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STOCHASTIC AND DETERMINISTIC CHARACTERISTICS

OF ORBITS IN CHAOTICALLY LOOKING DYNAMICAL SYSTEMS

V. I. ARNOLD

Abstract. We study finite length sequences of numbers which, at the first glance,
look like realizations of a random variable (for example, sequences of fractional parts
of arithmetic and geometric progressions, last digits of sequences of prime numbers,
and incomplete periodic continuous fractions).

The degree of randomness of a finite length sequence is measured by the parameter

introduced by Kolmogorov in his 1933 Italian article published in an actuarial journal.
Unexpectedly, fractional parts of terms of a geometric progression behave much

more randomly than terms of an arithmetic progression, and the statistics of periods
of continuous fractions for eigenvalues of unimodular matrices turns out to be different
from the classical Gauss–Kuzmin statistics of partial continuous fractions of random
real numbers.

Empirically, the lengths of the period of continuous fractions for the roots of qua-
dratic equations with leading coefficient 1 and increasing other (integer) coefficients,
grow, on the average, as the square root of the discriminant of the equation.

1. Kolmogorov’s stochasticity parameter

Laplace was calculating the probability that the sun will rise tomorrow. It is not easy
to determine what he meant by “probability”.

First attempts to define an objectively measurable degree of randomness of observable
events were made by von Mises and Kolmogorov. In his 1933 Italian paper on actuarial
mathematics (see Kolmogoroff [1]), Kolmogorov introduced his “stochasticity parameter”
λn of a set of n real numbers, which allows one to estimate how realistic is the assumption
that these n numbers are n independent values of the same real random variable.

The definition of this stochasticity parameter λn begins with the description of the
given set of n real numbers using the “empirical counting function” Cn defined below.

Let us arrange the given numbers in increasing order,

x1 ≤ x2 ≤ · · · ≤ xn.

The value of the empirical counting function Cn(X) is defined as the number of ele-
ments xm that are not larger than X:

Cn(X) = 0 for X < x1;

Cn(X) = m for xm ≤ X < xm+1;

Cn(X) = n for xn ≤ X.

Kolmogorov assumed that the random variable x ∈ R has a continuous distribution
function and describes the “theoretical counting function” C0(X) as the expectation of
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the number of values not exceeding X among n independent observations of the random
variable x:

C0(X) = n · (probability that x ≤ X).

The empirical counting function Cn differs from the theoretical one, and Kolmogorov
measures their divergence using the uniform norm

Fn = sup
X

|Cn(X)− C0(X)|.

Viewing both Cn and C0 as sums of approximately n more or less independent random
variables (with zero expectation for the difference Cn − C0), one can easily see that the
values of the random variable Fn are of order

√
n (following the theory of Brownian

motion).
Therefore, Kolmogorov normalizes the difference and defines his stochasticity param-

eter (of the given sequence x1 ≤ x2 ≤ · · · ≤ xn of real numbers) by the formula

λn =
Fn√
n
.

To avoid using the theoretical distribution (i.e., the function C0), one can replace this
function C0 in the definition of the divergence Fn with the empirical counting function
C ′

n constructed using another sample of n values. Presumably, the resulting modified
stochasticity parameter is asymptotically proportional to λn, but I do not know the exact
value of the proportionality coefficient (or its distribution). Empirically it seems to be
about 30% higher than Kolmogorov’s λn, but can take values between λn and 2λn.

One can probably find more about this from the article [27] by N. V. Smirnov.
The Kolmogorov stochasticity parameter λn is itself a random variable with the dis-

tribution function Φn:

Φn(Λ) = (probability that λn ≤ Λ).

Kolmogorov proved the following result.

Theorem. As n → ∞, the distribution functions Φn tend (uniformly) to the universal
limit Φ (independent of the continuous distribution function C0/n of the random variable
x whose n values (x1 ≤ · · · ≤ xn) were used to compute the values of the parameter λn

and their distribution function Φn).

Remark. The fundamental universality property (independence of Φ of C0) has a sim-
ple relativistic origin: any two continuous probability distributions are equivalent in the
sense that they differ only by a choice of the coordinate on the x axis. Therefore every
characterization of the distribution defined independently of the coordinate x will take
the same value on any two continuous probability distributions. In particular, the distri-
butions Φn (hence also Φ) of the values of the stochasticity parameter Λ do not depend
on the choice of the coordinate on the x axis, hence are universal.

This remark allows one to compute these distributions explicitly: it suffices to consider
the uniform distribution C0 for which the computation of the probability Φn(Λ) of the
even λn ≤ Λ reduces to the summation of volumes of certain simplices in the Euclidean
space.

The resulting formulas for the distributions Φn contain many factorials, but the Stirling
asymptotic formula yields the short Kolmogorov formula for the universal distribution
Φ. Namely, Kolmogorov proved that for Λ > 0 we have

Φ(Λ) =

k=+∞∑
k=−∞

(
(−1)ke−2k2Λ2

)
.
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This Kolmogorov distribution function smoothly increases from 0 (at Λ = 0) to 1 (as
Λ → +∞), remaining very small for, say, Λ ≤ 0.4 (for Λ → 0 its asymptotics is

Φ(Λ) ∼
√
2π

Λ
e
− π2

(8Λ2) ,

so that all derivatives of Φ at the point Λ = 0 equal 0).
The values of the function Φ(Λ) are close to 1 for, say, Λ ≥ 1.8. In [1], Kolmogorov

presented the following table of Φ with four-digit precision:

Λ 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

104Φ 28 1357 4558 7300 8877 9603 9888 9969

The average of the stochasticity parameter Λ distributed according to this law equals
Λ =

√
π/2 ln 2 ≈ 0.867, and the median equals Λ∗ ≈ 0.83 (the events Λ ≤ Λ∗ and Λ ≥ Λ∗

both have probability 50%).
The idea of the application of this Kolmogorov theorem to measuring the degree of

randomness is as follows. First we compute the empirical value λn (for some sample of
n observed values of the variable x whose randomness we study).

If the resulting value λn is significantly smaller than the average Λ ≈ 0.87, then the
probability Φ(λn) of the event Λ ≤ λn is so small that x is unlikely to be random.

For example, for the empirical value λn = 0.4 the probability Φ(0.4) ≈ 28/1000 of
the appearence of such a small value of the stochasticity parameter for n independent
observations of a random variable x is less than one third of one per cent, and the
experimenter should conclude that x is unlikely to be random.

Equally unlikely is the appearance of λn that is much larger than the average Λ. For
example, if λn = 1.8, then Φ(λn) ≈ 0.9969. Therefore the probability of the appearance
of this (or larger) value of the stochasticity parameter (for a sample of n values of a
random variable x) is less than one third of one per cent, and the experimenter should
again conclude that x is unlikely to be random.

The estimate of the objective degree of randomness by von Mises did follow the same
scheme but with a different choice of metric used to estimate the divergence Fn of
counting functions: instead of the uniform norm, von Mises used the quadratic mean,
i.e., the Hilbert norm.

One of the best applications of the Kolmogorov stochasticity parameter was described
by Kolmogorov himself in 1940. Unfortunately, not all of Kolmogorov’s conclusions were
published (for political reasons).

At that time, followers of T. D. Lysenko, who was fighting against classical genetics,
published the results of their experiment refuting Mendel’s Law of Independent Assort-
ment (explaining the 3 : 1 ratio for the appearance of white and purple flowers on pea
plants in the second generation).

In the described experiment, out of 4000 plants the observed ratio was something like
940 : 3060 instead of the theoretical ratio 1 : 3. Lysenko concluded that this difference
refutes the Mendel law.

Computing his stochasticity parameter for these experimental data, Kolmogorov ob-
tained the value Λ ≈ 0.8, confirming the honesty of the experimenters.

Kolmogorov also came to the conclusion that if, in another experiment, the result
would have been closer to Mendel’s 3 : 1 prediction, then in the experiment of Lysenko’s
followers, this would have indicated that the data were falsified: any difference smaller
than 1000− 940 = 60 is unlikely.

However, it was impossible to publish the conclusion in this form because, at the very
same moment, classical geneticists submitted an article (to the same journal, Doklady
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AN SSSR) that refuted the work of Lysenko’s pupils: experimental results reported in
this article were very close to Mendel’s prediction.

Kolmogorov’s conclusion would mean that these results are falsified, as opposed to the
results of Lysenko’s pupils who presented an honest report about their experiment. Not
willing to write about a falsification, Kolmogorov published, in the article about a new
confirmation of Mendel’s laws (see [2]), just his report on Lysenko’s attempt to refute
Mendel’s laws. Even later, Kolmogorov thought that Lysenko was just an illiterate boor.

The Kolmogorov stochasticity parameter can be used to estimate the degree of ran-
domness of many other pseudorandom sequences. Being more a method of natural sci-
ences than a mathematical theorem, the comparison of empirically found values of the
Kolmogorov stochasticity parameter λn with its distribution function Φ can be useful
both to establish nonrandomness when the empirical values of λn are far from 0.87 and
to confirm randomness when |λn − 0.87| is small.

Whichever the source of observed “chaotic behavior” is, the objective conclusion that
the stochasticity is too small (for example, the observation that λn → 0 as n → ∞) can
provide useful information about the nature of the variable we are considering.

The observation that the values of the stochasticity parameter λn for samples we
are studying stay in the region where Φ(λn) is far away both from 0 and from 1, can be
viewed as an “objective confirmation of randomness” (regardless of the origin of sequences
of numbers we are studying; as we will see later, these sequences can be provided by
completely deterministic dynamical systems or by simple number-theoretic algorithms).

For example, both sequences below, each formed by 15 two-digit integers look similarly
random; however, the values of the Kolmogorov stochasticity parameter for these two
sequences are sharply different. The sequence of remainders modulo 100 of terms of a
geometric progression

(1.1) 03, 09, 27, 81, 43, 29, 87, 61, 83, 49, 47, 41, 23, 69, 07

turns out to be “objectively chaotic” (in this sense), whereas the sequence of remainders
modulo 100 of terms of an arithmetic progression

(1.2) 37, 74, 11, 48, 85, 22, 59, 96, 33, 70, 07, 44, 81, 18, 55

turns out to be “objectively nonrandom”.
Towards the end of his life, Kolmogorov developed a new axiomatic approach to prob-

ability that uses von Mises’s suggestion to consider as random any sequence of numbers
“whose continuation cannot be guessed”.

Von Mises did not define precisely the words “cannot be guessed”, whereas Kolmogorov
used the mathematical logic approach requesting that “there exists no finite algorithm,
i.e., a finite program for a Turing machine, predicting the continuation of our sequence”.

Kolmogorov proved that from this new definition of randomness one can deduce many
classical theorems of probability, mathematical statistics, and information theory. How-
ever, in all problems discussed earlier in this paper, this approach is useless since it only
works when the number n of trials grows indefinitely; from this asymptotic point of view,
all finite sequences of numbers have zero randomness since any finite sequence can be
generated by a Turing machine with a finite program.

On the contrary, the stochasticity parameter λn allows us to compare “the degree of
randomness” of finite sequences (1.1) and (1.2):

λ15(1) ≈ 0.70, Φ(0.70) ≈ 0.30;

λ15(2) ≈ 0.33, Φ(0.33) < 0.001.

In that sense (in the sense of the degree of randomness) the first sequence (1.1) is at
least 300 times more random than the second sequence (1.2).
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On the other hand, from the algorithmic point of view, both sequences have equally
simple origins: (1.1) is the sequence of modulo 100 residues of the geometric series (with
ratio a = 3)

(ax (mod 100)) (x = 1, 2, . . . , (n = 15))

and (1.2) is the sequence of modulo 100 residues of the arithmetic series (with difference
b = 37)

(bx (mod 100)) (x = 1, 2, . . . , (n = 15)).

As we will see, geometric progressions are much more random than arithmetic pro-
gressions.

2. Applications of the degree of randomness to particular sequences

Kolmogorov proved his theorem for real random variables (with continuous distribu-
tion functions). Earlier I (unlawfully) applied Kolmogorov’s universal distribution Φ to
variables assuming only integer values or even just a finite numbers of values (remainders
of division by an integer N).

I know, of course, that mathematical rigor does not allow us to make unsubstanti-
ated generalizations like that. But as a natural scientist I believe that, e.g., results in
astronomy should not depend on whether the distance measured in some units (be it
kilometers, miles, angstroms, or parsecs) takes real or just integer values.

Therefore I hope that one can apply the Kolmogorov theory not just to real random
variables (with continuous distribution functions) but also to other variables; for example,
this theory should have generalizations to random variables whose values are integers
x ∈ Z, or points on the circle S1, or remainders x ∈ ZN = Z/NZ, or even rational
numbers (x ∈ Q).

Of course, all these generalized theories should be rigorously formulated and proofs
should be given, I hope this will be done (by mathematicians of the future). However,
even before that I will be using Kolmogorov’s distribution Φ in these more general cases
(in the hope that it is a sufficiently good approximation to genuine distributions of the
randomness parameter in these generalized theories).

Example 2.1. Modulo N remainders of n terms

(2.1) {axA (mod N)} (n = 0, 1, . . . , (n− 1))

of the geometric progression with the integer first term A and integer ratio 1 < a < N
can look like a random sample of points uniformly distributed in ZN provided that the
number n of terms is not “too large”. For example, we can take n ≈ T/2 or θT with the
constant θ separated from 0 and from 1, 0 < θ < 1, where T = T (N, a) is the period of
the sequence (2.1) consisting of remainders of terms of progression modulo N .

For different initial points A (of the dynamical system ZN → ZN sending x to ax)
the Kolmogorov stochasticity parameter λn of the corresponding n remainders of terms
of the geometric progression takes different values λn(A).

Computing all these numbers and counting their distribution (corresponding to the
uniform distribution of the initial point A on ZN ) I have found (based on several hundreds
of such experiments) a reasonable similarity of the distribution of obtained values λn(A)
of the Kolmogorov stochasticity parameter for different orbits of our dynamical system
(i.e., for different values of A) with the universal distribution Φ of the stochasticity
parameter.

In the majority of examples the length of the progression was taken to be n = 50
(to simplify the computation of remainders of division by N = 100). The similarity
with the Kolmogorov distribution Φ is not a theorem but an empirical observation. In
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mathematical terms, it should be called a “conjecture” that as N → ∞, the distribution
of the values of the Kolmogorov parameter for modN remainders of terms of N geometric
progression (corresponding to N initial points A) tends to Φ.

Of course, my experiments (which yield at most several million values of λn(A)) do
not prove this conjecture. Nevertheless, I believe it is true.

The “theoretical distribution” C0 of mod N remainders in these experiments was
assumed to be uniform (i.e., each of the N remainders modulo the prime number N was
assumed to have the same probability 1/N). As far as I know, this conjecture about
the uniform distribution of remainders is not yet rigorously proved,1 but in the book [3]
(about Galois theory) I gave some “physical proofs” of (more general) theorems about
uniform distribution (including the uniform distribution of fractional parts of numbers
ax for almost all real bases a (and the set of exceptional values of a has Lebesgue measure
0).

These “physical arguments” are not proofs in the mathematical sense because they
use “adiabatic approximations” which are often used in physics but do not have, so far,
rigorous mathematical proofs. However, I hope that these statements about the uni-
form distribution are correct and, moreover, that the necessary justifications of adiabatic
theorems will eventually be rigorously proved.

The empirical study of various (exponentially growing) recurrent sequences, including
the Fibonacci sequence, leads to similar conclusions about the uniform distribution of
remainders that are similar to those in the above case of geometric progression.

Example 2.2. A long geometric progression with the integer ratio a, where 1 < a < N ,

{axA (mod N)} (x = 0, 1, . . . , n− 1),

consisting of remainders modulo a fixed integer N (for example in the case where N is a
prime number).

Theorem. The Kolmogorov stochastisity parameter λn of such a sequence of n remain-
ders of division by N tends to 0 as the number n of remainders tends to infinity.

This follows from the (small) Fermat theorem about the periodicity of the sequence of
remainders in the case where N is a prime, or from Euler’s generalization of this theorem:
Euler proved that the sequence of remainders of division by any integer is periodic.

To determine the stochasticity parameter in the latter case one should either assume
that the base a is relatively prime to N or correct the “uniform distribution” assuming it
to be uniform only on those remainders of division by N that are divisible by all common
divisors of a and N .

Now we consider a more general case where the base a is not assumed to be an integer
but is allowed to be an arbitrary real number a > 1.

Conjecture. The Kolmogorov stochasticity parameter λn of residues modulo N of n
terms of a geometric progression with an arbitrary ratio a > 1 does not tend to zero as
n → ∞ (for almost all a, so that exceptional values of a form a set of Lebesgue measure
zero on the real line).

Moreover, one can conjecture that for almost any base a > 1 the following more
general statement holds (see [3]):

The distribution of the values λn(A) of the Kolmogorov stochasticity parameter λn of
the sequences of n remainders modulo N of geometric progressions starting at different
points A (0 < A < N), tend, as n → ∞, to the universal Kolmogorov distribution Φ

1I am grateful to A. A. Karatsuba who brought to my attention the article by J. F. Koksma, Ein
mengentheoretischer Satz über die Gleichverteilung modulo Eins, Compositio Math. 2 (1935), 250–258.
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(under the assumption that the starting point A is uniformly distributed on the interval
0 < A < N).

Now let us consider remainders modulo N of terms of arithmetic progressions. To
simplify the forthcoming exposition we choose the scale taking N to be equal to 1, so
that our sequences consist of fractional parts

{ax} (x = 1, 2, . . . , n).

Every real number z is represented as the sum z = [z]+{z} of the integral part [z] ∈ Z

and the fractional part {z}, 0 ≤ {z} < 1.

Theorem (see [5]). The Kolmogorov stochasticity parameter λn of n fractional parts of
terms of an arithmetic progression with a rational difference a tends to a as n → ∞.

This implies that sequences formed by remainders of division by N of terms of long
arithmetic progressions with the difference a commensurable with N (this always takes
place if, for example, both N and a are integers) is never random (provided that the
degree of randomness is measured by the Kolmogorov parameter λn).

However, this asymptotic vanishing of λn (as n → ∞) does not occur, for example,
for some irrational differences of the corresponding arithmetic progressions: it is proved
in [5] that there exist (irrational) numbers a such that the sequence of values λn of
the Kolmogorov stochasticity parameter for fractional parts of n terms of the arithmetic
progression with difference a does not tend to 0 as n → ∞. Moreover, there exist values
of a for which this sequence contains an infinite number of arbitrarily large elements
λnj

≥ K.
These irrational differences a form, similarly to rational values of a, an everywhere

dense set. The appearance of arbitrarily large values λn ≥ K follows from some properties
of incomplete continuous fractions of the number a. Therefore every asymptotically
defined property of the sequence of values of the stocasticity parameter for remainders of n
terms of an arithmetic progression (for example “λn → 0”, or “λn 	→ 0”, or “λn → ∞”,
or “λn ≥ K infinitely many times”, etc.) either occurs almost always (so that the
exceptional values of a have measure 0) or occurs almost never (i.e., the set of those a
for which this property holds has measure 0).

Unfortunately, I don’t know which alternative (“almost always” or “almost never”)
holds for the properties formulated above: whether remainders of almost all arithmetic
progressions are random or nonrandom as far as the behavior of the values λn of the
stocasticity parameter of the first n elements of the sequence is concerned.

This general question is difficult to check both theoretically and experimentally: an
empirical study of the fractional parts of arithmetic progressions presumably requires an-
swering nontrivial questions about the statistics of continuous fractions, and the standard
“Gauss–Kuzmin” statistics describing the distribution of incomplete continuous fractions
of random real numbers (and their finite combinations) is insufficient to solve the above
nontrivial problems.

There is another version of these asymptotic problems, which be easier to solve. It
turns out that unusually large values λn of the stochasticity parameter of the sequence
of n remainders of terms of an arithmetic progression occur (for many values of the
difference a) only for some rare special values of the length n. To avoid the dominating
influence of these rare events one can replace the values λn with their Cesàro means:

λ̂n =
λ1 + · · ·+ λn

n
.

Quite irregular dependence of the values of λn(a) on arithmetical properties of the
difference a of the corresponding arithmetic progression can be smoothened by passing
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from λn(a) to the average values λ̂n(a), whose dependence on arithmetical properties of
a can be easier to investigate.

Another averaging method is provided by the theory of weak asymptotics ; see [6].
For a rational difference a = p/q we replace the sequence of fractional parts of

the arithmetic progression by the sequence of remainders of division by q of terms of
the progression with difference p (this sequence has the same stochasticity parameter
λn(p, q) = λn(a) for each n).

For each value M of the scaling factor we consider the radius r of the neighborhood
U of the point (Mp,Mq) ∈ R2. For each integral point (P ′, Q′) in this neighborhood we
consider the value of the stochasticity parameter λn(a)(P

′, Q′) and compute the average

λ̂∗
n of these real numbers over all integral points in the neighborhood U .

As the scaling factor M tends to infinity, the values λ̂∗
n can have a limit λ̂∗

n(a), which
is then called the weak asymptotic of λn(a).

It is important that, in taking the limit, the number n of the terms of the progression
remains fixed; indeed, the values of the stochasticity parameter λn(P

′, Q′) tend to 0 as

n → ∞ whereas their averages λ̂∗
n may behave differently!

Here the “theoretical distribution” C0 used to determine the values of the stochasticity
parameters λn was chosen to be uniform: each of the N remainders of division by N was
assigned (in the integral case we consider here) probability 1/N provided the difference
a of the progression is relatively prime with N .

For a progression with a rational difference, the fact that long sequences of remain-
ders are uniformly distributed is easy to prove. However, the uniform distribution of
remainders is true for progressions with irrational differences as well (as was proved by
H. Weyl).

Example 2.3. As yet another example of a quasirandom sequence, we consider remain-
ders of division by some integer N of the sequence of prime numbers. Take, for example
the following sequence with n = 21 terms:

01, 03, 07, 13, 27, 31, 37, 39, 49, 51, 57, 63, 67, 73, 79, 81, 91, 93, 97, 99,

consisting of modulo N = 100 remainders of prime numbers (101, 103, . . . , 199) between
100 and 200.

In [5], I compared the counting function C21 of this sequence with the “theoretical
distribution” C0 based on the “density of the distribution of prime numbers” found by
Legendre and Chebyshev (which, near n, is inversely proportional to lnn).

The resulting value of the Kolmogorov stochasticity parameter turns out to be ap-
proximately

λ21 ≈ 0.5, Φ(0.5) ≈ 0.07.

This shows that the distribution of prime numbers between 100 and 200 does not
resemble a random distribution, so that the probability of its being random computed
using the Kolmogorov stochasticity parameter is approximately 7%.

This observation, which contradicts the opinion of many specialists in number the-
ory, can be explained as follows. Near an integer n, the average distance between two
consecutive prime numbers is lnn (according to the Legendre distribution). For large n,
the function lnn grows slowly because the derivative d lnn

dn = 1
n is small. Therefore, the

sequence of prime numbers looks like an arithmetic progression (with “slowly growing”
difference).

This similarity allows one to explain the “observed nonrandomness” of remainders of
prime numbers by similar nonrandomness of remainders of arithmetic progressions. A
weak point of this explanation is that the smallness of the stochasticity parameter λn
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for remainders of division by N of terms of an arithmetic progression is proved only in
the case where the difference of the progression is commensurable with N . On the other
hand, the “slowly growing” difference lnn in the Legendre distribution takes values a
both commensurable and noncommensurable with N = 100.

Empirically, it seems that longer (e.g., consisting of n = 500 terms) sequences of
consecutive prime numbers starting, for example, with the first prime number exceeding
one million, are more random. However, there are no known theorems about the behavior,
for large n, of values of the stochasticity parameter λn for remainders of division by N
of n consecutive primes.

3. Statistics of continuous fractions

A continuous fraction with (natural) elements (a0, a1, . . . , an) is a rational number
given by the formula

x = a0 +
1

a1 +
1

a2 +
.. .

+
1

an

;

this number is also denoted [a0, a1, . . . , an]. The number a0 = [x] is allowed to be
negative, but aj > 0 for j > 0.

Similarly one can consider infinite continuous fractions [a0, a1, . . . ]; the value of such
a fraction is defined as the limit, as n → ∞, of truncated fractions

pn
qn

= [a0, a1, . . . , an].

Example. The “golden ratio”

x =

√
5 + 1

2
can be expanded in the infinite continuous fraction [1, 1, 1, . . . ].

Indeed, for this continuous fraction x = 1 + 1
1+··· we have x = 1 + 1

x , so that

x2 − x− 1 = 0, x =
1

2
+

√
1

4
+ 1 =

√
5 + 1

2
≈ 1.6 . . . .

Truncated continuous fractions pm/qm of x yield very good rational approximations
of the irrational number x since ∣∣∣∣x− pm

qm

∣∣∣∣ ≤ 1

qmqm+1
.

This approximation is particularly precise when qm+1 is large (it is always larger than
qm since qm+1 = qm−1 + am+1qm).

Example. The fraction p
q = 355

113 (obtained by slicing the number 113 355) yields a very

good approximation of the number π ≈ 3.14159265 . . . with 6 correct digits (p/q ≈
3.1415929 . . . ).

The fraction p/q is obtained using the continuous fraction

π = [3, 7, 15, 1, 292, . . . ]

by cutting in front of the large element:

p

q
= 3 +

1

7 +
1

16

.
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The approximation

π ≈ 3 +
1

7
=

22

7
used by Archimedes is good for the same reason (the next element 16 is large).

If the ratio of periods of evolution of two planets around the Sun is close to a rational
number (in celestial mechanics this is called a resonance), then these two planets perturb
each other stronger than in the nonresonance case.

For Jupiter and Saturn (passing approximatively 299 and 120.5 angular seconds a day
along the orbit) the ratio of angular velocities 120.5/299 ≈ 2/5 is close to a resonance
value. This resonance generates a “large secular perturbation” that increases for several
hundreds of years (before the planets return to their previous orbits after about 900
years).

Thinking about the stability of the solar system, H. Poincaré suggested to investigate
how many frequencies in it satisfy dangerous resonance relations, using for this purpose
continuous fractions of ratios of frequencies: large elements of these continuous fractions
generate strong resonances because then the corresponding ratio has a good rational
approximation by the appropriately truncated continuous fraction. Therefore, it is im-
portant to know how many of those ratios have continuous fractions with large elements
(having relatively small indices).

This brought up an important mathematical theory called the statistics of continuous
fractions: this theory studies whether for a given real number all elements of its contin-
uous fraction are small (as for the golden ratio, where they all are equal to 1), or some
of them are large (which turned out to be typical for the majority of real numbers x).

This natural problem was also studied by “pure mathematicians”, regardless of its
applications in the natural sciences.

Gauss obtained the following expression for the “frequency” of appearance of a number
k among elements of an “arbitrary” continuous fraction:

(3.1) fk =
1

ln 2
ln

(k + 1)2

k(k + 2)
=

1

ln 2
ln

(
1 +

1

k(k + 2)

)
.

Example. For small k, the frequency f(k) is rather large (decreasing as 1/k2 as n → ∞):

k 1 2 3 4 5 6 7 8

100fk 47 17 9 6 4 3 2 2

The difficulty of this theory is that Gauss not only didn’t prove his statements, but
didn’t even formulate them explicitly. The justification of Gauss’ results was obtained
only by Kuzmin who proved in 1928 (in [7]) the following theorem.

Theorem. For almost every real number x the frequency of k among the elements of the
continuous fraction of x equals the number f(k) given by the Gauss formula (3.1).

The frequency in the Kuzmin theorem is defined as the following limit. Denote by
Fn(k) the number of times k occurs among the first n elements of the continuous fraction
expansion x = [a0, a1, a2, . . . ] of the number x.

Kuzmin proved that

(3.2) lim
n→∞

Fn(k)

n
= fk

for almost all real numbers x (i.e., for all real numbers except some special ones forming
a set of Lebesgue measure zero on the real axis x).
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One of the most surprising properties of the statistics (3.2) is that the limit (3.2) does
not depend on the real number x whose continuous fraction is described by this statistics:
statistics (3.2) is universal.

Exclusion of some special numbers is necessary, and these special numbers form an
everywhere dense set in the real line. Indeed, relation (3.2) fails, for example, for all
rational numbers and also for many irrational numbers (including, in particular, the
golden ratio).

Of course, Gauss knew about these exceptional cases where his statistics (3.1) fails,
and these counterexamples did not allow him to publish his discovery. He could not
even give a correct statement because the Lebesgue measure was not yet discovered, and
without using the Lebesgue measure it was difficult to formulate a statement that the
found statistics is generic (in Kuzmin’s formulation this is expressed by the words “for
almost all x”).

Gauss made his discovery while studying an interesting dynamical system whose phase
space is the interval (0,1) of the real line x:

g : (0,1) → (0,1), g(x) = {1/x}
(as usual, by [t] we denote the integral part of a real number x and by {t} = t − [t],
0 ≤ {t} < 1, the fractional part of x).

To avoid the appearance of the value {1/x} = 0 which makes an orbit of the dynamical
system nonextendable, it suffices to exclude from the phase space all rational numbers
(which form a set of Lebesgue measure zero in the phase space).

Gauss noticed that this dynamical system has an invariant measure

(3.3) µ(A) =
1

ln 2

∫
A

dx

1 + x
.

The factor 1/(ln 2) in (3.3) is introduced to make the measure of the entire phase
space (0, 1) to be equal to 1.

The invariance of the measure does not mean that µ(gA) = µ(A): in the Gauss
dynamical system this condition is not satisfied.

Similarly to differential forms, measures are carried by maps backward rather than
forward. The invariance of the measure µ under the map g is the condition

(3.4) µ(g−1A) = µ(A)

(for each measurable set A).
Relation (3.4) holds for the Gauss measure (3.3) and to prove it is a good exercise.

This proof led Gauss to the discovery of the method of “telescopic summation”. For
simplicity, I will explain this method here on the simplest example. Let us compute the
sum of the series

S =
1

1 · 2 +
1

2 · 3 +
1

3 · 4 + · · · .

The method consists in using the identity

1

k
− 1

k + 1
=

1

k(k + 1)
,

which shows that

S =

(
1− 1

2

)
+

(
1

2
− 1

3

)
+

(
1

3
− 1

4

)
+ · · · = 1.

Writing explicitly the infinite sequence of intervals forming the complete preimage
g−1(A) of the interval A and integrating the density (3.3) over this infinite sequence of
intervals, we obtain for µ(g−1(A)) the series converging (telescopically) to µ(A).
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Modern books about continuous fractions derive Kuzmin’s theorem from the Birkhoff
theorem about ergodic dynamical systems by applying it to the Gauss map g (see, e.g.,
the book [8]).

However, Kuzmin’s proof was different. He found it before the Birkhoff theorem
appeared (and knew nothing about it). I think that the original Kuzmin’s proof contained
at least a version of the Birkhoff theorem about the dynamical system Kuzmin needed
(and it would be interesting to see whether his arguments are applicable in some more
general case he didn’t consider).

Nowadays we can use the Birkhoff theorem, forgetting about the preceding proof given
by Kuzmin. The point is that our dynamical system increases the distance between points
of the phase space because∣∣∣∣d(1/x)dx

∣∣∣∣ =
∣∣∣∣ 1x2

∣∣∣∣ > 1 for 0 < x < 1.

This increase of distance with time leads to the ergodicity (and chaoticity) of the
Gauss dynamical system: a small perturbation of the initial point x results, over time,
in a large perturbation of its image gtx (after sufficiently large motion time t).

According to ergodic theory, time averages of (measurable) functions coincide (for
almost all initial points of orbits) with the average of this function over the entire phase
space.

The event “aj = k” for the j-th elements of the continuous fraction for x means that

1

k + 1
< y ≤ 1

k

([
1

y

]
= k

)
for the j-th image y of the initial point x.

Computing the measure µ of the interval given by formula (3.3) we obtain the Gauss
expression (3.1):

µ

((
1

k + 1
,
1

k

))
=

1

ln 2

(
ln

(
1

1 + 1
k

)
− ln

(
1

1 + 1
(k+1)

))
= fk

for the probability of the event aj = k (hence, by the ergodic theorem, for the required
frequency of the number k among the elements of the continuous fraction of a random
number x).

Long before Kuzmin’s paper appeared, the practical consequences of his theory were
studied empirically.

Poincaré suggested to put together lists of continuous fractions for the ratios of various
periodic motions observed in the solar system (like ratios of the year lengths of various
planets and month lengths of various satellites) in order to find the statistics of resonance
cases. He thought that the existence of too many too strong resonances can make the
planet system unstable, whereas the rare occurence of strong resonances could indicate
probable stability of the motion of planets for millions of years of the existence of the
planetary system.

Resulting tables of continuous fractions observed in astronomy were published in 1888
by Poincaré’s follower Gylden; see [9].

The observed statistics of these continuous fractions turned out to be very similar to
the Gauss–Kuzmin statistics [1].

These experimental facts do not have a scientific explanation: the corresponding con-
tinuous fractions depend on the initial positions of planets in the system, and the fact
that today’s “initial” conditions satisfy the Gauss–Kuzmin statistics is not explained (by
any presently known theory of the formation of planetary systems).
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Despite the lack of analysis of relations between mathematical statistical results of the
theory of continuous fractions and the real world, I describe in this article some further
mathematical details of statistics of continuous fractions, including their applications
to the study of chaotic dynamical systems different from the astronomical theory of
planetary systems.

4. Periodic continuous fractions

The sequence [a0, a1, a2, . . . ] of elements of the continuous fraction of the number

x = a0 +
1

a1 +
1

a2 + · · ·
can be an arbitrary sequence of natural numbers. A continuous fraction is called peri-
odic if this sequence is periodic (at least starting at some position): an+T = an for all
sufficiently large n. By T I will denote the length of the shortest period.

Example. The continuous fraction of the number
√
2 is

√
2 = 1 +

1

2 +
1

2 + · · ·

= [1, 2, 2, 2, . . . ].

I will denote this by [1 + [2]]: it has period [2] of length T = 1.
Truncating this periodic continuous fraction, we obtain very good rational approxi-

mations of the number
√
2 (with small denominators); for example,

√
2 ≈ 1,

√
2 ≈ 1

2

5
,

√
2 ≈ 1

12

29
= 1.414 . . . .

Theorem (Lagrange). A continuous fraction of an irrational real number is periodic if
and only if this number is a quadratic irrationality.

Quadratic irrationalities are (real) roots x of quadratic equations with integer coeffi-
cients (r, p, q) ∈ Z3:

(4.1) rx2 + px+ q = 0.

One cannot apply the Gauss–Kuzmin statistics to these numbers directly since they
form a countable set (of Lebesgue measure zero).

Computing explicitly periodic continuous fractions of a large number of quadratic
irrationalities, I have noticed that the number 1 occurs approximately 40% of the time
among elements of periods of all my examples, so that my statistics turned out to be
similar to the Gauss–Kuzmin statistics (where f1 ≈ 0.47).

Therefore I have formulated (circa 1980) the following conjectures. Consider the disk
{p2 + q2 ≤ R2} of radius R on the integer plane Z2 with coordinates p and q. Compute
the periods of all continuous fractions of real numbers of quadratic equations

(4.2) x2 + px+ q = 0,

with coefficients belonging to this disk.
Denote by NR(k) the number of all equal-to-k elements of all periods for continuous

fractions of the roots of equations (4.2) whose (integer) coefficients belong to the indicated
disk of radius R. Consider the “frequency” of the number k,

NR(k) =
NR(k)∑∞

m=1(NR(m))
.
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Conjecture 4.1. As R → ∞ the frequencies NR(k) tend to the frequencies fk of the
Gauss–Kuzmin statistics.

In other words, average frequencies of elements of continuous fractions of quadratic
irrationalities (4.2) coincide with average frequencies of elements of continuous fractions
of random real numbers x.

Of course, a similar phenomenon should be observed for the three-dimensional family
of quadratic equations (4.1) (but the two-dimensional disk on the plane Z2 should be
replaced by the three-dimensional ball in the space Z3).

Several years ago, returning back (swimming south) across the kilometer-wide Volga
river near the Joint Institute of Nuclear Research at Dubna, I have met an unknown
to me swimmer crossing the Volga to the north who told me: “About 39 year ago, in
Khabarovsk, you formulated an interesting conjecture, and all these years I tried to solve
it. Now, finally, I (together with my students) solved it and I came to Moscow hoping to
explain the solution to you. But I was only able to meet you here, hundred kilometers
north of Moscow, near Dubna, and I want to explain to you my proof of your hypothesis.”

So, now the hypothesis formulated above is proved (in a series of papers by V. A. Bykov-
skii, M. O. Avdeeva, and others, starting with paper [10]). Despite this Far East con-
tribution to the theory of periodic continuous fractions there still exist a large number
of unanswered questions in the areas between the theory of continuous fractions, num-
ber theory, the theory of algebraic numbers on the one hand and the physics of chaotic
systems, dynamical systems, mathematical statistics, ergodic theory on the other hand;
these questions reveal unexpected connections between all these different theories, which
are also related in a strange way (as I will explain later) to problems of informatics, logic,
and the theory of algorithms.

The Gauss–Kuzmin statistics determines also the frequencies of finite combinations
(an+1, an+2, . . . , an+m) of m consecutive elements in the expansion of a random real
number in the continuous fraction.

Conjecture 4.1 and its proof discussed above can be extended to this more general case
of an arbitrary m. Therefore one could expect that this statistics also describes average
frequencies of such sequences of elements of continuous fractions that form complete
periods (for continuous fractions corresponding to quadratic irrationalities). Here we
speak about the averaging over disks of growing radius R in the plane of equations (4.2)
or over three-dimensional balls in the space of equations (4.1).

However, I have already known for a long time that these expectations should not
necessarily materialize, at least for the plane of equations (4.2). Elements and se-
quences of m elements forming parts of periods of periodic continuous fractions may
satisfy the Gauss–Kuzmin statistics in the average, whereas the statistics of complete
periods {an+1, . . . , an+T } may be completely different.

This phenomenon can be explained by nonuniformity of the convergence to the Gauss–
Kuzmin limits as R → ∞: one may have to take into account the appearance of sequences
of length T as parts of sequences of periods of continuous fractions longer than T that
appear only in the discs of radius larger than R (in the space of equations (4.2)).

In fact, I knew even more: even without taking into account statistical frequencies,
just on the set-theoretic level, many sequences {an+1, . . . , an+T } never appear as complete
periods of continuous fractions of roots of equations (4.2) (even though these sequences
appear, with the average frequencies given by the Gauss–Kuzmin formula, as some parts
of periods of such continuous fractions).

Example. Periodic continuous fractions of irrational roots of equations (4.2) are always
palindromic: reading this (infinite) periodic sequence of elements of a continuous fraction
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backward one gets the same (periodically infinitely extended) sequence. One of the
simplest examples of a palindrome in English2 is the sentence

“Don’t nod”.

For example, periods [1, 1, 2] and [1, 2, 1, 4] are palindromic because the sequence

. . . , 1, 1, 2, 1, 1, 2, . . .

coincides with the reverse sequence

. . . , 2, 1, 1, 2, 1, 1, . . . .

Similarly, in the second example, the two-sided infinite sequence

. . . , 1, 2, 1, 4, 1, 2, 1, 4, 1, 2, 1, 4, . . .

(without a fixed starting point) coincides with the reverse sequence

. . . , 4, 1, 2, 1, 4, 1, 2, 1, 4, 1, 2, 1, . . . .

I noticed the palindromicity property of periodic continuous fractions for square roots
of integers many years ago. I have proved this property for the majority of such num-
bers in the paper [11] (published in Rio-de-Janeiro for the anniversary of the Brazilian
Mathematical Society).

Later I have noticed that the same property takes place for continuous fractions of
irrational roots of equations (4.2). I have formulated this property as a conjecture (since
I could not prove it in all cases and two different complete proofs were obtained later by
my students (F. Aicardi in Trieste and M. Pavlovskaya in San Francisco).

The palindromicity property is satisfied not only by periodic continuous fractions of
the roots of equations x2 + px + q = 0 and rx2 + q = 0 described earlier, but for some
other quadratic equations with integer coefficients

rx2 + px+ q = 0.

The question of whether it will be violated for the majority of such equations, i.e.,
whether equations with palindromic continuous fractions form a small part of the ball
r2 + p2 + q2 ≤ R2 of large radius R in the space of such equations, is still open; theo-
retically even the opposite possibility is not yet excluded and it might happen that, on
the contrary, only the small part of the ball is occupied by equations for which periods
of continuous fractions of roots are not palindromic.

I do not have any theorem or even a conjecture explicitly describing those finite se-
quences that appear as periods of continuous fractions either for square roots of rational
numbers or for irrational roots of equation (4.2).

Palindromicity is, probably, just one of the (yet unknown) restrictions imposed on such
“realizable” finite sequences of natural numbers (asymptotically satisfying the Gauss–
Kuzmin statistics).

Passing from the set-theoretic view on the problem to the statistical one, we also
come to an open problem: elements of realizable finite sequences asymptotically satisfy
the Gauss–Kuzmin statistics, but asymptotic statistics of entire realizable sequences may
be completely different.

The existence of a number of (yet unknown) special properties of realizable sequences
follows from entropy considerations to be explained later. The number of realizable
sequences of length T (with elements bounded by some constant) forms only a small
part of the number of nonrealizable ones (and the palindrome property is not sufficient
to explain the observed significant reduction of the number of sequences).

2
Translator’s Note: Of course, the corresponding example in the original text of the article is in

Russian.
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To explain these entropy considerations, consider the length T (p, q) of the (shortest)
period of the continuous fraction of an irrational root of equation (4.2) (the length is the
same for both roots; if the roots are rational, we will set T (p, q) = 0).

I composed tables [12] of these lengths for p2 + q2 ≤ 1000, and these tables provided
a lot of unexpected statistical facts.

Consider the disk of radius R where p2 + q2 ≤ R2 and average these periods T (p, q)
over all integral points of this disc (where the roots are real). The so-computed average

arithmetic quantities T̂ (R) behave rather strangely, but experiments led to the following
conclusions (see [12]):

Conjecture 4.2. The average length of the period of the continuous fraction of the root of
equation (4.2) in a ball of growing radius R grows approximately as R (i.e., proportionally
to the growth of the coefficients p and q in equation (4.2)):

T̂ (R) ∼ constR.

The observed values of T (p, q) behave as the square root of the discriminant
√
p2 − 4q

of the equation (4.2). Along the majority of directions in the (p, q) plane it grows as the
distance R to the origin, but in the direction of the negative q axis this square root grows
as

√
R.

Integration over the disk shows that the averages (which take into account the contri-
bution of all directions) grow as R, thus leading to Conjecture 4.2.

The inequality T (p, q) ≤ constR also looks plausible.
In the case where the discriminant vanishes (when both roots of the equation are

rational), the length of the “period” is assumed to take the value T = 0.
The shift x 
→ x+ 1 that preserves the length of a period proves that the function T

is constant along the parabolas p2 − 4q = const. This fact leads to the conjecture that
the length T (p, q) of the cycle behaves as a certain function of the discriminant p2 − 4q.
Examples show that this function should behave like the square root function (at least
approximately, when p and q are large).

It would have been interesting to analyze the behavior of the ratio

F(p, q) =
T (p, q)√
p2 − 4q

,

or at least of its average values over the disks p2 + q2 ≤ R2 and of its level lines on the
(p, q) plane.

Entropy considerations provide estimates for exponential-in-T growth of the number of
sequences of T natural numbers (satisfying the Gauss–Kuzmin statistics in the required
case) in the form

#(T ) ∼ CeTh,

where h is the corresponding “entropy” (for the statistics T of independent elements k
appearing with probabilities pk, one can easily prove the classical result

h = −
∑
k

pk ln pk

of the combinatorics of the multinomial coefficients).

Therefore, if T̂ grows as R, it would have been natural to expect the growth

# ∼ C1e
h1R

for the number of different periods [an+1, . . . , an+T ] of continuous fractions for roots of
equations (4.2) with p2+ q2 ≤ R2 if these periods would have been distributed according
with the Gauss–Kuzmin statistics.
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At the same time, the number of different equations (4.2) with coefficients bounded
by R is only of order

R2 � C1e
h1R.

Therefore, the statistics of the period should be different from the predictions of the
Gauss–Kuzmin statistics (combinations of elements of periods). However, we do not have
even empirical conjectures for this statistics of periods.

My tables (in [12] for R ≤ 100) allow us also to compute the empirical average growth
with R of sums of elements of periods in the disk p2+ q2 ≤ R2. It seems that the sum of
elements of periods of the continuous fraction for a root of equation (4.2) averaged over

the disk of radius R (we denote this average value by Σ̂(R)) grows with R as a power

of R, Σ̃(R) ∼ R1+α. This growth corresponds to the following growth of elements of a
period of length T ∼ R:

|a(R)| = Σ̂(R)

T̂ (R)
∼ Rα.

The tables in [12] suggest that |a(R)| > Rα for a positive α (of order approximately
α = 1/4?). However, this conclusion is based only on experiments where R ≤ 100.

In fact, even the logarithmic in R growth of the average size of elements of periods
|a(R)| is sufficient for the above arguments based on the statistics of the groups of
elements of periods of the continuous fraction for the root of a quadratic equation with
growing coefficients. The average value of an element computed on the basis of the
Gauss–Kuzmin statistics equals ∞: since the frequency fk of the element k decreases as
k−2 when k → ∞, we obtain the (slowly) diverging expectation

k̂ =

∞∑
k=1

kfk = ∞.

For the sum of T , satisfying the Gauss–Kuzmin statistics has the expectation

1(Tf1) + 2(Tf2) + · · ·+ â(Tfâ) ∼ T
â∑

a=1

(
k

k2

)
∼ T ln â,

where the average number of summands â satisfies the condition Tfâ ∼ 1, i.e., â ∼
√
T .

The resulting average growth of the sum of elements of the period,

Σ ∼ C2R lnR (if T ∼ R),

yields the logarithmic growth of the average value of elements

â > C3 lnR,

showing that for large coefficients p and q of equation (4.2), the averaged-over-the-period
element of the continuous fraction for the root (in the average over the disk of radius R)
grows with R at least logarithmically.

Experimental data (for R ∼ 100) show an even faster (polynomial?) growth of â ∼ Rα.
Computing the number of combinations of T independent natural elements each not

exceeding â, we obtain

# ∼ âT ∼ RβR (for T ∼ R, â ∼ Rα)

or, at least
â(T ) ∼ (lnR)R ∼ eR ln lnR (for â ∼ lnR).

In both cases the growth is much faster than R2. These estimates show that the
Gauss–Kuzmin statistics cannot be applied to sequences forming complete periods (even
if it holds for elements of the period and for the frequency of each fixed combination of
elements of the period).
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The sequences (an+1, . . . , an+T ) forming periods of continuous fractions for roots of
the majority of quadratic equations (4.2) possess some statistics (so far unknown) which
do not follow from the Gauss–Kuzmin statistics for elements of these sequences.

To find these properties (generalizing palindromicity) is an excellent problem in the
arithmetic of real numbers and in the arithmetic of the corresponding continuous frac-
tions.

It would be interesting to analyze whether there exist some restrictions on the statistics
of periods of general quadratic equations (4.1) (with an arbitrary leading coefficient r);
all my experimental results are for the case r = 1 of equations (4.2) and do not reveal any
deviation of the statistics of periods for more general equations (4.1) from the Gauss–
Kuzmin statistics in the case r > 1.

On the set-theoretic level the property to form the period of the continuous fraction
for a root of a quadratic equation (4.1) does not pose any restrictions: by the (inverse)
Lagrange theorem each finite sequence of natural numbers can be realized as the period
of the continuous fraction for the root of equation (4.1).

However, this set-theoretic fact does not say anything about the statistics of periods:
it can differ significantly from the Gauss–Kuzmin statistics providing the frequency of
this sequence as a part of the continuous fraction of a random real number.

This discussion of the asymptotic behavior of various averages is far from being math-

ematically rigorous. For example, the asymptotic description of average values â and b̂ of
variables a and b does not yield a mathematically rigorous conclusion about the average
value of a/b:

â/b 	= â

b̂
.

Ignoring this obvious problem, I often follow not the mathematical point of view,
but the point of view of natural sciences and freely replace the left-hand side of the
previous inequality with the right-hand side (in the hope that even though this is not
justified mathematically, the ratio of average values in the right-hand side provides some
reasonable information that often allows us to learn something about the average value
of the ratio a/b and to postpone the discussion of the difference between the ratio of
averages and the average of ratios).

Example. Denote by τ (n) the number of natural divisors of the integer n:

n 1 2 3 4 5 6 7 8 9 10 11 12

τ 1 2 2 3 2 4 2 4 3 4 2 6

The average behavior of this (chaotically oscillating) function for large n is described
by the following theorem (likely due to Dirichlet, but also proved by many others):(

τ̂(n) :=
1

n

n∑
m=1

τ (m)

)
∼ lnn.

(Equivalence ∼ means that limn→∞(τ̂(n)/(lnn)) = 1.)
The average behavior of the (also chaotically oscillating) sum σ(n) of all τ (n) divisors

of the number n:

n 1 2 4 5 6 7 8 9 10 11 12

σ 1 3 7 6 12 8 15 13 18 12 28

for large n is described by the following theorem (likely due to Dirichlet as well, but also
proved earlier) yielding the Cesaro means

σ̂(n) ∼ cn,
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where the constant c ≈ 3/2 equals the value of the zeta function

ζ(2) =

∞∑
m=1

m−2 =
π2

6

(for the sum of squares of divisors we would have obtained the Cesaro means σ̂2(n) ∼
ζ(3)n2, and for the sum of r-th powers the Cesaro means σ̂r(n) ∼ ζ(n+ 1)nr).

Now we consider all τ (n) divisors of an integer n (for example, divisors 1, 2, 3, 6 of the
number n = 6). Denote by d(n) the average of all these divisors:

d(n) =
σ(n)

τ (n)
.

This function of n also oscillates rather chaotically. To understand the asymptotic
behavior of d(n) for large n, consider the Cesaro mean

d̂(n) :=
1

n
(d(1) + d(2) + · · ·+ d(n)).

Knowing the asymptotic behavior of numerators and denominators,

σ̂(n) ∼ cn, τ̂(n) ∼ lnn,

it is natural to assume that for n → ∞ the average value of the ratio behaves as the ratio
of average values of the numerator and denominator,

d̂(n) ∼ cn

lnn
.

However, this naive “asymptotic formula” is wrong and the correct asymptotics is
much larger:

d̂(n) ∼ c′n√
lnn

� σ̂(n)

τ̂(n)
.

In this problem the correct answer is known, but in a number of other similar problems,
correct mathematical statements have not been proved or even formulated.

Example. Consider the sequence consisting of remainders of division by an integer n of
terms of a geometric progression,

{ax (mod n)} (x = 1, 2, . . . ),

with base a relatively prime with n.
Euler proved that this sequence of remainders is periodic with period T , which is a

divisor of the value of the following Euler function at the point n:

ϕ̂(n) = (the number of divisors of n relatively prime with n).

Initial values of this Euler function also oscillate quite chaotically:

n 2 3 4 5 6 7 8 9 10 11 12 pa

ϕ 1 2 2 4 2 6 4 6 4 10 4 (p− 1)pa−1

The averaged asymptotic of the Euler function was computed by Euler himself:

ϕ̂(n) ∼ c1n, c1 =
1

ζ(2)
≈ 0.6,

where ϕ̂ is the Cesaro mean:

ϕ̂(n) :=
1

n
(ϕ(1) + ϕ(2) + · · ·+ ϕ(n)).
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The proof of this asymptotic formula (using straightforward probabilistic arguments)
led Euler to the discovery of the surprising multiplicative formula for his zeta function

ζ(m) :=
∞∑

n=1

1

nm
,

which related this infinite sum over integers n with the infinite product over primes p:

ζ(m) =
∞∏
p=2

1

1−
1

pm

.

The “physical meaning” of the Euler formula consists in the computation of the prob-
ability 1/ζ(2) of the following event: integers u and v are relatively prime, so that the
fraction u/v is reduced.

Indeed, the probability that an integer vector with components (u, v) is divisible by p
is 1/p2, so that 1 − 1/p2 is the probability that the vector is not divisible by p. Taking
the product over all prime p, we get the probability

∏
(1− 1/pm) that all m components

of a vector in the space Zm are not divisible by a common integer.
Substituting instead of the value ϕ(n) of the Euler function its average value c1n and

replacing an unknown divisor T of the integer N = ϕ(n) with the value at N of the

average divisor d̂(N) (∼ cN/
√
lnN), we would have obtained for the period T the (both

unproved and wrong) average value

T̂?(n) ∼ d̂(ϕ(n)) =
c′c1n√
ln(c1n)

.

Experimental study of the actual periods T (n) in the Fermat–Euler geometric pro-
gressions performed by F. Aicardi (see [13]) for n up to values of order 1010 indicates a
different behavior of Cesaro means:

T̂ (n) ∼ c2n

lnn
.

The difference may be caused by the fact that the special divisor N = ϕ(n) can be

systematically different from the averaged divisor d̂(N).
Moreover, it may happen that the average behavior of the divisors of numbers N of the

form N = ϕ(n) systematically differs from the behavior of the divisors of the majority
of integers n (both for τ , for σ, and for d). Indeed, arithmetic properties of numbers

n =
∏
p

pa(p) and ϕ(n) =
∏
p

(pa(p)−1(p− 1))

may have different statistical characteristics.
Which of the possibilities described above cause the replacement of

√
lnn in the er-

roneous asymptotics T̂?(n) with lnn in the experimental Cesaro means T̂ (n) is a very
interesting question, both from the point of view of fundamental mathematics (proofs of
theorems) and from the point of view of numerical experiments (where empirical average

values of numbers d(ϕ(n)) should be compared with the behavior of numbers d̂(ϕ̂(n)),
and the behavior of the periods T (n) with the behavior of the function d(ϕ(n))).

Empirical results often differ from mathematically rigorous statements because such
“growing-to-∞” functions as ln lnn remain practically constant at any reasonable range
of values of n.

For example, even for a huge integer n with 1000 digits in the 10-ary representation,
the value of ln lnn does not exceed 3.
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Therefore, the function ln lnn is empirically bounded by a “constant” C, whereas for a
mathematician this function is not asymptotically equivalent to a constant since it tends
to infinity as n → ∞.

The erroneous “asymptotics” ln lnn ∼ const is more useful in many practical appli-
cations than the mathematically correct but practically misleading statement that

ln lnn → ∞ as n → ∞.

These nonrigorous “physical” arguments are often more useful in many difficult prob-
lems of fundamental mathematics providing at least conjectural answers, which are either
refuted or confirmed by later investigations.

Example. Studying the topological classification of smooth Morse functions (in general
position) f : S2 → R on the two-dimensional sphere I came to the conjecture that the
number #(T ) of topologically distinct types of such functions with T saddle critical
points (and 2T + 2 critical points overall) grows with T as T 2T .

This conjecture (not proved rigorously so far) was based on several (unproved) ergodic
conjectures in the theory of random graphs. Rigorously I proved the inequalities

aTT ≤ #(T ) ≤ bT 2T

and formulated (in [14] and [23]) the asymptotics #(T ) ∼ CT 2T as a conjecture.
The statements in the ergodic theory of random graphs on which my conjecture was

based remain unproved even now. However, the conjecture about the growth of the
number of types # as T 2T is now rigorously proved by L. Nicolaescu [15] who appended
my considerations from article [14], which he had found on the Web with some ideas
of quantum field theory that relate the behavior of the number #(T ) with asymptotics
of certain abelian integrals (imitating A. B. Givental’s proof of the “mirror symmetry”
phenomenon in quantum field theory).

The pseudorandomness theories discussed in this article provide numerous (although
usually nonrigorous) methods for the analysis of many difficult problems of fundamental
mathematics. I will discuss several more examples of such applications of physics to
mathematics below.

The converse application of mathematical results to numerous problems in physics is
even more obvious, and I leave to the reader the pleasure of adding new such applications
to those described in this article.

5. Continuous fractions of eigenvalues and the direction

of eigenoscillations

The quadratic equation

(5.1) x2 + px+ q = 0

is the characteristic equation of the second order matrix

A =

(
a b
c d

)
, p = − trA, q = detA.

For matrices with integral elements

A ∈ End(Z2), A ∈ SL(2,Z)

the coefficients p and q are integers and we can use the theory of continuous fractions for
the roots of equation (5.1) discussed in Section 4.

Consider, for example, the ball BM of radius
√
M in the space of matrices:

{a2 + b2 + c2 + d2 ≤ M}.
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Each point of this ball for which p2 − 4q > 0 determines the characteristic equation
(5.1) whose roots are quadratic-irrational (or, sometimes, rational) real numbers with,
therefore, periodic continuous fractions.

The statistics of various elements of periods of these continuous fractions for all ma-
trices (e.g., frequencies of elements of these periods) and their asymptotic behavior as
R → ∞ could have been deduced from results of Section 4. However, the study of these
statistics (initiated in [16]) does not reduce to the application of the Gauss–Kuzmin
statistics for the following reason.

Consider the map (Viète-type)

V : B(M) → Z2

that associates to each matrix A its characteristic equation

V (A) = (p = − trA, q = detA).

For each point (p, q) ∈ Z2, its full preimage in B(M) consists of several matrices, and the
number |V −1(p, q)| of these matrices depends on the point (p, q). Therefore the averaging
(over the disk {p2 + q2 ≤ R2} in the plane Z2 of equations (5.1)) should be made with
weights

w(p, q) =
|V −1(p, q)|
|B(M)|

that take into account the number of appearances of different points (p, q) (i.e., different
traces and determinants) for matrices A in the ball B(M) (whereas in taking the average
in Section 4 each point of the disk {p2 + q2 ≤ R2} had the same weight).

The computation of the asymptotics of weights w and of the corresponding weighted
asymptotics of various events is not that simple, and here I will only indicate (following
[16]) some results of these computations that modify the Gauss–Kuzmin statistics in two
different ways: weights and modifications turn out to be different for the space of all
2× 2 integral matrices A ∈ End(Z2) and for the group of unimodular matrices,

A ∈ SL(2,Z) (with detA = 1).

Statistics of continuous fractions of eigenvalues for integral matrices of the
second order. For a generic integral 2 × 2 matrix A =

(
a b
c d

)
, the coefficients of the

characteristic equation

x2 + px+ q = 0

are p = −(a+ d), q = ad− bc, and the discriminant of the equation takes the form

∆ = p2 − 4q = (a− d)2 + 4bc.

On the sphere

(5.2) a2 + b2 + c2 + d2 = N

(of radius r =
√
N) the function |p| is (in the average) of order

√
N , whereas |q| and |∆|

are of order N .
Therefore,

√
∆, as well as |p|, are of order

√
N (in the region ∆ ≥ 0).

According to Section 4, the average length of the period of the continuous fraction

for a real root of our quadratic equation on the sphere (5.2) reaches the value T̃ (N) ∼√
∆ ∼

√
N .

To obtain a similar behavior of the average value of the period length in the ball

(5.3) a2 + b2 + c2 + d2 ≤ N,

one has to compute weights of different spheres making up the ball (5.3). (These weights
are proportional to the number of integral points on these spheres.)
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The four-dimensional ball (5.3) of radius
√
N contains approximately c(

√
N)4 = cN2

integral points. These points lie on N spheres of various radii (whose squares are integers
not exceeding N). Arguing naively, we can expect that the largest of these N spheres
contains “in the average” approximately c′N integral points.

The same average value can be obtained using the following more rigorous arguments.
Let us subtract from the number of integral points in the ball (5.3) the number of integral
points in the next closest ball that has integral points (its radius equals

√
N − 1). The

difference
cN2 − c(N − 1)2 = 2cN − c ∼ c′N

is the required (averaged) asymptotics.
Taking into account the computed weights of different spheres and considering all M

spheres (5.2) with N ≤ M , we obtain the following expression for the sum of period
lengths of continuous fractions of real eigenvalues for all matrices A in the ball of radius√
M : ∑

N≤M

(T̃ (N)c′N) ∼
∑

N≤M

(c′′N3/2)

(since the average period length T̃ (N) grows as
√
N).

Replacing the latter sum with an integral we obtain the value (approximately) c′′′N5/2

for the sum of approximately c4N
2 terms (corresponding to the matrices A in our ball

that have real eigenvalues).
The obtained approximate average period length for continuous fractions of real eigen-

values of integral matrices A ∈ End(Z2) in the ball (5.3) of radius
√
M takes, according

to [16], the value

(5.4) T̂ (M) = (c′′′M5/2)/(c4M
2) = c5

√
M,

which confirms the similar naive (computed above) asymptotics for the value of this
period length averaged over the boundary of this ball.

Mathematical tradition requires viewing this asymptotics (5.4) as a conjecture (al-
though from the point of view of natural sciences the above computations and the arti-
cle [16] give a sufficient justification of this conjecture).

Statistics of continuous fractions for eigenvalues of unimodular matrices of
the second order. Passing to the group SL(2,Z) of unimodular matrices of the second
order (where detA = 1), we encounter a quite different behavior of continuous fractions
of eigenvalues.

Theorem (see [16]). The average value T̂ (N) of the period length of a continuous fraction
for a real eigenvalue of a matrix A ∈ SL(2,Z) (averaging is over the ball (5.3)) tends to
2 as the radius of the ball tends to infinity:

lim
N→∞

T̂ (N) = 2.

To prove this theorem let us compute continuous fractions of the roots of characteristic
equations

(5.5) x2 + px+ 1 = 0

(q = 1 since detA = 1 for A ∈ SL(2,Z)).
These roots are real if (and only if) |p| ≥ 2, and below we will consider this case.

Lemma 5.1. The period length T (p) of the continuous fraction of a root of equation
(5.5) with integral coefficient p equals

T (±2) = 0, T (±3) = 1, T (p) = 2 for |p| ≥ 4.
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Proof. Let us consider the case p > 0 (the case p < 0 can be considered similarly or can
be reduced to the case p > 0 by changing the sign of x).

Consider the 2-periodic continuous fraction with period [1, a]:

t =
1

1 +
1

a+ t

.

The 2-periodicity condition yields a quadratic equation for t:

1 +
1

a+ t
=

(a+ 1) + t

a+ t
, t =

a+ t

(a+ 1) + t
,

t2 + (a+ 1)t = a+ t, t2 + at− a = 0.

Substituting t = x+ 1 in the latter equation, we obtain the following equation for x:

x2 + 2x+ 1 + ax+ a− a = 0, x2 + (a+ 2)x+ 1 = 0.

Taking a = p− 2 we arrive at (5.5).
Therefore, the root x = t− 1 of equation (5.5) has the following continuous fraction:

x = −1 + t = [−1 + [1, a]].

For the second root of the quadratic equation (5.5) the computations are similar.
In the special case p = 3 we have a = 1, so that the period length equals 1 (and the

root yields the golden ratio [1, 1, . . . ]). In the special case p = 2 both roots of (5.5),
x1,2 = −1, are rational; hence T = 0.

Lemma 5.1 is proved. �
To deduce the theorem from Lemma 5.1 we compute weights of different values of the

trace (i.e., different values of p) in the ball (5.3) in the group SL(2,Z).

Lemma 5.2. The number of matrices A ∈ SL(2,Z) with trA = s such that the sum of
squares of all four entries does not exceed M equals

Qs(M) ≤ CsM
5/6

(for some constant Cs independent of M).

Proof. For the matrix A =
(
a b
c d

)
our conditions read

a+ d = s, detA = 1, a2 + b2 + c2 + d2 ≤ M.

Therefore, |a| ≤
√
M , |d| ≤

√
M , and for a fixed a the number d = s−a is completely

determined, whereas the point (b, c) lies on the hyperbola bc = P (where P = s(a−s)−1
since detA = 1).

The number I of integral points on this hyperbola satisfying the condition b2+ c2 ≤ M
does not exceed C 3

√
M (where C is a constant independent of M and of P ).

Indeed, integral points on each of two connected branches of the hyperbola in the disk
b2 + c2 ≤ M are vertices of a polyhedron (with integral vertices) with the area S not
exceeding C1M . The number of vertices of an area S convex polyhedron with integral
vertices does not exceed C2

3
√
S (as it was proved in [26]).

Therefore, the required number I of integral points on both branches of the hyperbola
is bounded from above by the number 2C2

3
√
S, so that

I ≤ 2C2
3
√
C1M = C

3
√
M.

Therefore, the total number Qs(M) of points obtained for all values of a does not exceed

(#a)I ≤ (2
√
M + 1)C

3
√
M ≤ CsM

5/6,

and Lemma 5.2 is proved. �
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Lemma 5.3. The total number G(M) of all matrices A ∈ SL(2,Z) with real eigenvalues
such that the sum of the squares of its four entries does not exceed M satisfies G(M) ≥
LM , where L > 0 is a constant independent of M .

Proof. The assumptions of Lemma 5.3 put the following restrictions on the matrix A =(
a b
c d

)
:

bc = ad− 1, a2 + b2 + c2 + d2 ≤ M, (a+ d)2 ≥ 4.

The vector (a, b) lies in the disk of radius
√
M . The number of integral points in this

disk grows with M as the area πM of the disk. The probability that the integers a and
b have a nontrivial common divisor equals 1/ζ(2) = 6/π2 (by the Euler theorem; see
pp. 49–50).

Therefore, the number of such primitive integral vectors in the disk of radius
√
M

grows with M as (6π/π2)M . In particular, it is greater than M .
For a fixed (primitive) integral vector (a, b) the condition bc = ad − 1 means that

the point (c, d) is on the affine straight line l parallel to the line R(a, b) and containing
integral points.

The distance between two neighboring integral points on this line equals
√
a2 + b2.

The disk {c2 + d2 ≤ M − (a2 + b2)} on the plane with coordinates (c, d) has the radius√
M − r2 (where r2 = a2 + b2). The number of integral points on the line l inside this

disk is approximately 2
√
M − r2/r (because the line l is not far from a diameter of the

disk).
Therefore, the total number of all matrices A is approximately given by the following

sum:

F(M) =
∑
(a,b)

2
√
M − r2

r
,

where the summation is over all primitive integral vectors in the disk {a2 + b2 ≤ M}.
Replacing the sum F with the corresponding integral over this disk on the Euclidean

plane with Cartesian coordinates (a, b) and taking into account the expression for the
area in polar coordinates,

da ∧ db = rdr ∧ dϕ,

and the formula for the Euler density 6/π2 of the set of primitive integral points in Z2

(see Section 4, p. 50), we obtain the following approximate expression for F :

F(M) ≈ 2π

∫ √
M

0

(
6

π2

)
2
√
M − r2 dr = 6M,

which proves Lemma 5.3 (the additional condition that the eigenvalues be real, p2 ≥ 4,
can be easily taken into account; it will just change the coefficient 6).

Combining Lemma 5.2 with Lemma 5.3, we find that as M → ∞, the weights of
events |p| = 2 and |p| = 3 (for matrices A ∈ SL(2,Z) with real eigenvalues and the sum
of squares of all four entries not exceeding M) tend to zero as M → ∞:

lim
M→∞

2(c2 + c3)M
5/6

LM
= 0.

Therefore, the weight of the set of matrices such that |p| < 4 tends to 0 as M → ∞.

Now Lemma 5.1 implies that the average value T̂ (M) of the period length of a con-
tinuous fraction tends to 2 as M → ∞. Indeed, the set of matrices A with |p| = 2 and
with |p| = 3 (where T (A) = 0 and T (A) = 1, respectively) becomes nonessential in the
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asymptotics of the average as M → ∞, whereas the matrices A with larger |p| and larger
trace (for which T (A) = 2) provide exactly this average,

lim
M→∞

T̂ (M) = 2.

The theorem on page 53 is therefore proved (up to some small gaps in the proof that
will be filled in later). �
Corollary. Continuous fractions of eigenvalues of matrices A ∈ SL(2,Z) do not satisfy
the Gauss–Kuzmin statistics for elements of continuous fractions of random real numbers.

This means that the number νk(M) of times k is found as an element of the period of
the continuous fractions for an eigenvalue of a matrix A ∈ SL(2,Z) with a2+b2+c2+d2 ≤
M divided by the total number of all elements of all these periods does not tend, as
M → ∞, to the Gauss–Kuzmin frequency fk at least for some k:

(5.6) lim
M→∞

νk(M)

τ (M)
	= fk.

Proof. Consider the case k = 1 where the frequency fk is maximal:

f1 =
1

ln 2
ln

(
1 +

1

k(k + 2)

)
= log2

4

3
≈ 0.47 <

1

2

(this frequency is less than 1/2 because
√
2 > 4/3).

Periods of continuous fractions of irrational eigenvalues of our matrices A all have the
form [1] or [1, a].

Therefore, the left-hand side of the limit formula (5.6) is precisely 1/2 (even for
νk(M) > (1/2)τ (M)) due to the contribution of the cases p = ±3 where the period
is [1]).

These contributions do not affect the limit as M → ∞ (the same is true for matrices
in SL(2,Z) with trace ±2 for which T = 0) since these weights asymptotically vanish as
M → ∞ (by Lemmas 5.2 and 5.3). �

Remark. The bound M5/6 for the number Qs(M) in Lemma 5.2 looks unrealistically
high. A much stronger (likely realistic) estimate is given by the inequality

(5.7) Q2(M) ≤ K
√
M lnM,

proved in [16] for matrices with traces 2 and −2. It is likely that the number Qs(M) of
matrices with other traces behaves similarly for large M .

Example. Article [16] contains the empirical values

M 2 3 6 11 18 27 38 51 66 70

Q2 1 5 13 17 25 37 45 49 53 53

yielding, for example, the values

M 11 38 66

Q2√
M

5.04 7.30 6.52

It is not even clear whether we need the growing factor lnM in inequality (5.7) or if
the estimate of the form

Q2(M) ≤ K ′√M

holds.
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The above estimates for average period length, which are not rigorously proved (but
are quite reliable) depend on the following “weakly asymptotic” ergodic theorems that
reduce the analysis of sums to the estimation of integrals.

Consider the subset M of the lattice Zm consisting of all “primitive” integral vectors
(x1, . . . , xm), i.e., such vectors that their components do not have a common divisor
greater than 1. The “ergodic” statement of the theory of weak asymptotics claims that
this set M of primitive vectors, which has average density 1/ζ(m) (as explained earlier
on pp. 49–50) is asymptotically uniformly distributed in Zm.

The set M is by no means dense: there are arbitrarily large holes in Zm that are free
of primitive vectors.

An asymptotically uniform distribution is defined as follows.
Choose a “test cone K” with vertex at the origin of the Euclidian space Rn (it suffices

to consider a polyhedral cone bounded by a finite set of hyperplanes passing through the
origin).

Consider the part M ∩K of M lying in K. Denote by #R(K) the number of points
x in M ∩K inside the ball ‖x‖ ≤ R of radius R.

Denote by VR(K) the total number of all integral points in the cone K inside the same
ball of radius R.

The set M is called asymptotically uniformly distributed in Zm if the “frequency”
fK(M) that a point in M hits the cone K, defined as the limit

fK(M) = lim
R→∞

#R(K)

VR(K)
,

exists and does not depend of the “test cone” K.
In our example where M is the set of all primitive vectors this limit frequency of M

should be the constant

ρ = fk(M) =
1

ζ(m)
,

representing the “probability that a point x ∈ Zm is primitive”.

Corollary. Let f : Rm → R be a smooth function vanishing outside of a ball B of finite
radius. Choose a small “Planck constant” h and compute the average value (over the
points x of the set M)

Ih(f) =

( ∑
x∈M

f(hx)

)/
(Z(h)),

where Z(h) is the number of points hx, x ∈ M , inside the ball B.
Then the fact that M is uniformly distributed is equivalent to the relation

lim
h→0

Ih(f) =

∫
B
f(z) dz∫
B
1 dz

for each smooth function f (vanishing outside the ball B).

This result yields “weak asymptotics” of the function f on the set M :∑
x∈M

‖x‖≤R

f(x) ∼ ρ

∫
B(R)

f(z) dz

for many “reasonable” functions f .
Here the notation “∼” means that the ratio of the left-hand side to the right-hand

side tends to 1 as the radius R of the ball B(R) tends to infinity.
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Figure 1

The class of “reasonable” functions includes, in particular, all harmonics

f(z) = ei〈k,z〉

(hence all trigonometric polynomials).

We used the above relation in the case of the function f =
√
M − r2, which is also

“reasonable”.
It might look strange, but I have not seen a proof of the uniform distribution property

either for the set of primitive integral vectors, or for numerous other asymptotically
uniformly distributed sets naturally generalizing this one (which are quite common, for
example, in the pseudoperiodic topology of quasicrystalls; see [21]).

One of the simplest examples of such a set is the set of critical points of a pseu-
doperiodic potential resembling multidimensional generalizations of the one-dimensional
potential

f(x) = sinx+ sin(
√
2x),

defined for x ∈ R1.
Another interesting example is provided by quadratic residues. The remainder x of

division by an integer N is called a quadratic residue if there exists an integer m such
that the remainder of the division of m2 by N equals x.

The pairs (x,N), where x is a quadratic residue modulo N, form a chaotically looking
subset of the integral lattice with coordinates (x,N) (see Figure 1).

The conjecture is not only that these points are distributed asymptotically uniformly
with density ρ = 1/2 on the (x,N) plane in the sector 0 ≤ x < N), but that the
Kolmogorov stochasticity parameter λn of the set of all quadratic residues modulo N
takes values close to Kolmogorov’s average value Λ∗ ≈ 0.86 (which tend neither to zero
nor to infinity as n → +∞).

Example. For N = 20 we have λ10 ≈ 0.79; for N = 19, λ19 ≈ 0.19. Kolmogorov’s
distribution Φ yields the following probabilities of smaller values of λ: Φ(0.79) ≈ 0.456;
Φ(0.91) ≈ 0.717.
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6. Multidimensional continuous fractions

The above theory of periodic continuous fractions for quadratic irrational numbers,
as well as its applications to the statistics of continuous fractions for eigenvalues of
2× 2 matrices, can be generalized to algebraic numbers of higher degree and to integral
matrices of higher order.

The most natural generalization is provided by the notion of a multidimensional con-
tinuous fraction introduced by F. Klein. Even though these algebraic numbers and eigen-
values have ordinary continuous fractions, their behavior seems to be both more chaotic
and less understood, whereas for Klein’s multidimensional continuous fractions there is
a nice general theory which generalizes, in a natural way, the periodicity of continuous
fractions of quadratic irrationalities.

Let us begin with a simplicial cone K ⊂ Rn which is one of 2n connected components
of the complement in the Euclidean space Rn to the union of n hyperplanes (in general
position) passing through the origin.

We will view the space Rn as containing the standard (rank n lattice Zn ⊂ Rn and
a “multidimensional continuous fraction” will be a geometric object determined by the
relative position of the cone K and the lattice Zn.

The intersection P = Zn ∩ K is an additive subgroup of the vector space Rn. Its

convex hull P̂ is an (infinite) convex polyhedron (with integral vertices) in the space

Rn. The boundary V = ∂P̂ of this polyhedron is an (n − 1)-dimensional (polyhedral)
hypersurface with integral vertices belonging to P .

This hypersurface V (homeomorphic to the space Rn−1) is called the sail (of the
symplicial coneK). Such sails V are n-dimensional generalizations of continuous fractions
(corresponding to the case n = 2 and one-dimensional sails, which are convex broken
lines in the plane R2 ⊃ Z2 having integral vertices and consisting of an infinite number
of straight intervals).

In this special case n = 2 the geometry of the sail is described by the following positive
integers. Each straight interval a of the broken line V has its integral length defined as
the number of pieces to which a is divided by its integral points.

Example. Intervals joining the points (0, 0), (2, 0), and (0, 3) have integral length 2, 1,
and 3, respectively.

To each vertex of the broken line with integral vertices we associate a positive integer
called the “integral angle” of this broken line. The integral angle between the intervals
OA1 and OA2 with integral endpoints at their common vertex O is defined as the area of
the parallelogram with sides OA1 and OA2 divided by the product of the integral lengths
of its sides OA1 and OA2.

If the plane and the angle are oriented, then the integral angle (which is defined below
as an integer) can be naturally supplied with the sign,

integral angle (OA1, OA2) = det

∣∣∣∣x1 y1
x2 y2

∣∣∣∣ = [OA1, OA2]

|OA1||OA2|
,

where (xk, yk) is the smallest integral vector on the ray OAk; here [ξ, η] denotes the
oriented area of the parallelogram with sides xi and η.

Let us note that the (positive) integral angle is the index of the sublattice, in the
lattice Z2, generated by the intersection of Z2 with the lines OA1 and OA2.

Example. Integral (nonoriented) angles of the triangle with vertices (0, 0), (2, 0), and
(0, 3) are 1, 3, and 2, respectively.

Now we assume that one of the sides of the angle K in R2 is the line given by the
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equation y = kx, k > 0 (in the natural coordinate system where integral points form the
standard lattice Z2 ⊂ R2) and y < kx in K.

In this case, consecutive integral lengths of edges of the sail numbered towards going to
infinity along the indicated line (x → +∞) turn out to be equal to consecutive elements
(a0, a2, a4, a6, . . . ) of the continuous fraction of the number

k = a0 +
1

a1 +
1

a2 + · · ·

,

with even indices, whereas consecutive integral angles between these edges are equal to
the sequence (a1, a3, a5, . . . ) of elements of the same continuous fraction with odd indices.

For the sails of the complementary angle K ′ where y > kx, consecutive integral edge
lengths form the sequence (a1, a3, a5, . . . ), and consecutive integral angles between these
edges form the sequence (a2, a4, . . . ).

Now let us assume that A ∈ SL(n,Z) is the matrix of a linear transformation A : Rn →
Rn that maps the standard lattice Zn onto itself and has n distinct positive eigenvalues
(λ1, . . . , λn).

The corresponding n invariant hyperplanes (each is generated by n − 1 eigenvectors
vk: the first omitting v1, the second omitting v2, . . . , the last omitting vn) divide the
space Rn into 2n simplicial cones each invariant under the transformation A.

Let K be one of these invariant cones. The sail generated by this cone is the n-
dimensional continuous fraction of the operator A (in fact, by “fraction” one can under-
stand the entire collection of 2n interrelated sails generated by all 2n invariant cones of
the operator A).

The invariance of the cone K and of the lattice Zn under the automorphism A implies
that the sail of the cone K is also invariant under A. In this sense the operator A is one
of the symmetries of its sail.

In the case n = 2 this A-invariance of the sail means nothing but the periodicity of
the corresponding usual continuous fraction (for directions kj of eigenvectors, hence also
for eigenvalues λj).

In the general case n > 2 the sail has, in addition to A, other symmetries as well.
Denote by H the “integral Cartan subgroup” consisting of the operators B ∈ SL(n,Z)
commuting with the operator A (their matrices are diagonal in the basis of eigenvectors
of the operator A).

Consider the subgroup S ⊂ H consisting of those elements of the Cartan subgroup
H that preserve the cone K (rather than permuting it with another cone, as does, for
example, the operator −1 belonging to H for even n).

The group S is the symmetry group of the sail of the coneK; it contains the operator A.
In his article [17] the Japanese mathematician Tsuchihashi used a theorem of Dirichlet

to prove that the symmetry group is isomorphic to Zn−1. Its topological action of the
sail (which is homeomorphic to the Euclidean space Rn−1) is topologically similar to the
action of the standard integral lattice Zn−1 ⊂ Rn−1 on the ambient Euclidean space by
translations by its integral vectors.

Therefore the quotient space of the hypersurface of the sail by its symmetry group A
is homeomorphic to the torus Tn−1.

This torus inherits from the sail a subdivision into convex faces of various dimensions;
we will call this subdivision the natural triangulation of the sail. It also inherits the
subset of integral points on each face, integral lengths, integral angles, etc.

The resulting triangulation of the torus has a finite number of faces, vertices, integral
points, angles, etc. This entire structure provides a multidimensional generalization of
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the period of a periodic continuous fraction (to which this structure is reduced in the
case n = 2).

In this particular case the quotient torus Tn−1 is the circle S1 divided into N pieces
(if the period length T = 2N is even). If the entire period of the continuous fraction
is [a1, a2, . . . , a2N ], then the “triangulation” consists of N intervals of integral length
(a2, a4, . . . , a2N ) separated by vertices with integral angles (a1, a3, . . . , a2N−1).

In principle, this geometry of triangulations yields a multidimensional analog of the
theory of continuous fractions of quadratic irrationalities; however, in the case n > 2
many interesting questions remain open.

For example, in the multidimensional case the length T of the period of an ordinary
continuous fraction should be replaced with something else (not yet invented). Natural
candidates for the role of the generalized period length are:

1) the number of faces of the triangulation (either only (n− 1)-dimensional, or all);
2) the number of integral points;
3) the sum of integral volumes of faces;
4) solid angles at vertices or faces of various dimensions, their sums, alternating

sums, and other natural combinations.

There are also many other candidates; for example, generalizations of theorems about

the behavior of average period lengths T̂ (R) from the quadratic to the multidimensional
case (even just to the cubic case n = 3) could provide reasonable arguments for the choice

of a multidimensional analogue of the notion of the period length T and its average T̂ , as
well as for the choice of multidimensional analogues of the sum of elements of the period

Σ and its average Σ̂(R), or for “average elements of a period” of the form â(R) = Σ̂(R)/

T̂ (R) or of the form â′(R) = Σ̂/T .
The multidimensional theory also has the following fundamental gap. The period

[ak+1, . . . , ak+T ] of the periodic continuous fraction of an appropriate quadratic irra-
tionality can be an arbitrary sequence of T integers.

In the n-dimensional case triangulations of the torus Tn−1 obtained from sails of all
operators A form some strange subset of the set of all subdivisions of the torus Tn−1

into convex polyhedra.

Conjecture. The problem of whether a particular triangulation of the torus Tn−1 can
be realized as a natural triangulation of the sail of some integral matrix A ∈ SL(n,Z) is
algorithmically unsolvable.

Examples of both realizable and nonrealizable triangulations exist already in the case
of the two-dimensional torus (n = 3).

Example (E. I. Korkina, [18, 19])). The simplest realizable triangulation of the two-
dimensional torus consists of two triangles, three edges, and one vertex (see Figure 2).

This triangulation is realized by the matrix of the “three-dimensional golden ratio”

A =

⎛
⎝3 2 1
2 2 1
1 1 1

⎞
⎠ .

The usual golden ratio is realized by a similar matrix (which generates the Fibonacci
numbers)

A =

(
2 1
1 1

)
.

O. N. Karpenkov [20] suggested two interesting algorithms, of which the first con-
structs the matrix A ∈ SL(n,Z) realizing a given triangulation of the torus Tn−1, and
the second provides the proof that a given triangulation is nonconstructible.
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Figure 2

Unfortunately, for some (typical?) triangulations neither of these two algorithms
ever stops: for these triangulations it is not known whether there exists an algorithm
determining realizability, and I believe that such an algorithm is not only unknown, but
does not exist.

The Gauss–Kuzmin statistics of elements of continuous fractions of random real num-
bers can also be generalized to multidimensional continuous fractions.

A dozen years ago I suggested to Yu. Sukhov to try to find such a generalization (and
to find out, for example, whether the sail of a typical simplicial cone K ⊂ R3 has more
triangular faces than pentagonal ones).

Instead of computing the required statistics, the resulting paper by Kontsevich and
Sukhov (see [21]) proves the following axiomophilic theorem: “All similar statistical
Arnold questions have answers (unknown to us)” and “these answers are universal, i.e.,
the resulting statistics do not depend on K (are the same) for almost all simplicial cones
K ⊂ Rn, so that exceptional cones where the statistics is different, form a set of Lebesgue
measure zero.”

Later Bykovskii and Karpenkov computed the required frequencies for various events
on typical sails (frequencies of triangles, of long edges, etc.) by two different methods.
Their answers are the same, although the proof that they coincide turned out to be not
that easy. Both formulas generalizing the Gauss formulas for frequencies fk are rather
complicated and I leave to the reader the pleasure of finding them.

7. Statistics of periodic orbits of the Fibonacci cat map

One of the simplest models of a chaotic dynamical system is the so-called “Fibonacci
cat map” A : T 2 → T 2 of the two-dimensional torus to itself, which sends the point with
coordinates (x, y) to the point

A(x, y) = (2x+ y, x+ y).

Fibonacci numbers appear as the coordinates of images of the basis vector An(0,1) =
((1,1), (3,2), (8,5), . . . ).

The numbers x (mod 1) and y (mod 1) are the coordinates (of angular type: “longi-
tude” and “latitude”) on the surface of the two-dimensional torus.

The chaotic nature of the ergodic transformation preserving the Lebesgue measure is
displayed, for example, by its mixing property: for any (measurable) subset U (“the cat”
U) of the torus its image after sufficiently large number iterations t of the map A will be
distributed uniformly over the torus so that for each “test set” V ⊂ T 2 the part of the
cat At(U) in this set will be (asymptotically) proportional to the measure of this set:

lim
t→∞

meas((AtU) ∩ V )

meas(AtU)
=

measV

measT 2
.

The majority of orbits

{Atz, z ∈ T 2, t = 0.1, 2, . . . }
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are everywhere dense subets of the phase space T 2, and the number of times #(T ) the
orbit visits a test set V after T iterations (t = 1, 2, . . . , T ) is asymptotically proportional
to the measure of the test set:

lim
T→∞

#(T )

T
=

mesV

mesT 2
.

However, for some initial points a the orbit behaves differently. For example, there
exist periodic orbits that return to the initial point at some moment τ in time and then
continue to pass over τ points of the orbit,

z, Az, A2z, . . . , Aτ−1z (and then Aτz = z).

Namely, periodic orbits are orbits of all points z with rational coordinates (and these
points only). The period length of different periodic points is, in general, different.

Indeed, if the coordinates x = u/n and y = v/n of a point z ∈ T 2 are rational, with
common denominator n, then the point Az also has rational coordinates with the same
denominator n (since the determinant of the integral matrix A = ( 2 1

1 1 ) equals 1, so that
the operator A maps the standard integral lattice Z2 ⊂ R2 isomorphically to itself).

The phase space T 2 contains n2 points whose coordinates have common denominator
n. They form the finite set Z2

n (where Zn = Z/nZ denotes the ring of n remainders of
division by n) which is a finite version of the torus T 2 consisting, however, of only n2

points. Our automorphism A : T 2 → T 2 permutes n2 points of the finite torus Z2
n.

Each permutation A of a finite set (consisting, for example, ofN points) is decomposed
(by the ergodic theorem) into cycles (pairwise disjoint ergodic components):

N = a1 + a2 + · · ·+ aq,

where a cycle of length a consists of exactly a distinct points (z, Az, A2z, . . . , Aa−1z),
with Aaz = z.

The only invariant of the decomposition of a finite set (phase space of N points) into
cycles of a permutation A of this set is the “Young diagram” of cycles: it determines the
permutation (or decomposition into cycles) up to renumbering of points, which plays the
role of changing the coordinate system; all possible renumberings form the group S(N)
of all N ! permutations of N points of the phase space.

The Young diagram consists of N unit squares on the plane. Cycles are ordered by
decreasing length,

a1 ≥ a2 ≥ · · · ≥ aq.

The first row of the Young diagram consists of a1 side-by-side squares, the second row
consists of a2 squares, etc., with the last (the shortest) q-th row consisting of aq squares.

Example. The permutation of 9 digits given by(
1 2 3 4 5 6 7 8 9
2 1 7 4 9 8 6 3 5

)
has the Young diagram of the form shown in Figure 3 because this permutation consists
of q = 4 cycles (3, 7, 6, 8), (1, 2), (5, 9), (4) with lengths a1 = 4, a2 = 2, a3 = 2, a4 = 1,
respectively.

Keeping in mind that the dynamics of the Fibonacci cat map is chaotic, one could have
thought that the induced permutations of n2 points of finite tori Z2

n would have Young
diagrams (which describe the statistics of periodic motion of our dynamical system)
similar to Young diagrams of cycles of random permutations of the same number N = n2

of points.
Young diagrams of cycles of different permutations P ∈ S(N) are, of course, quite

different. However, one can study their statistics computing average values of various
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Figure 3

characteristics of these Young diagrams over all N ! permutations in the symmetric group
S(N).

For the simplest characteristics of Young diagrams I have chosen the following four
parameters:

• Length l (in the previous notation l = a1 is the period of the longest cycle).
• Height q (the number of cycles in the permutation).
• Width λ = N/(lq) (this parameter shows what part of the rectangle made of q
copies of the longest row of the diagram is filled with squares of the diagram).

• Asymmetry µ = q/l (this parameter shows whether the diagram is long, which
happens when µ < 1, or tall, when µ > 1).

I have computed (in [22] and [23]) average values (l̂, q̂, λ̂, µ̂) of these parameters for
all N ! permutations of N elements for N ≤ 7 (when N ! ≤ 5040). These empirical values
suggest the following asymptotic behavior:

l̂ ∼ c1N, q̂ ∼ q2 lnN, λ̂ ∼ c3
(lnN)

, µ̂ ∼ c4
lnN

N
.

The majority of random permutations have long diagrams filling only a small part of
rectangles circumscribed around these diagrams.

Surprised by this asymmetry I studied the case of larger values of N . To avoid the
summation of N ! summands I replaced averaging over the group S(N) by the Monte-
Carlo method: instead of all N ! permutations of, say, N = 100 elements (00,01, . . . , 99)
I considered just one permutation, choosing it in a really random way.

As a source of random choices, in [22] and [23] I have used, first of all, The directory
of phone numbers of members of the National Academy of Sciences in Washington. Out
of the entire 7-digit number I have used only the fourth and fifth digits (to avoid the
influence of geographic nonuniformity of Academy members on the first three digits).

To obtain a random permutation s ∈ S(N) of a set with N elements one should
have a family of mutually independent elements (p1, p2, . . . ) (with repetitions) of length
approximately N lnN.

Starting with p1 we then take p2 if p2 	= p1, etc. The element pj will occur in the
resulting permutation if it is different from all previous elements p<j .

The resulting permutation of all N = 100 numbers (between 00 and 99) taken from
the phone directory provides a permutation s ∈ S(100). Computation of parameters
of this permutation confirmed the above conjectures about the asymptotic behavior of
average values of these four parameters.

For higher reliability, I have repeated the experiment replacing phone numbers with
numbers on license plates of cars passing the Steklov Mathematics Institute on the Vav-
ilova Street in Moscow. Statistics of license plates (presented in [22] and [23]) turned
out to be quite similar to the statistics obtained using phone numbers of academicians
described earlier.
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Finally, to augment these experiments I have considered “random permutations” of
p2 elements of Galois fields (from the book [3]) and taking p = 7, 11, 13, 17, 19.

The statistics of the resulting Young diagrams turned out to be exactly the same as for
academicians and for cars, and even though my old conjecture about the (pseudo)random
nature of tables of Galois fields is not yet rigorously proved, the performed experiment
can be viewed as an additional argument in favor of this conjecture of fundamental
mathematics.

After all these results were published, I found out that shapes of Young diagrams of
random permutations were studied in the 1940s in Moscow by V. L. Goncharov [24].

Even though I (being a school student at that time) discussed with Vassily Leonidovich
a lot of various mathematical problems, he never told me anything about these wonderful
asymptotic results saying that

l̂(N) ∼ c1N, q̂(N) ∼ c2 lnN

(his constant c1 was approximately 0.62).
An “explanation” of these asymptotic results can be provided by the following “non-

rigorous” arguments. At repeated independent selections of one element from a box filled
by many copies of each ofN elements of the set we study, a repetition of a selected element
can be expected to occur, on the average, after θN selections, where θ is a constant in
the interval 0 < θ < 1 (or, at least, θ(N) tends to such a constant as N → ∞).

Similar arguments show that the length of the first (the longest) cycle, even though it
is different for different permutations of N elements, will have the average value θ′N.

To estimate the length of the second cycle we can assume that after excluding all
copies of θ′N elements in the first cycle, we obtain the action of the original permutation
of N elements on the remaining N1 = (1 − θ′)N distinct elements that has the same
statistics as the statistics of N1! “random” permutations forming the group S(N1).

Therefore, the expected length of the second cycle is θ′N1 and after removing all copies
of elements of this cycle the box will contain N2 = (1− θ′)2N distinct elements.

Similarly, after removing elements of the s-th cycle the box will containNs = (1−θ′)sN
distinct elements, which will be permuted by the original permutation A “in a random
way”.

The end (s = q) of this process of finding cycles occurs when the number Ns of
remaining distinct elements becomes small (as, for example, Nq−1 for aq = 1). This
argument explains the asymptotics

q ∼ lnN

− ln(1− θ′)
.

Trying to apply these results of fundamental mathematics about the statistics of ran-
dom permutations to the periodic orbit of the “Fibonacci cat map” in [22] and [23], I
have computed Young diagrams (of area N = n2) for the corresponding automorphisms
of finite tori,

A : Z2
n → Z2

n

for n = (2, 3, . . . , 20). The results of these experiments turned out to be surprising. The
Fibonacci cat maps permute n2 elements in a nonrandom way.

I present several values of the parameters of “Fibonacci maps” of finite tori consisting
of N = n2 elements taken from [22] (see the table below).

The number of cycles q turns out to be much larger than the expected average value
lnN for a random permutation of N elements.

The length of the longest cycle l is much less than N = n2.
In [23] these empirical observations showing nonrandomness of Fibonacci permutations

received a theoretical explanation. In particular, it was shown that for prime values n > 5
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n l q λ µ

2 3 2 0.67 0.67
3 4 3 0.75 0.75
4 3 6 0.89 2.00
5 10 5 0.50 0.50

6 12 6 0.50 0.50
7 8 7 0.88 0.88
11 5 25 0.97 5.00
12 12 18 0.67 1.50

16 12 30 0.71 2.50
17 18 17 0.94 0.94
19 9 41 0.98 4.56
97 98 97 0.99 0.99

the Young diagram is almost rectangular,

(a1 = · · · = aq−1; aq = 1),

with length either l = n+1 or (n− 1)/2, and height either q = n or 2n+3, respectively.
Other (interesting) mathematical explanations from [23] based on the same observa-

tion originate from the following remark.
The transformation A : Z2

n → Z2
n is not random because it is determined by a linear

transformation A of the plane. Therefore, if we know the behavior of the orbit of a point
z, we know the behavior of homothetic orbits of the points 2z, 3z, etc.

To eliminate the influence of this symmetry (which would have been absent in non-
linear models) we can replace the finite torus Z2

n by its projective version (whose points
are straight lines passing through the point z = 0).

To simplify the computations, let us assume that n = p is a prime number. In this
case the projectivized finite torus

PZ2
p = (Z2

p\0)/(Zp\0)

consists of p+ 1 points and these points are permuted by the map A ∈ SL(2,Z).
One could expect that the induced “projective permutation” of p+1 points would have

a “more random” Young diagram than the action of A as a permutation of p2 points of
the finite torus Z2

p.
However, experiments show that the Young diagrams of these “projective permuta-

tions” of p+1 still differ significantly from Young diagrams of random permutations. For
example, tables in [22] give the following values for the parameters of Young diagrams
of “projective Fibonacci permutations”:

n l q λ µ

2 3 1 1.00 0.33
3 2 2 1.00 1.00
5 5 2 0.60 0.40
7 4 2 1.00 0.50

11 5 4 0.60 0.80
13 7 2 1.00 0.20
17 9 2 1.00 0.22
19 9 4 0.53 0.44

41 10 6 0.70 0.60
97 40 2 1.00 0.05
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Another (also presented in [23]) explanation of the special nature of Young diagrams of
permutations of n2 points of the finite torus Z2

n induced by automorphisms A ∈ SL(2,Z)
is based on the following arguments.

The permutation of N = nm points of the finite torus Zm
n induced by an integer m×m

matrix A ∈ SL(m,Z) with determinant 1 has a period T (A, n) such that the matrix A
satisfies the congruence

AT ≡ 1 (mod n).

Therefore all lengths of cycles of the considered permutation of points of the finite
torus should be divisors of the integer T (A, n).

Young diagrams of permutations for which all cycle lengths have this arithmetic prop-
erty (are divisors of a fixed integer T ) may have a special statistics (compared to the
statistics of all permutations in S(nm)).

In would be interesting to generalize Goncharov’s results (l̂ ∼ c1N, q̂ ∼ c2 lnN) to
averages over permutations in S(nm) with cycle lengths that are divisors of T and to
study the dependence of this generalized statistics on the arithmetics of the number T .

Statistical properties of T (as a function of A ∈ SL(m,Z) and n ∈ Z+) are also
interesting and nonobvious (similarly to the complexity of the behavior of periods in the
Fermat and Euler theorems discussed in Section 4, pp. 49–50).

Periodic orbits of the Fibonacci cat map were studied in papers by physicists, including
Dyson, Percival, Vivaldi, and others (see the survey in [25]). They computed period
lengths for some special examples using nontrivial facts from algebraic number theory.
However, all their examples provide only a nontypical small part of cases, which are not
similar to the huge majority of other cases (both for A ∈ SL(m,Z) and for the original
Fibonacci cat map corresponding to the automorphism A = ( 2 1

1 1 )).
Participants of my 2005 lectures (for high school students) in the Joint Institute of

Nuclear Research in Dubna (published in [23]) discovered several interesting additions
to my statistical conclusions from materials of these lectures.

According to M. E. Kazaryan and V. A. Kleptsyn, in the majority of cases the Young
diagrams of the projectivized Fibonacci cat map of the projective torus (consisting of
p+ 1 points) are almost rectangular, of the form l × a or (l × a) + 1 + 1, where an even
integer a equals 2 in about 60% of cases (these Young diagrams have q = a rows in the
first case and q = a+ 2 rows in the second case).

In the table presented earlier, the first case can be seen when p = 3, 7, 13, 17, and the
second case when p = 11 and 19.

According to Kazaryan and Kleptsyn, the averaged length l and height h of Young
diagrams of Fibonacci automorphisms of finite tori Z2

n consisting of a large number

N = n2 of points grow with N as
√
N = n, with the typical average width λ̂ ≈ 0.8 and

typical average asymmetry of order
√
N.

At the first glance, these three relations (l̂ ∼
√
N, q̂ ∼

√
N̂ , µ̂ = q̂/l ∼

√
N) contradict

one another since lq = λN . However, the following examples show that there is no

contradiction because the average value of the ratio q̂/l is not equal to the ratio of

average values q̂/l̂.
Consider the population consisting of (rectangular) Young diagrams of the following

three types:

(l, q) = (N, 1) with probability α,

(l, q) = (1, N) with probability β,

(l, q) = (
√
N,

√
N) with probability γ (here α+ β + γ = 1).
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In the case α = β = 1/
√
N , γ = 1− 2/

√
N all three average values

l̂ = αN + β + γ, q̂ = α+ βN + γ, q̂/l = α/N + βN + γ

are of order
√
N .

Similar examples with not so rectangular diagrams allow us to reach the condition
λ ≈ 0.8 for the width (with λ = N/(ql)) instead of the observed in our (rectangular)
example value λ = 1.

It would be interesting to find out, at least empirically, which of the discovered prop-
erties of permutations of points of a finite torus are specifically related to the Fibonacci
permutation A = ( 2 1

1 1 ), and which properties hold for more general cases A ∈ SL(2,Z)
or A ∈ SL(m,Z).
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Université Paris-Dauphine, 2004. No, 0430. 18 pp.

http://www.ams.org/mathscinet-getitem?mr=0003556
http://www.ams.org/mathscinet-getitem?mr=0003556
http://www.ams.org/mathscinet-getitem?mr=2506112
http://www.ams.org/mathscinet-getitem?mr=1746430
http://www.ams.org/mathscinet-getitem?mr=1746430
http://www.ams.org/mathscinet-getitem?mr=514845
http://www.ams.org/mathscinet-getitem?mr=514845
http://www.ams.org/mathscinet-getitem?mr=2086623
http://www.ams.org/mathscinet-getitem?mr=2086623
http://www.ams.org/mathscinet-getitem?mr=1991436
http://www.ams.org/mathscinet-getitem?mr=1991436
http://www.ams.org/mathscinet-getitem?mr=2394969
http://www.ams.org/mathscinet-getitem?mr=2394969
http://www.ams.org/mathscinet-getitem?mr=2075226
http://www.ams.org/mathscinet-getitem?mr=2075226
http://www.ams.org/mathscinet-getitem?mr=2385493
http://www.ams.org/mathscinet-getitem?mr=2385493
http://www.ams.org/mathscinet-getitem?mr=2381964
http://www.ams.org/mathscinet-getitem?mr=2381964
http://www.ams.org/mathscinet-getitem?mr=2466084
http://www.ams.org/mathscinet-getitem?mr=2466084
http://www.ams.org/mathscinet-getitem?mr=721966
http://www.ams.org/mathscinet-getitem?mr=721966
http://www.ams.org/mathscinet-getitem?mr=1422222
http://www.ams.org/mathscinet-getitem?mr=1422222
http://www.ams.org/mathscinet-getitem?mr=1300940
http://www.ams.org/mathscinet-getitem?mr=1300940


STOCHASTIC AND DETERMINISTIC CHARACTERISTICS OF ORBITS 69

[21] M. L. Kontsevich and Yu. M. Suhov, Statistics of Klein polyhedra and multidimensional continued
fractions, Pseudoperiodic Topology, V. I.Arnold et al. (eds.) Transl. Amer. Math. Soc., Ser. 2,
vol. 197, Providence, RI, 1999, pp. 9–27. MR1733869 (2001h:11101)

[22] V. I. Arnold, Statistics of Young diagrams of cycles of dynamical systems for finite tori automor-
phisms, Moscow Math. J. 6 (2006), no. 1, 43–56. MR2265946 (2007k:05218)

[23] , Experimental observation of mathemaitcal objects, Summer School “Modern Mathematics”,
Dubna, 2005. MCCMO, Moscow, 2006. (Russian)

[24] V. L. Goncharov, On a topic of combinatorial analysis, Izvestiya AN SSSR, Ser. Matem. 8 (1944),
3–48. (Russian)

[25] I. Percival and F. Vivaldi, Arithmetical properties of strongly chaotical motions, Physica D 25
(1987), no. 1, 105–130. MR887460 (88g:58120)

[26] V. I. Arnold, Statistics of integral convex polygons, Funtsional. Anal. i ego Prilozhen. 14 (1980),
no. 2, 1–3; English transl., Functional Anal. Appl. 14 (1980), no. 2, 79–81. MR575199 (81g:52011)

[27] N. V. Smirnov, On estimates of divergence of two empirical distribution curves for two independent
samples, Bull. Moskovsk. Universiteta, Matematika, 2 (1939), 3–14. (Russian)

Steklov Mathematical Institute, Russian Academy of Sciences, Moscow, Russia

Translated by O. KHLEBORODOVA

http://www.ams.org/mathscinet-getitem?mr=1733869
http://www.ams.org/mathscinet-getitem?mr=1733869
http://www.ams.org/mathscinet-getitem?mr=2265946
http://www.ams.org/mathscinet-getitem?mr=2265946
http://www.ams.org/mathscinet-getitem?mr=887460
http://www.ams.org/mathscinet-getitem?mr=887460
http://www.ams.org/mathscinet-getitem?mr=575199
http://www.ams.org/mathscinet-getitem?mr=575199

	1. Kolmogorov's stochasticity parameter
	2. Applications of the degree of randomness to particular sequences
	3. Statistics of continuous fractions
	4. Periodic continuous fractions
	5. Continuous fractions of eigenvalues and the direction of eigenoscillations
	Statistics of continuous fractions of eigenvalues for integral matrices of the second order
	Statistics of continuous fractions for eigenvalues of unimodular matrices of the second order

	6. Multidimensional continuous fractions
	7. Statistics of periodic orbits of the Fibonacci cat map
	References

