Remote Access Transactions of the Moscow Mathematical Society

Transactions of the Moscow Mathematical Society

ISSN 1547-738X(online) ISSN 0077-1554(print)

   
 
 

 

Regularity of solutions of parabolic equations with a double nonlinearity and a weight


Author: M. D. Surnachëv
Translated by: E. Khukhro
Original publication: Trudy Moskovskogo Matematicheskogo Obshchestva, tom 75 (2014), vypusk 2.
Journal: Trans. Moscow Math. Soc. 2014, 259-280
MSC (2010): Primary 35K92; Secondary 35K65
DOI: https://doi.org/10.1090/S0077-1554-2014-00237-5
Published electronically: November 5, 2014
MathSciNet review: 3308612
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study local regularity of solutions of nonlinear parabolic equations with a double degeneracy and a weight. We impose the condition of $ p$-admissibility on the weight; in particular this allows weights in the Muckenhoupt classes $ A_p$. We prove that solutions are locally Hölderian without any restriction on the sign being constant. We prove a Harnack inequality for nonnegative solutions. We examine the stability of the constants as the parameters in the equation approach the linear case.


References [Enhancements On Off] (What's this?)

  • 1. A. V. Ivanov, Hölder estimates for quasilinear doubly degenerate parabolic equations, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 171 (1989), 70-105; English transl., J. Soviet Math. 56 (1991), no. 2, 2320-2347. MR 1031986 (91a:35031)
  • 2. A. V. Ivanov, Uniform Hölder estimates for generalized solutions of quasilinear parabolic equations that admit double degeneration, Algebra i Analiz 3 (1991), no. 2, 139-179; English transl., St. Petersburg Math. J. 3 (1992), no. 2, 363-403. MR 1137526 (93d:35083)
  • 3. A. V. Ivanov, The classes $ \mathscr B\sb {m,l}$ and Hölder estimates for quasilinear parabolic equations that admit double degeneration, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 197 (1992), 42-70; English transl., J. Math. Sci. 75 (1995), no. 6, 2011-2027. MR 1172988 (93e:35062)
  • 4. A. V. Ivanov, Quasilinear parabolic equations that admit double degeneration, Algebra i Analiz 4 (1992), no. 6, 114-130; English transl., St. Petersburg Math. J. 4 (1993), no. 6, 1153-1168. MR 1199637 (94a:35065)
  • 5. A. V. Ivanov, Hölder estimates for equations of fast diffusion type, Algebra i Analiz 6 (1994), no. 4, 101-142; English transl., St. Petersburg Math. J. 6 (1995), no. 4, 791-825. MR 1304096 (95j:35110)
  • 6. A. V. Ivanov, Hölder estimates for a natural class of equations of fast diffusion type, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 229 (1995), 29-62; English transl., J. Math. Sci. (New York) 89 (1998), no. 6, 1607-1630. MR 1433579 (97m:35123)
  • 7. A. V. Ivanov, Maximum modulus estimates for generalized solutions to doubly nonlinear parabolic equations, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 221 (1995), 83-113; English transl., J. Math. Sci. (New York) 87 (1997), no. 2, 3322-3342. MR 1359751 (96i:35057)
  • 8. A. V. Ivanov, The regularity theory for $ (M,L)$-Laplacian parabolic equation, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 243 (1997), 87-110; English transl., J. Math. Sci. (New York) 99 (2000), no. 1, 854-869. MR 1629936 (99k:35104)
  • 9. V. V. Zhikov, On weighted Sobolev spaces, Mat. Sb. 189 (1998), no. 8, 27-58; English transl., Sb. Math. 189 (1998), no. 7-8, 1139-1170. MR 1669639 (2000h:46045)
  • 10. O. V. Ladyzhenskaya, V. A. Solonnikov, and N. N. Ural'tseva, Linear and quasi-linear equations of parabolic type, Nauka, Moscow, 1967; English transl., Transl. of Math. Monographs, vol. 23, Amer. Math. Soc., Providence, RI, 1968. MR 0241821 (39:3159a)
  • 11. S. Bonafede and I. I. Skrypnik, On Hölder continuity of solutions of doubly nonlinear parabolic equations with weight, Ukrain. Mat. Zh. 51 (1999), no. 7, 890-903, and Ukrainian Math. J. 51 (2000), no. 7, 996-1012. MR 1727693 (2001f:35057)
  • 12. F. Chiarenza and M. Frasca, Boundedness for the solutions of a degenerate parabolic equation, Applicable Anal. 17 (1984), no. 4, 243-261. MR 757584 (86c:35081)
  • 13. F. M. Chiarenza and R. P. Serapioni, A Harnack inequality for degenerate parabolic equations, Comm. Partial Differential Equations 9 (1984), no. 8, 719-749. MR 748366 (86c:35082)
  • 14. F. M. Chiarenza and R. P. Serapioni, Degenerate parabolic equations and Harnack inequality, Ann. Mat. Pura Appl. (4) 137 (1984), 139-162. MR 772255 (87b:35091)
  • 15. F. Chiarenza and R. Serapioni, A remark on a Harnack inequality for degenerate parabolic equations, Rend. Sem. Mat. Univ. Padova 73 (1985), 179-190. MR 799906 (87a:35110)
  • 16. F. Chiarenza and R. Serapioni, Pointwise estimates for degenerate parabolic equations, Appl. Anal. 23 (1987), no. 4, 287-299. MR 875716 (88c:35060)
  • 17. T. H. Colding and W. P. Minicozzi, II, Liouville theorems for harmonic sections and applications, Comm. Pure Appl. Math. 51 (1998), no. 2, 113-138. MR 1488297 (98m:53053)
  • 18. E. DiBenedetto, Degenerate parabolic equations, Springer-Verlag, New York, 1993. MR 1230384 (94h:35130)
  • 19. E. DiBenedetto, U. Gianazza, and V. Vespri, Harnack estimates for quasi-linear degenerate parabolic differential equations, Acta Math. 200 (2008), no. 2, 181-209. MR 2413134 (2009g:35130)
  • 20. E. DiBenedetto, U. Gianazza, and V. Vespri, Harnack's inequality for degenerate and singular parabolic equations, Springer, New York, 2012. MR 2865434
  • 21. J. Heinonen, T. Kilpeläinen, and O. Martio, Nonlinear potential theory of degenerate elliptic equations, Dover Publications, Mineola, NY, 2006. MR 2305115 (2008g:31019)
  • 22. S. Keith and X. Zhong, The Poincaré inequality is an open ended condition, Ann. Math. (2) 167 (2008), no. 2, 575-599. MR 2415381 (2009e:46028)
  • 23. I. I. Skrypnik, Regularity of solutions of degenerate quasilinear parabolic equations (the weighted case), Ukrain. Mat. Zh. 48 (1996), no. 7, 972-988; English transl., Ukrainian Math. J. 48 (1997), no. 7, 1099-1118. MR 1417254 (97h:35095)
  • 24. M. Surnachev, A Harnack inequality for weighted degenerate parabolic equations, J. Differential Equations 248 (2010), no. 8, 2092-2129. MR 2595716 (2011b:35257)
  • 25. V. Vespri, On the local behaviour of solutions of a certain class of doubly nonlinear parabolic equations, Manuscripta Math. 75 (1992), no. 1, 65-80. MR 1156216 (93d:35071)
  • 26. M. M. Porzio and V. Vespri, Hölder estimates for local solutions of some doubly nonlinear degenerate parabolic equations, J. Differential Equations 103 (1993), no. 1, 146-178. MR 1218742 (94d:35015)
  • 27. V. Vespri, Harnack type inequalities for solutions of certain doubly nonlinear parabolic equations, J. Math. Anal. Appl. 181 (1994), no. 1, 104-131. MR 1257957 (94k:35171)

Similar Articles

Retrieve articles in Transactions of the Moscow Mathematical Society with MSC (2010): 35K92, 35K65

Retrieve articles in all journals with MSC (2010): 35K92, 35K65


Additional Information

M. D. Surnachëv
Affiliation: Keldysh Institute of Applied Mathematics, Moscow
Email: peitsche@yandex.ru

DOI: https://doi.org/10.1090/S0077-1554-2014-00237-5
Keywords: Nonlinear parabolic equations, admissible weights, regularity of solutions, double degeneration, Muckenhoupt classes, Harnack inequality
Published electronically: November 5, 2014
Additional Notes: This research was supported by the Russian Foundation for Basic Research (grants No. 12-01-00058-a and 14-01-31341).
Dedicated: Dedicated to the centenary of the great mathematician Boris Moiseevich Levitan
Article copyright: © Copyright 2014 M. D. Surnachëv

American Mathematical Society