Remote Access Transactions of the Moscow Mathematical Society

Transactions of the Moscow Mathematical Society

ISSN 1547-738X(online) ISSN 0077-1554(print)

 
 

 

On the convergence of Padé approximations for generalized Nevanlinna functions


Authors: M. S. Derevyagin and V. A. Derkach
Translated by: O. A. Khleborodova
Original publication: Trudy Moskovskogo Matematicheskogo Obshchestva, tom 68 (2007).
Journal: Trans. Moscow Math. Soc. 2007, 119-162
MSC (2000): Primary 30E05; Secondary 47A57
DOI: https://doi.org/10.1090/S0077-1554-07-00163-X
Published electronically: October 29, 2007
MathSciNet review: 2429269
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study a stepwise algorithm for solving the indefinite truncated moment problem and obtain the factorization of the matrix describing the solution of this problem into elementary factors. We consider the generalized Jacobi matrix corresponding to Magnus' continuous $ P$-fraction that appears in this algorithm and the polynomials of the first and second kind that are solutions of the corresponding difference equation. Weyl functions and the resolution matrices for finite and infinite Jacobi matrices are computed in terms of these polynomials. Convergence of diagonal and paradiagonal Padé approximation for functions from the generalized Nevanlinna class is studied.


References [Enhancements On Off] (What's this?)

  • 1. A. I. Aptekarev, V. A. Kaliaguine, and W. Van Assche, Criterion for the resolvent set of nonsymmetric tridiagonal operators. Proc. Amer. Math. Soc. 123 (1995), 2423-2430. MR 1254830 (96c:47041)
  • 2. N. I. Akhiezer, The classical moment problem and some related questions in analysis. Fizmatgiz, Moscow, 1961; English transl., Hafner Publishing Co., New York, 1965. MR 0184042 (32:1518)
  • 3. D. Alpay, A. Dijksma, and H. Langer, Factorization of $ J$-unitary matrix polynomials on the line and a Schur algorithm for generalized Nevanlinna functions. Linear Algebra Appl. 387 (2004), 313-342. MR 2069282 (2005b:47029)
  • 4. D. Alpay, T. Azizov, A. Dijksma, and H. Langer, The Schur algorithm for generalized Schur functions, III: $ J$-unitary matrix polynomials on the circle. Linear Algebra Appl. 369 (2003), 113-144. MR 1988481 (2005e:47032)
  • 5. F. V. Atkinson, Discrete and continuous boundary problems. Academic Press, New York-London, 1964. MR 0176141 (31:416)
  • 6. T. Ya. Azizov and I. S. Iokhvidov, Linear operators in spaces with an indefinite metric. ``Nauka'', Moscow, 1986; English transl., Wiley, Chichester, 1989. MR 1033489 (90j:47042)
  • 7. B. Beckermann, Complex Jacobi matrices. J.Comput. Appl. Math. 127 (2001), 17-65. MR 1808568 (2001k:39030)
  • 8. G. Baker, J. L. Gammel, and J. G. Wills, An investigation of the applicability of the Padé approximant method. J.Math. Anal. Appl. 2 (1961), 405-418. MR 0130093 (23:B3125)
  • 9. G. Baker and P. Graves-Morris, Padé approximants. Parts I, II. Addison-Wesley Publishing, Reading, MA, 1981. MR 635619 (83a:41009a)
  • 10. Yu. M. Berezanski{\u{\i\/}}\kern.15em, Expansions in eigenfunctions of selfadjoint operators. ``Naukova Dumka'', Kiev, 1965; English transl., Amer. Math. Soc., Providence, RI, 1968. MR 0222718 (36:5768)
  • 11. V. I. Buslaev, The Baker-Gammel-Wills conjecture in the theory of Padé approximants. Mat. Sb. 193 (2002), no. 6, 25-38; English transl., Sb. Math. 193 (2002), no. 5-6, 811-823. MR 1957951 (2004c:41025)
  • 12. F. R. Gantmacher, The theory of matrices. Vols. 1. 2, AMS-Chelsea Publications, Amer. Math. Soc., Providence, RI, 1959. MR 107649 (21:6372c)
  • 13. F. Gesztesy and B. Simon, $ m$-functions and inverse spectral analysis for finite and semi-infinite Jacobi matrices. J. Anal. Math. 73 1997, 267-297. MR 1616422 (99c:47039)
  • 14. A. A. Gonchar, On convergence of Padé approximants for some classes of meromorphic functions. Mat. Sb. 97 (1975), 607-629; English transl. in Math. USSR-Sb. 26 (1975). MR 0387552 (52:8392)
  • 15. I. Gohberg, P. Lancaster, and L. Rodman, Matrix polynomials. Academic Press, New York, 1982. MR 662418 (84c:15012)
  • 16. I. C. Gohberg and M. G. Krein, Fundamental aspects of defect numbers, root numbers and indexes of linear operators. Uspehi Mat. Nauk (N.S.) 12 (1957), no. 2, 43-118. (Russian) MR 0096978 (20:3459)
  • 17. V. I. Gorbachuk and M. L. Gorbachuk, Boundary value problems for operator differential equations. ``Naukova Dumka'', Kiev, 1984; English transl., Kluwer, Dordrecht, 1991. MR 1154792 (92m:34133)
  • 18. A. Dijksma, H. Langer, A. Luger, and Yu. Shondin, A factorization result for generalized Nevanlinna functions of the class $ \mathbf{N}_{\kappa}$. Integral Equations Operator Theory 36 (2000), 121-125. MR 1736921 (2000i:47027)
  • 19. M. Derevyagin, On the Schur algorithm for indefinite moment problem. Methods Functional Anal. Topol. 9 (2003), 133-145. MR 1999775 (2004j:30075)
  • 20. M. Derevyagin and V. Derkach, Spectral problems for generalized Jacobi matrices. Linear Algebra Appl. 382 (2004), 1-24. MR 2050096 (2005d:47051)
  • 21. V. Derkach, On generalized resolvents of Hermitian relations in Krein spaces. J. Math. Sci. 97 (1999), no. 5, 4420-4460. MR 1728871 (2001c:47042)
  • 22. -, On characteristic functions of linear relations and unitary colligations. Dopov. Nats. Akad. Nauk Ukr. Mat. Prirodozn. Tekh. Nauki 2001, no. 11, 28-33. MR 1900470 (2003b:47023)
  • 23. V. A. Derkach, S. Hassi, amd H. S. V. de Snoo, Operator models associated with Kac subclasses of generalized Nevanlinna functions. Methods Functional Anal. Topology, 1999, no. 5. 65-87. MR 1771251 (2001f:47063)
  • 24. -, Generalized Nevanlinna functions with polynomial asymptotic behaviour and regular perturbations. Operator theory in Krein spaces and nonlinear eigenvalue problems, Birkhäuser, Basel, 2001, pp. 169-189. MR 1846057 (2002j:47042)
  • 25. V. A. Derkach and M. M. Malamud, The extension theory of Hermitian operators and the moment problem. J. Math. Sci. 73 (1995), no. 2, 141-242. MR 1318517 (95m:47009)
  • 26. W. B. Jones and W. J. Thron, Continued fractions. Analytic theory and applications. Addison-Wesley, Reading, MA, 1980. MR 595864 (82c:30001)
  • 27. H. Dym, On Hermitian block Hankel matrices, matrix polynomials, the Hamburger moment problem, interpolation and maximum entropy Integral Equations Operator Theory 12 (1989), 757-811. MR 1018213 (91c:30065)
  • 28. I. S. Iohvidov, M. G. Krein, and H. Langer, Introduction to the spectral theory in spaces with an indefinite metric. Akademie Verlag,, Berlin, 1982. MR 691137 (85g:47050)
  • 29. M. G. Krein, The fundamental propositions of the theory of representations of Hermitian operators with deficiency index $ (m,m)$. Ukrain. Mat. Zh. 1 (1949), no. 2, 3-66. (Russian) MR 0048704 (14:56d)
  • 30. M. G. Krein and H. Langer, On defect subspaces and generalized resolvents of a Hermitian operator in the space $ \Pi_\kappa$. Functional Anal. Appl. 5 (1971), 136-146. MR 0282238 (43:7951a); MR 0282238 (43:7951b)
  • 31. -, Über die $ Q$-Funktion eines $ \pi$-hermiteschen Operators im Raume $ \Pi_{\kappa}$. Acta. Sci. Math. (Szeged) 34 (1973), 191-230. MR 0318958 (47:7504)
  • 32. -, Über einige Fortsetzungsprobleme, die eng mit der Theorie hermitescher Operatoren im Raume $ \Pi_{\kappa}$ zusammenhängen. I. Math. Nachr. 77 (1977), 187-236. MR 0461188 (57:1173)
  • 33. -, Über einige Fortsetzungsprobleme, die eng mit der Theorie hermitescher Operatoren im Raume $ \Pi_{\kappa}$ zusammenhängen. II. J. Funct. Anal. 30 (1978), no. 3, 390-447. MR 0518342 (80h:47045)
  • 34. -, On some extension problems which are closely connected with the theory of Hermitian operators in a space $ \Pi_{\kappa}$. III. Indefinite analogues of the Hamburger and Stieltjes moment problems, Part I, Beiträge zur Anal. Vol. 14, 1979, pp. 25-40. MR 0563344 (83b:47047a)
  • 35. -, Some propositions of analytic matrix functions related to the theory of operators in the space $ \Pi_{\kappa}$. Acta Sci. Math. (Szeged) 43 (1981), 181-205. MR 0621369 (82i:47053)
  • 36. M. G. Krein and A. A. Nudelman. The Markov moment problem and extremal problems. ``Nauka'', Moscow, 1973; English transl., Amer. Math. Soc., Providence, RI, 1977. MR 0458081 (56:16284)
  • 37. M. G. Krein amd Sh. N. Saakjan, The resolvent matrix of a Hermitian operator and the characteristic functions connected with it. Funkcional. Anal. i Prilozhen. 4 (1970) no. 3, 103-104; English transl. in Functional Anal. Appl. 4 (1970). MR 0275205 (43:962)
  • 38. H. Langer, A characterization of generalized zeros of negative type of functions of the class $ \mathbf{N}_{\kappa}$. Oper. Theory Adv. Appl., vol. 17, 1986, pp. 201-212. MR 901070 (88j:47051)
  • 39. H. Langer and B. Textorius, On generalized resolvents and $ Q$-functions of symmetric linear relations (subspaces) in Hilbert space. Pacific J. Math. 72 (1977), 135-165. MR 0463964 (57:3902)
  • 40. D. S. Lubinsky, Rogers-Ramanujan and the Baker-Gammel-Wills (Padé) conjecture. Ann. of Math. (2) 157 (2003), 847-889. MR 1983783 (2004b:30071)
  • 41. A. Magnus, Certain continued fractions associated with the Padé table. Math. Z. 78 (1962), 361-374. MR 0150271 (27:272)
  • 42. -, Expansion of power series into P-fractions. Math. Z. 80 (1962), 209-216. MR 0150272 (27:273)
  • 43. E. M. Nikishin and V. N. Sorokin, Rational approximations and orthogonality. ``Nauka'', Moscow, 1988; English transl., Amer. Math. Soc., Providence, RI, 1991. MR 1130396 (92i:30037)
  • 44. E. A. Rahmanov, The convergence of diagonal Padé approximants. Mat. Sb. 104 (1977), no. 2, 271-291; English transl., Math. USSR-Sb. 33 (1977), no. 2, 243-260. MR 0492292 (58:11430)
  • 45. B. Simon, The classical moment problem as a self-adjoint finite difference operator. Adv. Math. 137 (1998), 82-203. MR 1627806 (2001e:47020)
  • 46. H. Stahl, On the divergence of certain Padé approximants and the behaviour of the associated orthogonal polynomials. Polynômes Orthogonaux et Applications, Lect. Notes Math. vol. 1171, Springer-Verlag. Heidelberg, 1985. pp. 321-330. MR 839001 (87g:41037)
  • 47. H. van Rossum, Padé approximants and indefinite inner product spaces. Padé and rational approximation. Theory and applications, E.B.Saff and R.S.Varga (eds.), Tampa, 1976, pp. 111-119. MR 0617938 (58:29725)

Similar Articles

Retrieve articles in Transactions of the Moscow Mathematical Society with MSC (2000): 30E05, 47A57

Retrieve articles in all journals with MSC (2000): 30E05, 47A57


Additional Information

M. S. Derevyagin
Affiliation: Donetsk National University, Universitetskaya 24, 83055 Donetsk, Ukraine
Email: derkach.v@gmail.com

V. A. Derkach
Affiliation: Donetsk National University, Universitetskaya 24, 83055 Donetsk, Ukraine
Email: derevyagin.m@gmail.com

DOI: https://doi.org/10.1090/S0077-1554-07-00163-X
Published electronically: October 29, 2007
Article copyright: © Copyright 2007 American Mathematical Society

American Mathematical Society