Remote Access Transactions of the Moscow Mathematical Society

Transactions of the Moscow Mathematical Society

ISSN 1547-738X(online) ISSN 0077-1554(print)

   
 
 

 

The simplest stationary subalgebras, for compact linear Lie algebras


Author: O. G. Styrt
Translated by: E. Khukhro
Original publication: Trudy Moskovskogo Matematicheskogo Obshchestva.
Journal: Trans. Moscow Math. Soc. 2012, 107-120
MSC (2010): Primary 17B10; Secondary 17B20, 17B45, 22E46
DOI: https://doi.org/10.1090/S0077-1554-2013-00199-5
Published electronically: January 24, 2013
MathSciNet review: 3184969
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Sufficient conditions are obtained for the existence of a vector with a one-dimensional or simple three-dimensional stationary subalgebra for an irreducible compact linear Lie algebra.


References [Enhancements On Off] (What's this?)

  • 1. O. G. Styrt, On the orbit space of a compact linear Lie group with a commutative connected component, Trudy Moskov. Mat. Ob-va 70 (2009), 235-287; English transl., Trans. Moscow Math. Soc. 2009, 171-206 MR 2573640 (2011b:22019)
  • 2. O. G. Styrt, On the orbit space of a three-dimensional compact linear Lie group, Izv. Ross. Akad. Nauk Ser. Mat. 75 (2011), no. 4, 165-188; English transl., Izv. Math. 75 (2011), no. 4, 815-836. MR 2866189 (2012m:22024)
  • 3. O. G. Styrt, On the orbit space of a three-dimensional simple compact linear Lie group, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 2010, no. 6, 51-52; English transl., Moscow Univ. Math. Bull. 65 (2010), no. 6, 255-256. MR 2814991 (2012d:22032)
  • 4. G. E. Bredon, Introduction to compact transformation groups, Pure and Applied Mathematics, vol. 46, Academic Press, New York, London, 1972. MR 0413144 (54:1265)
  • 5. É. B. Vinberg and A. L. Onishchik, Seminar on Lie groups and algebraic groups, 2nd ed., URSS, Moscow, 1995; English transl. of first ed., A. L. Onishchik and E. B. Vinberg, Lie groups and algebraic groups, Springer Ser. in Soviet Math., Springer-Verlag, Berlin, 1990. MR 1403378 (97d:22001)
  • 6. A. G. Élashvili, Canonical form and stationary subalgebras of points of general position for simple linear Lie groups, Funkts. Anal. Prilozh. 6 (1972), no. 1, 51-62; English transl., Funct. Anal. Appl. 6 (1972), 44-53. MR 0304554 (46:3689)
  • 7. A. G. Élashvili, Stationary subalgebras of points of the common state for irreducible linear Lie groups, Funkts. Anal. Prilozh. 6 (1972), no. 2, 65-78; English transl., Funct. Anal. Appl. 6 (1972), 139-148. MR 0304555 (46:3690)
  • 8. G. B. Shpiz, Classification of irreducible locally transitive linear Lie groups, Geometric methods in problems of algebra and analysis, Yaroslavl' State Univ., Yaroslavl', 1978, 152-160. (Russian) MR 575878 (82j:22007)
  • 9. A. M. Popov, Finite stationary subgroups in general position of simple linear Lie groups, Trudy Moskov. Mat. Ob-va 48 (1985), 7-59. (Russian) MR 830410 (87i:22021)
  • 10. V. G. Kac, V. L. Popov, and E. B. Vinberg, Sur les groupes linéaires algébriques dont l'algèbre des invariants est libre, C. R. Acad. Sci. Paris, 283 (1976), no. 12. 875-878. MR 0419468 (54:7489)

Similar Articles

Retrieve articles in Transactions of the Moscow Mathematical Society with MSC (2010): 17B10, 17B20, 17B45, 22E46

Retrieve articles in all journals with MSC (2010): 17B10, 17B20, 17B45, 22E46


Additional Information

O. G. Styrt
Affiliation: Moscow State University
Email: oleg{\textunderscore}styrt@mail.ru

DOI: https://doi.org/10.1090/S0077-1554-2013-00199-5
Keywords: Compact linear Lie algebra, root system, Dynkin diagram, stationary subalgebra in general position (s.s.g.p.)
Published electronically: January 24, 2013
Additional Notes: This research was supported by the “Dinastiya” foundation.
Article copyright: © Copyright 2013 O. G. Styrt

American Mathematical Society