Remote Access Transactions of the Moscow Mathematical Society

Transactions of the Moscow Mathematical Society

ISSN 1547-738X(online) ISSN 0077-1554(print)

 
 

 

Coisotropic representations of reductive groups


Author: I. V. Losev
Translated by: O. Khleborodova
Original publication: Trudy Moskovskogo Matematicheskogo Obshchestva, tom 66 (2005).
Journal: Trans. Moscow Math. Soc. 2005, 143-168
MSC (2000): Primary 20C15
DOI: https://doi.org/10.1090/S0077-1554-05-00152-4
Published electronically: November 16, 2005
MathSciNet review: 2193432
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A symplectic action $ G:X$ of an algebraic group $ S$ on a symplectic algebraic variety $ X$ is called coisotropic if a generic orbit of this action is a coisotropic submanifold of $ X$. In this article a classification of coisotropic symplectic linear actions $ G:V$ is given in the case where $ G$ is a reductive group.


References [Enhancements On Off] (What's this?)

  • 1. E. M. Andreev, E. B. Vinberg, and A. G. Elashvili, Orbits of maximal dimension in semisimple Lie algebras. Funkcional. Anal. i Prilozen., 1 (1967), no. 4, 3-7; English transl. in Functional Anal. Appl., 1 (1967). MR 0267040 (42:1942)
  • 2. N. Bourbaki, Groupes et algèbres de Lie. Ch. VII-VIII, Hermann, Paris, 1975. MR 0453824 (56:12077)
  • 3. E. B. Vinberg, Commutative homogeneous spaces and coisotropic symplectic actions. Uspekhi Mat. Nauk, 56 (2001), no. 1(337), 3-62; English transl., Russian Math. Surveys, 56 (2001), no. 1, 1-60. MR 0267040 (42:1942)
  • 4. E. B. Vinberg and A. L. Onishchik, Seminar on Lie groups and Lie algebras. Second edition. URSS, Moscow, 1995; English transl. of the first edition, Lie groups and algebraic groups. Springer-Verlag, Berlin, 1990. MR 1403378 (97d:22001)
  • 5. E. B. Vinberg and V. L. Popov, Invariant theory. Algebraic geometry, 4, Itogi Nauki i Tekhniki, VINITI, Moscow, 1989, pp. 137-314. (Russian) MR 1100485 (92d:14010)
  • 6. A. G. Elashvili, Canonical form and stationary subalgebras if generic points for simple linear Lie groups. Funkcional. Anal. i Prilozen., 6 (1972), no. 1, 51-62; English transl. in Functional Anal. Appl., 6 (1972). MR 0304555 (46:3690)
  • 7. -, Stationary generic subalgebras for irreducible linear Lie groups. Funkcional. Anal. i Prilozen. 6 (1972), no. 2, 65-78; English transl. in Functional Anal. Appl., 6 (1972). MR 0304554 (46:3689)
  • 8. C. Benson and G. Ratcliff, Rationality of the generalized binomial coefficients for a multiplicity free action. J. Austral. Math. Society, ser. A. 68 (2000), 387-410. MR 1753368 (2001a:20071)
  • 9. V. G. Kac, Some remarks on nilpotent orbits. J. Algebra 64 (1980), 190-213. MR 0575790 (81i:17005)
  • 10. A. Leahy, A classification of multiplicity free representations. J. Lie Theory 8 (1998), 367-391. MR 1650378 (2000g:22024)

Similar Articles

Retrieve articles in Transactions of the Moscow Mathematical Society with MSC (2000): 20C15

Retrieve articles in all journals with MSC (2000): 20C15


Additional Information

I. V. Losev
Affiliation: 2nd Bagration Per. 19–706, Minsk 220037, Belarus
Email: ivanlosev@yandex.ru

DOI: https://doi.org/10.1090/S0077-1554-05-00152-4
Published electronically: November 16, 2005
Article copyright: © Copyright 2005 American Mathematical Society

American Mathematical Society