Remote Access Transactions of the Moscow Mathematical Society

Transactions of the Moscow Mathematical Society

ISSN 1547-738X(online) ISSN 0077-1554(print)



Lyapunov exponents and other properties of $ N$-groups

Authors: D. A. Filimonov and V. A. Kleptsyn
Translated by: G. G. Gould
Original publication: Trudy Moskovskogo Matematicheskogo Obshchestva.
Journal: Trans. Moscow Math. Soc. 2012, 29-36
MSC (2010): Primary 37C85; Secondary 37E10, 37A35, 37D25, 37H15
Published electronically: January 24, 2013
MathSciNet review: 3184966
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study the class of minimally acting finitely generated groups of $ C^2$-diffeomorphisms of the circle which have the property that the nonexpandable points are fixed, where the set of nonexpandable points is nonempty. It turns out that the Lyapunov expansion exponent of any such action is zero. As a consequence, we have a singularity of the stationary measure for a random dynamical system given by any probability distribution whose support is a finite set of the generating elements of the group.

References [Enhancements On Off] (What's this?)

  • 1. Rufus Bowen, Invariant measures for Markov maps of the interval, Comm. Math. Phys. 69 (1979), no. 1, 1–17. With an afterword by Roy L. Adler and additional comments by Caroline Series. MR 547523
  • 2. A. B. Katok and B. Hasselblatt, Introduction to the theory of dynamical systems with a survey of latest achievements, Cambridge University Press, Cambridge, 2006.
  • 3. V. A. Kleptsyn and D. A. Filimonov, On actions on the circle with the fixed-point property for nonexpandable points, Funktsional. Anal. i Prilozhen, to appear.
  • 4. Michael-Robert Herman, Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations, Inst. Hautes Études Sci. Publ. Math. 49 (1979), 5–233 (French). MR 538680
  • 5. Bertrand Deroin, Victor Kleptsyn, and Andrés Navas, On the question of ergodicity for minimal group actions on the circle, Mosc. Math. J. 9 (2009), no. 2, 263–303, back matter (English, with English and Russian summaries). MR 2568439
  • 6. Bertrand Deroin, Victor Kleptsyn, and Andrés Navas, Sur la dynamique unidimensionnelle en régularité intermédiaire, Acta Math. 199 (2007), no. 2, 199–262 (French). MR 2358052,
  • 7. Étienne Ghys and Vlad Sergiescu, Sur un groupe remarquable de difféomorphismes du cercle, Comment. Math. Helv. 62 (1987), no. 2, 185–239 (French). MR 896095,
  • 8. Y. Guivarc’h and Y. Le Jan, Asymptotic winding of the geodesic flow on modular surfaces and continued fractions, Ann. Sci. École Norm. Sup. (4) 26 (1993), no. 1, 23–50. MR 1209912
  • 9. Y. Guivarc'h and C. R. E. Raja, Recurrence and ergodicity of random walks on linear groups and on homogeneous spaces, Preprint arXiv:0908.0637.
  • 10. S. Hurder, Exceptional minimal sets and the Godbillon-Vey class, Ann. Inst. Fourier (Grenoble), to appear.
  • 11. Tomoki Inoue, Ratio ergodic theorems for maps with indifferent fixed points, Ergodic Theory Dynam. Systems 17 (1997), no. 3, 625–642. MR 1452184,
  • 12. Ricardo Mañé, Introdução à teoria ergódica, Projeto Euclides [Euclid Project], vol. 14, Instituto de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, 1983 (Portuguese). MR 800092

Similar Articles

Retrieve articles in Transactions of the Moscow Mathematical Society with MSC (2010): 37C85, 37E10, 37A35, 37D25, 37H15

Retrieve articles in all journals with MSC (2010): 37C85, 37E10, 37A35, 37D25, 37H15

Additional Information

D. A. Filimonov
Affiliation: Moscow State University

V. A. Kleptsyn
Affiliation: CNRS, Institut de Recherche Mathématique de Rennes

Keywords: Dynamical systems, group actions, diffeomorphisms of the circle, Lyapunov exponent, stationary measures.
Published electronically: January 24, 2013
Additional Notes: This work was carried out with the partial support of the Russo-French programme “Cooperation network in mathematics”, grant RFFI-10-01-00739-a and grant RFFI-CNRS-10-01-93115-NTsNIL-a.
Article copyright: © Copyright 2013 American Mathematical Society

American Mathematical Society