Remote Access Transactions of the Moscow Mathematical Society

Transactions of the Moscow Mathematical Society

ISSN 1547-738X(online) ISSN 0077-1554(print)

   
 
 

 

Ramified covers and tame isomonodromic solutions on curves


Authors: Karamoko Diarra and Frank Loray
Original publication: Trudy Moskovskogo Matematicheskogo Obshchestva, tom 76 (2015), vypusk 2.
Journal: Trans. Moscow Math. Soc. 2015, 219-236
MSC (2010): Primary 34M55, 34M56, 34M03
DOI: https://doi.org/10.1090/mosc/247
Published electronically: November 18, 2015
MathSciNet review: 3467265
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we investigate the possibility of constructing isomonodromic deformations by ramified covers. We give new examples and prove a classification result.


References [Enhancements On Off] (What's this?)

  • 1. Andreev F.V., Kitaev A. V., Transformations $ RS^2_4(3)$ of the ranks $ \le 4$ and algebraic solutions of the sixth Painlevé equation, Comm. Math. Phys. Vol. 228, No. 1 (2002), 151-176. MR 1911252 (2003f:34186)
  • 2. Boalch P., Towards a non-linear Schwarz's list, The many facets of geometry. Oxford: Oxford Univ. Press, 2010, pp. 210-236. MR 2681697 (2011j:33035)
  • 3. Bolibrukh A. A., The Riemann-Hilbert problem, Russian Math. Surveys. Vol. 45, No. 2 (1990), 1-58.
  • 4. Cantat S., Loray F., Dynamics on character varieties and Malgrange irreducibility of Painlevé VI equation, Ann. Inst. Fourier (Grenoble). Vol. 59, No. 7 (2009), 2927-2978. MR 2649343 (2011c:37105)
  • 5. Diarra K., Construction et classification de certaines solutions algébriques des systèmes de Garnier, Bull. Braz. Math. Soc. (N. S.). Vol. 44, No. 1 (2013), 129-154. MR 3077637
  • 6. Diarra K., Solutions algébriques partielles des équations isomonodromiques sur les courbes de genre $ 2$, Ann. Fac. Sci. Toulouse Math. (6). 2015. Vol. 24, No. 1, pp. 39-54. MR 3325950
  • 7. Doran C. F., Algebraic and geometric isomonodromic deformations, J. Diff. Geom. Vol. 59, No. 1 (2001), 33-85. MR 1909248 (2004d:32013)
  • 8. Dubrovin B., Mazzocco M., On the reductions and classical solutions of the Schlesinger equations, Differential equations and quantum groups. Zürich: Eur. Math. Soc., 2007 (IRMA Lect. Math. Theor. Phys.; Vol. 9), pp. 157-187. MR 2322330 (2008h:14010)
  • 9. Heu V., Universal isomonodromic deformations of meromorphic rank 2 connections on curves, Ann. Inst. Fourier (Grenoble). Vol. 60, No. 2 (2010), 515-549. MR 2667785 (2011f:34165)
  • 10. Heu V., Loray F., Flat rank 2 vector bundles on genus 2 curves. arXiv:1401.2449 [math.AG].
  • 11. Hitchin N., Twistor spaces, Einstein metrics and isomonodromic deformations, J. Diff. Geom. Vol. 42, No. 1 (1995), 30-112. MR 1350695 (96g:53057)
  • 12. Kitaev A. V., Quadratic transformations for the sixth Painlevé equation, Lett. Math. Phys. Vol. 21, No. 2 (1991), 105-111. MR 1093520 (92d:34014)
  • 13. Krichever I. M., Isomonodromy equations on algebraic curves, canonical transformations and Whitham equations, Mosc. Math. J. Vol. 2, No. 4 (2002), 717-752. MR 1986088 (2004d:37093)
  • 14. Lisovyy O., Tykhyy Y., Algebraic solutions of the sixth Painlevé equation. Preprint, http://arxiv.org/abs/0809.4873v2 (2008). MR 3253555
  • 15. Loray F., van der Put M., Ulmer F., The Lamé family of connections on the projective line, Ann. Fac. Sci. Toulouse Math. (6). Vol. 17, No. 2 (2008), 371-409. MR 2487859 (2010b:34195)
  • 16. Loray F., Okamoto symmetry of Painlevé VI equation and isomonodromic deformation of Lamé connections, Algebraic, analytic and geometric aspects of complex differential equations and their deformations. Painlevé hierarchies. Kyoto: Res. Inst. Math. Sci. (RIMS), 2007. (RIMS Kôkyûroku Bessatsu; Vol. B2), pp. 129-136. MR 2310025 (2008c:34189)
  • 17. Loray F., Isomonodromic deformation of Lamé connections, Painlevé VI equation and Okamoto symmetry. arXiv:1410.4976 [math.AG] (2014).
  • 18. Machu F.-X., Monodromy of a class of logarithmic connections on an elliptic curve, SIGMA. 2007. Vol. 3. Paper 082. MR 2366940 (2009a:14018)
  • 19. Manin Yu. I., Sixth Painlevé equation, universal elliptic curve and mirror of $ \mathbb{P}^2$, Geometry of differential equations. Providence, RI: AMS, 1998. (AMS Transl. Ser. 2; Vol. 186), pp. 131-151. MR 1732409 (2001b:14086)
  • 20. Mazzocco M., Picard and Chazy solutions to the Painlevé VI equation, Math. Ann. Vol. 321 (2001), 157-195. MR 1857373 (2002g:34203)
  • 21. Mazzocco M., The geometry of the classical solutions of the Garnier systems, Int. Math. Res. Not. 2002. No. 12, pp. 613-646. MR 1892536 (2002m:34137)
  • 22. Mazzocco M., Vidunas R., Cubic and quartic transformations of the sixth Painlevé equation in terms of Riemann-Hilbert correspondence, Stud. Appl. Math. Vol. 130, No. 1 (2013), 17-48. MR 3010489
  • 23. Okamoto K., Isomonodromic deformation and Painlevé equations, and the Garnier system, J. Fac. Sci. Univ. Tokyo Sect. IA Math. Vol. 33, No. 3 (1986), 575-618. MR 866050 (88e:58042)
  • 24. Okamoto K., Kimura H., On particular solutions of the Garnier systems and the hypergeometric functions of several variables, Quart. J. Math. Oxford. Ser. (2). Vol. 37, No. 1, pp. 61-80, 1986. MR 830631 (87i:33009)
  • 25. Simpson C. T., Moduli of representations of the fundamental group of a smooth projective variety. II, IHÉS. Publ. Math. No. 80, pp. 5-79, 1994. MR 1320603 (96e:14013)
  • 26. Tsuda T., Okamoto K., Sakai H., Folding transformations of the Painlevé equations, Math. Ann. 2005. Vol. 331, No. 4, pp. 713-738. MR 2148794 (2006c:34172)
  • 27. Watanabe H., Birational canonical transformations and classical solutions of the sixth Painlevé equation, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4). Vol. 27, No. 3-4 (1998), 379-425. MR 1678014 (2000e:34154)

Similar Articles

Retrieve articles in Transactions of the Moscow Mathematical Society with MSC (2010): 34M55, 34M56, 34M03

Retrieve articles in all journals with MSC (2010): 34M55, 34M56, 34M03


Additional Information

Karamoko Diarra
Affiliation: Université des Sciences, des Techniques, et des Technologies de Bamako, Mali
Email: karamoko.diarra@univ-rennes1.fr, diarak2005@yahoo.fr

Frank Loray
Affiliation: Université de Rennes 1, France
Email: frank.loray@univ-rennes1.fr

DOI: https://doi.org/10.1090/mosc/247
Keywords: Ordinary differential equations, isomonodromic deformations, Hurwitz spaces
Published electronically: November 18, 2015
Article copyright: © Copyright 2015 K. Diarra, F. Loray

American Mathematical Society