Skip to Main Content

Transactions of the Moscow Mathematical Society

This journal, a translation of Trudy Moskovskogo Matematicheskogo Obshchestva, contains the results of original research in pure mathematics.

ISSN 1547-738X (online) ISSN 0077-1554 (print)

The 2020 MCQ for Transactions of the Moscow Mathematical Society is 0.74.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Hyperbolic Coxeter $n$-polytopes with $n+3$ facets
HTML articles powered by AMS MathViewer

by P. V. Tumarkin
Translated by: James Wiegold
Trans. Moscow Math. Soc. 2004, 235-250
DOI: https://doi.org/10.1090/S0077-1554-04-00146-3
Published electronically: October 1, 2004

Abstract:

Noncompact hyperbolic Coxeter $n$-polytopes of finite volume and having $n+3$ facets are studied in this paper.

Unlike the spherical and parabolic cases, no complete classification exists as yet for hyperbolic Coxeter polytopes of finite volume. It has been shown that the dimension of a bounded Coxeter polytope is at most 29 (Vinberg, 1984), while an upper estimate in the unbounded case is 995 (Prokhorov, 1986). There is a complete classification of simplexes and of Coxeter $n$-polytopes of finite volume with $n+2$ facets via the complexity of the combinatorial type.

In 1994, Esselman proved that compact hyperbolic Coxeter $n$-polytopes with $n+3$ facets can only exist when $n\le 8$. In dimension 8 there is just one such polytope; it was found by Bugaenko in 1992.

Here we obtain an analogous result for noncompact polytopes of finite volume. There are none when $n>16$. We prove that there is just one when $n=16$, and obtain its Coxeter diagram.

References
  • V. V. Ryzhkov (ed.), Geometriya. 2, Itogi Nauki i Tekhniki. [Progress in Science and Technology], Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1988 (Russian). Sovremennye Problemy Matematiki. Fundamental′nye Napravleniya [Current Problems in Mathematics. Fundamental Directions], 29. MR 1315326
  • E. M. Andreev, Convex polyhedra in Lobačevskiĭ spaces, Mat. Sb. (N.S.) 81 (123) (1970), 445–478 (Russian). MR 0259734
  • E. M. Andreev, Convex polyhedra of finite volume in Lobačevskiĭ space, Mat. Sb. (N.S.) 83 (125) (1970), 256–260 (Russian). MR 0273510
  • V. O. Bugaenko, Groups of automorphisms of unimodular hyperbolic quadratic forms over the ring $\textbf {Z}[(\sqrt {5}+1)/2]$, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 5 (1984), 6–12 (Russian). MR 764026
  • V. O. Bugaenko, Arithmetic crystallographic groups generated by reflections, and reflective hyperbolic lattices, Lie groups, their discrete subgroups, and invariant theory, Adv. Soviet Math., vol. 8, Amer. Math. Soc., Providence, RI, 1992, pp. 33–55. MR 1155663, DOI 10.1007/bf00883263
  • È. B. Vinberg, Discrete groups generated by reflections in Lobačevskiĭ spaces, Mat. Sb. (N.S.) 72 (114) (1967), 471–488; correction, ibid. 73 (115) (1967), 303 (Russian). MR 0207853
  • È. B. Vinberg, Absence of crystallographic groups of reflections in Lobachevskiĭ spaces of large dimension, Trudy Moskov. Mat. Obshch. 47 (1984), 68–102, 246 (Russian). MR 774946
  • È. B. Vinberg, Hyperbolic groups of reflections, Uspekhi Mat. Nauk 40 (1985), no. 1(241), 29–66, 255 (Russian). MR 783604
  • È. B. Vinberg and I. M. Kaplinskaja, The groups $O_{18,1}(Z)$ and $O_{19,1}(Z)$, Dokl. Akad. Nauk SSSR 238 (1978), no. 6, 1273–1275 (Russian). MR 0476640
  • È. B. Vinberg and O. V. Shvartsman, Discrete groups of motions of spaces of constant curvature, Geometry, II, Encyclopaedia Math. Sci., vol. 29, Springer, Berlin, 1993, pp. 139–248. MR 1254933, DOI 10.1007/978-3-662-02901-5_{2}
  • V. A. Emelichev, M. M. Kovalev, and M. K. Kravtsov, Mnogogranniki, grafy, optimizatsiya, “Nauka”, Moscow, 1981 (Russian). MR 656517
  • I. M. Kaplinskaja, The discrete groups that are generated by reflections in the faces of simplicial prisms in Lobačevskiĭ spaces, Mat. Zametki 15 (1974), 159–164 (Russian). MR 360858
  • M. N. Prokhorov, Absence of discrete groups of reflections with a noncompact fundamental polyhedron of finite volume in a Lobachevskiĭ space of high dimension, Izv. Akad. Nauk SSSR Ser. Mat. 50 (1986), no. 2, 413–424 (Russian). MR 842588
  • Richard Borcherds, Automorphism groups of Lorentzian lattices, J. Algebra 111 (1987), no. 1, 133–153. MR 913200, DOI 10.1016/0021-8693(87)90245-6
  • Frank Esselmann, The classification of compact hyperbolic Coxeter $d$-polytopes with $d+2$ facets, Comment. Math. Helv. 71 (1996), no. 2, 229–242. MR 1396674, DOI 10.1007/BF02566418
  • F. Esselmann, Über kompakte hyperbolische Coxeter-Polytope mit wenigen Facetten, Universität Bielefeld. SFB 343. Preprint No. 94–087.
  • Branko Grünbaum, Convex polytopes, Pure and Applied Mathematics, Vol. 16, Interscience Publishers John Wiley & Sons, Inc., New York, 1967. With the cooperation of Victor Klee, M. A. Perles and G. C. Shephard. MR 0226496
  • Folke Lannér, On complexes with transitive groups of automorphisms, Comm. Sém. Math. Univ. Lund [Medd. Lunds Univ. Mat. Sem.] 11 (1950), 71. MR 42129
  • P. Tumarkin, Hyperbolic Coxeter $n$-polytopes with $n+2$ facets, math.MG/0301133.
Similar Articles
  • Retrieve articles in Transactions of the Moscow Mathematical Society with MSC (2000): 52B11, 20F55, 22E40
  • Retrieve articles in all journals with MSC (2000): 52B11, 20F55, 22E40
Bibliographic Information
  • P. V. Tumarkin
  • Affiliation: Moscow Independent University, B. Vlas’evskii Per. 11, Moscow 119002, Russia
  • Email: pasha@mccme.ru
  • Published electronically: October 1, 2004
  • © Copyright 2004 American Mathematical Society
  • Journal: Trans. Moscow Math. Soc. 2004, 235-250
  • MSC (2000): Primary 52B11; Secondary 20F55, 22E40
  • DOI: https://doi.org/10.1090/S0077-1554-04-00146-3
  • MathSciNet review: 2193442