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ADAPTIVE DISCONTINUOUS GALERKIN METHODS

FOR ELLIPTIC INTERFACE PROBLEMS

ANDREA CANGIANI, EMMANUIL H. GEORGOULIS, AND YOUNIS A. SABAWI

Abstract. An interior-penalty discontinuous Galerkin (dG) method for an
elliptic interface problem involving, possibly, curved interfaces, with flux-
balancing interface conditions, e.g., modelling mass transfer of solutes through

semi-permeable membranes, is considered. The method allows for extremely
general curved element shapes employed to resolve the interface geometry ex-
actly. A residual-type a posteriori error estimator for this dG method is pro-
posed and upper and lower bounds of the error in the respective dG-energy
norm are proven. The a posteriori error bounds are subsequently used to prove
a basic a priori convergence result. The theory presented is complemented by a
series of numerical experiments. The presented approach applies immediately
to the case of curved domains with non-essential boundary conditions, too.

1. Introduction

Interface conditions are used in the modelling of various engineering applica-
tions and physical, chemical, biological phenomena, in particular, ones involving
multiple distinct materials with different diffusion, density, permeability or con-
ductivity properties. Such interface conditions are typically used to close systems
of partial differential equations (PDEs) posed on multi-compartment distinct ma-
terial regions. As a result, these interface problems often admit solutions having
jump discontinuities of the state variable and/or of some of its derivatives across
the interface. In other words, their solutions may have higher regularity in indi-
vidual material regions than in the entire physical domain. The analytical regular-
ity theory for interface problems is far less advanced than for respective standard
(one-compartment) initial/boundary-value problems. Therefore, the reliable and
efficient numerical approximation of such problems is desirable. Furthermore, such
a development has the potential to be used to inform on the underlying local an-
alytical regularity properties, too. However, in many applications interfaces arise
in the form of general, curved, manifolds of co-dimension one, thus making their
numerical treatement challenging.

A class of interface problems, which is still relatively unexplored, are problems
with flux-balancing interface conditions, resulting in discontinuities of the state
variable itself. This class of interface conditions model, among other things, the
mass transfer of solutes through semi-permeable membranes in a number of engi-
neering applications and biological processes such as in filtering, electrophysiology,
and cell biology; see, e.g., [8, 15, 17, 19] for more details on the modelling. The
design of practical high-order numerical methods for this class of problems poses a
number of challenges, most important being the discontinuity of the solution across
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the interface, and the geometric approximation of the, possibly curved, interface
itself.

In the context of finite element methods (FEMs), when the interface is a gen-
eral manifold of co-dimension one, the geometry cannot be described exactly by
the mesh, as even isoparametric elements can only exactly resolve interfaces with
polynomial level-sets. A number of methods to address this shortcoming have been
proposed over the years, such as the unfitted FEM [4, 5, 28, 32], mortar elements
[23], immersed interface methods [31, 33, 36], fictitious domain methods [6, 10, 11],
composite FEM [37], cut-cell techniques [9, 27, 34, 38], etc.

Although many of the aforementioned works also provide a priori error analysis
of the proposed methods and/or goal-oriented error estimation techniques, the lack
of availability of rigorous a posteriori bounds may appear somewhat surprising at
first sight. This is, nonetheless, an important open question for interface problems,
as their solutions often admit rich, a priori unknown, structures in the vicinity of
the interface and/or in the intersection of interfaces and physical boundaries. Ob-
serving, however, that, upon interface approximation, the exact solution is defined
on a different domain to its finite element approximation, the standard approach of
proving a posteriori bounds, i.e., using PDE stability results linking the error with
the residual, becomes cumbersome. Few a posteriori bounds for curved domains
exist, focusing on the related (but simpler) problem of proving a posteriori error
bounds for elliptic problems posed on one-compartment curved domains [2,21]; see
also [20].

To address the challenge of general curved interface geometry, in this work we
present a fitted interior-penalty discontinuous Galerkin (dG) method for an ellip-
tic interface problem involving elements with extremely general curved faces. The
elliptic interface problem considered here is posed on a multi-compartment do-
main and the specific flux-balancing interface conditions have been proposed in the
modelling of mass transfer through semi-permeable membranes [15, 17, 19]. Such
interface problems, yielding discontinuous solutions across the interface, can be
easily implemented within an existing dG code simply by modifying the interior
penalty dG numerical fluxes accordingly [17, 18, 26]. Moreover, the extremely gen-
eral element shapes allowed in the proposed method are able to resolve very general
interface geometries exactly, up to quadrature errors. The optimal approximation
of the finite element spaces and good conditioning of the respective stiffness ma-
trices are ensured by the use of physical coordinate basis functions, as opposed to
standard mapped ones from a reference element; this idea was utilised in [5, 16],
where efficient techniques for the assembly step are presented. Furthermore, an al-
ternative construction using parametric maps of reference elements with extremely
general reference element shapes is also proposed. The latter may prove to be useful
in the context of high-order finite element spaces.

We prove residual-type a posteriori bounds for the proposed dG method whose
fitted nature crucially avoids some of the aforementioned theoretical challenges. At
the same time, however, generalizations of standard approximation, inverse and
conforming-non-conforming recovery estimates (in the spirit of [29]) to elements
with curved faces required for the proof are derived in detail. The latter may be of
independent interest. For a posteriori error bounds for conforming FEM for elliptic
interface problems we refer to [13, 14], for dG methods to [12], and to [35] for a
finite volume scheme. Using the derived a posteriori error bounds, we also give a
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basic a priori convergence result for the proposed method using the efficiency of
the a posteriori estimator, under minimal regularity assumptions, in the spirit of
the seminal work [25]. We prefer to do so, since the regularity theory for elliptic
interface problems is far from being well developed.

We stress that the developments presented below also apply naturally to the
case of elliptic problems with non-essential (Robin or Neumann-type) boundary
conditions over a single curved domain. Since elliptic problems over domains with
piecewise curved boundaries are relevant in applications, we believe that the results
presented below may be of wider interest.

The fitted approach proposed below may appear cumbersome at first sight, if
employed as spatial discretization in the context of evolutionary PDEs involving
moving interfaces. This is, in fact, not necessarily the case. The theoretical de-
velopments presented below appear to be generalizable, at least in principle, to a
cut-cell-type setting, whereby a mesh is not subordinate to the interface location a
priori. In this context, some implementation issues have already been tackled in [5].
This is not done here, however, in the interest of simplicity of the presentation of
the key ideas, and will be considered in detail elsewhere. An interesting attribute
of the fitted approach presented below is that, using curved elements, it is possible
to represent the geometry accurately without necessarily resorting to the standard
practice of mesh-refinement in the vicinity of the interface; cf., for instance [28].

The remainder of this work is organised as follows. In Section 2, the model prob-
lem is introduced. The discontinuous Galerkin method, along with the admissible
curved element shapes are discussed in Section 3. Some necessary approximation,
trace, and inverse estimates for general curved elements are presented in Section
4. An extension of the conforming-non-conforming recovery operator from [29] to
curvilinear elements is proven in Section 5. Upper and lower a posteriori error
bounds for the proposed dG method are shown in Section 7. A basic convergence
result of the dG method under minimal regularity is presented in Section 8. In
Section 9, we comment on the use of general curved elements in conjunction with
parametric finite element mappings. In Section 10, a series of numerical experi-
ments investigating the performance of the a posteriori error bounds, implemented
using the deal.II finite element library are presented. Finally, we draw some
conclusions and discuss a number of further directions of research in Section 11.

2. Model problem

Let Ω be a bounded open polygonal/polyhedral domain with Lipschitz boundary
∂Ω in R

d, d = 2, 3. Ω is split into two subdomains Ω1 and Ω2, such that Ω =
Ω1 ∪ Ω2 ∪ Γtr, with Γtr := (∂Ω1 ∩ ∂Ω2) \∂Ω being also Lipschitz continuous with
bounded curvature; see Figure 1 for an illustration.

We consider the model problem:

(2.1)

−Δu = f, in Ω1 ∪ Ω2,

u = 0, on ∂Ω,

n1 · ∇u1 = Ctr(u2 − u1)|Ω1
, on Ω̄1 ∩ Γtr,

n2 · ∇u2 = Ctr(u1 − u2)|Ω2
, on Ω̄2 ∩ Γtr,

with f : Ω1 ∪Ω2 → R known function, ui = u|Ω̄i
, i = 1, 2, Ctr > 0 a given interface

transmission (e.g., permeability) constant and ni, i = 1, 2 denoting the respective
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Ω1 Ω2Γtr

Figure 1. Ω subdivided into two subdomains Ω1 and Ω2 by the
interface Γtr.

outward unit normal vectors. This is a simplified model for mass transfer of a solute
through a semi-permeable membrane through, e.g., osmosis, but it is rich enough in
highlighting the aforementioned challenges posed for the numerical analysis of this
class of problems. We note that, setting Ω2 = ∅, we trivially recover the classical
elliptic problem for u1 with non-essential boundary conditions: setting Ctr = 0,
we retrieve the homogeneous Neumann problem, while for Ctr �= 0, we recover the
homogeneous Robin problem.

Let Lp(ω), 1 ≤ p ≤ ∞ and Hr(ω), r ∈ R, denote the standard Lebesgue and
Hilbertian Sobolev spaces on a domain ω ⊂ Ω. The norm of L2(ω) ≡ H0(ω),
ω ⊂ Ω, will be denoted by ‖ · ‖ω, and is induced by the standard L2(ω)-inner
product, denoted by 〈·, ·〉ω; when ω = Ω, we shall use the abbreviations ‖·‖ ≡ ‖·‖Ω
and 〈·, ·〉 ≡ 〈·, ·〉Ω. Also, we set H1 := H1(Ω1 ∪ Ω2), and

H1
0 := {v ∈ H1 : v = 0 on ∂Ω}.

Upon integrating by parts on each subdomain and applying the interface condition,
we arrive to (2.1) in weak form, which reads: find u ∈ H1

0 such that

(2.2) D (u, v) :=

∫
Ω

∇u · ∇vdx+

∫
Γtr

Ctr�u� · �v�ds =
∫
Ω

fvdx

for all v ∈ H1
0, where �u� := v1|Kn1 + v2|Kn2 is the jump across the interface and

f ∈ L2(Ω). Problem (2.2) is well posed in H1
0 by the Lax-Milgram lemma.

3. Discontinuous Galerkin method

We introduce an interior penalty discontinuous Galerkin (dG) finite element
method for the discretization of the elliptic interface problem (2.2). The dG method
employs elements with, possibly, curved faces, able to resolve the interface geome-
try exactly. The method is closely related to the spatial discretization for parabolic
interface problems introduced in [17], with the latter assuming exact interface res-
olution using standard (non-curved) simplicial or box-type elements only.

A key attribute of the proposed method is the use of physical frame basis func-
tions, i.e., the elemental bases consist of polynomials on the elements themselves,
rather than mapped polynomials through a mapping from a reference element.
Crucially, the lack of conformity of the dG method allows for such physical frame
polynomial basis functions to be used on very general element shapes. The imple-
mentation challenges arising from this non-standard choice will be discussed below.
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3.1. The mesh. Let T = {K} be a locally quasi-uniform subdivision of Ω, pos-
sibly containing regular hanging nodes, with K a generic, possibly curved, open
simplicial, box-type, or prismatic element of diameter hK . More specifically, we
shall assume that the mesh consists of triangular or quadrilateral elements when
d = 2, and of tetrahedral or prismatic elements with triangular bases when d = 3.
We stress that the prismatic elements considered here are not assumed to have
parallel bases, in general. The mesh skeleton Γ :=

⋃
K∈T ∂K is subdivided into

three disjoint subsets Γ = ∂Ω ∪ Γint ∪ Γtr, where Γint := Γ\(∂Ω ∪ Γtr).
We shall assume that elements with curved faces will be employed only to resolve

the interface geometry, i.e., only elements K ∈ T such that ∂K∩Γtr �= ∅ are curved;
see Figure 2 for an illustration. This is also realistic from a practical perspective,
as the global use of curved elements is more computationally demanding (with no
immediate advantage) during assembly. We stress that, with minor modifications
only, the theory presented below extends to the case were curved elements are used
to resolve curved boundaries with non-essential boundary conditions in addition to
interfaces or, indeed, in the context of single element-long domains separated by
multiple interfaces of the form (2.1); in both cases elements with more than one
curved face are present in the mesh (see Remark 7.6 below for a more detailed
discussion). We refer to Section 11 for a discussion on the use of curved elements
for different settings and how the present developments can be used.

K1
K2

Γtr

ν1

ν2

•

•

Figure 2. Curved elements K1 and K2 (solid lines/curves) from
either side of the interface Γtr, resolving the geometry of Γtr.

We make some further assumptions on the admissible meshes near the (curved)
interface. We assume that every element K ∈ T is contained in either Ω1 or Ω2 so
that the set {K ∈ T : K ∩ Ωi �= ∅}, i = 1, 2, forms a subdivision of Ωi. Moreover,
for simplicity (and with no essential loss of generality,) we assume that the set
∂K ∩ Γtr �= ∅ is one whole face of K, or one vertex of K only. Hence, when d = 3,
we shall only consider (possibly curved) tetrahedral or prismatic elements with
triangular bases K ∈ T such that ∂K ∩ Γtr �= ∅, so that a unique cut plane passes
through the 3 vertices of K lying on Γtr. Elsewhere in the mesh, box-type elements
when d = 3 are also allowed. Moreover, we assume that the mesh is constructed in
such a way that each element K is a Lipschitz domain.

Assumption 3.1. For all elements K ∈ T tr, we assume that:

a) (Star-shapedness) Each element K ∈ T tr, having the face E ⊂ Γtr, is star-
shaped with respect to all vertices opposite this face E; note that we have
one such vertex when K is simplicial, or more than one such vertices when
K is box-type or prismatic. Furthermore, we assume that each element
K ∈ T tr is also star-shaped with respect to all the midpoints of the edges
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sharing a common vertex with the face E ⊂ Γtr and are not (edges of)
E ⊂ Γtr itself; we refer to Figure 3 for an illustration for d = 2.

b) (Shape-regularity) We have m(x) · n(x) ≥ c|m(x)| uniformly across the
mesh, for every vector m(x) = x − x0, with x ∈ E and x0 any vertex
opposite E ∈ Γ, and n(x) the respective unit outward normal vector to E
at x. Moreover, we assume that |m(x)| ∼ hK uniformly.

K

Γtr

nK

Γtr

m

Figure 3. Elements K ∈ T tr are assumed to satisfy Assumption
3.1 a) (left) and b) (right).

Note that Assumption 3.1 b) is trivially satisfied by shape-regular elements K
with straight faces. It is a natural condition in view of proving trace estimates; cf.
Lemma 4.1 below (see also [1, Theorem 3.10] and [22, Section 3] for illuminating
expositions). Assumption 3.1 a) can always be fulfilled on sufficiently fine meshes,
given that the curvature of Γtr is bounded.

We denote the set of, possibly curved, interface elements by

T tr := {K ∈ T : measd−1(∂K ∩ Γtr) > 0};
with measr(ω) denoting the r-dimensional Hausdorff measure of a set ω ⊂ R

d; see
Figure 2 for an illustration of such elements. Note that elements having just one
vertex on Γtr do not belong to T tr.

Definition 3.2. For each K ∈ T tr, we define the simplicial or box-type related
element K̃ to be the element with straight/planar faces having the same vertices
as K. Let also K ⊂ K be the largest subelement with straight/planar faces and all

faces parallel to the faces of the related element K̃.
For two adjacent elements K,K ′ ∈ T tr sharing a common face E ∈ Γint∪Γtr, we

shall denote by Ẽ := ∂K̃ ∩ ∂K̃ ′ the related common face of the two (also adjacent)

related simplicial or prismatic elements K̃, K̃ ′.

Notice that in general, K �= K̃ when ∂K ∩ Γtr is curved; see Figure 4 for an
illustration.

Next, we define
Γint
tr := {E ∈ Γint : E �= Ẽ},

i.e., the subset of Γint containing all the faces E ∈ Γint with different related faces
Ẽ; see again Figure 4 for an illustration. Notice that E �= Ẽ is possible only when
d = 3.

The above star-shapedness assumptions effectively imply that the angles between
the faces E ⊂ Γtr and those faces in Γint

tr cannot be arbitrarily small and that the
Jacobian of the function parametrizing E ⊂ Γtr on a local coordinate system, as
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Γtr

KK K̃

E Ẽ

Figure 4. A three-dimensional curved element K ∈ T tr (enclosed

by the solid lines and curve), its related elements K̃ having the
same vertices as K and straight faces (two same faces and the
third depicted by a dashed line), and K (having two same faces
and the third depicted by a dashed-dotted line). Although it does
not belong to Γtr, the face E (enclosed by the solid lines and curve),

has a curved edge while the related face Ẽ (two same faces and the
third depicted by a dashed line), is a straight triangle.

defined above, cannot be very large. Satisfying these assumptions may require a
small number of refinements of the elements K ∈ T tr of a given initial mesh.

3.2. Finite element space and the dG method. We define the discontinuous
finite element space Sp

h, subordinate to the mesh T = {K}, by

(3.1) Sp
h = {v ∈ L2(Ω) : v|K ∈ Pp(K)},

where Pp(K) denotes the space of polynomials of total degree p on an element K.
For each element face E ⊂ Γint ∪ Γtr, there are two elements K1 and K2 such

that E ⊂ ∂K1 ∩ ∂K2. The outward unit normal vectors on E of ∂K1 and ∂K2

are denoted by nK1
and nK2

, respectively. For a function v : Ω → R that may
be discontinuous across Γ, we set vi = v|Ki

, and we define the jump �v� and the
average {v} of v across E by

(3.2) �v� = v|K1
nK1

+ v|K2
nK2

, {v} =
1

2
(v|K1

+ v|K2
) .

Similarly, for a vector-valued function w, piecewise smooth on T with wi = w|Ki
,

we define

�w� = w|K1
· nK1

+w|K2
· nK2

, {w} =
1

2
(w|K1

+w|K2
) .

When E ⊂ ∂Ω, we set {v} = v, �v� = vn and �w� = wn with n denoting the
outward unit normal to the boundary ∂Ω.

We introduce the meshsize function h : Ω → R, where h|K = hK , K ∈ T and
h = {h} on each (d − 1)-dimensional open face E ⊂ Γ. We also define hmax :=
maxx∈Ω h and hmin := minx∈Ω h. Without loss of generality, we shall assume
that hmax remains uniformly bounded throughout this work, thus, avoiding having
estimation constants dependent on max{1, hmax}.
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The interior penalty discontinuous Galerkin method for (2.2) is defined as: find
uh ∈ Sp

h such that

(3.3) Dh(uh, vh) = 〈f, vh〉
for all vh ∈ Sp

h, where

Dh(uh, vh) =
∑
K∈T

∫
K

∇uh · ∇vhdx−
∫
Γ\Γtr

({∇uh} · �vh� + {∇vh} · �uh�)ds

+

∫
Γ\Γtr

γ0
h

�uh� · �vh�ds+

∫
Γtr

Ctr�uh� · �vh�ds;

(3.4)

here γ0 > 0 is the discontinuity-penalization parameter (to be defined precicely
below), and Ctr > 0 is the permeability coefficient. We note carefully that there is
no discontinuity penalization on the interface. As we shall see below, the penalty
parameter has to be chosen large enough in order to ensure the stability of the
discontinuous Galerkin discretization.

4. Approximation, trace, and inverse estimates

For the proof of upper and lower a posteriori error bounds, we shall require ap-
proximation, trace, and inverse estimates for the elements with curved boundaries
K ∈ T tr, with uniform constants, i.e., constants that are independent of the par-
ticular shape of K. We begin by extending the standard trace estimate to elements
with curved faces.

Lemma 4.1. Let v ∈ H1
0 and K ∈ T tr. Then, under the above assumptions on the

mesh, we have

(4.1) ‖v‖2∂K∩Γtr ≤ C
(
h−1
K ‖v‖2K + hK‖∇v‖2K

)
,

with C > 0, independent of the shape and size of K and of v.

Proof. Since K ∈ T tr is star-shaped with respect to any given vertex νEtr
opposite

the face Etr = ∂K ∩Γtr, let m(s) be the vector pointing from the vertex νEtr
to all

points s ∈ K, thereby defining m : K → R
d; cf. Figure 3 (right). Without loss of

generality, we assume that K ∈ T tr is simplicial. Indeed, if K ∈ T tr is prismatic,
let K0 ⊂ K to be the (curved) simplex defined by νEtr

and Etr and follow the
argument presented below for K0 instead.

Defining the vector field F = mv2, the divergence theorem implies∫
Etr

(m ·n)v2 ds =
∫
∂K

F ·n ds =

∫
K

∇·F dx =

∫
K

(∇·m)v2 dx+2

∫
K

v∇v ·m dx,

noting that m(s) · n(s) = 0 for all s ∈ ∂K\Etr, which, in turn, yields

(4.2) min
Etr

|m · n|‖v‖2Etr
≤ d‖v‖2K + hK‖v‖K‖∇v‖K ,

noting that ‖∇ ·m‖L∞(K) = d and ‖ |m|‖L∞(K) ≤ hK . The result already follows
by Assumption 3.1 b). �

Next, let Π0 : L2(Ω) → S0
h denote the orthogonal L2-projection operator onto

the elementwise constant functions, given by

Π0v|K := |K|−1

∫
K

vdx for K ∈ T ,
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with | · | ≡ measd(·) denoting the volume. We have the following approximation
result.

Lemma 4.2. Given the assumptions on the mesh, for each v ∈ H1(K), K ∈ T ,
we have the bounds

(4.3) ‖v −Π0v‖K ≤ ChK‖∇v‖K
and

(4.4) ‖v −Π0v‖∂K ≤ C
√
hK‖∇v‖K ,

with C > 0 constant independent of the shape of K ∈ T , on v and on hK .

Proof. Due to the general, possibly curved, shape of the elements K ∈ T tr, a
simple application of a standard Bramble-Hilbert type result (cf., e.g., [7]) and
scaling is not sufficient to provide uniform constant C with respect to the shape of
K. Instead, we work as follows. For K ∈ T \T tr, the results are well-known. For
K ∈ T tr, the Friedrichs-type inequality proven in [40, Theorem 3.2], with explicit
constant with respect to the domain, along with shape-regularity, yields (4.3). The
bound (4.4) follows by combining (4.1) with (4.3). �

For each K ∈ T tr, we shall require special subsimplices contained in K, with
certain properties, having, in particular, straight/planar faces.

Lemma 4.3. Let K ∈ T tr. For each v ∈ Pp(K), there exists a simplex K�(v) ⊂ K
with straight/planar faces such that

|K| ≤ C�|K�(v)| with ‖v‖L∞(K) = ‖v‖L∞(K�(v)),

where the positive constant C� is independent of v, hK , and p, but depends, however,
on the shape-regularity constant of K.

Proof. Let K ∈ T tr and fix v ∈ P(K). Define xK ∈ K to be a point where the
maximum of v in K is attained, viz.,

‖v‖L∞(K) = |v(xK)|.
To prove the result, it is sufficient to show that there exists a simplex K�(v) ⊂ K
with straight/planar faces containing xK ∈ K such that |K| ≤ C�|K�(v)|. Recalling
Definition 3.2, we observe that, for K, we have |K| ∼ |K̃| from shape-regularity. If
xK ∈ K, then we can take K�(v) := K. If xK ∈ K\K, the star-shapedness of K
with respect to the midpoints of the faces (when d = 2) or the edges (when d = 3)
allows for the construction of a simplex K�(v) with faces (when d = 2) or edges
(when d = 3) defined by the line-segments connecting xK with these midpoints.
Given that the distance between xK and these midpoints is equivalent to hK/2, the
result follows. Since we have established that exists at least one K�(v) per element,
we may define K�(v) as the one with the maximum area, to minimize the constant
C�. Notice that C� can be taken independent of the polynomial v, as the area of
K�(v) is always bounded from below by a multiple of h2

K and K is compact. �

We refer to Figure 5 for an illustration of the elements K, K̃,K, and K�(v), for

some v ∈ Pp(K). Notice that we have K = K̃ = K = K�(v) for all v ∈ Pp(K),
when the face E ⊂ Γtr of a K ∈ T tr is not curved.

The above result is required to show the following crucial inverse-type estimates
between L2-norms of polynomials on curved elements K ∈ T tr and their related
elements K̃.
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Γtr

K

K

K̃

xK∗

∗

∗

K�(v)

Figure 5. A curved element K ∈ T tr (enclosed by the solid lines

and curve), its related element K̃ having the same vertices as K
and straight faces (two same faces and the third depicted by a
dashed line), K (having two same faces and the third depicted by
a dashed-dotted line), and K�(v) for some v ∈ Pp(K) (enclosed by
the solid lines with endpoints denoted by ∗). Here, xK is the point
where the maximum of v in K is attained.

Lemma 4.4. Let K ∈ T tr and assume that the related element K̃ is such that

(4.5) cinvC�p
2d|K\K̃| < |K|,

with cinv > 0 the constant of the inverse estimate ‖v‖2
L∞(K̃)

≤ cinvp
2d|K̃|−1‖v‖2

K̃
,

for all v ∈ Pp(K). Then, the following estimate holds:

‖v‖2K ≤ θinv(K)‖v‖2
K∩K̃

,

where θinv(K) := |K|/
(
|K| − cinvC�p

2d|K\K̃|
)
.

Proof. Let v ∈ Pp(K). We have, respectively,

‖v‖2K = ‖v‖2
K∩K̃

+ ‖v‖2
K\K̃

≤ ‖v‖2
K∩K̃

+ |K\K̃|‖v‖2
L∞(K\K̃)

≤ ‖v‖2
K∩K̃

+ |K\K̃|‖v‖2L∞(K�(v))

≤ ‖v‖2
K∩K̃

+ cinvp
2d|K�(v)|−1|K\K̃|‖v‖2K�(v)

≤ ‖v‖2
K∩K̃

+ cinvC�p
2d|K|−1|K\K̃|‖v‖2K ,

as K�(v) ⊂ K, using Lemma 4.3; the result is already implied. �

Lemma 4.5. Let K ∈ T tr and let K ⊂ K and K̃ as in Definition 3.2 be such that

(4.6) cinvp
2d|K̃\K| < |K̃|,

for cinv > 0 as in Lemma 4.4. Then, for each v ∈ Pp(K), the following estimate
holds:

‖v‖2
K̃

≤ ηinv(K)‖v‖2K ,

where ηinv(K) := |K̃|/
(
|K̃| − cinvp

2d|K̃\K|
)
.
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Proof. Let v ∈ Pp(K). We have, respectively,

‖v‖2
K̃

= ‖v‖2K + ‖v‖2
K̃\K ≤ ‖v‖2K + |K̃\K|‖v‖2

L∞(K̃\K)

≤ ‖v‖2K + |K̃\K|‖v‖2
L∞(K̃)

≤ ‖v‖2K + cinvp
2d|K̃|−1|K̃\K|‖v‖2

K̃
,

which already implies the result. �

Notice that, when K ∈ T tr is convex, we have K̃ = K and, thus, ηinv(K) = 1.

Also, when K ∈ T tr is not curved, we have K = K̃ = K and, therefore, θinv(K) =
1 = ηinv(K).

Remark 4.6. It is possible to extend the applicability of the above estimates by
replacing p2d by p2 in (4.6) at the expense of a, more involved to estimate, constant
cinv. We refer to [24, Lemma 3.7] for a similar construction. This remark also
applies to (4.5) for the case where K�(v) and K have parallel faces.

Remark 4.7. A close inspection of the proof of Lemma 4.3 reveals that the shape-
regularity assumption of K can be relaxed to requiring that there exists a, uniform
across the mesh, constant calt > 0 such that |K̃| ≤ calt|K|. The constant C�

will then depend on calt instead of the shape-regularity constant of K as stated in
Lemma 4.3. This, in turn, implies the validity of the inverse estimates in Lemmas
4.4 and 4.5 in this setting also.

For the remainder of this work, we shall require the above inverse-type estimates,
hence we make the following saturation assumption which can always be satisfied
after a finite number of refinements of an original coarse mesh.

Assumption 4.8. We assume that the conditions (4.5) and (4.6) are satisfied for
all elements K ∈ T tr.

We continue with a generalization of the standard inverse-type estimate from a
face of an element to the element itself; here the face is allowed to be curved.

Lemma 4.9. Let K ∈ T tr such that a whole face of K, say Etr, is contained in
Γtr, and is, in general, curved. Then, for each v ∈ Pp(K), the inverse estimate

‖v‖2Etr
≤ Cinv

p2

hK
‖v‖2K ,

with Cinv > 0 constant, independent of v, p, hK and K, but dependent on the
shape-regularity constant of K.

Proof. We partition Etr into m (d − 1)-dimensional pieces of equal measure, de-
noted by Ej , j = 1, . . . ,m. Further, we construct a partition of K into (curved)
subelements Kj , by considering the simplices with one face Ej and the remaining
vertex being the vertex of K opposite Etr, when K is simplicial or by considering
the prismatic elements obtained by extrusion of Ej orthogonally to the face of K
opposite Etr, when K is prismatic. We refer to Figure 6 for an illustration when
d = 2.

Denoting by Ẽj the straight/planar face of the related element K̃j approximating
Ej , we have

(4.7) ‖v‖2
Ẽj

≤ Cp2
|Ẽj |
|K̃j |

‖v‖2
K̃j

≤ C
p2

hK
‖v‖2

K̃j
≤ Cηinv(Kj)

p2

hK
‖v‖2Kj

,
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K

Kj

Ej

Etr ⊂ Γtr

K

Kj

Ej

Etr ⊂ Γtr

Figure 6. Curved elements K ∈ T tr with their partitions.

as, in view of Remark 4.7, it is possible to apply Lemma 4.5 on each Kj (for
sufficiently large m.)

As m → ∞, Kj becomes infinitesimal in (d − 1)-dimensions, and so, approx-

imating Kj by K̃j produces an arbitrarily small error in the geometry, resulting
to ηinv(Kj) → 1. Moreover, since Etr admits a differentiable parametrization, we
have limm→∞

∑m
j=1 ‖v‖2Ẽj

= ‖v‖2Etr
. Therefore, summing (4.7) over j and taking

m → ∞, we arrive at the required result. �

Lemma 4.10. Let K ∈ T tr and let E a face of K, such that E ⊂ ∂K\Γtr. Then,
for each v ∈ Pp(K), the inverse estimate

‖v‖2E ≤ Cinv
p2

hK
‖v‖2K ,

with Cinv > 0 constant, independent of v, p, hK and K, but dependent on the
shape-regularity constant of K.

Proof. Fix K ∈ T tr and a face E∗ ⊂ ∂K\Γtr. For d = 2, the star-shapedness with
respect to the midpoints of the faces E ⊂ ∂K\Γtr, allows for the existence of a
straight-edged triangle K∗ ⊂ K having E∗ as one face and as remaining vertex the
midpoint of the other face E ⊂ ∂K\Γtr opposite to E∗. From the shape-regularity
of K, we infer that |K| ∼ |K∗|. On this triangle K∗, we can apply the standard
inverse inequality to deduce

‖v‖2E∗ ≤ C
p2

hK∗

‖v‖2K∗ ≤ Cinv
p2

hK
‖v‖2K ,

as required.
For d = 3 and K with meas2(∂K ∩Γtr) > 0, we approximate E∗ ⊂ ∂K\Γtr by a

quasi-uniform triangulation consisting of m triangles, denoted by Ẽj , j = 1, . . . ,m.
Let xE∗ be the midpoint of an edge of K which is not an edge of E∗ and consider

the straight-faced pyramids K̃j , j = 1, . . . ,m, having Ẽj as one base and xE∗ as

remaining vertex. On each K̃j , we can apply the standard inverse estimate

m∑
j=1

‖v‖2
Ẽj

≤ Cp2
m∑
j=1

|Ẽj |
|K̃j |

‖v‖2
K̃j

≤ C
p2

hK

m∑
j=1

‖v‖2
K̃j

≤ Cηinv(Kj)
p2

hK

m∑
j=1

‖v‖2Kj
,

working as before, with Kj the pyramid with (curved) base on E∗ and vertex xE∗

corresponding to the (straight) pyramid K̃j . Taking m → ∞ gives the result. �
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5. Recovery operator

An important tool for the a posteriori analysis will be a conforming recovery
operator in the spirit of the original construction by Karakashian and Pascal [29].
In particular, we shall modify the construction from [29] to allow for discontinuous
functions across Γtr and for curved elemental faces and edges on Γtr, under the
following assumption.

Assumption 5.1. We define the positive function θ : L2(Ω1 ∪ Ω2) → R with
θ|K := θinv(K), for K ∈ T tr, θ|K := 1, for K ∈ T \T tr, and θ := {θ} on Γ\Γtr. We
also define a function η : L2(Ω1 ∪ Ω2) → R analogously starting from ηinv(K), for
K ∈ T tr. For the remaining of this work, we shall assume that θ and η are locally
quasi-uniform.

Lemma 5.2. Given the above mesh assumptions, there exists a recovery operator
E : Sp

h → H1
0, such that

(5.1)
∑
K∈T

‖∇α(vh − E(vh))‖2K ≤ Cα

∑
E⊂Γ\Γtr

‖
√
θηh1/2−α�vh�‖2E

for all vh ∈ Sp
h, Cα > 0, α = 0, 1, independent of vh, θ and h.

Proof. The proof is based on the one of [29, Theorem 2.2]; particular care is given
in dealing with the additional challenges posed by the, possibly curved, interface
elements. Without loss of generality, we assume that the mesh is conforming on
each Ωi, i = 1, 2, i.e., no hanging nodes are present; for, otherwise, we perform a
finite number of “green” refinements to remove the hanging nodes, and we consider
the new refined mesh in the place of the original T in what follows.

We begin by choosing a (Lagrange) basis for Sp
h. For each K ∈ T \T tr, we

consider the standard Lagrange degrees of freedom. For each K ∈ T tr, we choose,
respectively, the Lagrange basis of K̃. Let N denote the set of all Lagrange nodes
of Sp

h, and we define five of its subsets:

• N0 the set of all internal elemental nodes;
• Nint the set of all nodes situated on Γint;
• N∂Ω the set of all nodes situated on ∂Ω;
• Ntr the set of all nodes situated on Γtr;
• Nout the set of nodes belonging to each element K ∈ T tr, situated outside
K (e.g., the node of K1 situated at the midpoint of the linear segment ν1ν2
in Figure 7).

Evidently, we have N = N0 ∪ Nint ∪ N∂Ω ∪ Ntr ∪ Nout. Note, however, that,
Nout ∩ N0 �= ∅, in general; for an illustration consider the node ν situated at the
midpoint of the linear segment ν1ν2 in Figure 7: ν viewed as a node for K2 implies
ν ∈ N0 and viewed as a node for K1 implies ν ∈ Nout.

Further, let N i
tr and N i

out denote the two subsets of the interface nodes Ntr,
and the “outer” nodes Nout associated with the Lagrange basis functions from
the respective elements belonging to Ω1 and Ω2 only, respectively. Note that if
non-matching grids are used across the interface Γtr, N 1

tr and N 2
tr are, in general

different and strict subsets of Ntr; if, on the other hand, there are no hanging nodes
on the interface, the N i

tr, i = 1, 2, are each a copy of Ntr. Completely analogous
properties characterise N i

out, i = 1, 2 also.
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K1
K2

Γtr

ν1

ν2

•

•

••

••

Figure 7. Degrees of freedom for quadratic Lagrange interface
elements K1,K2 ∈ T tr, denoted by • and ◦, respectively. Note
that one degree of freedom of K1 is situated outside K1 (i.e., in
¯̃K1\K̄1,) at the midpoint of the linear segment ν1ν2.

For each node ν ∈ N\(Ntr ∪ Nout), we define its element-neighborhood

ων := {K ∈ T : ν ∈ K̄},

along with its cardinality |ων |. Note that, when ν ∈ N0, we have |ων | = 1. Also,
for each node ν ∈ N i

tr, i = 1, 2, we define its “one-sided” element neighborhood

ωi
ν := {K ∈ T : K ⊂ Ωi, ν ∈ K̄}, i = 1, 2,

along with its cardinality |ωi
ν |, i = 1, 2, while for each node ν ∈ Nout, we define its

“one-sided” element neighborhood

ωi
ν := {K ∈ T tr : K ⊂ Ωi, ν ∈ ¯̃K}, i = 1, 2,

along with its cardinality |ωi
ν |. Finally, for each K ∈ T , let NK := {ν : ν ∈ ¯̃K},

the set of Lagrange nodes of K.
The recovery operator E : Sp

h → H1
0 is defined by determining its nodal values

Nν at each of the Lagrange nodes ν ∈ N :

(5.2) Nν(E(vh)) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, if ν ∈ N∂Ω;
1

|ων |
∑

K∈ων

Nν(vh|K), if ν ∈ Nint ∪N0;

1

|ωi
ν |

∑
K∈ωi

ν

Nν(vh|K), if ν ∈ N i
tr ∪ N i

out, i = 1, 2.

Note that E(vh) will be, in general, discontinuous across Γtr. Therefore, denoting by
φν the conforming Lagrange basis function at the node ν, (which may, nonetheless,
be discontinuous across Γtr), we have

(5.3) E(vh) =
∑
ν∈N

Nν(E(vh))φν ,

allowing for the regular nodes on ν ∈ Ntr to be counted twice in the summation,
i.e., once for each i = 1, 2; here we have used the convention that φν signifies its
restriction onto the respective element K for all nodes ν ∈ Nout. Hence, we have
E(vh) ∈ H1

0.
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From this, we deduce, respectively,∑
K∈T

‖∇(vh − E(vh))‖2K ≤
∑
K∈T

θinv(K)‖∇(vh − E(vh))‖2K∩K̃

≤
∑
K∈T

∑
ν∈NK

θinv(K)
∣∣Nν(vh|K)−Nν(E(vh))

∣∣2‖∇φν‖2K∩K̃

≤ C
∑

ν∈N\N0

θ(ν)hd−2(ν)
∑

K:ν∈NK

∣∣Nν(vh|K)−Nν(E(vh))
∣∣2

=: C
∑

ν∈N\N0

Iν ,

using the standard bound ‖∇φν‖2K∩K̃
≤ ‖∇φν‖2K̃ ≤ Chd−2

K̃
, where h(ν) and θ(ν)

are given by extending the definitions of the functions h and θ (to include the mesh
nodes also)

h(ν) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

|ων |
∑

K∈ων

hK , if ν ∈ Nint ∪ N∂Ω,

1

|ωi
ν |

∑
K∈ωi

ν

hK̃ , if ν ∈ N i
tr ∪ N i

out, i = 1, 2,

and θ(ν) := 1, if ν ∈ Nint ∪ N∂Ω, while θ(ν) := 1
|ωi

ν |
∑

K∈ωi
ν
θinv(K), if ν ∈

N i
tr ∪ N i

out, i = 1, 2. We have∑
ν∈N∂Ω

Iν =
∑

ν∈N∂Ω

θ(ν)hd−2(ν)
∑

K:ν∈NK

|Nν(vh|K)
∣∣2≤ C

∑
E⊂∂Ω

‖
√
θh

d−2
2 vh‖2L∞(E).

Also, ∑
ν∈Nint∪Ntr∪Nout

Iν ≤ C
∑

E⊂Γint

∑
ν∈Ẽ

θ(ν)hd−2(ν)|Nν(vh|K1
)−Nν(vh|K2

)
∣∣2

≤ C
∑

E⊂Γint

‖
√
θh

d−2
2 �vh�‖2

L∞(Ẽ)
,

with Ẽ := E when E /∈ Γint
tr . Note that Ẽ �= E is possible only for d = 3. The

first inequality follows from applying the crucial [29, Lemma 2.2] and working as
in the proof of [29, Theorem 2.2], while the last inequality follows from the shape-
regularity property. We remark that, for d = 2, we have |Nν(vh|K)−Nν(E(vh))

∣∣ = 0

as |ωi
ν | = 1 when ν ∈ N i

out, i = 1, 2, while for d = 3 and for p = 1, we have Nout = ∅.
For d = 3, and p ≥ 2, we may have |ωi

ν | > 1 and, thus, the above calculation is
non-trivial for ν ∈ Nout.

Combining the above bounds, we arrive at∑
K∈T

‖∇(vh − E(vh))‖2K ≤ C
∑

E⊂Γ\Γtr

‖
√
θh

d−2
2 �vh�‖2

L∞(Ẽ)
.

Finally, applying the standard inverse estimate

‖v‖2
L∞(Ẽ)

≤ Ch−d+1
K ‖v‖2

Ẽ
,

for all polynomials v ∈ Pp(Ẽ), and using Lemma 4.5 with K = E, we deduce

‖v‖2
Ẽ
≤ ηinv(E)‖v‖2E.
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Hence, we obtain the required bound for α = 1. The proof for α = 0 is completely
analogous. �

Remark 5.3. When Γtr is not curved, i.e., when the mesh T does not contain any
elements with curved faces, we have θ = 1 = η on Γ\Γtr in (5.1), thereby retrieving
the known bound of Karakashian and Pascal [29, Theorem 2.2].

6. Stability of the method

We begin by assessing the stability of the discontinuous Galerkin method (3.3).
To this end, on Sp

h, we introduce the dG-energy norm

(6.1) ‖|vh|‖ :=
( ∑

K∈T
‖∇vh‖2K + ‖

√
γ0/h�vh�‖2Γ\Γtr + Ctr‖�vh�‖2Γtr

) 1
2

.

Theorem 6.1. The discrete problem (3.3) admits a unique solution uh ∈ Sp
h for

γ0 := γθη ≥ γ with γ > 0 a sufficiently large constant depending on p. Moreover,
we have the stability bound

(6.2) ‖|uh|‖ ≤ C‖f‖,

with C = C(p, Cinv, C0, C1) > 0 constant, with Cinv as in Lemma 4.10 and C0, C1

as in (5.1), but independent of the curvature of Γtr and of h.

Proof. We begin by assessing the coercivity of the bilinear form (3.4). From the
definition, we have

Dh(vh, vh) =
∑
K∈T

‖∇vh‖2K−2

∫
Γ\Γtr

{∇vh}·�vh�ds+‖
√
γ0/h�vh�‖2Γ\Γtr+Ctr‖�vh�‖2Γtr

for all vh ∈ Sp
h. To bound the second term in the right-hand side of the above

equation we use the inverse estimate of Lemma 4.10 to deduce, in a standard
fashion,

(6.3)

∫
Γ\Γtr

{∇uh}·�uh� ds ≤ C
∑
K∈T

Cinvp
2‖
√
1/γ0 ∇uh‖2K+

1

4
‖
√
γ0/h�vh�‖2Γ\Γtr .

Hence,

Dh(vh, vh) ≥ (1− 2CCinvp
2

γ
)
∑
K∈T

‖∇vh‖2 +
1

2
‖
√
γ0/h�vh�‖2Γ\Γtr + Ctr‖�vh�‖2Γtr ,

and we conclude that Dh is coercive if γ > 2CCinvp
2. The proof of the continuity of

Dh is standard and is omitted for brevity, and the existence of a unique uh solving
(3.3) now follows by the Lax-Milgram Lemma. To prove (6.2), from (3.3) and (6.3),
we have

‖|uh|‖2 = 2

∫
Γ\Γtr

{∇uh} · �uh� ds+ 〈f, uh〉

≤ 2CCinvp
2

γ

∑
K∈T

‖∇uh‖2K +
1

2
‖
√
γ0/h�vh�‖2Γ\Γtr +

1

ε
‖f‖2 + ε

4
‖uh‖2,(6.4)
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for any ε > 0. To bound the last term on the right-hand side of (6.4), we use the
Poincaré inequality and Lemma 5.2, respectively:

‖uh‖2 ≤ ‖uh − E(uh)‖2 + C
∑
i=1,2

‖∇E(uh)‖2Ωi

≤ C
( ∑

α=0,1

∑
K∈T

‖∇α(uh − E(uh))‖2K +
∑
K∈T

‖∇uh‖2K
)

≤ C
( 1

γ

∑
E⊂Γ\Γtr

‖
√
γ0/h�vh�‖2E +

∑
K∈T

‖∇uh‖2K
)
,

having used the assumption that h < 1 and γ0 = γθη. The required bound now

follows by fixing ε < 4
C max{γ

2 , 1−
2CCinvp

2

γ }. �

7. A posteriori error bound

Letting Π : L2(Ω) → Sp
h denote the orthogonal L2-projection operator onto

the discontinuous finite element space, we begin by defining the a posteriori error
indicator

(7.1) Υ :=
( ∑

K∈T
Υ2

K

)1/2

, with ΥK :=
(
Υ2

RK
+Υ2

EK
+Υ2

JK
+Υ2

TrK

)1/2

,

comprising of the interior, normal flux, jump and interface residuals

ΥRK
:= ‖h(Πf +Δuh)‖K , ΥEK

:= ‖
√
h�∇uh�‖∂K∩Γint ,

ΥJK
:=

√
γ‖

√
γ0/h�uh�‖∂K∩Γ\Γtr , ΥTrK :=

2∑
i=1

‖
√
h(Ctr�uh� +∇uh) · ni‖∂K∩Γtr .

We also define the data oscillation term

Θ1 := ‖h(f −Πf)‖,
along its restriction on each K, Θ1,K := ‖h(f −Πf)‖K .

7.1. Upper bound. For the proof of an a posteriori bound, we use the conforming
recovery operator. To this end, we decompose the error into conforming and non-
conforming parts u − uh = ec + ud

h, with ec := u − E(uh) and ud
h := E(uh) − uh,

noting that ec ∈ H1
0.

We consider an (inconsistent) extension D̂h : (H1
0 + Sp

h)× (H1
0 + Sp

h) → R of the
bilinear form Dh, given by

D̂h(w, v) =
∑
K∈T

∫
K

∇w · ∇v dx−
∫
Γ\Γtr

({∇Πw} · �v� + {∇Πv} · �w�)ds

+

∫
Γ\Γtr

γ0
h

�w� · �v�ds+
∫
Γtr

Ctr�w� · �v�ds.

Then, we have immediately that D̂h(wh, vh) = Dh(wh, vh) for all wh, vh ∈ Sp
h, and

also D̂h(w, v) = D(w, v) for all w, v ∈ H1
0. We also note the continuity property

(7.2) D̂h(w, v) ≤ C‖|w|‖‖|v|‖ for all w, v ∈ H1
0 + Sp

h,

which can be shown in a standard fashion once equipped with the inverse estimate
from Lemma 4.10.
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The error equation can be derived as follows:

‖|ec|‖2 = D(ec, ec) = D(u, ec)− D̂h(uh, e
c)− D̂h(u

d
h, e

c)

=

∫
Ω

fec dx− D̂h(uh, e
c)− D̂h(u

d
h, e

c) +Dh(uh,Π0e
c)−

∫
Ω

fΠ0e
c dx

=
(∫

Ω

f(ec −Π0e
c) dx− D̂h(uh, e

c −Π0e
c)
)
− D̂h(u

d
h, e

c) =: I − II.

We estimate the terms I and II above in the following lemmas.

Lemma 7.1. We have
I ≤ C

(
Υ2 +Θ2

1

)1/2‖∇ec‖
for γ0 = γθη for some γ > 1 as in the proof of Theorem 6.1.

Proof. Integration by parts yields

I =
∑
K∈T

∫
K

(f +Δuh)(e
c −Π0e

c) dx−
∫
Γint

�∇uh� · {ec −Π0e
c}ds

+

∫
Γ\Γtr

�uh� · {∇Π(ec −Π0e
c)}ds−

∫
Γ\Γtr

γ0
h

�uh� · �ec −Π0e
c�ds

−
∫
Γtr

(
Ctr�uh� · �ec −Π0e

c� + �∇uh(e
c −Π0e

c)�
)
ds.

(7.3)

We focus on estimating the third term on the right-hand side of (7.3), which can
be bounded as

(7.4) ‖
√
h/(γγ0){∇Π(ec −Π0e

c)}‖Γ\Γtr‖
√
γγ0/h�uh�‖Γ\Γtr .

The term involving ec can be further bounded by∑
E∈Γ\Γtr

‖
√
h/(γγ0){∇Π(ec −Π0e

c)}‖2E ≤ C
Cinvp

2

γ

∑
K∈T

‖
√
1/γ0∇Π(ec −Π0e

c)‖2K

≤ C
∑
K∈T

‖
√
θ/γ0∇Π(ec −Π0e

c)‖2
K̃

≤ C
∑
K∈T

‖
√
θ/γ0h

−1Π(ec −Π0e
c)‖2

K̃

≤ C
∑
K∈T

‖
√
θη/γ0h

−1Π(ec −Π0e
c)‖2K ≤ C

∑
K∈T

‖∇ec‖2K ,

using Lemma 4.10, Lemma 4.4, a standard inverse estimate on K̃, and Lemma 4.5,
respectively, and observing that θη/γ0 = 1/γ < 1; hence, we get∫

Γ\Γtr

�uh� · {∇Π(ec −Π0e
c)}ds ≤ Cγ1/2‖

√
γ0/h�uh�‖Γ\Γtr‖∇ec‖.

Working in a standard fashion for the remaining terms, we deduce

I ≤ C
( ∑

K∈T
h2
K‖f +Δuh‖2K + ‖

√
h�∇uh�‖2Γint + γ‖

√
γ0/h�uh�‖2Γ\Γtr

) 1
2 ‖∇ec‖

+ C
2∑

i=1

∑
K∈T tr

‖
√
h(Ctr�uh� +∇uh) · ni‖∂K∩Γtr‖∇ec‖K ,

using the approximation bounds given in Lemma 4.2. The result already follows.
�

To estimate II, we use (7.2) for D̂h, along with the following bound.
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Lemma 7.2. With the above mesh assumptions and choice of γ0, we have

(7.5) ‖|ud
h|‖

2 ≤ C
∑
K∈T

(
1 + γ−1(1 + hKCtr)

)
Υ2

JK
,

for C > 0 generic constant, independent of h and of uh.

Proof. Using Lemma 5.2, we have∑
K∈T

‖∇ud
h‖2K + ‖

√
γ0/h�ud

h�‖2Γ\Γtr ≤ C
∑
K∈T

(C1γ
−1 + 1)Υ2

JK
.

For the third term on the right-hand side of (6.1), we use (4.1) and Lemma 5.2 once
more to deduce

Ctr‖�ud
h�‖2Γtr ≤ Ctr

2∑
j=1

‖ud
h|Ωj

‖2Γtr ≤ CCtr

∑
K∈T tr

(
hK‖∇ud

h‖2K + h−1
K ‖ud

h‖2K
)

≤ CCtr

((
C1 + C0

) ∑
E⊂Γint

‖
√
θη�uh�‖2E

)

≤ CCtr

(
γ−1

∑
K∈T

hKΥ2
JK

)
.

Combining the last two bounds already yields the result. �

Theorem 7.3 (upper bound). Let u be the solution of (2.1) and let uh ∈ Sp
h be its

dG approximation with γ0 as in the statement of Lemma 7.1. Then, we have the
following a posteriori error bound

(7.6) ‖|u− uh|‖2 ≤ C
(
Υ2 +Θ2

1

)
+ C

∑
K∈T

(
1 + γ−1(1 + hKCtr)

)
Υ2

JK
.

Proof. The proof follows immediately from the error equation, the bounds on I and
on II, along with the triangle inequality ‖|u− uh|‖ ≤ ‖|ec|‖+ ‖|ud

h|‖. �

7.2. Lower bound. We employ standard bubble functions, [39], to show lower
bounds for the above a posteriori estimator. A key challenge to overcome is the
shape of interface elements K ∈ T tr, for which we do not possess any stability
properties of respective elemental or face bubble functions. We shall overcome this
by employing bubble functions on K and on E instead.

To this end, we denote by ωE the union of the elements sharing an interior face
E ∈ Γint\Γint

tr , and by ψK and ψE the (standard) element and face bubble functions
[39]. The functions ψK ∈ H1

0 (K) and ψE ∈ H1
0 (ωE) are such that ‖ψK‖L∞(K) = 1,

and ‖ψE‖L∞(E) = 1. Moreover, for each v ∈ Sp
h, there exist positive constants

c1, c2, independent of h and of v, such that

(7.7) ‖v‖2K ≤ c1‖
√

ψKv‖2K , ‖v‖2E ≤ c2‖
√

ψEv‖2E
for all K ∈ T \T tr and E ⊂ Γint\Γint

tr . When K ∈ T tr or when E ∈ Γint
tr , (7.7)

holds for K or E instead, respectively, so that, by Lemma 4.4 and Lemma 4.5,

(7.8) ‖v‖2K ≤ θη(K)‖v‖2K ≤ c1θη(K)‖
√
ψKv‖2K ,

where θη(K) := θinv(K)ηinv(K) and

(7.9) ‖v‖2E ≤ θη(E)‖v‖2E ≤ c2θη(E)‖
√
ψEv‖2E ,
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with θη(E) := θinv(E)ηinv(E). To treat both the cases K ∈ T \T tr and K ∈ T tr

simultaneously, we shall carry over the θ and η terms (along with K and E) for
all K ∈ T , recalling that θinv(K) = 1 = ηinv(K) (and K = K, E = E) when
K ∈ T \T tr.

We can now show a lower bound for the a posteriori error estimator.

Theorem 7.4 (lower bound). Let u be the solution of (2.1) and let uh ∈ Sp
h the

dG solution given by (3.3). Then, for all K ∈ T , we have the bound

(7.10) Υ2
RK

+Υ2
EK

≤ C
∑

K′∈ωK

(θη(K ′))2
(
‖∇(u− uh)‖2K′ +Θ2

1,K′
)
,

where ωK := {K ′ ∈ T : measd−1((∂K∩∂K ′)\Γtr) �= 0}. Further, for two elements
Ki ∈ T tr sharing a face E ⊂ Γtr, we have the bound
(7.11)
2∑

i=1

‖
√
h(Ctr�uh�+∇uh)·ñi‖2

Ẽi
≤ C

2∑
i=1

(
(θη(Ki))

2
(
‖∇(u−uh)‖2Ki

+Θ2
1,Ki

)
+Θ2

2,Ki

)
,

where Ẽi := Ẽ ∩ ∂K̃i, i = 1, 2, represent the related faces Ẽ, signifying that the
values of a function on Ẽi are taken from within K̃i. Also, ñi denote the respective
outward normal to Ẽi. Finally, Θ2,Ki

:= |K̃i�Ki|h−d
Ki

‖Ctr�uh� + ∇uh‖Ẽi
is the

interface oscillation term, with P�Q := (P\Q) ∪ (Q\P ) denoting the symmetric
difference between two sets P and Q.

Proof. We first prove (7.10). For the interior residual, for K ∈ T , we set R|K :=
(Πf +Δuh)|K , and M |K := h2

KRψK . Then, using (7.8), we have

(7.12) Υ2
RK

= h2
K‖R‖2K ≤ c1θη(K)h2

K‖
√
ψKR‖2K = c1θη(K)〈Πf +Δuh,M〉K .

Using integration by parts along with (2.2) yields

〈Πf +Δuh,M〉K = 〈∇(u− uh),∇M〉K + 〈Πf − f,M〉K
≤ ‖∇(u− uh)‖K‖∇M‖K + hK‖Πf − f‖Kh−1

K ‖M‖K .
(7.13)

Further, as hK ∼ hK , we have ‖∇M‖2K ≤ Ch−2
K ‖M‖2K ≤ Ch2

K‖R‖2K , which, used

on (7.13) and in view of (7.12), implies

(7.14) Υ2
RK

≤ Cθη(K)
(
‖∇(u− uh)‖K + ‖h(Πf − f)‖K

)
ΥRK

,

which already gives the required bound.
For the normal flux residual, for E ⊂ Γint, we set ωE := K1 ∪ K2 ∪ E with

K1,K2 ∈ T such that E = ∂K1 ∩ ∂K2 and, on ωE , we define the function τE :=
h(E)�∇uh�ψE∩∂K1∩∂K2

. Here, �∇uh� in ωE is understood as its constant extension

in the normal direction to E. (Notice that E ∈ Γ\Γtr is not curved, so there is
a unique normal direction to E.) Since �∇u� = 0 on Γint, and τE |∂ωE

= 0, with
ωE = K1 ∪K2 ∪E we have, for K ∈ T ,
(7.15)

Υ2
EK

≤ c2
∑

E⊂∂K∩Γint

θη(E)〈�∇uh�, τE〉E = c2
∑

E⊂∂K∩Γint

θη(E)〈�∇(uh − u)�, τE〉E .

Integration by parts and (2.2) imply

〈�∇(uh − u)�, τE〉E = 〈Δuh + f, τE〉ωE
+ 〈∇(uh − u),∇τE〉ωE

= 〈Πf +Δuh, τE〉ωE
+ 〈f −Πf, τE〉ωE

+ 〈∇(uh − u),∇τE〉ωE
.

(7.16)
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Observing that τE = 0 on (K1∪K2∪E)\(K1∪K2∪ (E∩∂K1∩∂K2)), a standard
inverse estimate implies ‖∇τE‖2Ki

≤ Ch−2
Ki

‖τE‖2Ki
≤ ChKi

‖�∇uh�‖2E∩∂Ki
, which,

used on (7.16) and in view of (7.15), implies

(7.17) Υ2
EK

≤ Cc2

( ∑
K′∈ωK

(
Υ2

RK′ +Θ2
K′

) 1
2

)
ΥEK

.

We now prove the bound on the interface residual (7.11). For E ⊂ ∂K1 ∩ ∂K2 ∩
Γtr, we consider the related face Ẽ of K̃i, i = 1, 2, and let also ñ signify the normal
vector to Ẽ. We consider the face bubble ψi

Ẽ
supported in K̃i, i = 1, 2, respectively.

We shall also make use of the extension and/or restriction of ψi
Ẽ

onto Ki, i = 1, 2,

denoted for simplicity also by ψi
Ẽ
. Therefore, ψi

Ẽ
= 0 on ∂Ki\E also, since ψi

Ẽ
is constructed to vanish on the (d − 1)-dimensional hyperplanes containing the
(straight) faces of Ki not belonging to the interface. We define

riE := h(E)
(
(Ctr�uh� +∇uh) · ñψi

Ẽ

)
|Ki

,

for i = 1, 2, where (Ctr�uh�+∇uh) · ñ in Ki is understood as its constant extension
in the ñ-direction. Setting rE |Ki

:= riE , i = 1, 2, we have rE ∈ H1
0 by construction.

Using the interface conditions in (2.1) along with (2.2), we deduce

(7.18)

2∑
i=1

〈(Ctr�uh� +∇uh) · ni, rE〉Ei

= 〈Ctr�uh − u�, �rE�〉E + 〈Δuh + f, rE〉K1∪K2
− 〈∇(uh − u),∇rE〉K1∪K2

,

with Ei := E ∩ ∂Ki, and ni := n|Ωi
. Setting N := Ctr�uh� +∇uh for brevity, and

using (7.18), we get

(7.19)

c−1
2

2∑
i=1

‖
√
hN · ñi‖2

Ẽi
≤

2∑
i=1

〈N · ñi, rE〉Ẽi

= 〈Ctr�uh − u�, �rE�〉E + 〈Δuh + f, rE〉K1∪K2
− 〈∇(uh − u),∇rE〉K1∪K2

+

2∑
i=1

(
〈N · ñi, rE〉Ẽi

− 〈N · ni, rE〉Ei

)
.

Note that
√
hN · ñi is a polynomial and, therefore, the constant c2 in the first

inequality above is independent of E. Now, recalling that E and Ẽ have the same
endpoints, for the last two terms on the right-hand side of (7.19), we have

(7.20) 〈N · ñi, rE〉Ẽi
− 〈N · ni, rE〉Ei

=

∮
Ẽi∪Ei

(NrE) · n ds =

∫
K̃i
Ki

∇ · (NrE) dx,

from the divergence theorem.
Combining (7.19) and (7.20), along with the Cauchy-Schwarz inequality yields

(7.21)

c−1
2

2∑
i=1

‖
√
hN · ñi‖2

Ẽi

≤ ‖Ctr�uh − u�‖E‖�rE�‖E +

2∑
i=1

(
‖∇(uh − u)‖Ki

‖∇riE‖Ki

+ ‖h(Δuh + f)‖Ki
‖h−1riE‖Ki

+ ‖∇ · (NrE)‖L1(K̃i
Ki)

)
.
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Now, Lemma 4.3, and a standard inverse estimate give, respectively,

‖∇riE‖2Ki
≤ Chd

Ki
‖∇riE‖2L∞(Ki)

= Chd
Ki

‖∇riE‖2L∞((Ki)�(∇riE))

≤ Chd−2
Ki

‖riE‖2L∞((Ki)�(∇riE)) ≤ Chd−2
Ki

‖riE‖2L∞(Ki)

=Chd−2
Ki

‖riE‖2L∞(Ẽi)
≤ Ch−1

Ki
‖riE‖2Ẽi

≤ C‖
√
hN · ñi‖2

Ẽi
,

since riE is constant in the direction of ñi. Also, from Lemma 4.9, we have

‖riE‖2Ei
≤ Ch−1

Ki
‖riE‖2Ki

≤ Chd−1
Ki

‖riE‖2L∞(Ẽi)
≤ ChKi

‖
√
hN · ñi‖2

Ẽi
.

Finally, using Lemma 4.3, along with standard inverse estimates, we have

‖∇ · (NrE)‖L1(K̃i
Ki)
≤ |K̃i�Ki|‖∇ · (NrE)‖L∞(K̃i
Ki)

≤ |K̃i�Ki|‖∇ · (NrE)‖L∞(K̃i∪Ki)

= |K̃i�Ki|‖∇ · (NrE)‖L∞((K̃i∪Ki)�(NrE))

≤ C|K̃i�Ki|h−1
Ki

‖NrE‖L∞((K̃i∪Ki)�(NrE))

≤ C|K̃i�Ki|h−1
Ki

‖NrE‖L∞(Ẽi)

≤ C|K̃i�Ki|h−d
Ki

‖NrE‖L1(Ẽi)

≤ C|K̃i�Ki|h−d
Ki

‖N(
√
hN · ñi)‖L1(Ẽi)

≤ C|K̃i�Ki|h−d
Ki

‖N‖Ẽi
‖(
√
hN · ñi)‖Ẽi

.

Combining the above bounds and using (7.14), we deduce from (7.21):

2∑
i=1

‖
√
hN · ñi‖2

Ẽi
≤ C

( 2∑
i=1

‖
√
hCtr�uh − u�‖2Ei

+ |K̃i�Ki|2h−2d
Ki

‖N‖2
Ẽi

+ (θη(Ki))
2
(
‖∇(u− uh)‖2Ki

+ ‖h(Πf − f)‖2Ki

))
,

which implies the result. �
Remark 7.5. For the jump residual, we trivially have

(7.22) Υ2
JK

=
√
γ‖

√
γ0/h�u− uh�‖2∂K∩Γ\Γtr ,

so it is omitted in the lower bound.

We observe that the interface oscillation term Θ2,K is equal to zero whenK = K̃,

i.e., on non-curved elements. When K �= K̃, the size of Θ2,K depends on the ratio

between the d-dimensional volume of the symmetric difference between K and K̃,
divided by hd

K ∼ |K|.
Remark 7.6. The dG method (3.3) and the a posteriori bounds presented above
remain valid when quadrilateral elements with two curved faces with no common
vertex/edge are present in the mesh. Indeed, observing that the recovery E may be
defined on a refinement of the original mesh, we can split such elements with more
than one curved faces into subelements with one curved face only; the remaining
analysis remains essentially intact. We stress that the actual computation would
take place on the original mesh which may involve elements with more than one
curved faces. Elements with more than one curved faces may arise when cascades
of interfaces separated by very thin, one-element-wide, compartments, or in the
presence of both curved interfaces and non-essential boundaries.
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Remark 7.7. An interesting further development would be the proof of L2-norm
and/or localized a posteriori error bounds. Such a result typically requires a du-
ality argument and the availability of H2-stability a priori PDE estimates. The
increased rate of convergence is then a result of estimates of the form ‖v− vh‖K ≤
Ch2|v|H2(K), where vh has to be at least an elementwise linear approximation of

v ∈ H2(K). Such approximation results are not available on curved domains K,
to the best of our knowledge, with explicit dependence on the element shape. Of
course, local bounds based on a dual weighted residual approach are always possible
at the expense of calculating explicitly a (finer) solution of the dual problem.

8. A priori error bound

Since no a priori error bound is available for the (fitted) discontinuous Galerkin
method proposed above for the elliptic interface problem, we use the above a poste-
riori bounds to show a basic a priori convergence result in the spirit of the celebrated
work of Gudi [25]. Here, however, we need to account also for the oscillation term
arising from the treatment of the interface.

Theorem 8.1. Let u ∈ H1
0 and uh ∈ Sp

h be the solutions of (2.2) and (3.3)
respectively. Then, the error bound

(8.1) ‖|u− uh|‖ ≤ C inf
vh∈Sp

h

(
‖|u− vh|‖+Θ1 +Θ2

)
,

holds with Θ2|K := Θ2,K , K ∈ T .

Proof. Let vh ∈ Sp
h with vh �= uh and set ψ := uh − vh ∈ Sp

h. Coercivity, (2.2),
(3.3), and continuity imply

1

2
‖|uh − vh|‖2 ≤ D̂h(uh − vh, ψ) = 〈f, ψ〉 − D̂h(vh, ψ)

= D̂h(u− vh, E(ψ)) + 〈f, ψ − E(ψ)〉 − D̂h(vh, ψ − E(ψ))
≤ C‖|u− vh|‖‖|E(ψ)|‖+ 〈f, ψ − E(ψ)〉 − D̂h(vh, ψ − E(ψ)).

Noting that Lemma 5.2 implies ‖|E(ψ)|‖ ≤ C‖|ψ|‖, for some constant C > 0 de-
pending on θη, after division by by ‖|ψ|‖, we arrive at

‖|uh − vh|‖ ≤ C‖|u− vh|‖+ 2
〈f, ψ − E(ψ)〉 − D̂h(vh, ψ − E(ψ))

‖|ψ|‖ .(8.2)

Now, to estimate the second term on the right-hand side of (8.2), integration by
parts gives

R :=

∫
Ω

f(ψ − E(ψ)) dx− D̂h(vh, ψ − E(ψ))

=
∑
K∈T

∫
K

(f +Δvh)(ψ − E(ψ)) dx−
∫
Γint

�∇vh� · {ψ − E(ψ)}ds

+

∫
Γ\Γtr

�vh� · {∇Π(ψ − E(ψ))}ds−
∫
Γ\Γtr

γ0
h

�vh� · �ψ�ds

−
∫
Γtr

(
Ctr�vh� · �ψ − E(ψ)� + �∇vh(ψ − E(ψ)�

)
ds.

(8.3)
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Working in a standard fashion to estimate the terms on the right-hand side of (8.3),
we have

R ≤ C
( ∑

K∈T
h2
K‖f +Δvh‖2K + hK‖�∇vh�‖2∂K∩Γint + h−1

K ‖�vh�‖2∂K∩Γ\Γtr

) 1
2

×
( ∑

K∈T
h−2
K ‖ψ − E(ψ))‖2K

) 1
2

+
( ∑

K∈T tr

2∑
i=1

hK‖(Ctr�vh� +∇vh) · ni‖2∂K∩Γtr

) 1
2

×
( 2∑

j=1

‖h−1/2(ψ − E(ψ))|Ωj
‖2Γtr

) 1
2

.

(8.4)

For the last term on the right-hand side of (8.4), we use Lemmas 4.9 and 5.2 to
deduce
2∑

j=1

‖h−1/2(ψ−E(ψ))|Ωj
‖2Γtr

≤ C
∑

K∈T tr

‖h−1(ψ−E(ψ))‖2K ≤ C‖
√
θηh−1/2�ψ�‖2Γ\Γtr .

Noting that the fact that uh is the dG solution was not used in the proof of the
lower bound (Theorem 7.4 above), it can be replaced by any vh ∈ Sp

h. Therefore,
Theorem 7.4 (with vh replacing uh) and the triangle inequality yield the result. �

The above result offers a basic convergence proof for the proposed (fitted) dis-
continuous Galerkin method for interface problems. Note that the regularity of
solutions to such interface problems, which may involve piecewise smooth interface
manifolds, is not well understood in the literature. Therefore, such basic conver-
gence results, not requiring any regularity of the underlying solution, are desirable.

9. Higher order interface approximation

The saturation of the approximation of the geometry by the mesh, (4.5) and
(4.6), is required to be satisfied for the above a posteriori error bounds to hold.
One way of achieving this in practice is an initial refinement step in the vicinity
of T tr. This approach is expected to deliver optimal convergence rates for the
respective adaptive algorithm when p = 1, 2. Indeed, from the a priori error analysis
of finite element methods with local basis of degree p and with boundary and/or
interface approximation, we can expect optimal convergence rates when the curved
boundaries/interfaces are approximated locally by interpolants of degree p− 1.

To ensure that the above interface approximation requirements (4.5), (4.6) do
not result to potentially excessive and unnecessary refinement in the vicinity of
Γtr, when higher order elements are used, we can employ a (non-standard) fitted
approach based on parametric elemental mappings, which we shall now describe.

Each element K ∈ T tr is assumed to be constructed via a parametric elemental
mapping FK : K̂ → K of polynomial degree q ∈ N, from a curved reference element
K̂ with |K̂| ∼ O(1).

More precisely, we begin by considering a parametric mesh of degree q ∈ N, whose
skeleton approximates the interface Γtr with a piecewise interpolant of degree q.
Setting K̃ to be one such (unfitted) parametric element with non-trivial intersection

with Γtr, we consider the q-degree parametric mapping FK̃ : ˆ̃K → K̃ with ˆ̃K being
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Γtr

K

K̃

K̂

ˆ̃K

FK

Figure 8. A curved element K ∈ T tr and the related q-degree
parametric element K̃ as the mapping of the respective reference

elements K̂ and ˆ̃K.

the (classical) reference element, i.e., it may be the d-simplex, the reference d-
hypercube or the reference d-prism, the latter constructed as tensor-product of the
reference (d−1)-simplex and the interval [0, 1]. By considering the extension of FK̃

on a larger domain Ŷ ⊃ ˆ̃K with the same (polynomial) formula, we can precisely

define Ŷ as the FK̃-pre-image of K ∪ K̃ where K ∈ T tr is the fitted element related

to K̃; we denote the extension of FK̃ to Ŷ by FK . We refer to Figure 8 for an

illustration. Hence, the reference element K̂ := F−1
K (K) will, in general, be curved.

We, now, define the mapped discontinuous finite element space Sp,q
h , subordinate

to the mesh T = {K}, by

(9.1) Sp,q
h = {v ∈ L2(Ω) : v ◦ F−1

K |K ∈ Rp(K̂)},

where Rp(K̂) ∈ {Pp(K̂),Qp(K̂)}, and Qp(K̂) denotes space of tensor-product

polynomials of degree p in each variable; when ˆ̃K is a d-simplex, we may select
Rp(K̂) = Pp(K̂), while we select Rp(K̂) = Qp(K̂), in general, otherwise to ensure
optimal approximation rates.

The key motivation for the above construction is that we can reuse the above
developments in this fitted mapped setting also, by first applying the elemental
mappings FK and then use the results from Section 4 on the curved reference
element K̂ instead. An inspection of the proofs from Section 4 shows that all results
hold true in this setting also, with the constants in the estimates now depending
also on the nature of the mapping FK , as is standard in parametric finite elements.

10. Numerical experiments

We shall now illustrate the performance of the a posteriori error estimator within
a standard adaptive algorithm, through an implementation based on the deal.II

finite element library [3]. This allows for the use of curved elements via high-order
parametric mappings of tensor-product reference elements. We take advantage
of this capability and approximate curved interfaces via tensor-product elements
defined through parametric mappings of degree higher than linear, as described in
Section 9.

Although not discussed above merely for simplicity of the presentation, the ex-
tension of the proposed dG method to problems with non-homogeneous Dirichlet
boundary conditions is straightforward; the a posteriori bound is then modified
accordingly [30]. In all cases considered below the interface residual term Θ2,K was
omitted due to its insignificant magnitude (Example 1 below) or simply because it
is equal to zero (Example 2 below). We set γ = 10 throughout.
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Table 1. Example 1. Convergence of the estimator and errors;
quadratic mapping with p = 1.

DoFs estimator rate ‖|.|‖-error rate L2-error H1-error

192 1.3381e+01 — 1.7550e+00 — 6.2516e-02 1.3886e+00
768 7.6174e+00 0.81 8.4388e-01 1.06 2.0201e-02 7.2406e-01
3072 3.9838e+00 0.94 3.9950e-01 1.08 5.7567e-03 3.6434e-01
12288 2.0259e+00 0.95 1.9147e-01 1.06 1.5192e-03 1.8187e-01
49152 1.0202e+00 0.99 9.3267e-02 1.04 3.8765e-04 9.0744e-02
196608 5.1826e-01 0.98 4.6010e-02 1.02 9.7624e-05 4.5323e-02

Table 2. Example 1. Convergence of estimator and errors; qua-
dratic mapping with p = 2.

DoFs estimator rate ‖|.|‖-error rate L2-error H1-error

432 1.8278e+00 — 4.5728e-01 — 7.6800e-03 1.9028e-01
1728 3.8913e-01 2.2 8.4015e-02 2.44 6.2879e-04 3.3034e-02
6912 9.2506e-02 2.07 1.8457e-02 2.19 5.9084e-05 6.8618e-03
27648 2.2127e-02 2.06 4.2318e-03 2.12 5.7411e-06 1.5135e-03
110592 5.5103e-03 2.00 1.0017e-03 2.08 5.7413e-07 3.4841e-04

Table 3. Example 1. Convergence of estimator and errors; qua-
dratic mapping with p = 3.

DoFs estimator rate ‖|.|‖-error rate L2-error H1-error

768 6.5932e-02 – 4.3641e-03 — 8.5525e-05 3.0614e-03
3072 8.1666e-03 3.01 4.6166e-04 3.24 5.7611e-06 3.7515e-04
12288 1.0233e-03 2.99 5.2890e-05 3.12 3.8178e-07 4.6925e-05
49152 1.2937e-04 2.98 6.3781e-06 3.05 2.4791e-08 5.9393e-06
196608 1.7042e-05 2.92 8.0091e-07 2.99 1.5886e-09 7.5685e-07

10.1. Example 1. We consider the problem (2.2) with Ω = (−1, 1)2 and the in-
terface Γtr being a circle of radius r = 0.5, centred at the origin. The Dirichlet
boundary conditions and the source term f are determined by the exact solution

u =

{
r3, in Ω1;

r3 + 1, in Ω2,

where r =
√
x2 + y2 and Ctr = 0.75.
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Upon satisfactory approximation of the interface geometry, the above problem
does not admit singular behavior and we expect to observe optimal convergence
rates. To simulate the fitted approach we use parametric maps of degree higher
than linear for the interface elements.

We begin by assessing the decay of the estimators under uniform refinement,
using quadratic parametric mappings (q = 2) for the elements on Γtr: in Tables
1, 2, and 3, the convergence of the a posteriori estimator, of the energy norm,
of the H1-semi-norm and of the L2-norm of the error are reported, along with
the respective convergence rates for the estimator and for the energy error, for
p = 1, 2, and 3, respectively. The estimator and the dG-norm of the actual error
are plotted in Figure 10(a), for both adaptive and uniform refinement; for the
adaptive refinement a standard bulk criterion is used. Optimal convergence rates
are observed in all cases.

Figure 9. Example 1. Convergence of the estimator and errors
for quadratic mapping and p = 2: adaptive (left) and uniform
(right) refinements.

10.2. Example 2. Let, now, Ω = (−1, 1)× (0, 1), subdivided into Ω1 = (−1, 0)×
(0, 1), Ω2 = (0, 1)2, i.e., interfacing at x = 0. The Dirichlet boundary conditions
and the source term f are determined by the exact solution

u =

{
(x2 + y2)3/4 + x, in Ω1,

1 + y3/2 + x, in Ω2,

which has a point singularity at (0, 0). This example studies the interaction of the
interface discontinuity, with the point singularity at one interface endpoint. The
convergence under uniform as well as adaptive refinement is given in Figure 11 for
p = 1, 2, while the respective effectivity indices (i.e., the ratio between estimator
and exact solution) and adapted meshes are given in Figure 12.
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(a) Refinement 3 (b) Refinement 3

(c) Refinement 7 (d) Refinement 7

Figure 10. Example 1. Meshes produced by the adaptive algo-
rithm with quadratic mapping, for p = 1 (left) and p = 2 (right).
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(a) p = 1

(b) p = 2

Figure 11. Example 2. Convergence of the estimator and of the
actual dG-norm errors for adaptive (left) and uniform (right) re-
finement for p = 1, 2.
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(a) p = 1 (left), p = 2 (right)

(b) Refinement 6 (c) Refinement 9

Figure 12. Example 2. Effectivity indices for p = 1, 2 and meshes
produced by the adaptive algorithm for p = 1.

11. Conclusions

A fitted interior penalty discontinuous Galerkin finite element method for the
solution of flux-balancing elliptic interface problems with general interface geometry
has been presented and its stability has been proven. A posteriori bounds for
the energy norm and a basic convergence result under minimal solution regularity
assumptions have been shown. The proofs require a number of new results on
direct and inverse approximation for curved elements, which may be of independent
interest. Numerical experiments showed the good performance of the a posteriori
bound in practice.
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A current, challenging, yet very relevant direction of research is the extension
of the proposed “fitted” dG methods in the context of the classical transmis-
sion/interface problems of the form

(11.1)

−Δu = f, in Ω1 ∪ Ω2,

u = 0, on ∂Ω,

�u� = 0, on Γtr,

�∇u� = 0, on Γtr.

There is no difficulty in defining a dG scheme for this problem involving curved ele-
ments in the spirit of the seminal work [28]. However, the derivation of a posteriori
bounds and respective adaptive algorithms for this class of problems remains out of
reach at the moment. This is due to the following key theoretical challenge. Since
for (11.1), we have u ∈ H1

0 (Ω) (under the domain assumptions of this work), to
prove a posteriori error estimates we would need to construct a respective recovery
operator as done in Section 5. Such a construction remains a challenge for it is
not clear how to construct a continuous finite element function across a general
curved face. This problem will be discussed elsewhere. Nonetheless, many of the
theoretical tools proved in this work (such as approximation and inverse estimates),
are expected to be useful in the derivation of a posteriori bounds for these classical
interface problems.
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