This journal is devoted to research articles of the highest quality in computational mathematics. Areas covered include numerical analysis, computational discrete mathematics, including number theory, algebra and combinatorics, and related fields such as stochastic numerical methods. Articles must be of significant computational interest and contain original and substantial mathematical analysis or development of computational methodology.

Submission information. See Information for Authors at the end of this issue.

Publication on the AMS website. Articles are published on the AMS website individually after proof is returned from authors and before appearing in an issue.

Subscription information. Mathematics of Computation is published bimonthly and is also accessible electronically from www.ams.org/journals/. Subscription prices for Volume 87 (2018) are as follows: for paper delivery, US$779.00 list, US$623.20 institutional member, US$701.10 corporate member, US$467.40 individual member; for electronic delivery, US$686.00 list, US$548.80 institutional member, US$617.40 corporate member, US$411.60 individual member. Upon request, subscribers to paper delivery of this journal are also entitled to receive electronic delivery. If ordering the paper version, add US$6 for delivery within the United States; US$36 for delivery outside the United States. Subscription renewals are subject to late fees. See www.ams.org/help-faq for more journal subscription information.

Back number information. For back issues see the www.ams.org/backvols.

Subscriptions and orders should be addressed to the American Mathematical Society, P.O. Box 845904, Boston, MA 02284-5904 USA. All orders must be accompanied by payment. Other correspondence should be addressed to 201 Charles Street, Providence, RI 02904-2213 USA.

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy an article for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for permission to reuse portions of AMS publication content are handled by the Copyright Clearance Center. For more information, please visit www.ams.org/publications/pubpermissions.

Excluded from these provisions is material for which the author holds copyright. In such cases, requests for permission to reuse or reprint material should be addressed directly to the author(s). Copyright ownership is indicated in the notice in the lower right-hand corner of the first page of each article.

Mathematics of Computation (ISSN 0025-5718 (print); ISSN 1088-6842 (online)) is published bimonthly by the American Mathematical Society at 201 Charles Street, Providence, RI 02904-2213 USA. Periodicals postage is paid at Providence, Rhode Island. Postmaster: Send address changes to Mathematics of Computation, American Mathematical Society, 201 Charles Street, Providence, RI 02904-2213 USA.

© 2018 by the American Mathematical Society. All rights reserved. This journal is indexed in Mathematical Reviews, Zentralblatt MATH, Science Citation Index®, Science Citation Index Expanded, ISI Alerting ServicesSM, CompuMath Citation Index®, and Current Contents®/Physical, Chemical & Earth Sciences. This journal is archived in Portico and in CLOCKSS. The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lénaïc Chizat, Gabriel Peyré, Bernhard Schmitzer, and François-Xavier Vialard, Scaling algorithms for unbalanced optimal transport problems</td>
<td>2563</td>
</tr>
<tr>
<td>Christian Kreuzer and Emmanuil H. Georgoulis, Convergence of adaptive discontinuous Galerkin methods</td>
<td>2611</td>
</tr>
<tr>
<td>Paul Houston and Thomas P. Wihler, An hp-adaptive Newton-discontinuous-Galerkin finite element approach for semilinear elliptic boundary value problems</td>
<td>2641</td>
</tr>
<tr>
<td>Andrea Cangiani, Emmanuil H. Georgoulis, and Younis A. Sabawi, Adaptive discontinuous Galerkin methods for elliptic interface problems</td>
<td>2675</td>
</tr>
<tr>
<td>Jeonghun J. Lee and Ragnar Winther, Local coderivatives and approximation of Hodge Laplace problems</td>
<td>2709</td>
</tr>
<tr>
<td>Siyang Wang, Anna Nissen, and Gunilla Kreiss, Convergence of finite difference methods for the wave equation in two space dimensions</td>
<td>2737</td>
</tr>
<tr>
<td>Ralf Kornhuber, Daniel Peterseim, and Harry Yserentant, An analysis of a class of variational multiscale methods based on subspace decomposition</td>
<td>2765</td>
</tr>
<tr>
<td>Éliane Bécache, Patrick Joly, and Valentin Vinoles, On the analysis of perfectly matched layers for a class of dispersive media and application to negative index metamaterials</td>
<td>2775</td>
</tr>
<tr>
<td>Dario A. Bini, Stefano Massei, and Beatrice Meini, Semi-infinite quasi-Toeplitz matrices with applications to QBD stochastic processes</td>
<td>2811</td>
</tr>
<tr>
<td>Yang Zhou and Xiaojun Chen, Spherical t_ϵ-designs for approximations on the sphere</td>
<td>2831</td>
</tr>
<tr>
<td>Zhijian He, Quasi-Monte Carlo for discontinuous integrands with singularities along the boundary of the unit cube</td>
<td>2857</td>
</tr>
<tr>
<td>Jared Duker Lichtman and Carl Pomerance, Improved error bounds for the Fermat primality test on random inputs</td>
<td>2871</td>
</tr>
<tr>
<td>Andrew R. Booker, Finite connected components of the aliquot graph</td>
<td>2891</td>
</tr>
<tr>
<td>Stål Aanderaa, Lars Kristiansen, and Hans Kristian Ruud, Search for good examples of Hall's conjecture</td>
<td>2903</td>
</tr>
<tr>
<td>Markus Hittmeir, A babystep-giantstep method for faster deterministic integer factorization</td>
<td>2915</td>
</tr>
<tr>
<td>Jonathan W. Sands and Brett A. Tangedal, Computing annihilators of class groups from derivatives of L-functions</td>
<td>2937</td>
</tr>
<tr>
<td>Philip Brinkmann and Günter M. Ziegler, Small f-vectors of 3-spheres and of 4-polytopes</td>
<td>2955</td>
</tr>
<tr>
<td>Frédéric Chyzak, Thomas Dreyfus, Philippe Dumas, and Marc Mezzarobba, Computing solutions of linear Mahler equations</td>
<td>2977</td>
</tr>
<tr>
<td>Javier Cilleruelo, Florian Luca, and Lewis Baxter, Every positive integer is a sum of three palindromes</td>
<td>3023</td>
</tr>
</tbody>
</table>
Aanderaa, Stål, Lars Kristiansen, and Hans Kristian Ruud. *Search for good examples of Hall's conjecture*, 2903

Acosta, Gabriel, Juan Pablo Borthagaray, Oscar Bruno, and Martín Maas. *Regularity theory and high order numerical methods for the (1D)-fractional Laplacian*, 1821

Banjai, Lehel, and Alexander Rieder. *Convolution quadrature for the wave equation with a non-linear impedance boundary condition*, 1783

Bao, Weizhu, and Chunmei Su. *Uniform error bounds of a finite difference method for the Klein-Gordon-Zakharov system in the subsonic limit regime*, 2133

Baumstark, Simon, Erwan Faou, and Katharina Schratz. *Uniformly accurate exponential-type integrators for Klein-Gordon equations with asymptotic convergence to the classical NLS splitting*, 1227

Baxter, Lewis. *See Cilleruelo, Javier*

Bécache, Éliane, Patrick Joly, and Valentin Venel. *On the analysis of perfectly matched layers for a class of dispersive media and application to negative index metamaterials*, 2775

Bini, Dario A., Stefano Massei, and Beatrice Meini. *Semi-infinite quasi-Toeplitz matrices with applications to QBD stochastic processes*, 2811

Birgin, E. G., N. Krejčí, and J. M. Martínez. *On the employment of inexact restoration for the minimization of functions whose evaluation is subject to errors*, 1307

Booker, Andrew R. *Finite connected components of the aliquot graph*, 2891

Börn, Steffen. *Adaptive compression of large vectors*, 209

Borthagaray, Juan Pablo. *See Acosta, Gabriel*

Bras-Amorós, Maria, and Julio Fernández-González. *Computation of numerical semigroups by means of seeds*, 2539

Brinkmann, Philip, and Günter M. Ziegler. *Small f-vectors of 3-spheres and of 4-polytopes*, 2955

Brugiapaglia, Simone, Fabio Nobile, Stefano Micheletti, and Simona Perotto. *A theoretical study of CompRessed SolvING for advection-diffusion-reaction problems*, 1

Bruin, Peter, and Andrea Ferraguti. *On L-functions of quadratic Q-curves*, 459

Bruno, Oscar. *See Acosta, Gabriel*

Burgos Gil, José Ignacio, Ricardo Menares, and Juan Rivera-Letelier. *On the essential minimum of Faltings' height*, 2425

Burman, Erik, and Peter Hansbo. *Stabilized nonconforming finite element methods for data assimilation in incompressible flows*, 1029

Burman, Erik, Peter Hansbo, and Mats G. Larson. *A cut finite element method with boundary value correction*, 633

Buthe, Jan. *An analytic method for bounding ψ(x)*, 1991

Cai, Yongyong, and Jie Shen. *Error estimates for a fully discretized scheme to a Cahn-Hilliard phase-field model for two-phase incompressible flows*, 2057

Cai, Yongyong, and Yongjun Yuan. *Uniform error estimates of the conservative finite difference method for the Zakharov system in the subsonic limit regime*, 1191

Cangiani, Andrea, Emmanuil H. Georgoulis, and Younis A. Sabawi. *Adaptive discontinuous Galerkin methods for elliptic interface problems*, 2675

Charles, Zachary. *Generating random factored ideals in number fields*, 2047

Cheaytou, Rima. *See Angot, Philippe*

Chen, Long, Jun Hu, and Xuehai Huang. *Fast auxiliary space preconditioners for linear elasticity in mixed form*, 1601

Chen, Xiaojun. *See Zhou, Yang*

Chen, Zhangxin. *See He, Ruijian*

Cheng, Wanyou, and Yu-Hong Dai. *Gradient-based method with active set strategy for ℓ1 optimization*, 1283
Chizat, Lénaïc, Gabriel Peyré, Bernhard Schmitzer, and François-Xavier Vialard. Scaling algorithms for unbalanced optimal transport problems, 2563

Chkifa, Abdellah, Nick Dexter, Hoang Tran, and Clayton G. Webster. Polynomial approximation via compressed sensing of high-dimensional functions on lower sets, 1415

Christiansen, Snorre H. On eigenmode approximation for Dirac equations: Differential forms and fractional Sobolev spaces, 547

Chyzak, Frédéric, Thomas Dreyfus, Philippe Dumas, and Marc Mezzarobba. Computing solutions of linear Mahler equations, 2977

Cilleruelo, Javier, Florian Luca, and Lewis Baxter. Every positive integer is a sum of three palindromes, 3023

Coquel, Frédéric, Shi Jin, Jian-Guo Liu, and Li Wang. Entropic sub-cell shock capturing schemes via Jin-Xin relaxation and Glimm front sampling for scalar conservation laws, 1083

Cravero, I., G. Puppo, M. Semplice, and G. Visconti. CWENO: Uniformly accurate reconstructions for balance laws, 1689

Cremers, Daniel. Orders of Tate-Shafarevich groups for the Neumann-Setzer type elliptic curves, 1509

DiPasquale, Michael. Dimension of mixed splines on polytopal cells, 905

Dahmen, W. See Broersen, D.

Dai, Yu-Hong. See Cheng, Wanyou

Daniels, Harris B., Álvaro Lozano-Robledo, Filip Najman, and Andrew V. Sutherland. Torsion subgroups of rational elliptic curves over the compositum of all cubic fields, 425

Detinko, A., D. L. Flannery, and A. Hulpke. Zariski density and computing in arithmetic groups, 967

Dexter, Nick. See Chkifa, Abdellah

DiPasquale, Michael. Dimension of mixed splines on polytopal cells, 905

Dohrmann, Clark R. See Oh, Duk-Soon

Dreyfus, Thomas. See Chyzak, Frédéric

Drungilas, P., J. Jankauskas, and J. Šiurys. On Littlewood and Newman polynomial multiples of Borwein polynomials, 1523

Dumas, Philippe. See Chyzak, Frédéric

Efremenko, Klim, J. M. Landsberg, Hal Schenck, and Jerzy Weyman. The method of shifted partial derivatives cannot separate the permanent from the determinant, 2037

Elsey, Matt, and Selim Esedoḡlu. Threshold dynamics for anisotropic surface energies, 1721

Ervin, V. J., N. Heuer, and J. P. Roop. Regularity of the solution to 1-D fractional order diffusion equations, 2273

Esedoḡlu, Selim. See Elsey, Matt

Faber, Laura, and Habiba Kadiri. Corrigendum to New bounds for $\psi(x)$, 1451

Faou, Erwan. See Baumstark, Simon

Feng, Ruyong. On the computation of the Galois group of linear difference equations, 941

Feng, Xinlong. See He, Ruijian

Fernández-González, Julio. See Bras-Amorós, Maria

Ferraguti, Andrea. See Bruin, Peter

Flannery, D. L. See Detinko, A.

Franz, Sebastian, and Gunar Matthies. A unified framework for time-dependent singularly perturbed problems with discontinuous Galerkin methods in time, 2113

Freitas, Pedro. Sharp bounds for the modulus and phase of Hankel functions with applications to Jaeger integrals, 289

Friedland, Shmuel, and Lek-Heng Lim. Nuclear norm of higher-order tensors, 1255

Fung, King Cheong, and Ben Kane. On sign changes of cusp forms and the halting of an algorithm to construct a supersingular elliptic curve with a given endomorphism ring, 501

Gallouët, T., R. Herbin, J.-C. Latché, and D. Maltese. Convergence of the MAC scheme for the compressible stationary Navier-Stokes equations, 1127

Georgoulis, Emmanuil H. See Cangiani, Andrea

Glaubitz, Jan, Philipp Öffner, and Thomas Sonar. Application of modal filtering to a spectral difference method, 175
González-Jiménez, Enrique, and Álvaro Lozano-Robledo. *On the torsion of rational elliptic curves over quartic fields*, 1457

Grenié, Loïc, and Giuseppe Molteni. *Explicit bounds for generators of the class group*, 2483

Gulliver, T. Aaron. See Rebenich, Niko

Guzmán, Johnny, and Maxim Olshanskii. *Inf-sup stability of geometrically unfitted Stokes finite elements*, 2091

Hadjimichael, Yiannis, and David I. Ketcheson. *Strong-stability-preserving additive linear multistep methods*, 2295

Hajian, Soheil. See Gander, Martin J.

Han, Bin, Qiongtang Jiang, Zuowei Shen, and Xiaosheng Zhuang. *Symmetric canonical quincunx tight framelets with high vanishing moments and smoothness*, 347

Hansbo, Peter. See Burman, Erik

He, Ruijian, Xinlong Feng, and Zhangxin Chen. *H^1-Superconvergence of a difference finite element method based on the P_1-P_1-conforming element on non-uniform meshes for the 3D Poisson equation*, 1659

He, Zhijian. *Quasi-Monte Carlo for discontinuous integrands with singularities along the boundary of the unit cube*, 2857

Herbin, R. See Gallouët, T.

Heuer, N. See Ervin, V. J.

Hittmeir, Markus. *A babys-step-giantstep method for faster deterministic integer factorization*, 2915

Hofmann, Bernd. See Plato, Robert

Hu, Jun. See Chen, Long

Huang, Weizhang, and Lennard Kamenski. *On the mesh nonsingularity of the moving mesh PDE method*, 1887

Huang, Xuehai. See Chen, Long

Hulpke, A. See Detinko, A.

Hurst, Greg. *Computation of Mertens functions and improved bounds on the Mertens conjecture*, 1013

Jankauskas, J. See Drungillas, P.

Jentzen, Arnulf. See Hutzenthaler, Martin

Jiang, Qiongtang. See Han, Bin

Jiang, Shidong. See Zhang, Qian

Jin, Shu. See Coquel, Frédéric

Joly, Patrick. See Bécache, Éliane

Ju, Lili, Xiao Li, Zhonghua Qiao, and Hui Zhang. *Energy stability and error estimates of exponential time differencing schemes for the epitaxial growth model without slope selection*, 1859

Kadiri, Habiba. See Faber, Laura

Kamenski, Lennard. See Huang, Weizhang

Kane, Ben. See Fung, King Cheong

Kemper, Gregor, Ngo Viet Trung, and Nguyen Thi Van Anh. *Toward a theory of monomial preorders*, 2513

Ketcheson, David I. See Hadjimichael, Yiannis

King, Oliver D., Cris Poor, Jerry Shurman, and David S. Yuen. *Using Katsurada’s determination of the Eisenstein series to compute Siegel eigenforms*, 879

Kokkala, Janne I., and Patric R. J. Östergård. *The chromatic number of the square of the 8-cube*, 2551

Kornhuber, Ralf, Daniel Peterseim, and Harry Yserentant. *An analysis of a class of variational multiscale methods based on subspace decomposition*, 2765
Krahmer, Felix. See Bringmann, Bjoern
Kreiss, Gunilla. See Wang, Siyang
Krejić, N. See Birgin, E. G.
Krenn, Daniel, and Volker Ziegler. Non-minimality of the width-w non-adjacent form in conjunction with trace one τ-adic digit expansions and Koblitz curves in characteristic two, 821
Kreuzer, Christian, and Emmanuel H. Georgoulis. Convergence of adaptive discontinuous Galerkin methods, 2611
Kristiansen, Lars. See Aanderaa, Stål
Kublik, Catherine, and Richard Tsai. An extrapolative approach to integration over hypersurfaces in the level set framework, 2365
Kuszmaul, William. Fast algorithms for finding pattern avoiders and counting pattern occurrences in permutations, 987
Labrande, Hugo. Computing Jacobi’s theta in quasi-linear time, 1479
Landsberg, J. M. See Efremenko, Klim
Larson, Mats G. See Burman, Erik
Latché, J.-C. See Gallouët, T.
Latché, J. C., and K. Saleh. A convergent staggered scheme for the variable density incompressible Navier-Stokes equations, 581
Lee, Jeonghun J., and Ragnar Winther. Local codervaties and approximation of Hodge Laplace problems, 2709
Lee, Yoonjin, and Yoon Kyung Park. A continued fraction of order twelve as a modular function, 2011
Li, Hengguang. An anisotropic finite element method on polyhedral domains: Interpolation error analysis, 1567
Li, Xiao. See Ju, Lili
Lichtman, Jared Duker, and Carl Pomerance. Improved error bounds for the Fermat primality test on random inputs, 2871
Lim, Lek-Heng. See Friedland, Shmuel
Liu, Hailiang, and Hairui Wen. Error estimates for the AEDG method to one-dimensional linear convection-diffusion equations, 123
Liu, Jian-Guo. See Coquel, Frédéric
Liu, Jian-Guo, Li Wang, and Zhennan Zhou. Positivity-preserving and asymptotic preserving method for 2D Keller-Segal equations, 1165
Lopez, L., and S. Maset. Time-transformations for the event location in discontinuous ODEs, 2321
Lozano-Robledo, Álvaro. See Daniels, Harris B.
Lu, Jianfeng, and Zhennan Zhou. Frozen Gaussian approximation with surface hopping for mixed quantum-classical dynamics: A mathematical justification of fewest switches surface hopping algorithms, 2189
Luca, Florian. See Cilleruelo, Javier
Ma, Yunyun, and Yuesheng Xu. Computing highly oscillatory integrals, 309
Maas, Martin. See Acosta, Gabriel
Maltese, D. See Gallouët, T.
Martínez, J. M. See Birgin, E. G.
Martínez-Finkelshtein, A., A. Sri Ranga, and D. O. Veronese. Extreme zeros in a sequence of para-orthogonal polynomials and bounds for the support of the measure, 261
Mascot, Nicolas. Certification of modular Galois representations, 381
Maset, S. See Lopez, L.
Massei, Stefano. See Bini, Dario A.
Mathé, Peter. See Plato, Robert
Matthies, Gunar. See Franz, Sebastian
Meini, Beatrice. See Bini, Dario A.
INDEX TO VOLUME 87 (2018)

Melman, A. *Eigenvalue bounds for matrix polynomials in generalized bases*, 1935
Menares, Ricardo. See Burgos Gil, José Ignacio
Merdon, C. See Linke, A.
Mezzarobba, Marc. See Chyzak, Frédéric
Micheletti, Stefano. See Brugiapaglia, Simone
Moeller, Michael. See Bringmann, Bjoern
Molteni, Giuseppe. See Gremié, Loïc
Morini, Benedetta, Margherita Porcelli, and Philippe L. Toint. *Approximate norm descent methods for constrained nonlinear systems*, 1327
Mustapha, Kassem. *FEM for time-fractional diffusion equations, novel optimal error analyses*, 2259
Najman, Filip. See Daniels, Harris B.
Narcowich, F. J. See Hangelbroek, T.
Nelsen, M. See Linke, A.
Neumann, F. See Linke, A.
Neville, Stephen. See Rebenich, Niko
Nissen, Anna. See Wang, Siyang
Nobile, Giuseppe. See Brugiapaglia, Simone
Nogeng, Dorian, and Éric Schost. *On the evaluation of some sparse polynomials*, 893
Öffner, Philipp. See Glaubitz, Jan
Olshanskii, Maxim. See Guzmán, Johnny
Olver, Sheehan. See Townsend, Alex
Östergård, Patrik R. J. See Kokkala, Janne I.
Park, Yoon Kyung. See Lee, Yoonjin
Perotto, Simona. See Brugiapaglia, Simone
Peterseim, Daniel. See Kornhuber, Ralf
Peyré, Gabriel. See Chizat, Lénaïc
Plato, Robert, Peter Mathé, and Bernd Hofmann. *Optimal rates for Lavrentiev regularization with adjoint source conditions*, 785
Pomerance, Carl. See Lichtman, Jared Duker
Poor, Cris. See King, Oliver D.
Porcelli, Margherita. See Morini, Benedetta
Puppo, G. See Cravero, I.
Qiao, Zhonghua. See Ju, Lili
Qiu, Weifeng, Jiguang Shen, and Ke Shi. *An HDG method for linear elasticity with strong symmetric stresses*, 69
Ranga, A. Sri. See Martínez-Finkelshtein, A.
Rebenich, Niko, T. Aaron Gulliver, Stephen Neville, and Ulrich Speidel. *An analog of the prime number theorem for finite fields via truncated polylogarithm expansions*, 855
Rieder, Alexander. See Banjai, Lehel
Rieger, C. See Hangelbroek, T.
Rivera-Letelier, Juan. See Burgos Gil, José Ignacio
Roop, J. P. See Ervin, V. J.
Rowe, S. T. See Lethoucq, R. B.
Rump, Siegfried M. See Jeannerod, Claude-Pierre
Ruud, Hans Kristian. See Aanderaa, Stål
Sabawi, Younis A. See Cangiani, Andrea
Salez, K. See Latché, J. C.
Sands, Jonathan W., and Brett A. Tangedal. *Computing annihilators of class groups from derivatives of L-functions*, 2937
Schenck, Hal. See Efremenko, Klim
Schmitzer, Bernhard. See Chizat, Lénaïc
Schost, Éric. See Nogneng, Dorian
Schratz, Katharina. See Baumstark, Simon
Semplice, M. See Cravero, I.
Shen, Jie. See Cai, Yongyong
Shen, Jiguang. See Qiu, Weifeng
Shen, Zuowei. See Han, Bin
Shi, Ke. See Qiu, Weifeng
Shurman, Jerry. See King, Oliver D.
Šiurys, J. See Drungilas, P.
Sonar, Thomas. See Glaubitz, Jan
Speidel, Ulrich. See Rebenich, Niko
Stevenson, R. P. See Broersen, D.
Stuart, Andrew M., and Aretha L. Teckentrup. Posterior consistency for Gaussian process approximations of Bayesian posterior distributions, 721
Su, Chunmei. See Bao, Weizhu
Sutherland, Andrew V. See Daniels, Harris B.
Szpruch, Lukasz, and Xilin Zhong. V-integrability, asymptotic stability and comparison property of explicit numerical schemes for non-linear SDEs, 755
Szymbaskiewicz, Lucjan. See Dałbrowski, Andrzej
Tabata, Masahisa, and Shinya Uchiumi. An exactly computable Lagrange–Galerkin scheme for the Navier–Stokes equations and its error estimates, 39
Tangdell, Brett A. See Sands, Jonathan W.
Teckentrup, Aretha L. See Stuart, Andrew M.
Toint, Philippe L. See Morini, Benedetta
Townsend, Alex, Marcus Webb, and Sheehan Olver. Fast polynomial transforms based on Toeplitz and Hankel matrices, 1913
Tran, Hoang. See Chkifa, Abdellah
Trung, Ngo Viet. See Kemper, Gregor
Tsai, Richard. See Kublik, Catherine
Uchiumi, Shinya. See Tabata, Masahisa
Van Anh, Nguyen Thi. See Kemper, Gregor
Veronese, D. O. See Martinez-Finkelshtein, A.
Vialard, François-Xavier. See Chizat, Lénia
Vinoles, Valentin. See Bécache, Élaine
Visconti, G. See Cravero, I.
Wang, June. See Wang, Chunmei
Wang, Li. See Coquel, Frédéric
____. See Liu, Jian-Guo
Wang, Siyang, Anna Nissen, and Gunilla Kreiss. Convergence of finite difference methods for the wave equation in two space dimensions, 2737
Wang, Xiaojie. See Hutzenthaler, Martin
Ward, J. D. See Hangelbroek, T.
____. See Lehoucq, R. B.
Webb, Marcus. See Townsend, Alex
Webster, Clayton G. See Chkifa, Abdellah
Wen, Hairui. See Liu, Hailiang
Wendland, Holger. See Ramming, Tobias
Weyman, Jerzy. See Efremenko, Klim
Widlund, Olof B. See Oh, Duk-Soon
Wihler, Thomas P. See Houston, Paul
Williams, D. M. An entropy stable, hybridizable discontinuous Galerkin method for the compressible Navier-Stokes equations, 95
Winther, Ragnar. See Lee, Jeonghun J.
Wuthrich, Christian. Numerical modular symbols for elliptic curves, 2393
Xia, Binzhou. Cyclotomic difference sets in finite fields, 2461
Xu, Yuesheng. See Ma, Yunyun
Ye, Qiang. Accurate inverses for computing eigenvalues of extremely ill-conditioned matrices and differential operators, 237
Yserentant, Harry. See Kornhuber, Ralf
Yuan, Yongjun. See Cai, Yongyong
Yuen, David S. See King, Oliver D.
Zampini, Stefano. See Oh, Duk-Soon
Zhang, Hui. See Ju, Lili
Zhang, Jiwei. See Zhang, Qian
Zhang, Qian, Jiwei Zhang, Shidong Jiang, and Zhimin Zhang. Numerical solution to a linearized time fractional KdV equation on unbounded domains, 693
Zhāng, Xīlíng. See Szpruch, Lukasz
Zhang, Zhimin. See Zhang, Qian
Zhou, Yang, and Xiaojun Chen. Spherical \(t_- \)-designs for approximations on the sphere, 2831
Zhou, Zhennan. See Liu, Jian-Guo
Zhuang, Xiaosheng. See Han, Bin
Ziegler, Günter M. See Brinkmann, Philip
Ziegler, Volker. See Krenn, Daniel
Zimmer, C. See Altmann, R.
Mathematics of Computation

This journal is devoted to research articles of the highest quality in computational mathematics. Areas covered include numerical analysis, computational discrete mathematics, including number theory, algebra and combinatorics, and related fields such as stochastic numerical methods. Articles must be of significant computational interest and contain original and substantial mathematical analysis or development of computational methodology.

Submission information. See Information for Authors at the end of this issue.

Publication on the AMS website. Articles are published on the AMS website individually after proof is returned from authors and before appearing in an issue.

Subscription information. Mathematics of Computation is published bimonthly and is also accessible electronically from www.ams.org/journals/. Subscription prices for Volume 87 (2018) are as follows: for paper delivery, US$779.00 list, US$623.20 institutional member, US$701.10 corporate member, US$467.40 individual member; for electronic delivery, US$686.00 list, US$548.80 institutional member, US$617.40 corporate member, US$411.60 individual member. Upon request, subscribers to paper delivery of this journal are also entitled to receive electronic delivery. If ordering the paper version, add US$6 for delivery within the United States; US$36 for delivery outside the United States. Subscription renewals are subject to late fees. See www.ams.org/help-faq for more journal subscription information.

Back number information. For back issues see the www.ams.org/backvols.

Subscriptions and orders should be addressed to the American Mathematical Society, P.O. Box 845904, Boston, MA 02284-5904 USA. All orders must be accompanied by payment. Other correspondence should be addressed to 201 Charles Street, Providence, RI 02904-2213 USA.

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy an article for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for permission to reuse portions of AMS publication content are handled by the Copyright Clearance Center. For more information, please visit www.ams.org/publications/pubpermissions.

Excluded from these provisions is material for which the author holds copyright. In such cases, requests for permission to reuse or reprint material should be addressed directly to the author(s). Copyright ownership is indicated in the notice in the lower right-hand corner of the first page of each article.

Mathematics of Computation (ISSN 0025-5718 (print); ISSN 1088-6842 (online)) is published bimonthly by the American Mathematical Society at 201 Charles Street, Providence, RI 02904-2213 USA. Periodicals postage is paid at Providence, Rhode Island. Postmaster: Send address changes to Mathematics of Computation, American Mathematical Society, 201 Charles Street, Providence, RI 02904-2213 USA.

© 2018 by the American Mathematical Society. All rights reserved.

This journal is indexed in Mathematical Reviews, Zentralblatt MATH, Science Citation Index®, Science Citation IndexExpanded, ISI Alerting Services®, CompuMath Citation Index®, and Current Contents®/Physical, Chemical & Earth Sciences. This journal is archived in Portico and in CLOCKSS.

The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.
Simone Brugiapaglia, Fabio Nobile, Stefano Micheletti, and Simona Perotto, A theoretical study of COmpRessed SolvING for advection-diffusion-reaction problems ... 1

Masahisa Tabata and Shinya Uchiumi, An exactly computable Lagrange–Galerkin scheme for the Navier–Stokes equations and its error estimates ... 39

Weifeng Qiu, Jiguang Shen, and Ke Shi, An HDG method for linear elasticity with strong symmetric stresses ... 69

D. M. Williams, An entropy stable, hybridizable discontinuous Galerkin method for the compressible Navier-Stokes equations ... 95

Hailiang Liu and Hairui Wen, Error estimates for the AEDG method to one-dimensional linear convection-diffusion equations ... 123

Jan Glaubitz, Philipp Öffner, and Thomas Sonar, Application of modal filtering to a spectral difference method ... 175

Steffen Börm, Adaptive compression of large vectors ... 209

Qiang Ye, Accurate inverses for computing eigenvalues of extremely ill-conditioned matrices and differential operators ... 237

A. Martínez-Finkelshtein, A. Sri Ranga, and D. O. Veronese, Extreme zeros in a sequence of para-orthogonal polynomials and bounds for the support of the measure ... 261

Pedro Freitas, Sharp bounds for the modulus and phase of Hankel functions with applications to Jaeger integrals ... 289

Yunyun Ma and Yuesheng Xu, Computing highly oscillatory integrals ... 309

Bin Han, Qingtang Jiang, Zuowei Shen, and Xiaosheng Zhuang, Symmetric canonical quincunx tight framelets with high vanishing moments and smoothness ... 347

Nicolas Mascot, Certification of modular Galois representations ... 381

Harris B. Daniels, Álvaro Lozano-Robledo, Filip Najman, and Andrew V. Sutherland, Torsion subgroups of rational elliptic curves over the compositum of all cubic fields ... 425

Peter Bruin and Andrea Ferraguti, On L-functions of quadratic \mathbb{Q}-curves ... 459

King Cheong Fung and Ben Kane, On sign changes of cusp forms and the halting of an algorithm to construct a supersingular elliptic curve with a given endomorphism ring ... 501
Chunmei Wang and Junping Wang, A primal-dual weak Galerkin finite element method for second order elliptic equations in non-divergence form ... 515
Snorre H. Christiansen, On eigenmode approximation for Dirac equations: Differential forms and fractional Sobolev spaces 547
J. C. Latché and K. Saleh, A convergent staggered scheme for the variable density incompressible Navier-Stokes equations 581
Erik Burman, Peter Hansbo, and Mats G. Larson, A cut finite element method with boundary value correction .. 633
Duk-Soon Oh, Olof B. Widlund, Stefano Zampini, and Clark R. Dohrmann, BDDC Algorithms with deluxe scaling and adaptive selection of primal constraints for Raviart-Thomas vector fields 659
Qian Zhang, Jiwei Zhang, Shidong Jiang, and Zhimin Zhang, Numerical solution to a linearized time fractional KdV equation on unbounded domains .. 693
Andrew M. Stuart and Aretha L. Teckentrup, Posterior consistency for Gaussian process approximations of Bayesian posterior distributions . 721
Łukasz Szpruch and Xī Ling Zhāng, V-integrability, asymptotic stability and comparison property of explicit numerical schemes for non-linear SDEs ... 755
Robert Plato, Peter Mathé, and Bernd Hofmann, Optimal rates for Lavrentiev regularization with adjoint source conditions 785
Claude-Pierre Jeannerod and Siegfried M. Rump, On relative errors of floating-point operations: Optimal bounds and applications 803
Daniel Krenn and Volker Ziegler, Non-minimality of the width-w non-adjacent form in conjunction with trace one $τ$-adic digit expansions and Koblitz curves in characteristic two .. 821
Niko Rebenich, T. Aaron Gulliver, Stephen Neville, and Ulrich Speidel, An analog of the prime number theorem for finite fields via truncated polylogarithm expansions .. 855
Oliver D. King, Cris Poor, Jerry Shurman, and David S. Yuen, Using Katsurada’s determination of the Eisenstein series to compute Siegel eigenforms ... 879
Dorian Nogneng and Éric Schost, On the evaluation of some sparse polynomials ... 893
Michael DiPasquale, Dimension of mixed splines on polytopal cells 905
Ruyong Feng, On the computation of the Galois group of linear difference equations .. 941
A. Detinko, D. L. Flannery, and A. Hulpke, Zariski density and computing in arithmetic groups ... 967
William Kuszmaul, Fast algorithms for finding pattern avoiders and counting pattern occurrences in permutations .. 987
Greg Hurst, Computations of the Mertens function and improved bounds on the Mertens conjecture ... 1013
Erik Burman and Peter Hansbo, Stabilized nonconforming finite element methods for data assimilation in incompressible flows 1029
D. Broersen, W. Dahmen, and R. P. Stevenson, On the stability of DPG formulations of transport equations 1051
Frédéric Coquel, Shi Jin, Jian-Guo Liu, and Li Wang, Entropic sub-cell shock capturing schemes via Jin-Xin relaxation and Glimm front sampling for scalar conservation laws 1083
T. Gallouët, R. Herbin, J.-C. Latché, and D. Maltese, Convergence of the MAC scheme for the compressible stationary Navier-Stokes equations 1127
Jian-Guo Liu, Li Wang, and Zhennan Zhou, Positivity-preserving and asymptotic preserving method for 2D Keller-Segal equations 1165
Yongyong Cai and Yongjun Yuan, Uniform error estimates of the conservative finite difference method for the Zakharov system in the subsonic limit regime 1191
Simon Baumstark, Erwan Faou, and Katharina Schratz, Uniformly accurate exponential-type integrators for Klein-Gordon equations with asymptotic convergence to the classical NLS splitting 1227
Shmuel Friedland and Lek-Heng Lim, Nuclear norm of higher-order tensors 1255
Wanyou Cheng and Yu-Hong Dai, Gradient-based method with active set strategy for \(\ell_1 \) optimization 1283
E. G. Birgin, N. Krejić, and J. M. Martínez, On the employment of inexact restoration for the minimization of functions whose evaluation is subject to errors 1307
Benedetta Morini, Margherita Porcelli, and Philippe L. Toint, Approximate norm descent methods for constrained nonlinear systems 1327
Martin Hutzenthaler, Arnulf Jentzen, and Xiaojie Wang, Exponential integrability properties of numerical approximation processes for nonlinear stochastic differential equations 1353
Abdellah Chkifa, Nick Dexter, Hoang Tran, and Clayton G. Webster, Polynomial approximation via compressed sensing of high-dimensional functions on lower sets 1415
Laura Faber and Habiba Kadiri, Corrigendum to New bounds for \(\psi(x) \) 1451
Enrique González-Jiménez and Álvaro Lozano-Robledo, On the torsion of rational elliptic curves over quartic fields 1457
Hugo Labrande, Computing Jacobi’s theta in quasi-linear time 1479
Andrzej Dąbrowski and Lucjan Szymaszkiewicz, Orders of Tate-Shafarevich groups for the Neumann-Setzer type elliptic curves 1509
P. Drungilas, J. Jankauskas, and J. Šiurys, On Littlewood and Newman polynomial multiples of Borwein polynomials 1523
A. Linke, C. Merdon, M. Neilan, and F. Neumann, Quasi-optimality of a pressure-robust nonconforming finite element method for the Stokes-problem .. 1543

Hengguang Li, An anisotropic finite element method on polyhedral domains: Interpolation error analysis .. 1567

Long Chen, Jun Hu, and Xuehai Huang, Fast auxiliary space preconditioners for linear elasticity in mixed form 1601

Martin J. Gander and Soheil Hajian, Analysis of Schwarz methods for a hybridizable discontinuous Galerkin discretization: The many-subdomain case .. 1635

Ruijian He, Xinlong Feng, and Zhangxin Chen, H^1-Superconvergence of a difference finite element method based on the $P_1 - P_1$-conforming element on non-uniform meshes for the 3D Poisson equation 1659

Matt Elsey and Selim Esedoḡlu, Threshold dynamics for anisotropic surface energies .. 1721

Tobias Ramming and Holger Wendland, A kernel-based discretisation method for first order partial differential equations 1757

Lehel Banjai and Alexander Rieder, Convolution quadrature for the wave equation with a nonlinear impedance boundary condition 1783

Gabriel Acosta, Juan Pablo Borthagaray, Oscar Bruno, and Martín Maas, Regularity theory and high order numerical methods for the (1D)-fractional Laplacian .. 1821

Lili Ju, Xiao Li, Zhonghua Qiao, and Hui Zhang, Energy stability and error estimates of exponential time differencing schemes for the epitaxial growth model without slope selection ... 1859

Weizhang Huang and Lennard Kamenski, On the mesh nonsingularity of the moving mesh PDE method 1887

Alex Townsend, Marcus Webb, and Sheehan Olver, Fast polynomial transforms based on Toeplitz and Hankel matrices 1913

A. Melman, Eigenvalue bounds for matrix polynomials in generalized bases 1935

Jan Büthe, An analytic method for bounding $\psi(x)$ 1991

Yoonjin Lee and Yoon Kyung Park, A continued fraction of order twelve as a modular function .. 2011

Klim Efremenko, J. M. Landsberg, Hal Schenck, and Jerzy Weyman, The method of shifted partial derivatives cannot separate the permanent from the determinant 2037

Zachary Charles, Generating random factored ideals in number fields ... 2047
Yongyong Cai and Jie Shen, Error estimates for a fully discretized scheme to a Cahn-Hilliard phase-field model for two-phase incompressible flows 2057
Johnny Guzmán and Maxim Olshanskii, Inf-sup stability of geometrically unfitted Stokes finite elements 2091
Sebastian Franz and Gunar Matthies, A unified framework for time-dependent singularly perturbed problems with discontinuous Galerkin methods in time 2113
Weizhu Bao and Chunmei Su, Uniform error bounds of a finite difference method for the Klein-Gordon-Zakharov system in the subsonic limit regime 2133
Philippe Angot and Rima Cheaytou, On the error estimates of the vector penalty-projection methods: Second-order scheme 2159
Jianfeng Lu and Zhennan Zhou, Frozen Gaussian approximation with surface hopping for mixed quantum-classical dynamics: A mathematical justification of fewest switches surface hopping algorithms 2189
Kassem Mustapha, FEM for time-fractional diffusion equations, novel optimal error analyses 2259
V. J. Ervin, N. Heuer, and J. P. Roop, Regularity of the solution to 1-D fractional order diffusion equations 2273
Yiannis Hadjimichael and David I. Ketcheson, Strong-stability-preserving additive linear multistep methods 2295
L. Lopez and S. Maset, Time-transformations for the event location in discontinuous ODEs 2321
Bjoern Bringmann, Daniel Cremers, Felix Krahmer, and Michael Moeller, The homotopy method revisited: Computing solution paths of ℓ_1-regularized problems 2343
Catherine Kublik and Richard Tsai, An extrapolative approach to integration over hypersurfaces in the level set framework 2365
Christian Wuthrich, Numerical modular symbols for elliptic curves 2393
José Ignacio Burgos Gil, Ricardo Menares, and Juan Rivera-Letelier, On the essential minimum of Faltings’ height 2425
Binzhou Xia, Cyclotomic difference sets in finite fields 2461
Loïc Grenié and Giuseppe Molteni, Explicit bounds for generators of the class group 2483
Gregor Kemper, Ngo Viet Trung, and Nguyen Thi Van Anh, Toward a theory of monomial preorders 2513
Maria Bras-Amorós and Julio Fernández-González, Computation of numerical semigroups by means of seeds 2539
Janne I. Kokkala and Patric R. J. Östergård, The chromatic number of the square of the 8-cube 2551
Lénaïc Chizat, Gabriel Peyré, Bernhard Schmitzer, and François-Xavier Vialard, Scaling algorithms for unbalanced optimal transport problems ... 2563
Christian Kreuzer and Emmanuil H. Georgoulis, Convergence of adaptive discontinuous Galerkin methods ... 2611
Paul Houston and Thomas P. Wihler, An hp-adaptive Newton-discontinuous-Galerkin finite element approach for semilinear elliptic boundary value problems ... 2641
Andrea Cangiani, Emmanuil H. Georgoulis, and Younis A. Sabawi, Adaptive discontinuous Galerkin methods for elliptic interface problems 2675
Jeonghun J. Lee and Ragnar Winther, Local coderivatives and approximation of Hodge Laplace problems ... 2709
Siyang Wang, Anna Nissen, and Gunilla Kreiss, Convergence of finite difference methods for the wave equation in two space dimensions 2737
Ralf Kornhuber, Daniel Peterseim, and Harry Yserentant, An analysis of a class of variational multiscale methods based on subspace decomposition .. 2765
Éliane Bécache, Patrick Joly, and Valentin Vinoles, On the analysis of perfectly matched layers for a class of dispersive media and application to negative index metamaterials ... 2775
Dario A. Bini, Stefano Massei, and Beatrice Meini, Semi-infinite quasi-Toeplitz matrices with applications to QBD stochastic processes 2811
Yang Zhou and Xiaojun Chen, Spherical t_ϵ-designs for approximations on the sphere ... 2831
Zhijian He, Quasi-Monte Carlo for discontinuous integrands with singularities along the boundary of the unit cube 2857
Jared Duker Lichtman and Carl Pomerance, Improved error bounds for the Fermat primality test on random inputs 2871
Andrew R. Booker, Finite connected components of the aliquot graph .. 2891
Stål Aanderaa, Lars Kristiansen, and Hans Kristian Ruud, Search for good examples of Hall’s conjecture ... 2903
Markus Hittmeir, A babystep-giantstep method for faster deterministic integer factorization ... 2915
Jonathan W. Sands and Brett A. Tangedal, Computing annihilators of class groups from derivatives of L-functions 2937
Philip Brinkmann and Günter M. Ziegler, Small f-vectors of 3-spheres and of 4-polytopes ... 2955
Frédéric Chyzak, Thomas Dreyfus, Philippe Dumas, and Marc Mezzarobba, Computing solutions of linear Mahler equations 2977
Javier Cilleruelo, Florian Luca, and Lewis Baxter, Every positive integer is a sum of three palindromes ... 3023
Editorial Information

Information on the backlog for this journal can be found on the AMS website starting from http://www.ams.org/mcom.

In an effort to make articles available as quickly as possible, articles are electronically published on the AMS website individually after proof is returned from authors and before appearing in an issue.

A Consent to Publish is required before we can begin processing your paper. After a paper is accepted for publication, the Providence office will send a Consent to Publish and Copyright Agreement to all authors of the paper. By submitting a paper to this journal, authors certify that the results have not been submitted to nor are they under consideration for publication by another journal, conference proceedings, or similar publication.

Information for Authors

Initial submission. All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. The AMS uses Centralized Manuscript Processing for initial submission. Authors should submit a PDF file using the Initial Manuscript Submission form found at www.ams.org/submission/mcom, or send one copy of the manuscript to the following address: Centralized Manuscript Processing, MATHEMATICS OF COMPUTATION, 201 Charles Street, Providence, RI 02904-2213 USA. If a paper copy is being forwarded to the AMS, indicate that it is for Mathematics of Computation and include the name of the corresponding author and contact information, such as an email address or mailing address. The author may suggest an appropriate editor for his or her paper.

The first page must consist of a descriptive title, followed by an abstract that summarizes the article in language suitable for workers in the general field (algebra, analysis, etc.). The descriptive title should be short, but informative; useless or vague phrases such as “some remarks about” or “concerning” should be avoided. The abstract must be brief, reasonably self-contained, and not exceed 300 words. Included with the footnotes to the paper should be the 2010 Mathematics Subject Classification representing the primary and secondary subjects of the article. The classifications are accessible from www.ams.org/msc/. The Mathematics Subject Classification footnote may be followed by a list of key words and phrases describing the subject matter of the article and taken from its. Journal abbreviations used in bibliographies are listed in the latest Mathematical Reviews annual index. The series abbreviations are also accessible from www.ams.org/msnhtml/serials.pdf. To help in preparing and verifying references, the AMS offers MR Lookup, a Reference Tool for Linking, at www.ams.org/mrlookup/.

Electronically prepared manuscripts. Manuscripts should be electronically prepared in \LaTeX. To this end, the Society has prepared \LaTeX author packages for each AMS publication. Author packages include instructions for preparing electronic manuscripts, samples, and a style file that generates the particular design specifications of that publication series. Articles properly prepared using the \LaTeX style file and the \texttt{\label} and \texttt{\ref} commands automatically enable extensive intra-document linking to the bibliography and other elements of the article for searching electronically on the Web.

Authors may retrieve an author package for Mathematics of Computation from www.ams.org/mcom/mcomauthorpac.html. The AMS Author Handbook is available in PDF format from the author package link. The author package can also be obtained free of charge by sending email to tech-support@ams.org or from the Publication Division, American Mathematical Society, 201 Charles Street, Providence, RI 02904-2213 USA. When requesting an author package, please specify the publication in which your paper will appear. Please be sure to include your complete email address.
After acceptance. The source files for the final version of the electronic manuscript should be sent to the Providence office immediately after the paper has been accepted for publication. The author should also submit a PDF of the final version of the paper to the Managing Editor, who will forward a copy to the Providence office. Accepted electronically prepared manuscripts can be submitted via the web at www.ams.org/submit-book-journal/, sent via email to pub-submit@ams.org, or sent on CD to the Electronic Prepress Department, American Mathematical Society, 201 Charles Street, Providence, RI 02904-2213 USA. When sending a manuscript electronically via email or CD, please be sure to include a message indicating in which publication the paper has been accepted. Complete instructions on how to send files are included in the author package.

Electronic graphics. Comprehensive instructions on preparing graphics are available starting from www.ams.org/authors/journals.html. A few of the major requirements are given here.

Submit files for graphics as EPS (Encapsulated PostScript) files. This includes graphics originated via a graphics application as well as scanned photographs or other computer-generated images. If this is not possible, TIFF files are acceptable as long as they can be opened in Adobe Photoshop or Illustrator.

Authors using graphics packages for the creation of electronic art should also avoid the use of any lines thinner than 0.5 points in width. Many graphics packages allow the user to specify a “hairline” for a very thin line. Hairlines often look acceptable when proofed on a typical laser printer. However, when produced on a high-resolution laser imagesetter, hairlines become nearly invisible and will be lost entirely in the final printing process.

Screens should be set to values between 15% and 85%. Screens which fall outside of this range are too light or too dark to print correctly. Variations of screens within a graphic should be no less than 10%.

Any graphics created in color will be rendered in grayscale for the printed version unless color printing is authorized by the Managing Editor and the Publisher. In general, color graphics will appear in color in the online version.

AMS policy on making changes to articles after publication. Articles are published on the AMS website individually after proof is returned from authors and before appearing in an issue. To preserve the integrity of electronically published articles, once an article is individually published to the AMS website, changes cannot be made in place in the paper. The AMS does not keep author-related information, such as affiliation, current address, and email address, up to date after a paper is electronically published.

Corrections of critical errors may be made to the paper by submitting an errata article to the Editor. The errata article will be published electronically, will appear in a future print issue, and will link back and forth on the Web with the original article.

Secure manuscript tracking on the Web. Authors can track their manuscripts through the AMS journal production process using the personal AMS ID and Article ID printed in the upper right-hand corner of the Consent to Publish form sent to each author who publishes in AMS journals. Access to the tracking system is available from www.ams.org/mstrack/. An explanation of each production step is provided on the web through links from the manuscript tracking screen. Questions can be sent to mcom-query@ams.org.

Inquiries. Any inquiries concerning a paper that has been accepted for publication that cannot be answered via the manuscript tracking system mentioned above should be sent to mcom-query@ams.org or directly to the Electronic Prepress Department, American Mathematical Society, 201 Charles Street, Providence, RI 02904-2213 USA.
(Continued from back cover)

Philip Brinkmann and Günter M. Ziegler, Small f-vectors of 3-spheres and of 4-polytopes ... 2955
Frédéric Chyzak, Thomas Dreyfus, Philippe Dumas, and Marc Mezzarobba, Computing solutions of linear Mahler equations 2977
Javier Cilleruelo, Florian Luca, and Lewis Baxter, Every positive integer is a sum of three palindromes 3023
Lénaïc Chizat, Gabriel Peyré, Bernhard Schmitzer, and François-Xavier Vialard, Scaling algorithms for unbalanced optimal transport problems ... 2563

Christian Kreuzer and Emmanuil H. Georgoulis, Convergence of adaptive discontinuous Galerkin methods .. 2611

Paul Houston and Thomas P. Wihler, An hp-adaptive Newton-discontinuous-Galerkin finite element approach for semilinear elliptic boundary value problems .. 2641

Andrea Cangiani, Emmanuil H. Georgoulis, and Younis A. Sabawi, Adaptive discontinuous Galerkin methods for elliptic interface problems 2675

Jeonghun J. Lee and Ragnar Winther, Local coderivatives and approximation of Hodge Laplace problems .. 2709

Siyang Wang, Anna Nissen, and Gunilla Kreiss, Convergence of finite difference methods for the wave equation in two space dimensions 2737

Ralf Kornhuber, Daniel Peterseim, and Harry Yserentant, An analysis of a class of variational multiscale methods based on subspace decomposition .. 2765

Éliane Bécache, Patrick Joly, and Valentin Vinoles, On the analysis of perfectly matched layers for a class of dispersive media and application to negative index metamaterials .. 2775

Dario A. Bini, Stefano Massei, and Beatrice Meini, Semi-infinite quasi-Toeplitz matrices with applications to QBD stochastic processes 2811

Yang Zhou and Xiaojun Chen, Spherical t_{ϵ}-designs for approximations on the sphere ... 2831

Zhijian He, Quasi-Monte Carlo for discontinuous integrands with singularities along the boundary of the unit cube 2857

Jared Duker Lichtman and Carl Pomerance, Improved error bounds for the Fermat primality test on random inputs 2871

Andrew R. Booker, Finite connected components of the aliquot graph .. 2891

Stål Aanderaa, Lars Kristiansen, and Hans Kristian Ruud, Search for good examples of Hall’s conjecture 2903

Markus Hittmeir, A babystep-giantstep method for faster deterministic integer factorization .. 2915

Jonathan W. Sands and Brett A. Tangedal, Computing annihilators of class groups from derivatives of L-functions 2937

(Continued on inside back cover)