Transactions of the Moscow Mathematical Society

ISSN 1547-738X(online) ISSN 0077-1554(print)

 

 

Selfadjointness of elliptic differential operators in $L_2(G)$, and correction potentials


Author: A. G. Brusentsev
Translated by: Michael Grinsfeld
Original publication: Trudy Moskovskogo Matematicheskogo Obshchestva, tom 65 (2004).
Journal: Trans. Moscow Math. Soc. 2004, 31-61
MSC (2000): Primary 35J15; Secondary 35J10, 58J05
Published electronically: October 1, 2004
MathSciNet review: 2193436
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We consider the question of the essential selfadjointness of a symmetric second order elliptic operator $L$ of general form in the space $L_2(G)$ $\left(D_L=C_0^\infty(G)\right)$, where $G$  is an arbitrary open set in $R^n$. The main idea is that using the matrix $A(x)$ of the highest order coefficients of $L$ and the domain $G$, it is possible to construct a function $q_A(x)$ such that the essential selfadjointness of $\Bar{L}$ follows from the semiboundedness of the operators $L$ and $L-q_A(x)$. The function $q_A(x)$ is called the correction potential, and we suggest a number of procedures for its construction. We develop a technique which, given a correction potential allows us to establish criteria for the selfadjointness of an elliptic operator in terms of the behaviour of its coefficients. These general results are applied to the Schrödinger operator, which for $G\ne R^n$ leads to new assertions that generalise a number of known theorems.


References [Enhancements On Off] (What's this?)

  • 1. A. Ya. Povzner, On the expansion of arbitrary functions in characteristic functions of the operator -Δ𝑢+𝑐𝑢, Mat. Sbornik N.S. 32(74) (1953), 109–156 (Russian). MR 0053330
  • 2. Yu. M. Berezans′kiĭ and V. G. Samoĭlenko, Selfadjointness of differential operators with a finite and infinite number of variables, and evolution equations, Uspekhi Mat. Nauk 36 (1981), no. 5(221), 3–56, 248 (Russian). MR 637433
  • 3. Yu. B. Orochko, The property of global finite rate of propagation of a second-order elliptic differential expression, Differentsial′nye Uravneniya 18 (1982), no. 10, 1764–1772, 1836–1837 (Russian). MR 679034
  • 4. F. S. Rofe-Beketov, Necessary and sufficient conditions for a finite rate of propagation for elliptic operators, Ukrain. Mat. Zh. 37 (1985), no. 5, 668–670, 679 (Russian). MR 815319
  • 5. A. A. Čumak, Selfadjointness of the Beltrami-Laplace operator on a complete paracompact Riemannian manifold without boundary, Ukrain. Mat. Ž. 25 (1973), 784–791, 861 (Russian). MR 0334292
  • 6. I. M. Oleĭnik, On the essential selfadjointness of the Schrödinger operator on complete Riemannian manifolds, Mat. Zametki 54 (1993), no. 3, 89–97, 159 (Russian, with Russian summary); English transl., Math. Notes 54 (1993), no. 3-4, 934–939 (1994). MR 1248286, 10.1007/BF01209558
  • 7. M. Shubin, Classical and quantum completeness for the Schrödinger operators on noncompact manifolds, Sfb 288 Preprint. no. 349, Berlin, October 1998.
  • 8. Mikhail Shubin, Essential self-adjointness for semi-bounded magnetic Schrödinger operators on non-compact manifolds, J. Funct. Anal. 186 (2001), no. 1, 92–116. MR 1863293, 10.1006/jfan.2001.3778
  • 9. N. N. Ural′ceva, The nonselfadjointness in 𝐿₂(𝑅ⁿ) of an elliptic operator with rapidly increasing coefficients, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 14 (1969), 288–294 (Russian). MR 0276834
  • 10. S. A. Laptev, Closure in the metric of the generalized Dirichlet integral, Differencial′nye Uravnenija 7 (1971), 727–736 (Russian). MR 0284806
  • 11. A. G. Brusencev and F. S. Rofe-Beketov, Conditions for the selfadjointness of strongly elliptic systems of arbitrary order, Mat. Sb. (N.S.) 95(137) (1974), 108–129, 160 (Russian). MR 0358075
  • 12. H. Weyl, Uber gewöhnliche Differentialgleichungen mit singularen Stellen und ihre Eigenfunktion, Göttinger Nachrichten 1909, 37-64.
  • 13. A. Devinatz, Essential self-adjointness of Schrödinger-type operators, J. Functional Analysis 25 (1977), no. 1, 58–69. MR 0442502
  • 14. Philip Myles Unell, Selfadjointness of certain second order differential operators on Riemannian manifolds, J. Math. Anal. Appl. 73 (1980), no. 2, 351–365. MR 563988, 10.1016/0022-247X(80)90283-8
  • 15. F. S. Rofe-Beketov, A remark on a multidimensional generalization of H. Weyl’s theorem on selfadjointness, Teor. Funktsiĭ Funktsional. Anal. i Prilozhen. 52 (1989), 88–90 (Russian); English transl., J. Soviet Math. 52 (1990), no. 5, 3410–3412. MR 1018334, 10.1007/BF01099908
  • 16. A. G. Brusentsev, Selfadjointness in essentially semibounded higher-order elliptic operators, Differentsial′nye Uravneniya 21 (1985), no. 4, 668–677, 734–735 (Russian). MR 791116
  • 17. A. G. Brusentsev, On the essential selfadjointness of second-order semibounded elliptic operators that are not subject to the condition of the completeness of the Riemannian manifold, Mat. Fiz. Anal. Geom. 2 (1995), no. 2, 152–167 (Russian, with English, Russian and Ukrainian summaries). MR 1484656
  • 18. Johann Walter, Note on a paper by Stekaer-Hansen concerning essential selfadjointness of Schroedinger operators, Math. Scand. 25 (1969), 94–96. MR 0259384
  • 19. Michael Reed and Barry Simon, Methods of modern mathematical physics. II. Fourier analysis, self-adjointness, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. MR 0493420
  • 20. Konrad Jörgens, Wesentliche Selbstadjungiertheit singulärer elliptischer Differentialoperatoren zweiter Ordnung in 𝐶₀^{∞}(𝐺), Math. Scand. 15 (1964), 5–17 (German). MR 0180755
  • 21. Barry Simon, Essential self-adjointness of Schrödinger operators with singular potentials, Arch. Rational Mech. Anal. 52 (1973), 44–48. MR 0338548
  • 22. Hubert Kalf and Johann Walter, Strongly singular potentials and essential self-adjointness of singular elliptic operators in 𝐶₀^{∞}(𝑅ⁿ\{0}), J. Functional Analysis 10 (1972), 114–130. MR 0350183
  • 23. Upke-Walther Schmincke, Essential selfadjointness of a Schrödinger operator with strongly singular potential, Math. Z. 124 (1972), 47–50. MR 0298254
  • 24. K. Friedrichs, Uber die ausgezeichnete Randbedingung in der Spektraltheorie der halbbeschränkten gewönlichen Differentialoperatoren zweiter Ordnung, Math. Ann. 122 (1935/36), 1-23.
  • 25. M. Combescure-Moulin and J. Ginibre, Essential self-adjointness of many particle Schrödinger Hamiltonians with singular two-body potentials, Ann. Inst. H. Poincaré Sect. A (N.S.) 23 (1975), no. 3, 211–234. MR 0389063
  • 26. Mikio Maeda, Essential selfadjointness of Schrödinger operators with potentials singular along affine subspaces, Hiroshima Math. J. 11 (1981), no. 2, 275–283. MR 620538
  • 27. I. D. Chueshov, A remark on a Schrödinger operator with a highly singular potential, Funktsional. Anal. i Prilozhen. 15 (1981), no. 4, 93–94 (Russian). MR 639214
  • 28. I. D. Chueshov, On the existence of domains of definition of the Schrödinger operator with a highly singular potential of paired interactions, Teor. Funktsiĭ Funktsional. Anal. i Prilozhen. 36 (1981), 111–124, 128 (Russian). MR 645314
  • 29. Hubert Kalf, Self-adjointness for strongly singular potentials with a -𝑥² fall-off at infinity, Math. Z. 133 (1973), 249–255. MR 0328308
  • 30. A. G. Brusentsev, Near-boundary behavior of the potential of an elliptic operator that ensures its essential selfadjointness, Mat. Fiz. Anal. Geom. 5 (1998), no. 3-4, 149–165 (Russian, with English, Russian and Ukrainian summaries). MR 1668989
  • 31. A. G. Brusentsev, A remark on essential selfadjointness of nonsemibounded elliptic operators in 𝐿₂(𝐺), Mat. Fiz. Anal. Geom. 6 (1999), no. 3-4, 234–244 (Russian, with English, Russian and Ukrainian summaries). MR 1737211
  • 32. William G. Faris and Richard B. Lavine, Commutators and self-adjointness of Hamiltonian operators, Comm. Math. Phys. 35 (1974), 39–48. MR 0391794
  • 33. A. G. Brusentsev, On the essential selfadjointness of a nonsemibounded Schrödinger operator with strong singularities in the potential, Differ. Uravn. 38 (2002), no. 10, 1431–1433, 1440 (Russian, with Russian summary); English transl., Differ. Equ. 38 (2002), no. 10, 1524–1526. MR 2014241, 10.1023/A:1022343318189
  • 34. H. Kalf, U.-W. Schmincke, J. Walter, and R. Wüst, On the spectral theory of Schrödinger and Dirac operators with strongly singular potentials, Spectral theory and differential equations (Proc. Sympos., Dundee, 1974; dedicated to Konrad Jörgens), Springer, Berlin, 1975, pp. 182–226. Lecture Notes in Math., Vol. 448. MR 0397192
  • 35. Tosio Kato, Schrödinger operators with singular potentials, Proceedings of the International Symposium on Partial Differential Equations and the Geometry of Normed Linear Spaces (Jerusalem, 1972), 1972, pp. 135–148 (1973). MR 0333833
  • 36. Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
  • 37. F. S. Rofe-Beketov, Selfadjointness of elliptic operators and estimates of energy type over the whole 𝑅ⁿ. I. Second-order, Teor. Funktsiĭ Funktsional. Anal. i Prilozhen. 54 (1990), 3–16 (Russian); English transl., J. Soviet Math. 58 (1992), no. 4, 295–305. MR 1080719, 10.1007/BF01097278
  • 38. Tosio Kato, Perturbation theory for linear operators, Die Grundlehren der mathematischen Wissenschaften, Band 132, Springer-Verlag New York, Inc., New York, 1966. MR 0203473
  • 39. Yurii B. Orochko, Examples of degenerate symmetric differential operators with infinite deficiency indices in 𝐿²(𝑅^{𝑚}), Proc. Roy. Soc. Edinburgh Sect. A 129 (1999), no. 1, 165–179. MR 1669193, 10.1017/S0308210500027517
  • 40. Yu. B. Orochko, Some properties of the deficiency indices of second-order, symmetric degenerate elliptic operators in 𝐿²(𝐑^{𝐦}), Izv. Ross. Akad. Nauk Ser. Mat. 61 (1997), no. 5, 71–98 (Russian, with Russian summary); English transl., Izv. Math. 61 (1997), no. 5, 969–994. MR 1486699, 10.1070/im1997v061n05ABEH000152
  • 41. F. S. Rofe-Beketov, Non-semibounded differential operators, Teor. Funkciĭ Funkcional. Anal. i Priložen. Vyp. 2 (1966), 178–184 (Russian). MR 0199750
  • 42. F. S. Rofe-Beketov, Conditions for the selfadjointness of the Schrödinger operator, Mat. Zametki 8 (1970), 741–751 (Russian). MR 0274985
  • 43. F. S. Rofe-Beketov and A. M. Hol′kin, Conditions for the selfadjointness of second order elliptic operators of general form, Teor. Funkciĭ Funkcional. Anal. i Priložen. 17 (1973), 41–51, 242 (Russian). MR 0328310
  • 44. Tosio Kato, A remark to the preceding paper by Chernoff (“Essential self-adjointness of powers of generators of hyperbolic equations”, J. Functional Analysis 12 (1973), 401–414), J. Functional Analysis 12 (1973), 415–417. MR 0369891
  • 45. Ju. B. Oročko, Sufficient conditions for the selfadjointness of a Sturm-Liouville operator, Mat. Zametki 15 (1974), 271–280 (Russian). MR 0375002
  • 46. Ju. B. Oročko, A remark on the essential selfadjointness of the Schrödinger operator with singular potential, Mat. Zametki 20 (1976), no. 4, 571–580 (Russian). MR 0454399
  • 47. Paul R. Chernoff, Schrödinger and Dirac operators with singular potentials and hyperbolic equations, Pacific J. Math. 72 (1977), no. 2, 361–382. MR 0510049
  • 48. F. S. Rofe-Beketov and Kh. Kal′f, On the selfadjointness of nonsemibounded Schrödinger operators, Mat. Stud. 7 (1997), no. 1, 53–58, 111 (Russian, with English and Russian summaries). MR 1690966
  • 49. H. Kalf and F. S. Rofe-Beketov, On the essential self-adjointness of Schrödinger operators with locally integrable potentials, Proc. Roy. Soc. Edinburgh Sect. A 128 (1998), no. 1, 95–106. MR 1606349, 10.1017/S0308210500027177
  • 50. Birgitta Hellwig, A criterion for self-adjointness of singular elliptic differential operators, J. Math. Anal. Appl. 26 (1969), 279–291. MR 0237977
  • 51. Hanns-Walter Rohde, Kriterien zur Selbstadjungiertheit elliptischer Differentialoperatoren. I, II, Arch. Rational Mech. Anal. 34 (1969), 188-201; ibid. 34 (1969), 202–217 (German). MR 0244809
  • 52. M. A. Krasnosel′skiĭ, G. M. Vainikko, P. P. Zabreĭko, Ja. B. Rutickiĭ, and V. Ja. Stecenko, Priblizhennoe reshenie operatornykh uravnenii, Izdat. “Nauka”, Moscow, 1969 (Russian). MR 0259635
  • 53. Laurent Schwartz, Analyse mathématique. I, Hermann, Paris, 1967 (French). MR 0226972
  • 54. E. C. Svendsen, The effect of submanifolds upon essential selfadjointness and deficiency indices, J. Math. Anal. Appl. 80 (1981), no. 2, 551–565. MR 614850, 10.1016/0022-247X(81)90124-4
  • 55. Harold Donnelly and Nicola Garofalo, Schrödinger operators on manifolds, essential self-adjointness, and absence of eigenvalues, J. Geom. Anal. 7 (1997), no. 2, 241–257. MR 1646768, 10.1007/BF02921722

Similar Articles

Retrieve articles in Transactions of the Moscow Mathematical Society with MSC (2000): 35J15, 35J10, 58J05

Retrieve articles in all journals with MSC (2000): 35J15, 35J10, 58J05


Additional Information

A. G. Brusentsev
Affiliation: V. G. Shukhov Belgorod State Technological University, Belgorod, Russia
Email: brisentsev@mail.ru

DOI: http://dx.doi.org/10.1090/S0077-1554-04-00144-X
Published electronically: October 1, 2004
Article copyright: © Copyright 2004 American Mathematical Society