Skip to Main Content

Transactions of the Moscow Mathematical Society

This journal, a translation of Trudy Moskovskogo Matematicheskogo Obshchestva, contains the results of original research in pure mathematics.

ISSN 1547-738X (online) ISSN 0077-1554 (print)

The 2020 MCQ for Transactions of the Moscow Mathematical Society is 0.74.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Discretization of Baker–Akhiezer modules and commuting difference operators in several discrete variables
HTML articles powered by AMS MathViewer

by Andrey Mironov and Atsushi Nakayashiki
Trans. Moscow Math. Soc. 2013, 261-279
DOI: https://doi.org/10.1090/S0077-1554-2014-00219-3
Published electronically: April 9, 2014

Abstract:

We introduce the notion of discrete Baker-Akhiezer (DBA) modules, which are modules over the ring of difference operators, as a discretization of Baker-Akhiezer modules, which are modules over the ring of differential operators. We use it to construct commuting difference operators with matrix coefficients in several discrete variables.
References
  • I. M. Krichever and S. P. Novikov, A two-dimensionalized Toda chain, commuting difference operators, and holomorphic vector bundles, Uspekhi Mat. Nauk 58 (2003), no. 3(351), 51–88 (Russian, with Russian summary); English transl., Russian Math. Surveys 58 (2003), no. 3, 473–510. MR 1998774, DOI 10.1070/RM2003v058n03ABEH000628
  • Igor Moiseevich Krichever, Algebraic curves and nonlinear difference equations, Uspekhi Mat. Nauk 33 (1978), no. 4(202), 215–216 (Russian). MR 510681
  • D. Mumford, An algebro-geometric construction of commuting operators and of solutions to the Toda lattice equation, Korteweg deVries equation and related nonlinear equation, Proceedings of the International Symposium on Algebraic Geometry (Kyoto Univ., Kyoto, 1977) Kinokuniya Book Store, Tokyo, 1978, pp. 115–153. MR 578857
  • A. E. Mironov, Discrete analogues of Dixmier operators, Mat. Sb. 198 (2007), no. 10, 57–66 (Russian, with Russian summary); English transl., Sb. Math. 198 (2007), no. 9-10, 1433–1442. MR 2362822, DOI 10.1070/SM2007v198n10ABEH003890
  • I.M. Krichever, Methods of algebraic geometry in the theory of non-linear equations, Russian Math. Surveys, 32:6 (1977), 32:6, 185–213.
  • A.B. Zheglov, On rings of commuting partial differential operators, arXiv:1106.0765 (to appear in St. Petersburg Math. J.).
  • H. Kurke, D. Osipov and A. Zheglov, Commuting differential operators and higher-dimensional algebraic varieties, arXiv:1211.0976.
  • Atsushi Nakayashiki, Structure of Baker-Akhiezer modules of principally polarized abelian varieties, commuting partial differential operators and associated integrable systems, Duke Math. J. 62 (1991), no. 2, 315–358. MR 1104527, DOI 10.1215/S0012-7094-91-06213-7
  • Atsushi Nakayashiki, Commuting partial differential operators and vector bundles over abelian varieties, Amer. J. Math. 116 (1994), no. 1, 65–100. MR 1262427, DOI 10.2307/2374982
  • Tetsuji Miwa, On Hirota’s difference equations, Proc. Japan Acad. Ser. A Math. Sci. 58 (1982), no. 1, 9–12. MR 649054
  • E. Date, M. Jimbo and T. Miwa, Method for generating discrete soliton equations I, J. Phys. Soc. Japan 51-12 (1982), 4116–4124, ibid. II, J. Phys. Soc. Japan 51-12 (1982), 4125–4131, ibid. III, J. Phys. Soc. Japan 52-2 (1983), 388–393, ibid. IV, J. Phys. Soc. Japan 52-3 (1983), 761–765,ibid. V, J. Phys. Soc. Japan 52-3 (1983), 766–771.
  • Irina A. Melnik and Andrey E. Mironov, Baker-Akhiezer modules on rational varieties, SIGMA Symmetry Integrability Geom. Methods Appl. 6 (2010), Paper 030, 15. MR 2647309, DOI 10.3842/SIGMA.2010.030
  • Atsushi Nakayashiki, On hyperelliptic Abelian functions of genus 3, J. Geom. Phys. 61 (2011), no. 6, 961–985. MR 2782474, DOI 10.1016/j.geomphys.2011.01.007
  • Felix Klein, Ueber hyperelliptische Sigmafunctionen, Math. Ann. 27 (1886), no. 3, 431–464 (German). MR 1510386, DOI 10.1007/BF01445285
  • Felix Klein, Ueber hyperelliptische Sigmafunctionen, Math. Ann. 32 (1888), no. 3, 351–380 (German). MR 1510518, DOI 10.1007/BF01443606
  • V. M. Bukhshtaber, D. V. Leĭkin, and V. Z. Ènol′skiĭ, Rational analogues of abelian functions, Funktsional. Anal. i Prilozhen. 33 (1999), no. 2, 1–15, 95 (Russian, with Russian summary); English transl., Funct. Anal. Appl. 33 (1999), no. 2, 83–94. MR 1719334, DOI 10.1007/BF02465189
  • Atsushi Nakayashiki, On algebraic expressions of sigma functions for $(n,s)$ curves, Asian J. Math. 14 (2010), no. 2, 175–211. MR 2746120, DOI 10.4310/AJM.2010.v14.n2.a2
Bibliographic Information
  • Andrey Mironov
  • Affiliation: Sobolev Institute of Mathematics, 630090 Novosibirsk, Russia — and — Laboratory of Geometric Methods in Mathematical Physics, Moscow State University
  • Email: mironov@math.nsc.ru
  • Atsushi Nakayashiki
  • Affiliation: Department of Mathematics, Tsuda College, Kodaira, Tokyo, Japan
  • Email: atsushi@tsuda.ac.jp
  • Published electronically: April 9, 2014

  • Dedicated: Dedicated to Viktor Matveevich Buchstaber on his seventieth birthday
  • © Copyright 2014 American Mathematical Society
  • Journal: Trans. Moscow Math. Soc. 2013, 261-279
  • DOI: https://doi.org/10.1090/S0077-1554-2014-00219-3
  • MathSciNet review: 3235800