IMPORTANT NOTICE

The AMS website will be down for maintenance on May 23 between 6:00am - 8:00am EDT. For questions please contact AMS Customer Service at cust-serv@ams.org or (800) 321-4267 (U.S. & Canada), (401) 455-4000 (Worldwide).

 

Remote Access Transactions of the Moscow Mathematical Society

Transactions of the Moscow Mathematical Society

ISSN 1547-738X(online) ISSN 0077-1554(print)

   
 
 

 

Comparison of the singular numbers of correct restrictions of elliptic differential operators


Authors: V. I. Burenkov and M. Otelbaev
Original publication: Trudy Moskovskogo Matematicheskogo Obshchestva, tom 75 (2014), vypusk 2.
Journal: Trans. Moscow Math. Soc. 2014, 115-131
MSC (2010): Primary 35P15, 35P20, 35J40, 47A75
DOI: https://doi.org/10.1090/S0077-1554-2014-00229-6
Published electronically: November 4, 2014
MathSciNet review: 3308605
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The paper is dedicated to finding the asymptotics of singular numbers of a correct restriction of a uniformly elliptic differential operator of order $ 2l$ defined on a bounded domain in $ \mathbb{R}^n$ with sufficiently smooth boundary, which is in general a non-selfadjoint operator. Conditions are established on a correct restriction, ensuring that its singular numbers $ s_k$ are of order $ k^{{2l}/n}$ as $ k\to \infty $. As an application of this result certain estimates are obtained for the deviation upon domain perturbation of singular numbers of such correct restrictions.


References [Enhancements On Off] (What's this?)

  • 1. Allakhverdiev D.E. On the rate of approximation of completely continuous operators by finite-dimensional operators, Uch. Zap. Azerb. Univ. 1957. Vol.2. P.27-35.
  • 2. Victor I. Burenkov, Sobolev spaces on domains, Teubner-Texte zur Mathematik [Teubner Texts in Mathematics], vol. 137, B. G. Teubner Verlagsgesellschaft mbH, Stuttgart, 1998. MR 1622690
  • 3. Victor I. Burenkov and Pier Domenico Lamberti, Spectral stability of Dirichlet second order uniformly elliptic operators, J. Differential Equations 244 (2008), no. 7, 1712–1740. MR 2404437, https://doi.org/10.1016/j.jde.2007.12.009
  • 4. V. I. Burenkov and M. Otelbaev, On the singular numbers of correct restrictions of non-selfadjoint elliptic differential operators, Eurasian Math. J. 2 (2011), no. 1, 145–148. MR 2910827
  • 5. Ky Fan, On a theorem of Weyl concerning eigenvalues of linear transformations. I, Proc. Nat. Acad. Sci. U. S. A. 35 (1949), 652–655. MR 0034519
  • 6. Ky Fan, On a theorem of Weyl concerning eigenvalues of linear transformations. II, Proc. Nat. Acad. Sci. U. S. A. 36 (1950), 31–35. MR 0033981
  • 7. Fan K. A minimum property of the eigenvalues of completely continuous operators. Eigenvalues of a sum of hermitian matricies, Amer. Math. Monthly. 1953. Vol.60, No. 1. P.48-50.
  • 8. I. C. Gohberg and M. G. Kreĭn, Introduction to the theory of linear nonselfadjoint operators, Translated from the Russian by A. Feinstein. Translations of Mathematical Monographs, Vol. 18, American Mathematical Society, Providence, R.I., 1969. MR 0246142
  • 9. Kokebaev, B. K., Otelbaev, M., Shynybekov, A. N. On questions of extension and restriction of operators. (Russian) Dokl. Akad. Nauk SSSR 271 (1983), no. 6, 1307-1310. MR 0722342 (86b:47001)
  • 10. J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications. Vol. 2, Travaux et Recherches Mathématiques, No. 18, Dunod, Paris, 1968 (French). MR 0247244
  • 11. M. Otelbaev and A. N. Shynybekov, Well-posed problems of Bitsadze-Samarskiĭ type, Dokl. Akad. Nauk SSSR 265 (1982), no. 4, 815–819 (Russian). MR 670839
  • 12. Hans Triebel, Approximation numbers in function spaces and the distribution of eigenvalues of some fractal elliptic operators, J. Approx. Theory 129 (2004), no. 1, 1–27. MR 2070178, https://doi.org/10.1016/j.jat.2004.05.003

Similar Articles

Retrieve articles in Transactions of the Moscow Mathematical Society with MSC (2010): 35P15, 35P20, 35J40, 47A75

Retrieve articles in all journals with MSC (2010): 35P15, 35P20, 35J40, 47A75


Additional Information

V. I. Burenkov
Affiliation: Faculty of Natural Sciences, People’s Friendship University of Russia, Moscow, Russia
Email: burenkov@cf.ac.uk

M. Otelbaev
Affiliation: Faculty of Mechanics and Mathematics, L. N. Gumilyov Eurasian National University, Astana, Kazakhstan
Email: otelbaevm@mail.ru

DOI: https://doi.org/10.1090/S0077-1554-2014-00229-6
Keywords: Correct restrictions of operators, leading and non-leading operators, estimates and asymptotics for singular numbers, spectral stability estimates
Published electronically: November 4, 2014
Additional Notes: V. I. Burenkov’s research was supported by a grant from the Russian Scientific Foundation (project 14-11-00443).
Article copyright: © Copyright 2014 V. I. Burenkov and M. Otelbaev

American Mathematical Society