Remote Access Transactions of the Moscow Mathematical Society

Transactions of the Moscow Mathematical Society

ISSN 1547-738X(online) ISSN 0077-1554(print)

 

 

Boundary properties of solutions of differential equations and general boundary-value problems


Author: V. P. Burskii
Translated by: G. G. Gould
Original publication: Trudy Moskovskogo Matematicheskogo Obshchestva, tom 68 (2007).
Journal: Trans. Moscow Math. Soc. 2007, 163-200
MSC (2000): Primary 35G05, 35B30, 35E20, 35A05, 35B05
Published electronically: October 29, 2007
MathSciNet review: 2429270
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For a general differential operator with smooth matrix-valued coefficients in a bounded domain with smooth boundary we consider the boundary properties of functions from the domain of definition of a maximal extension in $ L_2(\Omega)$ and we study the properties of extensions and boundary-value problems corresponding to them. The investigations are based on Green's formula.


References [Enhancements On Off] (What's this?)

  • 1. M. S. Agranovič, On partial differential equations with constant coefficients, Uspehi Mat. Nauk 16 (1961), no. 2 (98), 27–93 (Russian). MR 0133597
  • 2. Ju. M. Berezans′kiĭ, Razlozhenie po sobstvennym funktsiyam samosopryazhennykh operatorov, Akademijá Nauk Ukrainskoĭ SSSR. Institut Matematiki, Izdat. “Naukova Dumka”, Kiev, 1965 (Russian). MR 0222719
  • 3. N. Bourbaki, Topological vector spaces. Chapters 1–5, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 1987. Translated from the French by H. G. Eggleston and S. Madan. MR 910295
  • 4. V. P. Burskiĭ, Harmonic analysis in boundary value problems for partial differential equations with constant coefficients, Dokl. Akad. Nauk Ukrain. SSR Ser. A 3 (1986), 7–10, 90 (Russian, with English summary). MR 842785
  • 5. V. P. Burskiĭ, Boundary properties of 𝐿₂-solutions of linear differential equations and the equation-domain duality, Dokl. Akad. Nauk SSSR 309 (1989), no. 5, 1036–1039 (Russian); English transl., Soviet Math. Dokl. 40 (1990), no. 3, 592–595. MR 1037114
  • 6. V. P. Burskiĭ, Uniqueness of the solution of the Dirichlet problem in a ball for the wave equation, Differentsial′nye Uravneniya 24 (1988), no. 6, 1038–1039, 1101 (Russian). MR 953854
  • 7. V. P. Burskiĭ, Remarks on the Dirichlet problem for an ultrahyperbolic equation and on integral geometry on the sphere, Uspekhi Mat. Nauk 43 (1988), no. 5(263), 181–182 (Russian); English transl., Russian Math. Surveys 43 (1988), no. 5, 215–216. MR 971474, 10.1070/RM1988v043n05ABEH001938
  • 8. V. P. Burskiĭ, Boundary value problems for a second-order hyperbolic equation in a disk, Izv. Vyssh. Uchebn. Zaved. Mat. 2 (1987), 22–29, 83 (Russian). MR 889192
  • 9. V.P. Burski{\u{\i\/}}\kern.15em, Methods of investigating boundary-value problems for general differential equations, Naukova Dumka, Kiev, 2002. (Russian)
  • 10. V. P. Burskiĭ, Generalized solutions of boundary value problems for differential equations of general type, Uspekhi Mat. Nauk 53 (1998), no. 4(322), 215–216 (Russian); English transl., Russian Math. Surveys 53 (1998), no. 4, 864–865. MR 1668066, 10.1070/rm1998v053n04ABEH000061
  • 11. V. P. Burskiĭ, A commutative diagram connected with a differential operator in a domain, Ukrain. Mat. Zh. 43 (1991), no. 12, 1703–1709 (Russian, with Ukrainian summary); English transl., Ukrainian Math. J. 43 (1991), no. 12, 1588–1594 (1992). MR 1172313, 10.1007/BF01066700
  • 12. V. P. Burskiĭ, On the uniqueness of the solution of some boundary value problems for differential equations in a domain with an algebraic boundary, Ukraïn. Mat. Zh. 45 (1993), no. 7, 898–906 (Russian, with English and Ukrainian summaries); English transl., Ukrainian Math. J. 45 (1993), no. 7, 993–1003 (1994). MR 1260648, 10.1007/BF01057446
  • 13. V. P. Burskiĭ, Boundary value problems for an elliptic equation with complex coefficients and a moment problem, Ukraïn. Mat. Zh. 45 (1993), no. 11, 1476–1483 (Russian, with English and Ukrainian summaries); English transl., Ukrainian Math. J. 45 (1993), no. 11, 1659–1668 (1994). MR 1307364, 10.1007/BF01060856
  • 14. V. P. Burskiĭ, Solutions of the Dirichlet problem for elliptic systems in a disk, Ukraïn. Mat. Zh. 44 (1992), no. 10, 1307–1313 (Russian, with Russian and Ukrainian summaries); English transl., Ukrainian Math. J. 44 (1992), no. 10, 1197–1203 (1993). MR 1201128, 10.1007/BF01057674
  • 15. V.P. Burski{\u{\i\/}}\kern.15em, On the kernel of a differential operator with constant lower-order coefficients in a disk, Manuscript deposited in VINITI, no. 3796-82 Dep. (Russian)
  • 16. V. P. Burskiĭ, Theorems on traces of the solution of the string vibration equation in the disk, Akad. Nauk Ukrain. SSR Inst. Mat. Preprint 23 (1985), 35 (Russian). MR 830507
  • 17. L. Ĭ. Vaĭnerman, Extensions of closed operators in Hilbert space, Mat. Zametki 28 (1980), no. 6, 833–842, 960 (Russian). MR 603218
  • 18. M. I. Višik, On general boundary problems for elliptic differential equations, Trudy Moskov. Mat. Obšč. 1 (1952), 187–246 (Russian). MR 0051404
  • 19. V. I. Gorbachuk and M. L. Gorbachuk, Granichnye zadachi dlya differentsialno-operatornykh uravnenii, “Naukova Dumka”, Kiev, 1984 (Russian). MR 776604
  • 20. V. I. Gorbachuk, M. L. Gorbachuk, and A. N. Kochubeĭ, The theory of extensions of symmetric operators, and boundary value problems for differential equations, Ukrain. Mat. Zh. 41 (1989), no. 10, 1299–1313, 1436 (Russian); English transl., Ukrainian Math. J. 41 (1989), no. 10, 1117–1129 (1990). MR 1034669, 10.1007/BF01057246
  • 21. M. L. Gorbačuk, Selfadjoint boundary value problems for a second order differential equation with an unbounded operator coefficient, Funkcional. Anal. i Priložen. 5 (1971), no. 1, 10–21 (Russian). MR 0283624
  • 22. Nelson Dunford and Jacob T. Schwartz, Linear operators. Part II, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1988. Spectral theory. Selfadjoint operators in Hilbert space; With the assistance of William G. Bade and Robert G. Bartle; Reprint of the 1963 original; A Wiley-Interscience Publication. MR 1009163
  • 23. A. A. Dezin, Obshchie voprosy teorii granichnykh zadach, “Nauka”, Moscow, 1980 (Russian). MR 596223
  • 24. Yu. V. Egorov and M. A. Shubin, Linear partial differential equations. Foundations of the classical theory, Partial differential equations, 1 (Russian), Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1988, pp. 5–265 (Russian). MR 1141629
  • 25. M. Krein, The theory of self-adjoint extensions of semi-bounded Hermitian transformations and its applications. I, Rec. Math. [Mat. Sbornik] N.S. 20(62) (1947), 431–495 (Russian, with English summary). MR 0024574
  • 26. S. G. \cyr{K}reĭn, Lineinye uravneniya v banakhovom prostranstve, Izdat. “Nauka”, Moscow, 1971 (Russian). MR 0374949
  • 27. A. N. Kočubeĭ, Extensions of symmetric operators and of symmetric binary relations, Mat. Zametki 17 (1975), 41–48 (Russian). MR 0365218
  • 28. L. P. Kupcov, The mean value property and the maximum principle for second order parabolic equations, Dokl. Akad. Nauk SSSR 242 (1978), no. 3, 529–532 (Russian). MR 507137
  • 29. O. A. Ladyzhenskaya and N. N. Uraltseva, Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Izdat. “Nauka”, Moscow, 1973 (Russian). Second edition, revised. MR 0509265
    Olga A. Ladyzhenskaya and Nina N. Ural′tseva, Linear and quasilinear elliptic equations, Translated from the Russian by Scripta Technica, Inc. Translation editor: Leon Ehrenpreis, Academic Press, New York-London, 1968. MR 0244627
  • 30. J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications. Vol. 1, Travaux et Recherches Mathématiques, No. 17, Dunod, Paris, 1968 (French). MR 0247243
  • 31. V. È. Lyantse and O. G. Storozh, Metody teorii neogranichennykh operatorov, “Naukova Dumka”, Kiev, 1983 (Russian). MR 757535
  • 32. Vladimir G. Maz’ja, Sobolev spaces, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1985. Translated from the Russian by T. O. Shaposhnikova. MR 817985
  • 33. A. H. Mamjan, The construction of solvable extensions in a parallelepiped for linear differential operators with constant coefficients, Differencial′nye Uravnenija 6 (1970), 358–370 (Russian). MR 0279426
  • 34. M. A. Naĭmark, Linear differential operators. Part II: Linear differential operators in Hilbert space, With additional material by the author, and a supplement by V. È. Ljance. Translated from the Russian by E. R. Dawson. English translation edited by W. N. Everitt, Frederick Ungar Publishing Co., New York, 1968. MR 0262880
  • 35. V. P. Palamodov, Linear differential operators with constant coefficients, Translated from the Russian by A. A. Brown. Die Grundlehren der mathematischen Wissenschaften, Band 168, Springer-Verlag, New York-Berlin, 1970. MR 0264197
  • 36. B. P. Panejah, General systems of differential equations with constant coefficients., Dokl. Akad. Nauk SSSR 138 (1961), 297–300 (Russian). MR 0126606
  • 37. B. I. Ptashnik, Nekorrektnye granichnye zadachi dlya differentsialnykh uravnenii s chastnymi proizvodnymi, “Naukova Dumka”, Kiev, 1984 (Russian). MR 772024
  • 38. Ja. A. Roĭtberg, The existence of limit values of generalized solutions of elliptic equations on the boundary of the domain, Sibirsk. Mat. Zh. 20 (1979), no. 2, 386–396, 460 (Russian). MR 530503
  • 39. Ja. A. Roĭtberg, On the boundary values of generalized solutions of systems that are elliptic in the sense of Douglis and Nirenberg, Sibirsk. Mat. Ž. 18 (1977), no. 4, 846–860, 957 (Russian). MR 0486967
  • 40. Ya. A. Roĭtberg and V. A. Serdyuk, Elliptic problems with a parameter in 𝐿₂-spaces of generalized functions for general systems of equations, Akad. Nauk Ukrain. SSR Inst. Mat. Preprint 30 (1982), 62 (Russian). MR 692462
  • 41. F. S. Rofe-Beketov, Selfadjoint extensions of differential operators in a space of vector-valued functions, Teor. Funkciĭ Funkcional. Anal. i Priložen. Vyp. 8 (1969), 3–24 (Russian). MR 0281055
  • 42. I. V. \cyr{S}krypnik and I. V. Skrypnik, Nelineinye ellipticheskie uravneniya vysshego poryadka, Izdat. “Naukova Dumka”, Kiev, 1973 (Russian). MR 0435590
  • 43. Lars Hörmander, The analysis of linear partial differential operators. I, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 256, Springer-Verlag, Berlin, 1983. Distribution theory and Fourier analysis. MR 717035
  • 44. Lars Hörmander, Differential operators of principal type, Math. Ann. 140 (1960), 124–146. MR 0130574
  • 45. Lars Hörmander, The analysis of linear partial differential operators. I, 2nd ed., Springer Study Edition, Springer-Verlag, Berlin, 1990. Distribution theory and Fourier analysis. MR 1065136
  • 46. Lars Hörmander, The analysis of linear partial differential operators. II, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 257, Springer-Verlag, Berlin, 1983. Differential operators with constant coefficients. MR 705278
  • 47. V. P. Burskii, On well-posedness of boundary value problems for some class of general PDEs in a generalized setting, Funct. Differ. Equ. 8 (2001), no. 1-2, 89–100. International Conference on Differential and Functional Differential Equations (Moscow, 1999). MR 1949991
  • 48. J. W. Calkin, Abstract symmetric boundary conditions, Trans. Amer. Math. Soc. 45 (1939), no. 3, 369–442. MR 1501997, 10.1090/S0002-9947-1939-1501997-7
  • 49. Avron Douglis and Louis Nirenberg, Interior estimates for elliptic systems of partial differential equations, Comm. Pure Appl. Math. 8 (1955), 503–538. MR 0075417
  • 50. Herbert Gajewski, Konrad Gröger, and Klaus Zacharias, Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Akademie-Verlag, Berlin, 1974 (German). Mathematische Lehrbücher und Monographien, II. Abteilung, Mathematische Monographien, Band 38. MR 0636412
  • 51. Gerd Grubb, A characterization of the non-local boundary value problems associated with an elliptic operator, Ann. Scuola Norm. Sup. Pisa (3) 22 (1968), 425–513. MR 0239269
  • 52. Gudrun Gudmundsdottir, Global properties of differential operators of constant strength, Ark. Mat. 15 (1977), no. 2, 169–198. MR 0509109
  • 53. V. A. Derkach and M. M. Malamud, Generalized resolvents and the boundary value problems for Hermitian operators with gaps, J. Funct. Anal. 95 (1991), no. 1, 1–95. MR 1087947, 10.1016/0022-1236(91)90024-Y
  • 54. M. M. Malamud and V. I. Mogilevskii, Kreĭn type formula for canonical resolvents of dual pairs of linear relations, Methods Funct. Anal. Topology 8 (2002), no. 4, 72–100. MR 1942823
  • 55. Lars Hörmander, Definitions of maximal differential operators, Ark. Mat. 3 (1958), 501–504. MR 0106333
  • 56. Bent Fuglede, A priori inequalities connected with systems of partial differential equations, Acta Math. 105 (1961), 177–195. MR 0140818

Similar Articles

Retrieve articles in Transactions of the Moscow Mathematical Society with MSC (2000): 35G05, 35B30, 35E20, 35A05, 35B05

Retrieve articles in all journals with MSC (2000): 35G05, 35B30, 35E20, 35A05, 35B05


Additional Information

DOI: http://dx.doi.org/10.1090/S0077-1554-07-00162-8
Published electronically: October 29, 2007
Article copyright: © Copyright 2007 American Mathematical Society