Remote Access Transactions of the Moscow Mathematical Society

Transactions of the Moscow Mathematical Society

ISSN 1547-738X(online) ISSN 0077-1554(print)

 
 

 

On the number of limit cycles of planar quadratic vector fields with a perturbed center


Author: A. Yu. Fishkin
Translated by: Alex Martsinkovsky
Original publication: Trudy Moskovskogo Matematicheskogo Obshchestva, tom 71 (2010).
Journal: Trans. Moscow Math. Soc. 2010, 105-139
MSC (2010): Primary 34C07; Secondary 37C10, 37C27
DOI: https://doi.org/10.1090/S0077-1554-2010-00181-1
Published electronically: December 21, 2010
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We investigate the number of limit cycles of a planar quadratic vector field with a perturbed center-like singular point. An upper bound is obtained on the number of $ \delta$-good limit cycles of such a vector field (Theorem 1). Here $ \delta$ is a parameter characterizing the limit cycles: it shows how far those cycles are from the singular points of the vector field and from the infinite points. The bound also includes another parameter, $ \kappa$, characterizing the vector field. More precisely, $ \kappa$ gives an estimate on the distance from the vector field to the set consisting of quadratic vector fields with a line of singular points. Earlier, Ilyashenko and Llibre found a bound on the number of $ \delta$-good limit cycles of those vector fields which are sufficiently far from the fields with a center-like singular point. Theorem 1 and that bound complement each other and yield a new bound on the number of $ \delta$-good limit cycles of a quadratic vector field, regardless of its distance to the vector fields with a center-like singular point (Theorem 2).


References [Enhancements On Off] (What's this?)

  • 1. W. A. Coppel, A survey of quadratic systems, J. Differential Equations 2 (1966), 293-304. MR 0196182 (33:4374)
  • 2. H. Dulac, Détermination et intégration d'une certaine classe d'équations différentielles ayant pour point singulier un centre, Bull. Soc. Math. France (2) 32 (1908), 230-252.
  • 3. A. Fishkin, On the number of zeros of an analytic perturbation of the identically zero function on a compactum, Mat. Zametki 85 (2009), no. 1, 110-118; English transl., Math. Notes 85 (2009), no. 1-2, 101-108. MR 2547968
  • 4. M. Hervé, Several complex variables. Local theory. Oxford University Press, Bombay, 1963. MR 0151632 (27:1616)
  • 5. Yu. Ilyashenko and J. Llibre, A restricted version of Hilbert's $ 16$th problem for quadratic vector fields, arXiv:0910.3443v1 [math.DS].
  • 6. Yu. Ilyashenko and S. Yakovenko, Counting real zeros of analytic functions satisfying linear differential equations, J. Differential Equations 126 (1996), 87-105. MR 1382058 (97a:34010)
  • 7. Yu. Ilyashenko and S. Yakovenko, Lectures on Analytic Differential Equations, Graduate Studies in Mathematics 86, Amer. Math. Soc., Providence, RI, 2008. MR 2363178 (2009b:34001)
  • 8. W. Kapteyn, On the midpoints of integral curves of differential equations of the first degree, Nederl. Akad. Wetensch. Verslag. Afd. Natuurk. Konikl. Nederland 19 (1911), 1446-1457. (Dutch)
  • 9. W. Kapteyn, New investigations on the midpoints of integrals of differential equations of the first degree, Nederl. Akad. Wetensch. Verslag. Afd. Natuurk 20 (1912), 1354-1365; 21, 27-33. (Dutch)
  • 10. R. Roussarie, Bifurcation of planar vector fields and Hilbert's sixteenth problem, Birkhäuser, Basel, 1998. MR 1628014 (99k:58129)
  • 11. Pingguang Zhang, Quadratic systems with two foci, Appl. Math. J. Chinese Univ. 14A (1999), 247-253. (Chinese) MR 1716432 (2000f:34059)
  • 12. Pingguang Zhang, On the distribution and number of limit cycles for quadratic systems with two foci, Acta Math. Sinica (Chin. Ser.) 44 (2001), 37-44. (Chinese) MR 1819975 (2001m:34073)
  • 13. Pingguang Zhang, On the distribution and number of limit cycles for quadratic systems with two foci, Qual. Theory Dyn. Syst. 3 (2002), 437-463. MR 2020695 (2004i:34071)
  • 14. H. Żołądek, Quadratic systems with center and their perturbations, J. Differential Equations 109 (1994), no. 2, 223-273. MR 1273302 (95b:34047)

Similar Articles

Retrieve articles in Transactions of the Moscow Mathematical Society with MSC (2010): 34C07, 37C10, 37C27

Retrieve articles in all journals with MSC (2010): 34C07, 37C10, 37C27


Additional Information

A. Yu. Fishkin
Affiliation: M. V. Lomonosov Moscow State University
Email: fishkinalexey@gmail.com

DOI: https://doi.org/10.1090/S0077-1554-2010-00181-1
Published electronically: December 21, 2010
Additional Notes: Supported by the RFFI Grants 7–01–00017-a and 05–01–02801–CNRS_a).
Article copyright: © Copyright 2010 American Mathematical Society

American Mathematical Society