Remote Access Transactions of the Moscow Mathematical Society

Transactions of the Moscow Mathematical Society

ISSN 1547-738X(online) ISSN 0077-1554(print)

 
 

 

On $ d$-dimensional compact hyperbolic Coxeter polytopes with $ d+4$ facets


Authors: Pavel Tumarkin and Anna Felikson
Translated by: Alex Martsinkovsky
Original publication: Trudy Moskovskogo Matematicheskogo Obshchestva, tom 69 (2008).
Journal: Trans. Moscow Math. Soc. 2008, 105-151
MSC (2000): Primary 52B11; Secondary 20F55
DOI: https://doi.org/10.1090/S0077-1554-08-00172-6
Published electronically: November 20, 2008
MathSciNet review: 2549446
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that there are no compact Coxeter polytopes with $ d+4$ facets in a hyperbolic space of dimension $ d>7$. This estimate is sharp: examples of such polytopes in dimensions $ d\le 7$ were found by V. O. Bugaenko in 1984. We also show that in dimension $ 7$ there is a unique polytope with 11 facets.


References [Enhancements On Off] (What's this?)

  • 1. D.  Allcock, Infinitely many hyperbolic Coxeter groups through dimension 19, Geom. Topol. 10 (2006), 737-758. MR 2240904 (2007f:20067)
  • 2. E. M. Andreev, The intersection of the planes of the faces of polyhedra with acute angles, Mat. Zametki 8 (1970), 521-527; English transl., Math. Notes 8 (1970), 761-764. MR 0279680 (43:5401)
  • 3. E. M. Andreev, Convex polyhedra in Lobachevsky spaces, Mat. Sb. (N.S.) 81 (1970), 445-478. (Russian) MR 0259734 (41:4367)
  • 4. R. Borcherds, Coxeter groups, Lorentzian lattices, and K3 surfaces, IMRN 19 (1998), 1011-1031. MR 1654763 (2000a:20088)
  • 5. V. O. Bugaenko, Groups of automorphisms of unimodular hyperbolic quadratic forms over the ring $ {\bf Z}[(\sqrt{5}+1)/2]$, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 5 (1984), 6-12. MR 764026 (86d:11030)
  • 6. V. O. Bugaenko, Arithmetic crystallographic groups generated by reflections, and reflective hyperbolic lattices, Adv. Sov. Math. 8 (1992), 33-55. MR 1155663 (93g:20094)
  • 7. V. A. Emelichev, M. M. Kovalev, and M. K. Kravtsov, Polytopes, graphs and optimization, Nauka, Moscow, 1981; English transl., Cambridge University Press, Cambridge, 1984. MR 0656517 (83h:52014); MR 0744197 (85b:52008)
  • 8. F.  Esselmann, Über kompakte hyperbolische Coxeter-Polytope mit wenigen Facetten, Universität Bielefeld, SFB 343, Preprint No. 94-087.
  • 9. F. Esselmann, The classification of compact hyperbolic Coxeter $ d$-polytopes with $ d+2$ facets, Comment. Math. Helvetici 71 (1996), 229-242. MR 1396674 (97j:52015)
  • 10. A. A. Felikson and P. V. Tumarkin, On subgroups generated by reflections in groups generated by reflections, Funct. Anal. Appl. 38 (2004), 313-314. MR 2117513 (2005j:20046)
  • 11. A. A. Felikson and P. V. Tumarkin, On hyperbolic Coxeter polytopes with mutually intersecting facets, J. Combin. Theory Ser. A 115 (2008), 121-146, arXiv:math.MG/0604248. MR 2378860 (2008m:52026)
  • 12. B. Grünbaum, Convex polytopes, John Wiley & Sons, New York, 1967. MR 0226496 (37:2085)
  • 13. I. M. Kaplinskaya, The discrete groups that are generated by reflections in the faces of simplicial prisms in Lobachevsky spaces, Mat. Zametki 15 (1974), 159-164. (Russian) MR 0360858 (50:13305)
  • 14. F. Lannér, On complexes with transitive groups of automorphisms, Comm. Sem. Math. Univ. Lund 11 (1950), 1-71. MR 0042129 (13:58c)
  • 15. H. Poincaré, Théorie des groups fuchsiennes, Acta Math. 1 (1882), 1-62. MR 1554574
  • 16. M. N. Prokhorov, Absence of discrete groups of reflections with a noncompact fundamental polyhedron of finite volume in a Lobachevsky space of high dimension, Izv. Akad. Nauk SSSR Ser. Mat. 50 (1986), 413-424. MR 842588 (87k:22016)
  • 17. P. Tumarkin, Compact hyperbolic Coxeter $ n$-polytopes with $ n+3$ facets, Electron. J. Combin. 14 (2007), no. 1, Research Paper 69, 36 pp. MR 2350459 (2008k:52022)
  • 18. È. B. Vinberg, Absence of crystallographic groups of reflections in Lobachevskiĭspaces of large dimension, Trudy Moskov. Mat. Obshch. 47 (1984), 68-102. (Russian) MR 774946 (86i:22020)
  • 19. È. B. Vinberg, Hyperbolic groups of reflections, Russian Math. Surveys 40 (1985), 31-75. MR 783604 (86m:53059)
  • 20. È. B. Vinberg, O. V. Shvartsman, Discrete groups of motions of spaces of constant curvature, Geometry, II, Encyclopaedia Math. Sci., vol. 29, pp. 139-248, Springer, Berlin, 1993. MR 1254933 (95b:53043)

Similar Articles

Retrieve articles in Transactions of the Moscow Mathematical Society with MSC (2000): 52B11, 20F55

Retrieve articles in all journals with MSC (2000): 52B11, 20F55


Additional Information

Pavel Tumarkin
Affiliation: Independent University of Moscow, Russia
Email: pasha@mccme.ru

Anna Felikson
Affiliation: Independent University of Moscow, Russia
Email: felikson@mccme.ru

DOI: https://doi.org/10.1090/S0077-1554-08-00172-6
Published electronically: November 20, 2008
Additional Notes: The first author was partially supported by the President of the Russian Federation grants MK-6290.2006.1 and NSh-5666.2006.1, the RFFI grant No. 07-01-00390-a, and the INTAS grant YSF-06-10000014-5766.
The second author was partially supported by the President of the Russian Federation grant NSh-5666.2006.1, the RFFI grant No. 07-01-00390-a, and the INTAS grant YSF-06-10000014-5916.
Article copyright: © Copyright 2008 American Mathematical Society

American Mathematical Society