplace space and s̃ = sh. Here u and ζ̂ are vectors
containing the numerical solution and pointwise error in the Laplace space, respec-
tively. The operator Q/h2 approximates the second derivative in space including
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an implementation of the boundary condition. The vector T̂ has only a few non-
zero components corresponding to the large truncation error close to the boundary
x = 0. Since the true solution is smooth, the non-zero components of T̂ are to the
leading order on the form

(2.21) T̂i = ai
∂p+2

∂xp+2
Û(0, s), i = 0, . . . , k,

where ai can be obtained by the Taylor expansion. The constants ai and k are
determined by the precise form of Q, and are independent of h.

Remark 2.4. Equation (2.20) is in the same form as (2.10), with s̃2 in the left-hand

side of (2.20) and a perturbed (s̃
(r)
+ )2 in the left-hand side of (2.10). We keep this

in mind in the following analysis.

The difference equation (2.20) can be solved by first considering the components

corresponding to the grid points away from the boundary where the forcing hp+2T̂
is zero and Q/h2 is the standard central finite difference stencil. This step gives the
characteristic equation with roots being functions of s̃. Since the problem under
consideration is a half-line problem, in the estimate we only need to include the
admissible roots κ(s̃), for which |κ(s̃)| < 1 for all Re(s̃) > 0. With a 2lth order
central finite difference stencil, there are l admissible roots κ1, . . . , κl.

The next step in solving (2.20) is to consider its first few rows, corresponding

to the discretization close to the boundary, where hp+2T̂ does not vanish. The
corresponding equations can be written in a matrix-vector multiplication form

(2.22) C(s̃)Σ = hp+2T̂C ,

which is referred to as the boundary system. The matrix C(s̃) is called the de-
terminant matrix and depends on the boundary stencil, and is often of small size.
For example, for the second order discretization in the SBP-SAT framework, C(s̃)
is a 3-by-3 matrix with the Dirichlet boundary condition, and a scalar with the
Neumann boundary condition. For the precise form of these boundary systems, see
equation (25) and (37) in [29], respectively. For higher order discretizations, the

dimension of C(s̃) is in general k + 1. The first k + 1 components of T̂C is taken
from Ti, i = 0, . . . , k in (2.21), with zeros appending to the end if needed. The
unknown vector Σ is

(2.23) Σ = [ζ̂1, ζ̂2, . . . , ζ̂d, σ1, σ2, . . . , σl]
T ,

where d depends on the numerical boundary treatment.
We can express the general solution of the difference equation (2.20) by using

(2.23) as

(2.24) ζ̂ = [ζ̂1, ζ̂2, . . . , ζ̂d,

l∑
j=1

σj ,

l∑
j=1

σjκj ,

l∑
j=1

σjκ
2
j , . . .]

T .

Then the L2 norm of ζ̂ is

‖ζ̂‖21D,x = h

d∑
i=1

|ζ̂i|2 + h

l∑
j=1

|σj |2
∞∑
k=0

|κj |2k

= h
d∑

i=1

|ζ̂i|2 + h
l∑

j=1

|σj |2
1

1− |κj |2
.

(2.25)
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There are two steps to derive an estimate of (2.25). One step is to estimate
1/(1 − |κj |2), and this estimate is derived in Section 2.2.2. In addition, we also
need to estimate the other terms in (2.25), i.e., the components of Σ:

(2.26) |ζ̂i|, i = 1, 2, . . . , d and |σj |, j = 1, 2, . . . , l.

As will be seen later, when s̃ = 0 the characteristic equation always has an admissi-
ble root equal to 1, denoted by κ1 = 1. Therefore, we consider Re(s̃) = ηh = O(h)
in the limit as h approaches zero. The solution to (2.22) can be written as

(2.27) Σ = hp+2C−1(s̃)T̂C , Re(s̃) > 0,

because of the following lemma.

Lemma 2.5. If the discretization (2.19) is stable, then C(s̃) in the boundary system
(2.22) is non-singular for all Re(s̃) > 0.

The proof of Lemma 2.5 is very similar to the proof of Lemma 12.1.1 in [11,
pp. 378], but for completeness we include it in Appendix C.

In the following section, we derive estimates for each component of Σ, denoted
by Σi, where i = 1, . . . , l + d. For simplified notation, we use the maximum norm
of vectors

(2.28) |Σi| ≤ ‖Σ‖max ≤ hp+2‖C−1(s̃)T̂C‖max ≤ hp+2‖C−1(s̃)‖max‖T̂C‖max,

where ‖Σ‖max = maxi |Σi|. We emphasize again that the dimension of the vector
Σ in (2.27) is finite and is independent of the grid spacing. In certain cases, we do
not use the last inequality in (2.28) because some components of Σ may vanish and

computing C−1(s̃)T̂C directly gives a sharper estimate.

2.2.1. Estimates of |Σi|. When s̃ is away from the imaginary axis, C(s̃) is non-
singular by the energy stability. In many common stable semi-discretizations of the
second order wave equation, the determinant matrix C(s̃) is singular for some s̃
on the imaginary axis. We will show below that singularities away from the origin
typically have no influence on the order of accuracy, and can be handled separately.
A singularity at s̃ = 0 on the other hand can introduce a loss of accuracy compared
with the optimal gain. The following lemma makes the arguments precise.

Lemma 2.6. Consider the boundary system (2.22) at s̃ = iξ̃ + ηh where η > 0 is
a constant independent of h. Let δ be a small but h-independent constant.

• When s̃ is in the vicinity of the origin, i.e., |s̃| ≤ δ, there exists a non-
negative integer w such that

(2.29) |Σi| ≤ hp+2−w K

ηw
‖T̂C‖max.

If C(0) is non-singular, then w = 0. Otherwise, w can be determined by
the precise form of the boundary system (2.22).

• When s̃ is away from the origin, i.e., |s̃| > δ, there exists a non-negative
integer α such that

(2.30) |Σi| ≤ hp+2 K

(ηδ)α

∥∥∥∥∥̂∂αTC

∂tα

∥∥∥∥∥
max

.

The value of α can be determined by the precise form of the boundary system
(2.22).
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The proof of Lemma 2.6 is found in Appendix D.1.
If the boundary system (2.22) is singular at the origin, then we need to use

(2.29) to estimate |Σi| leading to a wth order loss. If the singularity occurs on the
imaginary axis away from the origin, (2.30) introduces no accuracy order loss, but
temporal derivatives of the truncation error appear in the estimate of |Σi| . As an
example, with Neumann boundary conditions we have w = 1 for a second order
method and w = 0 for a fourth order method; see [29].

2.2.2. Estimates of 1/(1− |κj |2). The characteristic equation and its solution only
depend on the finite difference stencil in the interior of the computational domain.
To discretize the wave equation (2.18), it is common to use the standard central
finite difference stencil as the interior stencil. In this case, we have the following
lemma for the roots.

Lemma 2.7. Consider the characteristic equation corresponding to the difference
equation s̃2ζ = Q̃ζ, where Q̃ is a standard central difference operator approximating
the second derivative. Let s̃ = iξ̃+ ηh with a constant η > 0 independent of h. The
roots of the characteristic equation have the following properties.

• When s̃ is in the vicinity of the origin, there is one admissible root κ1(s̃)
to the characteristic equation satisfying

(2.31)
1

1− |κ1(s̃)|2
≤ K

ηh
.

The constant K depends on the finite difference stencil, but not on h or η.
For the other admissible roots, 1

1−|κ(s̃)|2 is bounded independently of h.

• When s̃ is away from the origin, there can be admissible roots satisfying

(2.32)
1

1− |κj(s̃)|2
≤ K

(ηh)β
.

for some β > 0. Such roots do not introduce any accuracy order loss when
estimating (2.25).

The proof of Lemma 2.7 can be found in Appendix E.1. When s̃ is in a vicinity
of the origin, the bound on 1/(1−|κ1(s̃)|2) in (2.31) leads to a h−1 factor in (2.25).
When s̃ is away from the origin, 1/(1−|κj(s̃)|2) does not introduce any h-dependent
factor in (2.25). Together with Lemma 2.6, we therefore conclude that the order of
accuracy is determined by the error in the vicinity of the origin in Laplace space.

2.2.3. Final estimates in the Laplace space. The final error estimate is determined
by the combined effect of the estimates (2.29) and (2.31) from Lemmas 2.6 and 2.7,
respectively. In the worst scenario, we have

(2.33) |σ1| ∼ hp+2−w and 1/(1− |κ1|2) ∼ h−1,

which leads to

(2.34) ‖ζ̂‖22D ≤ Kh2p+4−2w

η1+2w+b

⎛⎝‖T̂C‖2max +

∥∥∥∥∥̂∂bTC

∂tb

∥∥∥∥∥
2

max

⎞⎠ ,

where the constant K is independent of h. A more detailed analysis might reveal
that σ1/(1 − |κ1|2) satisfies a sharper bound than given in (2.33). The value b =
2α+β in (2.34) is given by α in (2.30) and β in (2.32). Comparing with the estimate
(2.12) in Theorem 2.2 we have 2g = 2p+ 4− 2w and m = 1 + 2w + b.
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2.3. Accuracy analysis for two dimensional problems with corner trun-
cation errors. We now consider a two dimensional problem where the large trun-
cation error along a boundary is only localized at a few grid points at a corner; see
Figure 1(B).

Without loss of generality we consider only one non-zero element in T0, i.e., the
truncation error has the form (2.6) with k = 0 and T0 = [O(1), 0, . . .]T . An im-
mediate consequence is that ‖T0‖1D,y ∼ O(h1/2), which together with the uniform
boundedness of ‖Φ−1‖ in Lemma 2.1, leads to

(2.35) ‖τ̂0‖1D,y ≤ ‖Φ−1‖‖T̂0‖1D,y ≤ Kh1/2.

A direct application of Theorem 2.2 to this problem thus leads to an additional gain
of a half order in convergence, compared with when the truncation error is present
along the entire boundary. However, numerical experiments for certain problems
show another half order better result. Below we demonstrate how to sharpen the
analysis so that a full order gain in convergence is obtained compared with the case
when the dominating truncation error is located along an entire boundary.

One difference between the rth error equation (2.10) and the standard one di-
mensional error equation (2.20) is that the coefficient s̃2 in (2.20) is replaced by

(s̃
(r)
+ )2 = s̃2 + h2λ(r) in (2.10). We can therefore view h2λ(r) as a perturbation to

the error equation, which enables us to use the one dimensional results presented
in Section 2.2. To obtain a sharp estimate for a two dimensional problem when
the large truncation error is located only at a few grid points, we cannot rely on a
uniform estimate in r as in (2.12). Instead, the discrete eigenvalues λ(r) are divided
into two sets according to indices r = 1, . . . , rδ and r = rδ + 1, . . . , Ny, where rδ is
such that √

h2λ(r) ≤ δ, r = 1, . . . , rδ,(2.36) √
h2λ(r) > δ, r = rδ + 1, . . . , Ny,(2.37)

for some constant δ > 0 independent of h. Since we have a consistent spatial
discretization the discrete eigenvalues in equation (2.4), λ(r), converge to the eigen-
values, λc, of the corresponding continuous problem

∂2

∂y2
ϕc = −λcϕc,(2.38)

where (2.38) is closed with the same boundary conditions as the ones approximated
by the discrete operator in (2.4). Therefore, h2λ(r) for a particular r decreases when
h decreases, and thus rδ grows with grid refinement.

It is helpful to first consider a specific example. Let

Qy =

⎡⎢⎢⎢⎣
−1 1
1 −2 1

1 −2 1
. . .

. . .
. . .

⎤⎥⎥⎥⎦ ,

which corresponds to the standard second order accurate discretization of the
Laplace operator in one dimension with Neumann boundary conditions. The oper-
ator Qy/h

2 is diagonalized by the standard unitary cosine transform, for which we
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have the operator Φ defined by

Φi,r =

⎧⎨⎩
1√
Ny

, i = 1, . . . , Ny, r = 1,√
2
Ny

cos(π(r−1)(i−1/2)
Ny

), i = 1, . . . , Ny, r = 2, . . . , Ny,

and the discrete eigenvalues are given by

(2.39) λ(r) = − 4

h2
sin2

(
π(r − 1)

2Ny

)
, r = 1, . . . , Ny.

Note that λ(r), converge to the eigenvalues,

λ(r)
c = −(r − 1)2π2, r = 1, 2, . . . ,

of (2.38) with Neumann boundary conditions. Furthermore, from the cosine trans-
form of (1, 0, . . .)T , we immediately see that

τ̂0 =
T̂0,0√
Ny

(
1,
√
2 cos

(
π

2Ny

)
,
√
2 cos

(
2π

2Ny

)
,
√
2 cos

(
3π

2Ny

)
, . . .

)T

.(2.40)

Here we note the agreement with the uncertainty principle, which states that the
more concentrated a function is, the more spread out its Fourier transform must
be. In other words, locality in T̂0 rules out locality in τ̂0.

We shall now consider a more general case, where Qy/h
2 is a consistent spatial

discretization satisfying Assumption 1. An analytical formula of λ(r) may not
exist, but the eigenvalues of the discrete operator converge to the eigenvalues of
the corresponding continuous problem (2.38) with the same boundary conditions.
To ensure a corresponding locality principle in the more general case, we make the
following assumption on the spatial discretization in the y-direction.

Assumption 2. The diagonalized transformation in Lemma 2.1 satisfies the uncer-
tainty principle in the sense that when T0 = [O(1), 0, . . .]T then each component of
τ̂0 = Φ−1T0 satisfies

(2.41) |τ̂ (r)0 | = O(h1/2).

By (2.35) we know that ‖τ̂0‖1D,y is proportional to h1/2. Assumption 2 implies a

componentwise bound (2.41) of τ̂
(r)
0 , and rules out the possibility of a local character

of the truncation error also in the spectral representation. Assumption 2 is a
reasonable assumption because when the operator Φ−1 acts on T̂0, it is an analogue
of performing a discrete Fourier transform. It is a discrete Fourier transform if the
boundary condition in the y-direction is periodic. In the following analysis, we use
the componentwise bound for r ≤ rδ.

The total error for the two dimensional Laplace-transformed and spectrally de-
composed problem is given by

(2.42) ‖ε̂‖22D = h

Ny∑
r=1

‖ε̂(r)‖21D,x = h

Ny∑
r=1

⎛⎝h

d∑
n=1

|ε̂(r)n |2 + h

l∑
j=1

|σ(r)
j |2

1− |κ(r)
j |2

⎞⎠ .

Note the similarity between (2.42) and the expression for ‖ζ̂‖22D in (2.25). To obtain
sharp accuracy results we divide (2.42) into

‖ε̂(r≤rδ)‖22D = h

rδ∑
r=1

‖ε̂(r)‖21D,x,(2.43)
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and

‖ε̂(r>rδ)‖22D = h

Ny∑
r=rδ+1

‖ε̂(r)‖21D,x,(2.44)

and estimate them separately. For r ≤ rδ, by the componentwise bound (2.41) an
additional 1/2 order is gained in (2.29). We have

|ε̂(r)n | ≤ hp+5/2−w K

ηw
, n = 1, . . . , d,(2.45)

|σ(r)
j | ≤ hp+5/2−w K

ηw
, j = 1, . . . , l,

where w is related to the invertibility of C(s̃) in Lemma 2.6. In

‖ε̂(r≤rδ)‖22D = h

rδ∑
r=1

h
d∑

n=1

|ε̂(r)n |2 + h

rδ∑
r=1

h
l∑

j=1

|σ(r)
j |2

1− |κ(r)
j |2

,

the first term can be bounded as

(2.46) h

rδ∑
r=1

h

d∑
n=1

|ε̂(r)n |2 ≤ h2p+7−2w
rδ∑
r=1

K

η2w
,

while the second term

(2.47) h

rδ∑
r=1

h

l∑
j=1

|σ(r)
j |2

1− |κ(r)
j |2

≤ h2p+6−2w K

η2w

l∑
j=1

rδ∑
r=1

h

1− |κ(r)
j |2

.

By Lemma 2.7, only one admissible root leads to an h−1 factor in the error
estimate, and this can only happen in the vicinity of s̃ = 0. We therefore only

consider 1/(1 − |κ(r)
1 |2) in (2.47) in a vicinity of s̃ = 0. Together with (s̃

(r)
+ )2 =

s̃2 + h2λ(r), we obtain

1

1− |κ(r)
1 (s̃

(r)
+ )|2

≤ K

(
√
η2 + λ(r))h

.(2.48)

With a common boundary condition like Dirichlet, Neumann or periodic, the
continuous eigenvalues

√
λc in (2.38) are uniformly distributed. For small r corre-

sponding to the well-resolved components, the discrete eigenvalues converge to the

continuous ones. As a consequence,
√
λ(r) ≈ Kr for r < rδ. This can also be seen

from the formula (2.39). For η = 0 and
√
λ(r) ≈ Kr, we have

rδ∑
r=1

h
1

1− |κ(r)
1 |2

≈ hK

(
1

h
+

1

2h
+ · · ·+ 1

rδh

)
≤ K

(
log(h−1) + c+O(h)

)
,

(2.49)

where rδh = δ is a constant independent of h and c ≈ 0.58 is the Euler–Mascheroni
constant. This leads to

(2.50) ‖ε̂(r≤rδ)‖22D ≤ h2p+6−2w log(h−1)
K

η2w
.

Let us now consider r > rδ. In this case, the shift in s̃
(r)
+ is h2λ(r) > δ2 ∼ O(1).

Therefore, all κ
(r)
j have absolute values bounded away from 1, which leads to the
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estimate 1/(1− |κ(r)
j |2) ≤ K for a constant K independent of h. We then have the

estimate

‖ε̂(r>rδ)‖22D = h

Ny∑
r=rδ+1

‖ε̂(r)‖21D,x

≤ Kh

Ny∑
r=rδ+1

(h

d∑
i=1

|ε̂(r)|2 + h|σ(r)
1 |2)

≤ K

η2w
h

Ny∑
r=rδ+1

h2p+5−2w‖C−1(s̃
(r)
+ )‖2max|τ̂

(r)
0 |2

≤ K

η2w
h2p+5−2w max

r
‖C−1(s̃

(r)
+ )‖2max‖τ̂0‖21D,y

≤ K

η2w
h2p+6−2w max

r
‖C−1(s̃

(r)
+ )‖2max.

Because of the shift in s̃
(r)
+ , the determinant matrix C(s̃

(r)
+ ) is non-singular by

stability. Hence, maxr ‖C−1(s̃
(r)
+ )‖2max is a constant of order O(1).

Together with (2.50), we have the combined estimate

‖ε̂‖2D ≤ K log(h−1)hp+3−w,

and consequently,

(2.51) ‖ζ̂‖2D ≤ K log(h−1)‖Φ‖hp+3−w ≤ K log(h−1)hp+3−w.

In the above estimate, we use the uniform boundedness of ‖Φ‖ in Lemma 2.1, and
K depends on the true solution but not on h. The factor log(h−1) grows with
mesh refinement, but much slower than h−1. Asymptotically, only the exponent
of h in (2.51) is important. Comparing the two dimensional case with a corner
truncation error with the one dimensional problem, we can expect a full order gain
in convergence from (2.34) to (2.51).

3. Summation-by-parts finite difference methods

High order finite difference methods solve wave propagation problems more ef-
ficiently than low order methods on smooth domains [12, 15]. Though standard
central finite difference stencils can be used in the interior of the domain, it is
challenging to derive stable and accurate schemes close to boundaries and inter-
faces. An approach that has been successfully used to overcome this difficulty is
finite difference operators satisfying a summation-by-parts (SBP) property [17, 18]
in combination with the simultaneous-approximation-term (SAT) technique [3] to
impose boundary and interface conditions. A main advantage of the SBP-SAT
method is its unified procedure to construct both provably stable and highly ac-
curate schemes for linear time-dependent problems with boundaries and interfaces.
Recent developments also include its use on non-uniform grids [5], and its relation
to a form of discontinuous Galerkin method [8]. Introductions of the SBP-SAT
finite difference method can be found in [4, 28].
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3.1. Semi-discretizations by the SBP operators. To approximate a second
derivative, we use SBP operators constructed in [23]. They are central finite dif-
ference stencils in the interior of the computational domain and special one-sided
stencils at a few grid points near boundaries. The operator D ≈ ∂2/∂x2 is called
an SBP operator if it can be decomposed as

D = H−1(−M +BS),

where H is a diagonal positive definite operator associated with an L2-equivalent
norm, the operator M is symmetric positive semi-definite and B takes the form
diag(−1, 0, 0, . . . , 1). The first and last row of S approximate the first derivative at
the boundary grid points.

The truncation error of the SBP operators in [23] is O(h2p) in the interior and
O(hp) near boundaries, p = 1, 2, 3, 4. Though the accuracy is sacrificed near bound-
aries in order to satisfy the SBP property, the operators are often termed as 2pth
order accurate.

In the following, we present the SBP-SAT schemes for the wave equation with
Dirichlet and Neumann boundary conditions. For comparison, we also state the
result of the accuracy analysis for one dimensional problems, which was derived in
[29].

3.1.1. Dirichlet boundary conditions. The semi-discretization of the one dimen-
sional wave equation (2.18) with a Dirichlet boundary condition is

(3.1) utt = Du−H−1ST (E0u− ḡ)− γ

h
H−1(E0u− ḡ) + Fg,

where E0 picks up u at the boundary with entries zero almost everywhere except
E0(1, 1) = 1. The vector ḡ = [g(t), 0, . . .]T contains the boundary data and Fg is
the restriction of the forcing F (x, t) onto the grid. The constant γ is independent
of h but must satisfy γ ≥ γ0 for stability [2], and its lower bound γ0 is presented
in [21,22,29]. A stability proof of (3.1) by the energy method can be found in [22].
We also note that if the boundary condition of equation (2.1) at y = 0, 1 is Dirichlet
and the discretization (3.1) is used also in the y direction, then the operator Qy in
(2.3) satisfies Assumption 1 with P = h−1H.

3.1.2. Neumann boundary conditions. For the wave equation (2.18) with a Neu-
mann boundary condition, it is natural to impose the boundary condition weakly.
The corresponding SBP-SAT scheme is

(3.2) utt = Du+H−1(E0Su− ḡ) + Fg,

and a stability proof can be found in [22]. We note that when equation (2.1) has a
Neumann boundary condition at y = 0, 1 and the discretization (3.2) is used also
in the y direction, the operator Qy in (2.3) satisfies Assumption 1 with P = h−1H.

3.1.3. Accuracy analysis for the one dimensional wave equation. The accuracy anal-
ysis of both the discretizations (3.1) and (3.2) are performed in detail in [29], and
we summarize the main result in Table 1.

For the Dirichlet problem, the penalty parameter γ in (3.1) has an influence on
the convergence rate. If γ = γ0, the determinant condition is not satisfied, and the
gain in convergence is only a half order; if γ > γ0, the determinant condition is
satisfied and w = 0 in the estimate (2.34), leading to the optimal two orders gain.
In fact, super-convergence is obtained with the sixth order accurate scheme, where
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Table 1. Result of accuracy analysis for the one dimensional
problem. 2p: order of the interior truncation error. p: order of
the boundary truncation error. q = min(2p, p + Gain): overall
convergence rate. γ, γ0: energy stability is obtained if the penalty
parameter γ satisfies γ ≥ γ0.

2p = 2 2p = 4 2p = 6
p+Gain q p+Gain q p+Gain q

Dirichlet (γ = γ0) 1+0.5 1.5 2+0.5 2.5 3+0.5 3.5
Dirichlet (γ > γ0) 1+2 2 2+2 4 3+2.5 5.5

Neumann 1+1 2 2+2 4 3+2.5 5.5

the gain in convergence is two and a half orders. The reason of super-convergence
is found by a careful analysis of the boundary system (2.29), which shows that
σ1 ∼ hp+3 in (2.33).

For the Neumann problem, the determinant condition is always violated. A
careful analysis in [29] shows that the gain in convergence is 1, 2, and 2.5 for the
second, fourth, and sixth order accurate schemes, respectively. For the fourth and
sixth order accurate schemes, the gain in convergence is at least the optimal two
orders. This is because the boundary system in the normal mode analysis has a
special structure, which leads to w = 0 in the estimate (2.34). We refer to a detailed
discussion in [29]. We also remark that if the structure of the boundary system is
perturbed by modifying the truncation error, the gain in convergence is one order
in all three cases.

By Theorem 2.2, for the SBP-SAT approximation of the Dirichlet and Neumann
problem in two space dimensions, the convergence rates are the same as the corre-
sponding one dimensional cases shown in Table 1.

4. Numerical experiments

In this section, we perform numerical experiments to verify our accuracy analysis,
with a focus on two different kinds of truncation errors for the wave equation in two
space dimensions. The first case is when the large truncation error is located on an
entire boundary, which typically occurs in a single-block domain or a multi-block
domain with conforming grid interfaces. Such an experiment is presented in Section
4.1. In the second case, the truncation error is only located at a few corner points
in a two dimensional domain and the number of such grid points is independent
of grid refinement; see Section 4.2. This experiment is constructed as a simplified
analogue to a multi-block setting with non-conforming grid interfaces presented in
[30]. The dominating truncation error is located on a few corner points; see an
illustration in Figure 1(A). More precisely, the 2pth order accurate schemes have a
dominating truncation error O(hp−2) because of interpolation.

4.1. A standard two dimensional problem. We consider the two dimensional
wave equation (2.1) in the computational domain [0, 1]2 discretized on a uniform
grid. The SBP finite difference operators constructed in [23] are used to approx-
imate the spatial derivatives, and the SAT technique is used to weakly impose
all the boundary conditions according to the discretizations (3.1) and (3.2). The
semi-discretizations (3.1) and (3.2) are generalized to two space dimensions using
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the Kronecker product. We will consider both Dirichlet and Neumann problems,
meaning that all boundary conditions are either Dirichlet or Neumann, respectively.

For hyperbolic problems, explicit methods are often used to advance the equation
in time. In the following numerical experiments, we employ the fourth order Runge-
Kutta method as the time integrator. In [19], it is shown that under reasonable
conditions the fully discrete scheme is stable if the semi-discretization is stable
and Runge-Kutta methods are used to discretize in time. Since we investigate the
convergence rate in space, we choose the time step Δt = 0.1h small enough so that
the temporal error is negligible compared with the spatial error. This step size is
well below the stability limit. The final time of the simulations is chosen to be
t = 2.

The numerical solution is compared with an analytic solution constructed using
the method of manufactured solutions:

(4.1) U(x, y, t) = cos(10πx+ 1) cos(10πy + 2) cos(10π
√
2t+ 3).

The L2 errors are computed as the norm of the difference between the exact solution
projected onto the grid with grid spacing h, Uh, and the corresponding numerical
solution, uh, according to

‖uh − Uh‖L2
= h

√
(uh − Uh)T (uh − Uh),

and the convergence rate is computed by

q = log

(
‖uh − Uh‖L2

‖u2h − U2h‖L2

)/
log

(
1

2

)
.

In the numerical experiments, we observe that the computed L2 convergence rates
are in agreement with the rates in the generalized sense obtained in the analysis.

In the SBP-SAT scheme, the penalty parameter for the Dirichlet problem, γ, is
chosen to be 20% larger than its lower bound required by energy stability. It is
important to choose γ larger than the threshold γ0 to obtain the desired rate of
convergence, as the choice γ = γ0 gives suboptimal convergence. This is demon-
strated in [29]. We note, however, that an extremely large γ leads to a very small
time step. An increase of 20% of the penalty parameter seems appropriate based
on our experiments.

The L2 errors versus the number of grid points in each spatial dimension, N ,
are plotted in Figure 2. The convergence rates computed from the last two mesh
refinements for each set of experiments are shown at the end of the corresponding
convergence curves in the error plots. According to Theorem 2.2, Table 1 and
the analysis in [29], for both the Dirichlet and Neumann problem, the SBP-SAT
approximations have theoretical convergence rates 2, 4, and 5.5 for the second,
fourth, and sixth order accurate schemes, respectively. As seen in Figure 2, the
convergence rates for the corresponding two dimensional problem are 2 and 4 for
the second and fourth order accurate methods, which agree well with our analysis.
The convergence rate for the sixth order accurate method is 5.75 for the Dirichlet
problem and 5.27 for the Neumann problem.

4.2. Truncation error located on a few corner points. The case analyzed in
Section 2.3 is a simplified model of the multi-block finite difference discretization
with non-conforming grid interfaces. Below we conduct numerical experiments for
this simplified model to verify that the analysis in Section 2.3 is sharp.
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Figure 2. Experiments for the two dimensional wave equation
with (A) Dirichlet boundary conditions (B) Neumann boundary
conditions.

We use the same setting as in Section 4.1, but in this case we consider the
manufactured, smooth solution

(4.2) U(x, y, t) = cos(4x+ 1) cos(4y + 2) cos(4
√
2t+ 3)

to the two dimensional wave equation (2.1), and solve until t = 2 using the methods
of interior order 2p = 2, 4, 6.

To get a truncation error O(hp−2) at a few corner points, as shown in Figure
1(B), we modify the standard SBP-SAT scheme by using erroneous boundary data.
For the Dirichlet problem, the true boundary data at the grid point (0, yi), denoted
by gi(t), can be obtained from (4.2) as gi(t) = U(0, yi, t). However, in the penalty
terms in the SAT method, we use (1 + ν)gi(t) on the first and last five grid points.
In particular, for the 2pth order method we choose ν = cph

p, p = 1, 2, 3, where the
factors cp are chosen to match the coefficients of the truncation error by one-sided
difference stencils. Since the boundary data is multiplied by H−1ST ∼ O(h−2), this
choice results in a truncation error O(hp−2). We note that the stability property of
the discretization does not change. We plot the L2 error versus the number of grid
points in each space dimension in Figure 3(A). The convergence rates 2.01, 3.07,
and 4.21 imply a gain of three orders in all the three cases, and are in agreement
with the error estimate (2.51).

For the Neumann problem we again use erroneous boundary data, this time by
perturbing the true data by adding ν = cph

p−1, p = 1, 2, 3. Here the data is
multiplied by H−1 ∼ O(h−1) in the penalty term, hence the truncation error at
those ten grid points is as in the Dirichlet case O(hp−2). As is mentioned towards
the end of Section 3.1.3, the perturbation changes the structure of the right-hand
side of the boundary system. The analysis for one dimensional problems presented
in [29] leads to w = 1 in (2.51) for all the three cases, and a corresponding gain
of two orders for the two dimensional problem. The L2 errors from the numerical
computations are plotted in Figure 3(B). The convergence rates are 1.00, 2.00 and
3.00. In all the three cases, the gain is two orders, and agrees with the accuracy
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Figure 3. L2 errors for (A) the Dirichlet problem (B) the Neu-
mann problem. The dominating truncation error is O(hp−2) lo-
cated at ten grid points as shown in Figure 1(B).

analysis leading to the estimate (2.51). For neither the Dirichlet nor the Neumann
problem do we observe any effect of the logarithmic term in (2.51), but this is not
surprising since asymptotically such an effect would be difficult to detect.

5. Conclusion

In this paper, we extend the accuracy analysis of finite difference methods solving
initial-boundary-value problems to two space dimensions. The two dimensional
analysis is based on a diagonalization technique to decompose a two dimensional
problem into one dimensional problems of the same type. We then continue the
analysis by utilizing the results from the one dimensional analysis. We have chosen
the second order wave equation as the model problem, but the technique presented
in this paper can be used to analyze other equations.

The second contribution of this paper is the analysis of the effect of truncation
error localized at a few grid points in a corner of a two dimensional domain. This
kind of truncation error often occur in multi-block finite difference discretizations
with non-conforming grid interfaces. The analysis is performed for a simplified but
analogous problem, a single block with large truncation errors at a few grid points
close to a corner. The numerical experiments for the simplified problem show that
our accuracy analysis is sharp in the limit as the grid spacing approaches zero.
Numerical experiments in a multi-block setting presented in [30] also agree well
with this analysis.

In addition, we have presented a detailed framework of analyzing the convergence
rate of one dimensional problems by the normal mode analysis, and have shown that
the critical point is to derive sharp error estimates in the vicinity of s = 0 in Laplace
space. Singularities of the boundary system can also occur on the imaginary axis
away from the origin, but they have no influence on the final convergence rate.
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Appendix A. Proof of Lemma 2.1

Proof. Let Q̃y = PQy, then the eigenvalue problem (2.4) can be written as

(A.1)
1

h2
P−1Q̃yϕ = −λϕ.

Since P is symmetric positive definite, P 1/2 and P−1/2 are also symmetric positive
definite. We rewrite (A.1) as

1

h2
P−1/2Q̃yP

−1/2P 1/2ϕ = −λP 1/2ϕ.

With the notation Q̂y = P−1/2Q̃yP
−1/2 and ϕ̂ = P 1/2ϕ, we obtain the following

new eigenvalue problem

(A.2)
1

h2
Q̂yϕ̂ = −λϕ̂.

Because Q̃y is symmetric negative semi-definite, according to Sylvester’s law of

inertia, Q̂y is also symmetric negative semi-definite. Therefore, the eigenvalues of

Q̂y are real and non-positive. The matrices Qy in (2.4) and Q̂y in (A.2) are similar

because Q̂y = P 1/2QyP
−1/2, so they have the same eigenvalues. This proves that

λ ≥ 0 in (2.4).

Let Φ̂ be the unitary operator [ϕ̂1, ϕ̂2, . . . , ϕ̂Ny
], then its condition number in

spectral norm is equal to one, i.e., χ(Φ̂) = 1. Because of ϕ̂ = P 1/2ϕ, we have

Φ̂ = P 1/2Φ. As a consequence, equation (2.4) can be written as

1

h2
Qy(P

−1/2Φ̂) = −(P−1/2Φ̂)Λ,

where Λ = diag(λ1, λ2, . . . , λNy
). Because both P−1/2 and Φ̂ are invertible, P−1/2Φ̂

is also invertible. Therefore, Qy is diagonalizable as

(A.3)
1

h2
Qy = −(P−1/2Φ̂)Λ(P−1/2Φ̂)−1.

Since the spectral norm is unitarily invariant and Φ = P−1/2Φ̂, we have

‖Φ‖ = ‖P−1/2‖ and ‖Φ−1‖ = ‖P 1/2‖.

By Assumption 1, ‖Φ‖ and ‖Φ−1‖ are uniformly bounded. �

Appendix B. Proof of Lemma 2.3

Proof. For the special case δ = 0, the lemma is equivalent to Lemma 4 in [29], and
its proof is found there. In the following, we only consider the case when δ > 0.
Let s̃ = a+ bi and s̃+ = c+di, where a, b, c, d are real numbers and a ≥ δ > 0. The
relation s̃2+ = s̃2 + λ+ gives

(c+ di)2 = (a+ bi)2 + λ+.

The real and imaginary part of the two sides of the above equation must be equal,
which leads to {

cd = ab,

c2 − d2 = a2 − b2 + λ+.
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Therefore,

(B.1) c2 − a2 = d2 − c2d2

a2
+ λ+.

Assume Re(s̃+) < δ, that is 0 ≤ c < a. Then we have c2 < a2, which means that
the left-hand side of (B.1) is negative. However, by c2 < a2 the right-hand side of
(B.1)

d2 − c2d2

a2
+ λ+ > λ+ ≥ 0.

This is a contradiction. Therefore, we must have Re(s̃+) ≥ δ. �

Appendix C. Proof of Lemma 2.5

Proof. Let

(C.1) u(t) = estφ

for some complex number s and φ is a one dimensional grid function with ‖φ‖1D,x <
∞. Substituting (C.1) to (2.19), with the notation s̃ = sh we obtain the eigenvalue
problem

(C.2) s2φ =
Q

h2
φ.

We note that (C.2) is in exactly the same form as (2.20) with a zero truncation
error. As a consequence, the boundary system corresponding to (C.2) is

(C.3) C(s̃)Σ = 0,

where the left-hand side of (C.3) is the same as the left-hand side of (2.22).
If C(s̃) is singular for some s̃ with Re(s̃) > 0, then (C.3) has a non-trivial solution

Σ 
= 0. It then follows that (C.1) with Re(s) > 0 is a solution of (2.19). However,
this contradicts stability for the reason outlined in Lemma 12.1.1 in [11, pp. 378].
For completeness, we state it below.

We define a sequence of grids indexed by n

x
(n)
j = jhn, hn =

h

n
, j = 0, 1, . . . , n = 1, 2, . . . .

The eigenvalue problem reads

s2φ(1) =
Q

h2
φ(1).

We define a sequence of grid functions f (n) = φ(1), n = 1, 2, . . ., which satisfies
the eigenvalue problem

s2f (n) =
Q

h2
f (n) ⇐⇒ n2s2f (n) =

Q

h2
n

f (n).

Therefore,

u(n)(t) = enstf (n)

are solutions of (C.1) and grow arbitrarily fast, i.e., a contradiction to stability. �
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Appendix D. Estimates of |Σi|
D.1. Proof of Lemma 2.6.

Proof. We decompose s̃ = iξ̃ + ηh in the right half-plane into two parts. The
first part is when s̃ is in the vicinity of the origin, i.e., 0 < |s̃| ≤ δ, where δ
is a small constant independent of h. Here the range of s̃ includes a small, but
h-independent interval of the imaginary axis. For example, we can in particular
consider Re(s̃) = ηh ≤ δ/

√
2 and |Im(s̃)| ≤ δ/

√
2. The second part is when s̃ is

away from the origin, Re(s̃) = ηh and |Im(s̃)| > δ/
√
2 ∼ O(1).

We start with the first case when s̃ is in the vicinity of the origin. The entries of
C(s̃) are continuous functions in s̃. Every entry can be expanded in terms of κ(s̃)
or s̃, and κ(s̃) can be further expanded to its Taylor series. C(s̃) can be written as

(D.1) C(s̃) = C(0) + s̃C ′(0) +
s̃2

2
C ′′(0) + · · · ,

with the notation C ′(s̃) = dC(s̃)/ds̃. An estimate of the type (2.29) can be obtained
by using Lemma 3.4 in [24]. For completeness, we state this lemma below (notations
of norms are changed to be consistent with the notations used in this paper) and
explain how to use it thereafter.

Lemma D.1 (Lemma 3.4 in [24]). Consider the n× n linear system (A+ δE)x =
b where A is singular with rank n − 1. Let USV ∗ = A be the singular value
decomposition of A. If (U∗EV )nn 
= 0, then for all sufficiently small |δ| we get

‖(A+ δE)−1‖max ≤ (2δ(U∗EV )nn)
−1.

If, in addition, b is in the column space of A, then for all sufficiently small |δ| we
have ‖x‖max ≤ c‖b‖max. Here c is independent of δ.

The first step of using Lemma D.1 is to perform the singular value decompo-
sition (SVD) of C(0) = USV∗. The value of w in (2.29) depends on 1) whether

(U∗C ′(0)V )nn is equal to zero; 2) whether T̂C is in the column space of C(0).

• When (U∗C ′(0)V )nn 
= 0: if TC is in the column space of C(0) then w = 0;
otherwise ‖C−1(s̃)‖max ∼ 1/(ηh) and w = 1.

• When (U∗C ′(0)V )nn = 0: we need to take into account the third term in

the Taylor series of C(s̃), i.e., C
′′
(0), and check whether (U∗C

′′
(0)V )nn

is equal to zero. More generally, we obtain the estimate (2.29) with m =
1, 2, . . . , w − 1 if(

U∗ d
mC(s̃)

ds̃m

∣∣∣∣
s̃=0

V
)

nn

= 0 and

(
U∗ d

wC(s̃)

ds̃w

∣∣∣∣
s̃=0

V
)

nn


= 0.

If w in (2.29) is infinite, then C(s̃) is singular for some s̃ with a positive real part.
This contradicts the stability of the numerical scheme. Therefore, with a stable
discretization w is always finite.

Next, we consider the case when s̃ is away from the origin. Assume that C(s̃) is

singular at s̃ = iξ̃ for some ξ̃ where |s̃| > δ ≥ 0 with δ independent of h. Now we
may need to use a Puiseux series for κ(s̃). This leads to a similar expansion of C(s̃)
as above, but with a non-integer leading order exponent. We round the exponent to
its nearest integer, denoted by α, towards positive infinity. By the same argument
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as the case |s̃| ≤ δ, at s̃ = iξ̃ + ηh we have

‖C−1(s̃)‖max ≤ K

(ηh)α
.

The non-zero components of T̂C are in the form ∂p+2/∂xp+2Û(0, s) as given in
(2.21). The key is to realize that

L
[
∂α

∂tα
∂p+2U(0, t)

∂xp+2

]
= sα

∂p+2

∂xp+2
Û(0, s),

where L is the Laplace transform operator in t. Here we have used the compatibility
condition between the initial and boundary data. At s̃ = sh = (iξ + η)h we have∣∣∣∣ ∂p+2

∂xp+2
Û(0, s)

∣∣∣∣ ≤ 1

|sα|

∣∣∣∣L [
∂α

∂tα
∂p+2

∂xp+2
U(0, t)

]∣∣∣∣ .
Since the singularity is away from the origin, we have

‖Σ‖max ≤ ‖C−1(s̃)‖max‖T̂C‖max ≤ K

ηαhα

1

|sα|

∣∣∣∣L [
∂α

∂tα
∂p+2

∂xp+2
U(0, t)

]∣∣∣∣
≤ K

ηαδα
∼ O(1).

This proves that no accuracy loss is caused by the singularity of C(s̃) away from
the origin. Note that by using this lemma the term ‖L(∂αTC/∂t

α)‖max is added to
the final estimate. �

Appendix E. Estimates of 1/(1− |κj |2)
E.1. Proof of Lemma 2.7.

Proof. The characteristic equation takes the general form

(E.1)

2l∑
j=0

ajκ
j = s̃2κl,

where aj are the coefficients of the standard central finite difference stencils [7]. In
the estimate, we only need to consider the l admissible roots and derive estimates
for 1/(1− |κj |2), j = 1, 2, . . . , l. We start with the case when s̃ = iξ̃ + ηh is in the
vicinity of the origin, i.e., |s̃| ≤ δ where δ and η are small constants independent of
h.

If a root |κj(0)| < 1, then a perturbation analysis straightforwardly leads to
|κj(s̃)| < 1 and consequently 1/(1− |κj(s̃)|2) is bounded independently of h. How-
ever, for a root |κj(0)| = 1 a careful derivation is needed to obtain the precise
dependence of 1/(1− |κj(s̃)|2) on h.

To proceed, we derive another form of the characteristic equation. Since admis-
sible roots are only related to interior stencils, we consider a uniform grid in one
space dimension

xj = jh, j = 0,±1,±2, . . . ,

with grid spacing h. We denote D(2l) the 2lth order accurate central finite
difference operator approximating ∂2/∂x2, and apply it to the mode eiωxj , where
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−π < ωh ≤ π. Similarly to the derivation in [6, pp. 41], the operator D(2l) acting
on the mode eiωxj gives

D(2l)eiωxj =
1

h2
f(l, ωh)eiωxj ,

where

f(l, ωh) = −
l−1∑
n=0

2(n!)2

(2n+ 2)!

(
4 sin2

ωh

2

)n+1

.

The corresponding characteristic equation is

(E.2) f(l, ωh) = s̃2.

A root |κ| = 1 at s̃ = 0 corresponds to a root f(l, ωh) = 0 for −π < ωh ≤ π.
It is obvious that f(l, ωh) = 0 has a double root ω = 0. In addition, f(l, ωh) is a
monotone decreasing function in l so the only roots of f(l, ωh) = 0 are the double
root ω = 0, corresponding to a double root κ = 1 of the characteristic equation
(E.1) with s̃ = 0. We therefore factorize (E.1) to

(E.3) (κ− 1)2P (κ) = 0,

where P (1) 
= 0. When s̃ = iξ̃+ηh, the double root is perturbed to two single roots,
where precisely one is admissible. Substituting the admissible root κν = 1 + ν to
(E.3), we obtain

ν2 = s̃2κl
ν/P (κν).

The value of κl
ν/P (κν) to the leading order is real and O(1). Therefore, there exists

constant K1 and K2 independent of h such that

|Re(ν)| ≥ K1ηh and |Im(ν)| ≥ K2|ξ̃|.
Note that the admissibility condition leads to Re(ν) < 0. We now have the estimate

1

1− |κν(s̃)|2
=

1

1− |1 + ν|2 =
1

−2Re(ν)− Re(ν)2 − Im(ν)2
≤ K

ηh
,

for s̃ in a vicinity of the origin.
Next, we consider the case when s̃ = iξ̃+ηh is away from the origin. Assume an

admissible root |κa(iξ̃+ηh)| < 1 satisfies |κa(iξ̃)| = 1. The expansion of κa(iξ̃+ηh)

around s̃ = iξ̃ leads to

(E.4)
1

1− |κa(s̃)|2
≤ K

(ηh)β
,

where β is the leading order exponent in its Puiseux series rounded to the nearest
integer towards positive infinity. We note that when estimating the error (2.25),

1
1−|κa(s̃)|2 is multiplied by |σa|2, which is computed by solving the boundary system

(2.22) and is related to the spatial derivatives of the true solution. We can therefore
eliminate the h-dependence in (E.4) in the same manner as in Lemma 2.6, which
increases the order of temporal derivative of the true solution in the final estimate
from α to α+ β. �
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