Remote Access Transactions of the Moscow Mathematical Society

Transactions of the Moscow Mathematical Society

ISSN 1547-738X(online) ISSN 0077-1554(print)

 
 

 

Asymptotics of the spectrum of the hydrogen atom in a magnetic field near the lower boundaries of spectral clusters


Author: A. V. Pereskokov
Translated by: ??
Original publication: Trudy Moskovskogo Matematicheskogo Obshchestva.
Journal: Trans. Moscow Math. Soc. 2012, 221-262
MSC (2010): Primary 81R30; Secondary 34Mxx, 81Q20, 33Cxx
DOI: https://doi.org/10.1090/S0077-1554-2013-00205-8
Published electronically: March 21, 2013
MathSciNet review: 3184977
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We investigate the second-order Zeeman effect in a magnetic field using irreducible representations of an algebra with the Karasev - Novikova quadratic commutation relations. To each such representation there corresponds a spectral cluster near the energy level of the unperturbed hydrogen atom. Using this model as an example, we describe a general method for constructing asymptotic solutions near the boundaries of spectral clusters based on a new integral representation. We also study the problem of computing quantum averages near the lower boundaries of clusters.


References [Enhancements On Off] (What's this?)

  • 1. Harald Friedrich and Dieter Wintgen, The hydrogen atom in a uniform magnetic field—an example of chaos, Phys. Rep. 183 (1989), no. 2, 37–79. MR 1024519, https://doi.org/10.1016/0370-1573(89)90121-X
  • 2. V. S. Lisitsa, New results on the Stark and Zeeman effects in the hydrogen atom, Uspekhi Fiz. Nauk 153 (1987), no. 3, 379–421 (Russian); English transl., Soviet Phys. Uspekhi 30 (1987), no. 11, 927–951 (1988). MR 966185, https://doi.org/10.1070/PU1987v030n11ABEH002977
  • 3. J. E. Avron, I. W. Herbst, and B. Simon, Schrödinger operators with magnetic fields. III. Atoms in homogeneous magnetic field, Comm. Math. Phys. 79 (1981), no. 4, 529–572. MR 623966
  • 4. E. A Solov'ëv, The hydrogen atom in a weak magnetic field, Zh. Eksp. Teor. Fiz. 82 (1982), no. 6, 1762-1771; English transl., Sov. Phys. JETP 55 (1982), no. 6, 1017-1022
  • 5. David R. Herrick, Symmetry of the quadratic Zeeman effect for hydrogen, Phys. Rev. A (3) 26 (1982), no. 1, 323–329. MR 668295, https://doi.org/10.1103/PhysRevA.26.323
  • 6. D. Delande and J. C. Gay, Group theory applied to the hydrogen atom in a strong magnetic field. Derivation of the effective diamagnetic Hamiltonian, J. Phys. B 17 (1984), no. 11, L335–L340. MR 748791, https://doi.org/10.1088/0022-3700/17/11/002
  • 7. V. V. Belov and J. L. Volkova, Investigation of the Zeeman effect in quasiclassical trajectory-coherent approximation, Preprint no. 35, Tomsk Scientific Centre, Siberian Division, AS USSR, 1991.
  • 8. Vladimir V. Belov, Victor M. Olivé, and Julia L. Volkova, The Zeeman effect for the “anisotropic hydrogen atom” in the complex WKB approximation. I. Quantization of closed orbits for the Pauli operator with spin-orbit interaction, J. Phys. A 28 (1995), no. 20, 5799–5810. MR 1364760
  • 9. M. V. Karasev and E. M. Novikova, Representation of exact and quasiclassical eigenfunctions in terms of coherent states. The hydrogen atom in a magnetic field, Teoret. Mat. Fiz. 108 (1996), no. 3, 339–387 (Russian, with English and Russian summaries); English transl., Theoret. and Math. Phys. 108 (1996), no. 3, 1119–1159 (1997). MR 1430079, https://doi.org/10.1007/BF02070240
  • 10. M. V. Karasev, Birkhoff resonances and quantum ray method, Proc. Intern. Seminar ``Days of Diffraction- 2004'', St. Petersburg University and Steklov Math. Institute, St. Petersburg, 2004, 114-126.
  • 11. Mikhail Karasev, Noncommutative algebras, nanostructures, and quantum dynamics generated by resonances, Quantum algebras and Poisson geometry in mathematical physics, Amer. Math. Soc. Transl. Ser. 2, vol. 216, Amer. Math. Soc., Providence, RI, 2005, pp. 1–17. MR 2180511, https://doi.org/10.1090/trans2/216/01
    Mikhail Karasev, Noncommutative algebras, nano-structures, and quantum dynamics generated by resonances. II, Adv. Stud. Contemp. Math. (Kyungshang) 11 (2005), no. 1, 33–56. MR 2151283
    M. Karasev, Noncommutative algebras, nano-structures, and quantum dynamics generated by resonances. III, Russ. J. Math. Phys. 13 (2006), no. 2, 131–150. MR 2262820, https://doi.org/10.1134/S1061920806020026
  • 12. M. V. Karasev and E. M. Novikova, An algebra with quadratic commutation relations for an axially perturbed Coulomb-Dirac field, Teoret. Mat. Fiz. 141 (2004), no. 3, 424–454 (Russian, with Russian summary); English transl., Theoret. and Math. Phys. 141 (2004), no. 3, 1698–1724. MR 2141137, https://doi.org/10.1023/B:TAMP.0000049763.86662.16
  • 13. M. V. Karasev and E. M. Novikova, An algebra with polynomial commutation relations for the Zeeman effect in the Coulomb-Dirac field, Teoret. Mat. Fiz. 142 (2005), no. 1, 127–147 (Russian, with Russian summary); English transl., Theoret. and Math. Phys. 142 (2005), no. 1, 109–127. MR 2137424, https://doi.org/10.1007/s11232-005-0074-1
  • 14. M. V. Karasev and E. M. Novikova, An algebra with polynomial commutation relations for the Zeeman-Stark effect in the hydrogen atom, Teoret. Mat. Fiz. 142 (2005), no. 3, 530–555 (Russian, with Russian summary); English transl., Theoret. and Math. Phys. 142 (2005), no. 3, 447–469. MR 2165905, https://doi.org/10.1007/s11232-005-0035-8
  • 15. A. V. Pereskokov, Asymptotics near the boundaries of spectral clusters, International Conference in memory of I. G. Petrovsky (23rd joint meeting of the MMS and the Petrovsky Seminar), Abstracts of talks, MGU Publishing, Moscow, 2011, 260-261.
  • 16. A. V. Pereskokov, Asymptotics of the spectrum and quantum averages near the boundaries of spectral clusters for perturbed two-dimensional oscillators, Mat. zam. 92 (2012), no. 4, 583-596; English transl., Math Notes 92 (2012), no. 4, 532-543.
  • 17. V. M. Babič and V. S. Buldyrev, Short-wavelength diffraction theory, Springer Series on Wave Phenomena, vol. 4, Springer-Verlag, Berlin, 1991. Asymptotic methods; Translated from the 1972 Russian original by E. F. Kuester. MR 1245488
  • 18. Victor P. Maslov, The complex WKB method for nonlinear equations. I, Progress in Physics, vol. 16, Birkhäuser Verlag, Basel, 1994. Linear theory; Translated in part from the 1977 Russian original by M. A. Shishkova and A. B. Sossinsky and revised by the author. MR 1306505
  • 19. M. V. Karasëv and V. P. Maslov, Asymptotic and geometric quantization, Uspekhi Mat. Nauk 39 (1984), no. 6(240), 115–173 (Russian). MR 771100
  • 20. Alan Weinstein, Asymptotics of eigenvalue clusters for the Laplacian plus a potential, Duke Math. J. 44 (1977), no. 4, 883–892. MR 0482878
  • 21. Mikhail Karasev and Elena Novikova, Non-Lie permutation relations, coherent states, and quantum embedding, Coherent transform, quantization, and Poisson geometry, Amer. Math. Soc. Transl. Ser. 2, vol. 187, Amer. Math. Soc., Providence, RI, 1998, pp. 1–202. MR 1728668, https://doi.org/10.1090/trans2/187/01
  • 22. Arthur Erdélyi, Wilhelm Magnus, Fritz Oberhettinger, and Francesco G. Tricomi, Higher transcendental functions. Vols. I, II, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1953. Based, in part, on notes left by Harry Bateman. MR 0058756
  • 23. A. Perelomov, Generalized coherent states and their applications, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1986. MR 858831
  • 24. V. V. Golubev, Lekcii po Analitičeskoĭ Teorii Diferencial′nyh Uravneniĭ, Gosudarstvennoe Izdatel′stvo Techniko-Teoretičeskoĭ Literatury, Moscow-Leningrad,], 1941 (Russian). MR 0014552
  • 25. Sergei Yu. Slavyanov and Wolfgang Lay, Special functions, Oxford Mathematical Monographs, Oxford University Press, Oxford, 2000. A unified theory based on singularities; With a foreword by Alfred Seeger; Oxford Science Publications. MR 1858237
  • 26. Paul A. M. Dirac, Quantum electrodynamics, Communications Dublin Inst. Advanced Studies. Ser. A. [Sgríbh. Inst. Árd-Léigh. Bhaile Átha Cliath] 1943 (1943), no. 1, 36. MR 0013042
  • 27. M. V. Fedoryuk, \cyr Asimptoticheskie metody dlya lineĭnykh obyknovennykh differentsial′nykh uravneniĭ, \cyr Spravochnaya Matematicheskaya Biblioteka. [Mathematical Reference Library], “Nauka”, Moscow, 1983 (Russian). MR 732787
  • 28. Frank W. J. Olver, Asymptotics and special functions, AKP Classics, A K Peters, Ltd., Wellesley, MA, 1997. Reprint of the 1974 original [Academic Press, New York; MR0435697 (55 #8655)]. MR 1429619
  • 29. M. A. Lavrent′ev and B. V. Shabat, \cyr Metody teorii funktsiĭ kompleksnogo peremennogo, 5th ed., “Nauka”, Moscow, 1987 (Russian). MR 1087298
  • 30. I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London-Toronto, Ont., 1980. Corrected and enlarged edition edited by Alan Jeffrey; Incorporating the fourth edition edited by Yu. V. Geronimus [Yu. V. Geronimus] and M. Yu. Tseytlin [M. Yu. Tseĭtlin]; Translated from the Russian. MR 582453
  • 31. James A. Jenkins, Univalent functions and conformal mapping, Ergebnisse der Mathematik und ihrer Grenzgebiete. Neue Folge, Heft 18. Reihe: Moderne Funktionentheorie, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1958. MR 0096806
  • 32. Milton Abramowitz and Irene A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards Applied Mathematics Series, vol. 55, For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., 1964. MR 0167642
  • 33. M. V. Fedoryuk, \cyr Asimptotika: integraly i ryady, \cyr Spravochnaya Matematicheskaya Biblioteka. [Mathematical Reference Library], “Nauka”, Moscow, 1987 (Russian). MR 950167
  • 34. P. A. Braun, WKB-approximation for three-term recurrence relations and quasi-energies of an anharmonic oscillator, Teoret. Mat. Fiz. 37 (1978), no. 3, 355–370 (Russian, with English summary). MR 524700
  • 35. A. B. Vasil′eva, The correspondence between certain properties of the solutions of linear difference systems and systems of ordinary linear differential equations, Trudy Sem. Teor. Differencial. Uravneniĭ s Otklon. Argumentom Univ. Družby Narodov Patrisa Lumumby 5 (1967), 21–44 (Russian). MR 0227645
  • 36. V. P. Maslov and M. V. Fedoryuk, \cyr Kvaziklassicheskoe priblizhenie dlya uravneniĭ kvantovoĭ mekhaniki., Izdat. “Nauka”, Moscow, 1976 (Russian). MR 0461590
  • 37. V. P. Maslov, \cyr Kompleksnye markovskie tsepi i kontinual′nyĭ integral Feĭnmana dlya nelineĭnykh uravneniĭ., Izdat. “Nauka”, Moscow, 1976 (Russian). MR 0479126
  • 38. L. I. Schiff, Quantum mechanics, McGraw-Hill, 1965.

Similar Articles

Retrieve articles in Transactions of the Moscow Mathematical Society with MSC (2010): 81R30, 34Mxx, 81Q20, 33Cxx

Retrieve articles in all journals with MSC (2010): 81R30, 34Mxx, 81Q20, 33Cxx


Additional Information

A. V. Pereskokov
Affiliation: Moscow Power Engineering Institute, Moscow Institute of Electronics and Mathematics of the Higher School of Economics - National Research University
Email: pereskokov62@mail.ru

DOI: https://doi.org/10.1090/S0077-1554-2013-00205-8
Keywords: Operator averaging method, coherent transformation, WKB approximation, turning point, spectral cluster
Published electronically: March 21, 2013
Additional Notes: The author was partially supported by the RFFI (Project 12-01-00627-a), the Ministry of Education and Science of the RF (Contract 14.V37.21.0864), and the Grant Council of the President of the RF (Project NSh-2033.2012.1).
Article copyright: © Copyright 2013 American Mathematical Society

American Mathematical Society